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EXPANDED ABSTRACT (in Swedish)

Arbetet med R-beläggning (R = reflektions-
dämpande) för ub̊atar har fortsatts under året.
Föreliggande rapport har skrivits, en teo-
retisk studie rörande funktionsmekanismen för
R-beläggningar av “Alberich” typ. Riccati-
modellering används, innebärande en analys av
reflektion och transmission av planv̊agor samt
en hopkoppling med sfäriska v̊agor runt spri-
darna i gummiskiktet. För fullständighetens
skull inkluderas de grundläggande begreppen
fr̊an avsnitten 2.1-2 i förra årets rapport [0]
även här.

Ett typfall studeras med sfäriska kaviteter
med radie 3 mm i ett kvadratiskt gitter med
sidan d = 44 mm i ett 10 mm tjockt gum-
miskikt, se figuren nedan. I jämförelse med
förra årets rapport studeras lägre frekvenser,
och vattnet under st̊alplattan har för enkel-
hets skull utelämnats. Teoretiskt visas att man
med väl valda realistiska skjuvv̊agsparametrar
för gummit kan f̊a total reflexutsläckning
vid frekvensen 9 kHz. Vid denna frekvens
motsvarar gummits tjocklek endast 6 % av
v̊aglängden. Naturligtvis kan resultaten skalas
om, s̊a att reflexutsläckning vid t.ex. 4.5 kHz
kan f̊as med en 20 mm tjock beläggning.

infallande planv̊ag

? ? ? ?
vatten

m m mgummi

↓ ↓ ↓ ↓st̊al

transmitterad planv̊ag

I rapporten tas detta exempel till utg̊angs-
punkt för en diskussion av mekanismen bakom
reflexutsläckningen. Sett fr̊an den infallande
planv̊agen upptar de sfäriska kaviteterna endast
ung. 1.5 % av gummits tvärsnittsarea. Vidare
är reflektionskoefficienten mot st̊alet ung. 0.94,
och energiinneh̊allet i den till st̊alet transmit-
terade v̊agen blir mycket litet. Detta medför
att varje kavitet måste bidra med ett mycket
stort absorptionstvärsnitt, närmare 70 g̊anger

den energi som infaller mot dess geometriska
tvärsnittsarea måste absorberas. I rapporten
illustreras hur denna absorption uppkommer
genom ett energiflöde in mot kaviteterna. Ung.
71 % av förlusterna sker inom de 2.1 % av gum-
mivolymen som ligger inom de 2 mm närmast
sfärerna.

Det stora absorptionstvärsnitt som krävs
uppkommer genom en välkänd resonans för
spridning av radiellt symmetriska sfäriska
kompressionsv̊agor (monopolspridning). Mot
bakgrund av att endast skjuvv̊agsdämpning
introducerats i gummimaterialet kunde man
kanske ha väntat sig att en viktig komponent i
förlustmekanismen skulle vara spridning i form
av skjuvv̊agor, vilka sedan absorberas. Detta
är allts̊a inte fallet. Att skjuvv̊agsdämpningen
änd̊a kan orsaka kraftiga förluster för sfäriska
kompressionsv̊agor nära spridaren förklaras av
en av skjuvmodulen beroende spänning som
verkar nära spridaren för att återställa de
kraftiga laterala töjningar som där uppkommer.
Denna återställande spänning saknas i en fluid.

Den använda beräkningsmetodiken medger
en analys av inverkan av multipelspridning mel-
lan kaviteterna. Speciellt härleds en energi-
relation där denna inverkan isoleras i en speciell
faktor. Avst̊andet mellan kaviteterna är inte
s̊a stort relativt v̊aglängden (ung. 27 %),
och beräkningar utan hänsyn till multipel-
spridningen leder till att reflektionsminimum
felaktigt förläggs till 7.7 i stället för 9 kHz.

Sammantaget resulterar monopol-
spridningen fr̊an gittrets kaviteter i planv̊agor
upp̊at och ned̊at av lika amplitud. Reflex-
frihet kräver d̊a att den upp̊atg̊aende v̊agen
och en fr̊an st̊alet reflekterad v̊ag kan kan-
cellera varann. Riccatitekniken används för
att illustrera detta genom en expansion av
reverberationsoperatorn. Alternativt skulle
man kunna tänka sig en R-beläggning som
byggde p̊a att den infallande v̊agen kunde
dämpas ut redan innan den n̊adde st̊alet.

Arbete med experimentell verifikation av
de interferensfenomen som kan förväntas vid
högre frekvenser, se avsnitt IV i rapporten,
genomförs ocks̊a under året. Vidare arbe-
tar tv̊a examensarbetare med implementering
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av moderna algoritmer för global optimering.
V̊ar förhoppning är att f̊a fram bättre verk-
tyg för design av R-beläggningar än den tio år
gamla genetiska algoritm som användes i förra
årets rapport. Dessa aktiviteter är dock ännu
ej avslutade, och de kommer att rapporteras
p̊a annat sätt. Studier av h̊arda spridare i
gummiskiktet och spridare av mer allmän form
samt bedömning av s̊a kallade homogeniserings-
ansatser återst̊ar att göra.

Till sist skall nämnas att arbetet med
finita differenser för numerisk modellering av
R-beläggningar har legat nere under året p.g.a.
tjänstledighet (Lena Frenje-Lund).

Referens
[0] S. Ivansson och L. Frenje-Lund, “Modelling
of echo reduction by Alberich anechoic coat-
ings,” FOI Rapport R–1039-SE (Stockholm,
2003).
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Abstract

Thin rubber layers with spherical cavities can redistribute normally incident sonar energy in the
transverse direction, where it suffers loss by anelastic absorption. This is the basis for an old
idea for anechoic submarine coatings. Here, the anechoic effect is studied theoretically and nu-
merically by adapting modern techniques for electron scattering and band gap computations for
photonic and phononic crystals. Reflection and transmission matrices are computed recursively
by invariant embedding, from basic such matrices for layers containing periodic arrays of cavities.
Observing that the reflectivity is an analytic function of the shear wave velocity of the rubber
material, winding-number methods are applied to prove the existence of, and to design, coatings
with vanishing reflectivity at isolated frequencies. The spatial distribution of the absorption loss is
determined, with the major part suffered in the vicinity of the cavities for compressional spherically
symmetric waves. The viscoelastic shear properties of the rubber are crucial for generating this loss,
although the generation of scattered shear waves turns out to be insignificant. The requirements
for anechoism are specified using plane-wave concepts from the invariant embedding technique. A
classical monopole resonance for a spherical cavity in a solid is fundamental in order to fulfil these
requirements. An energy relation is derived that relates the anelastic loss in the rubber layer to
loss by scattering from a single cavity. A factor is isolated that quantifies the effects of multiple
scattering, which are noticeable.

I. INTRODUCTION

Anechoic coatings for submarines, to avoid
detection by an active sonar, have a long his-
tory and different types of coatings exist. Rub-
ber coatings with air-filled cavities 1 were used
already during the second world war. Such
coatings are said to be of Alberich type, and an
illustration is provided in Fig. 1. When sound
from an active sonar enters the coating, part of
it is scattered by the cavities. The scattered en-

ergy can subsequently be absorbed by the rub-
ber material, and the amount of energy that
is reflected back can be significantly reduced.
Some ideas for the mechanisms of the echo re-
duction have been discussed by Gaunaurd et
al. 2, 3, 4, 5 in connection with RST (reso-
nance scattering theory). Scattering of com-
pressional and shear waves by isolated spherical
inclusions, including resonances, has also been
treated by many other authors. 6, 7
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Rubber

Steel

Water

Figure 1: A steel plate is covered with an Al-
berich anechoic rubber coating. The arrows in-
dicate incident sound from the water and some
scattered waves.

A model for studying the performance of Al-
berich anechoic coatings was given by Oberst,1

in terms of an equivalent electric circuit. Such
circuits are common in noise technology. It
is not apparent, however, how the mass, re-
sistance and compliance parameters of such a
model can be related to the sound velocities of
the rubber material and the cavity radius, etc.

A theoretically more attractive approach is
to apply wave propagation modeling, which is
a well developed research area in underwater
acoustics and seismology. 8, 9 At sufficiently
low frequency, it may be possible to model the
coating as a homogeneous viscoelastic layer, for
which effective sound velocity and attenuation
parameters may be determined. 10,11 Still, how-
ever, it is not apparent a priori how to relate the
effective model parameters to the actual ones of
the rubber material and the cavities.

The finite element method (FEM) has been
used to incorporate details of the complicated
sound scattering by the cavities. 12, 13, 14 An
important advantage is the flexibility to model
different types of Alberich coatings. Periodicity
can be utilized to restrict the computer inten-
sive FEM modeling to an individual unit cell.

The aim of the present paper is to study
echo reduction by Alberich anechoic coatings
with a faster semi-analytical method that has
been borrowed from atomic physics and ap-
plied in recent years to studies of band gaps for

photonic and phononic crystals. 15, 16 Indeed,
sound scattering by the cavities within the rub-
ber layer is formally related to electron scat-
tering by atoms in a lattice. A computer im-
plementation has been made, with an existing
program for photonic crystals 17 (the electro-
magnetic case) as a very useful starting point,
and the theory is briefly reviewed in Secs. II
and III. Sound propagation through a sequence
of layers, with or without cavities, may be han-
dled recursively by a technique that is known
in underwater acoustics and seismoacoustics as
the invariant embedding or Riccati method. 8,18

It is for the treatment of the cavities that the
techniques from atomic physics 19 become cru-
cial, see Sec. III. The wave field scattered by
each cavity is expanded in spherical wave func-
tions, and an equation system is obtained for
the coefficients. Convenient transformation for-
mulas exist between spherical waves and plane
waves, 20 which provides the coupling to the
plane waves needed for the recursive invariant
embedding treatment of multi-layered cases.

Basic examples of the effect of a periodic
planar array of scatterers are given in Sec. IV.
The energy of a normally incident plane wave is
redistributed among plane waves in an infinite
but discrete set of directions. At low frequency,
all but the plane waves in the normal directions
are evanescent. As the frequency is increased,
more and more of these evanescent beams or
plane waves become propagating.

A computational technique for coating de-
sign is presented in Sec. V. It is based on the
observation that the reflection coefficient for
specularly reflected waves into the water is an-
alytic as a function of the shear modulus µ of
the matrix material. Algorithms for finding ze-
roes of analytic functions can thus be applied to
prove the existence of (n.b.) and to design coat-
ings with a reflectivity that vanishes exactly at
a specified frequency. Absorption cross-sections
and energy flux are computed and used to de-
termine where the absorption loss is suffered.

Such a coating is subsequently analysed in
detail in Sec. VI to provide an improved under-
standing of the mechanism for the Alberich ane-
choic effect. The shear properties of the rubber
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material are not important for generating scat-
tered shear waves, but for generating loss from
scattered spherically symmetric compressional
waves. This loss arises from a restoring stress
close to the spherical cavities, that is absent in a
fluid. An energy relation is derived, that identi-
fies the absorption loss in the rubber layer with
the loss induced by a single cavity, as modified
by a multiplicative factor that includes effects
of multiple scattering.

An attractive feature of the applied
methodology is that the effects of multiple scat-
tering can be assessed theoretically and quan-
tified. The need for more research concern-
ing multiple scattering corrections was in fact
pointed out in a previous study. 21 Although
not treated in the present paper, it would also
be possible to assess the validity of homoge-
nization or effective medium approaches. Some
other ideas for future work and concluding re-
marks are provided in Sec. VII.

II. THE INVARIANT EMBEDDING
APPROACH

Consider a horizontal interface between two
homogeneous solid or fluid half-spaces. A right-
hand Cartesian xyz coordinate system is as-
sumed, with the z axis pointing downwards
and the x axis pointing to the right. Waves
with time dependence exp(−iωt) are consid-
ered, where ω is the angular frequency.

In the solid case, a plane wave incident from
above gives rise to three reflected and three
transmitted waves,9 since three different polar-
izations are possible (P, SV, SH). Since the in-
cident plane wave may have three different po-
larizations as well, a 3×3 reflection-coefficient
matrix RB and a 3×3 transmission-coefficient
matrix TB may be formed, for complex dis-
placement amplitudes. These matrices depend
on the horizontal wavenumber, which is, how-
ever, constant among all seven waves according
to Snell’s law. For a plane wave incident from
below, the matrices RA and TA are introduced
analogously.

An “interface” at z = 0 is considered next,

that does not represent a border between two
different half-spaces but the plane of location
for a two-dimensional periodic array of cavities
or other scatterers, as illustrated in Fig. 2.

incident plane wave
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Figure 2: Scatterers in a lattice in the plane
z = 0. The simple scatterer lattice redistributes
some of the energy of the normally incident
plane wave, in the positive z direction, to non-
normal directions.

The centers of the scatterers have xy coor-
dinates given by

R = (x, y, 0) = m · (d, 0, 0) + n · (0, d, 0) (1)

where m,n are integers and d is the period of
the square scatterer lattice. It is convenient to
introduce the reciprocal lattice in the wavenum-
ber domain as well:

g = (kx, ky , 0) = m·(2π/d, 0, 0)+n·(0, 2π/d, 0) .
(2)

Outside a layer containing the scatterers, plane-
wave representations of the field are still valid.
Hence, R/T (reflection/transmission) matrices
RB ,TB and RA,TA can still be introduced.
However, reflected and transmitted waves with
different horizontal wavenumbers than that of
the incident wave, which is written as the vec-
tor k||, may now appear. For each field variable
ϕ(x, y, z), exp(−i · k|| · (x, y, 0)) · ϕ(x, y, z) may
for each fixed z be expanded in a Fourier series
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in x and y. Hence, it is the discrete set of hori-
zontal wavenumbers k||+g, where g belongs to
the reciprocal lattice of Eq. (2), that may now
appear. Illustrations are attempted in Figs. 2
and 3.

inc

P

P PP

SV
SV

SV

SV

SV
SV

SH SH

SH SH

SH

SH

P P

RB

TB

Figure 3: A plane wave incident on periodically
distributed scatterers in the plane z = 0 gives
rise to reflected and transmitted P,SV,SH waves
of different horizontal wavenumbers. Different
y components appear as well, although this is
not clearly illustrated in this xz diagram.

Specifically, with the time dependence
exp(−iωt) suppressed as usual, the displace-
ment vector for each incident, reflected or
transmitted plane wave is a multiple, given by
the complex displacement amplitude, of

u(r) = exp(iKs
gj · r) · ej . (3)

Here, r = (x, y, z), s = +(−) for a wave inci-
dent from above (below), while j = 1,2,3 for
a wave of type P,SV,SH, respectively. Further-
more,

K±
gj = k|| + g ±

[ω2/c2
j − |k|| + g|2]1/2 · (0, 0, 1) (4)

=
ω

cj
(sin θ cos φ, sin θ sinφ, cos θ) (5)

where cj is the compressional-wave velocity α
when j = 1 and the shear-wave velocity β
when j = 2, 3, while the angular variables θ,
φ of K±

gj are defined by Eq. (5), with a pos-
sibly complex cos θ. In the viscoelastic case,
with a complex cj , sin θ is complex as well but
the quotient sin θ/cj remains real. The po-
lar vectors ej = ej(K

±
gj), finally, are defined

as usual by e1 = (sin θ cos φ, sin θ sinφ, cos θ),

e2 = (cos θ cos φ, cos θ sinφ,− sin θ), e3 =
(− sinφ, cos φ, 0).

Several interfaces are involved in Fig. 1,
with as well as without scatterers, and R/T
matrices for different interfaces have to be com-
bined. This combination can be performed
recursively. It is sufficient to consider the
case with two interfaces as shown in Fig. 4.
Incorporating layer thicknesses by appropriate

RB1

TB1 RB2

TB2

TA1

RA1 TA2

RA2

RB

TB

TA

RA

D↓

U↑

X↓ Y↑

Figure 4: R/T matrices RB1,TB1, RA1,TA1 and
RB2,TB2, RA2,TA2 for an upper and a lower in-
terface, respectively, may be combined to form
the total R/T matrices RB ,TB, RA,TA. The
complex displacement amplitude vectors D, U,
X, and Y for Eqs. (9)-(12) are also included.

phase shifts, which is easily done for plane
waves as in Eq. (3), the following formulas are
easily established: 19, 18

RB = RB1 + TA1 ·
[I−RB2 · RA1]

−1 · RB2 · TB1 (6)

= RB1 + TA1 · RB2 ·
[I−RA1 · RB2]

−1 · TB1 (7)

TB = TB2 · [I−RA1 · RB2]
−1 · TB1 , (8)

where each I denotes the appropriate identity
matrix. Formulas for RA,TA are analogous.
Numerical stability is achieved, since increasing
exponentials are absent. Similar formulas ap-
ply in the context of an invariant embedding or
Riccati method for solving general boundary-
value problems for systems of ordinary differ-
ential equations. 22

For the situation in Fig. 4, there is a simple
method to determine the solution at the inter-
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mediate level when the wave field at the up-
per and lower levels has been computed. Com-
plex displacement amplitudes are denoted by
D (downgoing at the upper level), U (upgo-
ing at the lower level), X (downgoing at the
intermediate level), and Y (upgoing at the in-
termediate level), as illustrated in the figure.
The following relations are readily established:

Y = RB2 · X + TA2 ·U (9)

X = RA1 ·Y + TB1 · D . (10)

The linear equation systems for determination
of X and Y become

(I−RA1 · RB2) · X =

TB1 ·D + RA1 · TA2 · U (11)

(I−RB2 · RA1) ·Y =

TA2 ·U + RB2 · TB1 ·D . (12)

III. R/T MATRICES FOR AN INTER-
FACE WITH PERIODICALLY DIS-
TRIBUTED SCATTERERS

Explicit expressions for the R/T matri-
ces introduced in Sec. II are well known for
an interface between two homogeneous half-
spaces. 9 Only plane-wave field representa-
tions are needed, since the wave equations are
separable in Cartesian coordinates. A two-
dimensional spatial Fourier transform is appro-
priate, from xy to kxky. The vertical wavenum-
bers kz, cf. Eq. (4), are determined to achieve
fulfilment of the wave equations.

The wave equations are separable in spheri-
cal coordinates as well, which is useful for han-
dling an interface with periodically distributed
scatterers. Angular dependence is expressed in
terms of vector spherical harmonics that are or-
thonormal on the unit sphere. 9 As in Ref. [16],
for example, the following basic spherical vec-
tor solutions to the wave equations for the dis-
placement vector u are used:

uL
lm(r) =

α

ω
· ∇ (fl(ωr/α)Y m

l (θ, φ)) (13)

uM
lm(r) = ifl(ωr/β) · 1

√

l(l + 1)
·

(

1

sin θ

∂Y m
l (θ, φ)

∂φ
· e2(r)−

∂Y m
l (θ, φ)

∂θ
· e3(r)

)

(14)

uN
lm(r) =

iβ

ω
· ∇ × uM

lm(r) (15)

where θ,φ are the angular variables of r and r =
|r|. Y m

l = Y m
l (θ, φ) are the surface spherical

harmonics. The index l=0,1,2,.. with m=-l,..,l,
but it is understood that uM

00 ≡ uN
00 ≡ 0. In or-

der to fulfil the wave equations, there are two
basic options: the function fl is either taken
as the spherical Bessel function jl or as the
spherical Hankel function h+

l . The notation

u0L
lm,u0M

lm ,u0N
lm and u+L

lm ,u+M
lm ,u+N

lm is used for
the two cases, respectively. Dimensions appear
in expansion coefficients, and these vectors are
actually dimensionless.

The outgoing field from each individual
scatterer can be expanded in terms of u+P

lm ,
where P = L,M,N . For the scatterer centered
at the origin, the scattered field is thus written

usc,0(r) =
∑

P lm

b+P
lm · u+P

lm (r) . (16)

For a linear combination of plane waves, Eq.
(3), incident on the scatterer lattice, the ex-
pansion coefficients for different scatterers are
related by simple phase factors because of pe-
riodicity. Thus, the total scattered field usc is
written16

usc(r) =
∑

P lm

(

b+P
lm

∑

R

ei·k||·R · u+P
lm (r −R)

)

,

(17)
where the sum on R is taken over lattice vectors
R according to Eq. (1).

In order to obtain the R/T matrices, the
expansion of Eq. (17) must be transformed to
plane waves as written in Eq. (3). The follow-
ing relation is crucial for this purpose: 16

∑

R ei·k||·R · h+
l (ω|r −R|/cj) · Y m

l ( ˆr −R) =
∑

g

2π(−i)lcj

ωd2K+

gjz

· Y m
l (K̂±

gj) · e
iK±

gj ·r . (18)

Here, K+
gj should be used for z > 0 while K−

gj is
needed for z < 0. A caret indicates the angular
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variables of the indicated quantity, and K+
gjz

denotes the z component of K+
gj. A proof can

be found on p. 75-80 of Ref. [19]. For l =
m = 0, Eq. (18) is readily derived from the
Weyl integral9 with the aid of the Poisson sum
formula in two dimensions.

With the aid of Eq. (18), a plane-wave rep-
resentation of Eq. (17) is easily obtained 15 by
expressing derivatives of Y m

l in terms of itself
and Y m±1

l . As anticipated from Sec. II, it is
the reciprocal lattice of Eq. (2) that provides
the changes of the horizontal wavenumbers.

The only remaining task is to compute the
expansion coefficients b+P

lm appearing in Eq.
(17). These coefficients represent the outgo-
ing (scattered) field from the scatterer centered
at the origin. The main steps are now indi-
cated, as given in more detail in Ref. [16], for
an approch that takes multiple scattering into
account in a self-consistent way. Multiple scat-
tering can be important, since scattering may
be favored at certain frequencies by lattice res-
onances 23 in addition to the single-scattering
resonances. 5

The incoming field on the scatterer centered
at the origin, for example, has two parts: the
incoming plane waves from adjacent layers writ-
ten as a linear combination of basic plane waves
according to Eq. (3), and the outgoing (scat-
tered) field from all the other scatterers. Both
these fields can be expanded in terms of u0P

lm .
The expansion coefficients for the former are
here denoted a0P

lm , explicit expressions are de-
rived in Liu et al., 15 for example, while those
for the latter are here denoted b

′P
lm. Hence, this

incoming field is

uinc,0(r) =
∑

P lm

(a0P
lm + b

′P
lm) · u0P

lm(r) . (19)

A T-matrix (transition matrix) argument im-
mediately provides the equation system

b+P
lm =

∑

P ′l′m′

TPP ′

lm;l′m′ · (a0P ′

l′m′ + b
′P ′

l′m′) , (20)

where explicit expressions exist for the T-
matrix T PP ′

lm;l′m′ for a spherical scatterer. 2, 5, 16

A second equation system can be derived by

translating each wave b+P
lm · u+P

lm (r − R) to the
origin: 16

b
′P
lm =

∑

P ′l′m′

ΩPP ′

lm;l′m′ · b+P ′

l′m′ , (21)

where the matrix ΩPP ′

lm;l′m′ depends on d ·k|| and
ωd/α, ωd/β.

Elimination of b
′P
lm between Eqs. (20) and

(21) provides the desired equation system for
b+P
lm . For spherical scatterers, a useful feature

is that the equation system splits in two sub-
systems. 19 It follows that Eq. (17) is valid out-
side the spherical scatterers, since all boundary
conditions, radiation conditions and wave equa-
tions are fulfilled. Being based on Eq. (17) to-
gether with Eq. (18), the plane-wave represen-
tation is valid outside the spherical scatterers
for nonzero z.

A single-scattering approximation is imple-
mented by ignoring the b

′P ′

l′m′ contribution in
Eq. (20). In this case, the expansion coef-
ficients b+P

lm are readily obtained from the T-
matrix without any need to solve an equation
system.

The time-averaged acoustic power that is
reflected back into the water can be computed
from the overall reflection matrix RB for the
complete fluid-solid structure, cf. Fig. 1. This
computation involves intensity or energy flux
integration over lateral position. Such integra-
tion or averaging implies under fairly general
conditions that cross-terms, which appear when
the quadratic energy flux expression is formed,
can be ignored. This is discussed in detail in
Appendix A. For the examples in Secs. V and
VI, however, there is in general only one prop-
agating reflected wave in the water.

IV. REDISTRIBUTION OF ENERGY
TO NONSPECULAR DIRECTIONS

The fundamental property of scatterers in
a periodic planar lattice, to redistribute incom-
ing plane-wave energy in an infinite but dis-
crete set of directions, has been illustrated in
Figs. 2 and 3. The phenomenon is related to the
Fraunhofer diffraction patterns for a multiple-
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slit aperture in optics. 24

An example of the type shown in Fig. 1 is
considered, with a 10 mm thick rubber coat-
ing. The water sound velocity and density are
1480 m/s and 1.0 kg/dm3, respectively, as are
the corresponding rubber material parameters.
Direct reflections at the water/rubber interface
are thus avoided at normal incidence. Below
the coating, there is a steel half-space with den-
sity 7.7 kg/dm3, compressional-wave velocity
5850 m/s, and shear-wave velocity 3230 m/s.
Only the rubber is anelastic. It is modeled
as a viscoelastic solid with shear-wave veloc-
ity and absorption given by 100 m/s and 17.5
dB/wavelength, respectively. For simplicity of
forthcoming analysis in Sec. VI, vanishing rub-
ber compressional-wave absorption is assumed.
The cavities are spherical with a radius of 3 mm
and evacuated (air filling would produce almost
identical results). They are distributed in the
middle of the coating in a square lattice with
period d = 44 mm.

A plane-wave pulse is normally incident on
the scatterer plane, chosen as z = 0. By Fourier
synthesis, the backscattered pressure field is
computed as nine time traces. These nine
traces correspond to receivers in the water at
a distance of 1 m from the water/rubber inter-
face, uniformly spaced from (x, y) = (−d/2, 0)
to (x, y) = (+d/2, 0) along a horizontal period d
with the central receiver directly above a spher-
ical scatterer at (x, y) = (0, 0).

At first, the case is considered when the
spectrum of the incident plane-wave pulse is
in the band 20-30 kHz. As verified from Eqs.
(2)-(4), only the specularly reflected beam in
the water is propagating in this case. At the
distance considered, all evanescent waves have
died out. As seen in the upper panel of Fig. 5,
the backscattered pressure field has a very sim-
ple appearance without variation in the hori-
zontal direction. The shapes of the reflected
and incident pressure pulses are identical.

By increasing the pulse frequencies to get
a spectrum essentially in the band 35-45 kHz,
five beams become propagating. These are the
beams with (m,n) = (0,0), (1,0), (-1,0), (0,1),
and (0,-1) according to Eq. (2). The four non-

x=−d/2 x=0 x=+d/2

Figure 5: Time traces for the backscattered
pressure field 1 m into the water for a coat-
ing of the type shown in Fig. 1, as described
in the text. The normally incident plane-wave
pulse has its spectrum in the band 20-30 kHz
(upper panel), 35-45 kHz (middle panel), and
50-60 kHz (lower panel). Time increases down-
wards in each panel, starting 0.5 ms after the
arrival of the center of the incident pulse at the
water/rubber interface, and there is 0.1 ms be-
tween tick marks.
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specularly reflected beams interact to create a
pattern of constructive and destructive inter-
ference along the horizontal direction, middle
panel of Fig. 5. Recalling that the pressure p
in a fluid with density ρ and sound velocity c
equals −ρc2 (∇ · u), it follows from Eqs. (2)-(4)
that the xy dependence of the pressure contri-
bution by the beam quartet is given by

exp(i 2πx
d ) + exp(−i 2πx

d ) + exp(i 2πy
d )+

exp(−i 2πy
d ) = 2

(

cos 2πx
d + cos 2πy

d

)

. (22)

A vanishing contribution appears at (x, y) =
(±d/2, 0) while maxima appear at (x, y) =
(0, 0), for example, which is precisely what can
be observed in the middle panel of Fig. 5. The
vertical wavenumber kz of the beam quartet is

kz =
√

ω2/c2 − (2π/d)2 , (23)

as obtained from Eqs. (2)-(4), corresponding
to a late slanting arrival with vertical group ve-
locity

dω

dkz
= c

√

1 −
(

2π

d

c

ω

)2

. (24)

Finally, the frequency band 50-60 kHz is
considered for the pulse spectrum. Another
beam quartet becomes propagating, the one
with (m,n) = (1,1), (-1,1), (1,-1), and (-1,-1) ac-
cording to Eq. (2). In the lower panel of Fig. 5,
arrivals can be identified that correspond to
the specular beam and this new beam quar-
tet. The previous beam quartet can be seen
as well, although it interferes with the spec-
ular beam because of a small time separation
at the distance 1 m. Again, the beams within
a quartet interact to create a pattern of con-
structive and destructive interference along the
horizontal direction. The xy dependence of the
pressure contribution by the new beam quartet
becomes

exp(i 2π(x+y)
d ) + exp(−i 2π(x−y)

d )+

exp(i 2π(−x−y)
d ) + exp(−i 2π(−x+y)

d ) =

4 cos 2πx
d cos 2πy

d . (25)

Vanishing contributions appear at (x, y) =
(±d/4, 0), while maximal amplitudes appear

at (x, y) = (0, 0) and (x, y) = (±d/2, 0), for
example, which is precisely what can be ob-
served in the lower panel of Fig. 5. The vertical
wavenumber kz of the new beam quartet is

kz =
√

ω2/c2 − 2(2π/d)2 (26)

with a corresponding vertical group velocity
given by

dω

dkz
= c

√

1 − 2

(

2π

d

c

ω

)2

. (27)

Inserting c = 1480 m/s (the compressional-
wave velocity of the water) and d = 44 mm (the
lattice period), the late arrivals in the lower
panel of Fig. 5 are predicted well.

In these examples, energy is sucked out of
the specularly reflected beam and redistributed
to other directions when propagating beams in
nonspecular directions begin to exist in the wa-
ter, as determined by the lattice. The effect
is further illustrated in Fig. 6, which shows re-
flected power as a function of frequency. The
most conspicuous feature for the total reflected
power in curve (a) is the clear anechoic effect in
an interval around 10 kHz. According to Eqs.
(2)-(4), the beam quartets considered are in-
troduced at c/d = 33.6 kHz, as shown by curve
(c), and c

√
2/d = 47.6 kHz, as shown by curve

(d).
Rather than obtaining anechoism by ab-

sorption of incident energy, it could be of inter-
est to link the energy off in harmless nonspecu-
lar directions. Indeed, some further reductions
in reflected power can be observed within the
frequency intervals 34-47 kHz and 48-67 kHz
for curve (b) of Fig. 6, where the energy in the
nonspecular directions is ignored. The effect is
small, however, and the corresponding specular
reflections in Fig. 5 are only slightly reduced in
amplitude in relation to the incident waves.

In all examples, cf. Fig. 1, the incident and
reflected waves are studied in a fluid (water).
For a solid, particularly one with a low shear ve-
locity, propagating shear waves in nonspecular
directions could appear at much lower frequen-
cies. Still, however, it appears that the main
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Figure 6: Reflected power as a function of fre-
quency, in dB relative to the power of the nor-
mally incident plane wave. The coating is of
the type shown in Fig. 1 with parameter values
given in the text. The total reflected power is
shown by curve (a). Curve (b), which coincides
with curve (a) below 33 kHz, concerns the part
in the specular beam. The contributions from
the two beam quartets discussed in the text are
shown by curves (c) and (d), respectively.

part of the reflected energy typically appears
in the specular compressional-wave beam.

V. COATING DESIGN USING ANA-
LYTICITY OF THE REFLECTION CO-
EFFICIENT

For a constant rubber density ρ, the spec-
ular plane-wave reflection coefficient for waves
from the water, now denoted R, is an analytic
function of the shear modulus µ = ρβ2 of the
rubber material. It is the complex shear ve-
locity β that is varied. The analyticity allows
zeroes of R(µ) to be identified by numerical
winding-integral techniques,25 whereby the ar-
gument variation of R is determined around
search rectangles in the µ plane. Adaptive
splitting of these search rectangles is applied,
as illustrated in Fig. 7, until exactly one zero is
enclosed. The secant method is finally used to
refine the estimate of an isolated zero. During
this process, the numerical evaluation of R at
each µ is performed by the approach described
in Secs. II and III.

-

6

�

?
(1) (2)

(3)

•
•

µ plane

Figure 7: Adaptive splitting of search rectan-
gles in the complex µ plane to locate zeroes
of an analytic function by argument variation
computations.

With carefully implemented error control,
the existence of zeroes can actually be proved.
The argument variation of R(µ) around a
closed path in the µ plane is an integral mul-
tiple of 2π. The exact value is of course not
obtained numerically, but a value close to 2π,
for example, implies that one zero is enclosed.

An example is now considered, of the type
shown in Fig. 1. All parameters are kept at
their values from the example in Sec. IV, ex-
cept the rubber shear-wave velocity and ab-
sorption, which are varied to form a variable
shear modulus µ. The described technique was
used to determine a µ value providing zero re-
flectivity for normally incident plane waves at 9
kHz. The computed µ corresponds to a rubber
shear velocity and shear absorption of 83.6 m/s
and 14.3 dB/wavelength, respectively. Fig. 8
shows the resulting curve for reflected power
versus frequency.

The anechoic effect in Fig. 8 is due to the
spherical inclusions and the shear wave absorp-
tion in the rubber. Without the cavities, R
would be about 0.94, implying a reflection loss
of about 0.6 dB (indicated in Fig. 8). With-
out the absorption, virtually all incident energy
would of course be reflected back into the wa-
ter by the rubber/steel interface, whether or
not any cavities were present.

Comparison with the curve marked s, com-
puted as indicated at the end of Sec. III, pro-
vides an assessment of the effect of multiple
scattering among the cavities. A qualitatively
similar result is obtained, but with the 9 kHz
dip moved to 7.7 kHz. Although the lattice pe-
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Figure 8: Reflected power as a function of fre-
quency, in dB relative to the power of the nor-
mally incident plane wave. The 10 mm coating
is of the type shown in Fig. 1, with cavity ra-
dius a = 3 mm and period d = 44 mm. The
small (0.6 dB) reflection loss for a coating with-
out cavities is indicated (the line at the top),
and the curve marked s concerns the single-
scattering approximation result. The rubber µ
was determined to achieve zero reflectivity at 9
kHz.

riod d = 44 mm is large in comparison to the
cavity radius a = 3 mm, it is only about 27 %
of the wavelength, and the single-scattering ap-
proximation leads to clearly noticeable errors.

Fig. 9 shows time domain results obtained
by Fourier synthesis. A pulse with spectrum in
the band 7-11 kHz was chosen (upper panel),
for which significant echo reduction is antici-
pated according to Fig. 8. The reflected pulse
as viewed at the water/rubber interface (middle
panel) is weak except directly above a spherical
scatterer at (x, y) = (0, 0) (the central trace).
The corresponding energy is built up by evanes-
cent waves, however. It has disappeared al-
ready at a distance of 1 cm into the water,
but the lower panel shows the results further
away at a distance of 1 m. The horizontal line
in each panel indicates the time at which the
center of the symmetrical incident pulse has
reached the water/rubber interface. The re-
flected pulse has been changed dramatically by
this wave-theoretic notch filter, as seen in the
lower panel. In the vicinity of 9 kHz, it appears
that the pertinent transfer function is well ap-

x=−d/2 x=0 x=+d/2

Figure 9: Results of pulse computations by fre-
quency synthesis, corresponding to Fig. 8. The
incident pulse is shown (upper panel) along
with the reflected pulse as seen at the wa-
ter/rubber interface (middle panel) and 1 m
into the water (lower panel). Time increases
downwards with 0.5 ms between tick marks and
there is a horizontal line for a common reference
time. Nine traces are drawn in each case, cov-
ering the overall period d=44 mm along the x
axis.

proximated by a multiple of ( 1−1.6 i ) (ω−ω0),
where ω0 = 2π · 9000 Hz. Such a transfer func-
tion causes an apparent splitting of a pulse with
symmetrical spectrum around 9 kHz, and this
is precisely what can be observed in the lower
panel of Fig. 9. A further discussion of this
phenomenon is provided in Appendix B.

A. Absorption loss

The loss by anelastic absorption is quanti-
fied in Fig. 10. It is readily determined by relat-
ing the intensities of the reflected (back into the
water) and transmitted (into the steel) beams
to the intensity of the incident beam. An ef-
fective normalized absorption cross-section per
cavity, in the present context, appears by mul-
tiplying the intensity loss fraction by the geo-
metrical cross-section ratio d2/πa2 = 68.5. As
expected, cf. Fig. 8, a very large absorption
cross-section appears around 9 kHz.
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Figure 10: The upper curve (a) shows effective
normalized absorption cross-section per cav-
ity, corresponding to Fig. 8. The contribution
to this cross-section from anelastic absorption
within 2 mm of the spherical cavity is indicated
by the lower curve (b).

Moreover, the computational techniques de-
scribed in Secs. II and III allow a determina-
tion of the lossy parts of the rubber layer. The
complex amplitudes of the plane waves that
approach the cavities from above and below
can be computed using Eqs. (9)-(12). These
plane waves can subsequently be expanded in
spherical waves, and equations for computing
the anelastic loss within a specified volume are
contained in Appendix C. The simplest case is
a spherical region enclosing a cavity. A maxi-
mal radius of 5 mm is allowed in order not to
touch the layer boundaries. The lower curve
in Fig. 10 shows the contribution to the effec-
tive normalized absorption cross-section from
the part of the rubber layer within 2 mm of a
particular cavity. Indeed, the absorption loss is
significant close to the cavities. In the present
case, with a = 3 mm, d = 44 mm, and a rubber
layer thickness of 10 mm, the specified cavity
surroundings occupy only about 2.1 % of the
rubber volume. It is remarkable that as much
as about 71 % of the loss is suffered in such a
small fraction of the volume, which is the case
at 9 kHz, for example, according to Fig. 10.

B. Energy flux

The results of Figs. 8 and 10 are now com-
plemented by a study of the spatial distribution

of the energy flux at 9 kHz. Fig. 11 shows the
vertical component Fz(r) of the time-averaged
energy flux vector F(r), see Eq. (61) of Ap-
pendix A. The horizontal axis indicates the hor-
izontal distance from the scatterer at the origin,
cf. Fig. 2. Results are given along two horizon-
tal directions: the positive x axis up to its point
of symmetry at x = d/2 = 22 mm (right part),
and the diagonal direction with x = y up to its
point of symmetry at x = y = d/

√
2 = 31.1

mm (left part). Five curves are shown, corre-
sponding to five different vertical z levels : (a)
1 dm above, (b) at, (c) 2 mm below the wa-
ter/rubber interface, and (d) 2 mm above, (e)
at the rubber/steel interface.

flux
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(a)

(b)

(c)

(d)
(e)

Figure 11: Horizontal distribution of time-
averaged vertical flux in the downward (positive
z) direction at 9 kHz. The spherical scatterer
is at the center, with the horizontal axis indi-
cating horizontal distance. Positive and nega-
tive distance values are used for the axial and
diagonal horizontal directions, respectively, cf.
Fig. 2. There are five curves, (a)-(e), corre-
sponding to successively increasing depths z, as
described in the text. The vertical axis shows
dimensionless flux values, scaled with the flux
(in W/m2) of the incident plane wave.

The specularly reflected wave vanishes at 9
kHz, and 1 dm above the water/rubber inter-
face, the evanescent reflected waves have died
out. Hence, it is the laterally constant energy
flux of the incident plane wave that is seen
in curve (a). Already when the interface is
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reached, curve (b), a redistribution of the verti-
cal flux has taken place, with a focusing above
the spherical scatterers. The total flux is of
course unchanged, since no loss is suffered in
the water, as is also realized by an integration
over the unit cell with the correct area weight-
ing.

The three remaining curves, (c)-(e), in
Fig. 11 show a successively decreasing flux,
caused by the loss that is suffered in the rubber
layer. At (x, y) = (0, 0), Fz should vanish at
the spherical surface because of the boundary
condition and the symmetry. Indeed, curves (c)
and (d) exhibit very small values at this point.
Some slight numerical inaccuracy can be noted
because of a truncation to a finite number of
plane and spherical waves. Curve (e) represents
the small amount of energy that is transmitted
into the steel half-space.

The horizontal components of the time-
averaged energy flux vector F are also of in-
terest. For points in the axial and diagonal
directions, the transverse component vanishes
for reasons of symmetry but the inward compo-
nent is shown in Fig. 12. Vanishing values are
of course obtained at (x, y) = (0, 0), and also at
x = d/2 = 22 mm for the axial direction (right
end in the figure) and at x = y = d/

√
2 = 31.1

mm for the diagonal direction (left end). It can
be seen how an inwards horizontal flux appears,
pushing energy towards the spherical scatter-
ers, in the vicinity of which it is absorbed. This
is consistent with the results at 9 kHz in Fig. 10.
An outwards horizontal flux is only noted for
the (c) curve, the one for the upper z level of
the spheres, and at close distances. Apparently,
only part of the incoming energy at the top of a
spherical scatterer can be absorbed there. The
remaining part is transported away for absorp-
tion elsewhere.

The differences between the axial and diag-
onal directions in Figs. 11 and 12 are small in
general, indicating a similar behavior in differ-
ent horizontal directions around each scatterer.
The only clear exceptions are the right and left
end parts in Fig. 12, caused by the different
distances to lattice points of symmetry in the
axial and diagonal directions.
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Figure 12: As Fig. 11 but for the time-averaged
horizontal flux in the inward direction. The
horizontal flux is not continuous across the wa-
ter/rubber interface, however. Hence, there are
two (b) curves in this figure. The lower one, in-
dicating the larger flux, is for the rubber side.

The time-averaged energy flux vector F can
of course be expressed in spherical rather than
Cartesian or cylindrical basis vectors. This is
perhaps more natural when considering the flux
variation along spherical surfaces, as done in
Figs. 13 and 14. In these figures, curves (a) and
(b) concern the radii 5 and 3 mm, respectively,
for a spherical surface centered at one of the
spherical scatterers. The horizontal axes indi-
cate the spherical coordinate θ, with the axial
azimuthal direction (φ = 0o) to the right and
the diagonal azimuthal direction (φ = 45o) to
the left.

The (a) curve in Fig. 13 shows large inwards
radial flux at r = 5 mm. This is of course ex-
pected from the 9 kHz absorption results of
Fig. 10. This flux is fairly constant over the
upper hemisphere (90o < θ < 180o) and adja-
cent parts of the lower hemisphere. Directly
below a cavity (at θ = 0o), however, the flux is
very small. This has already been observed in
connection with the (e) curve in Fig. 11. The
radial flux at r = 3 mm, corresponding to the
surface of the spherical scatterer itself, vanishes
of course identically.

The corresponding flux in the negative θ di-
rection, along the spherical surfaces, is shown in
Fig. 14. It is in general positive. Hence, there
is a downward component combined with an
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Figure 13: Angular distribution of time-
averaged inwards radial flux at 9 kHz around
a spherical scatterer. The horizontal axis indi-
cates the spherical coordinate θ, with the axial
and diagonal azimuthal directions to the right
and left, respectively. The curves (a) and (b)
correspond to radial distances of 5 and 3 mm
to the center of the scatterer, respectively. As
in Figs. 11 and 12, the vertical axis shows di-
mensionless flux values, scaled with the flux (in
W/m2) of the incident plane wave.
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Figure 14: As Fig. 13 but for the time-averaged
flux in the negative θ direction along the spher-
ical surfaces.

outward/inward component in the upper/lower
hemisphere. The only exception is the inward
flux above the cavity for r = 5 mm, the (a)
curve.

C. Different field representations

Two different representations of the field in
a particular layer, with periodically distributed

spherical scatterers, have been introduced and
combined in Secs. II and III. The first is a
linear combination of plane waves, each of the
type given by Eq. (3) with g belonging to the
reciprocal lattice specified in Eq. (2). This rep-
resentation was used for the energy flux com-
putations for Figs. 11 and 12. It is appropriate
away from the scatterer interface. In the vicin-
ity of this interface, the evanescent waves have
not died out and a vast number of plane waves
(g values) would be needed. This is readily re-
alized from Eq. (18).

The second representation involves spher-
ical waves, separated into incoming and out-
going ones. For the scatterer at the origin,
for example, these waves are expressed by Eqs.
(19) and (16), respectively. This representa-
tion was used for the energy flux computations
for Figs. 13 and 14. It is appropriate in the
vicinity of the chosen scatterer, where a rea-
sonably small number of spherical waves (lm
values) is adequate. As an adjacent scatterer is
approached, another separation into incoming
and outgoing waves would be more appropriate.

The plane-wave representation handles
boundary conditions at interfaces between ho-
mogeneous layers exactly (via R/T coeffi-
cients), whereas the spherical-wave representa-
tion handles boundary conditions at a spherical
scatterer exactly (via the T-matrix). A large
number of components was used in each case
to reproduce the lateral variations of the en-
ergy flux in Sec. V.B.

In principle, the two field representations
are compatible only if many components are
included. When total power, or laterally aver-
aged energy flux, is considered, however, good
results can actually be obtained with very few
field components. The result of Fig. 8, for ex-
ample, is virtually unchanged if the computa-
tions are truncated to include only P lm = L00
for the spherical waves. A further truncation
to normal beams, only keeping the g = 0 plane
waves, produces the result shown in Fig. 15.
The reflectivity minima are still there, even if
they have become less deep and shifted to some-
what higher frequencies. The single-scattering
approximation still has the effect of lowering
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the frequency of the reflectivity minimum.
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Figure 15: Reflected power for the same case
as in Fig. 8, but a truncation to lm = 00 and
normal beams is invoked.

The evanescent plane waves are needed to
fulfil the boundary conditions at the cavity in-
terfaces, and to produce the lateral variations
of the time traces in the middle panel of Fig. 9
and of the energy flux above the water/rubber
interface, for example. Nevertheless, a trun-
cation to P lm = L00 and normal beams is
very useful to understand the mechanism be-
hind the anechoic effect. An important advan-
tage is that the numerical computations can be
complemented with theoretical considerations
in this way, which is the topic of the next sec-
tion.

VI. MECHANISM FOR THE ANE-
CHOIC EFFECT AS ANALYSED
WITH TRUNCATED FIELDS

By redoing the winding-integral computa-
tions of Sec. V, to obtain vanishing reflected
power at 9 kHz for the truncated fields, the
results in Fig. 16 are obtained. The appro-
priate values for shear velocity and absorp-
tion of the rubber are now 81.2 m/s and 18.7
dB/wavelength, respectively. The differences
between Figs. 8 and 16 are almost negligible.

The echo reduction mechanism, including
the effect of multiple scattering, is now dis-
cussed within the simplified framework and the
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Figure 16: Reflected power as in Figs. 8 and 15.
The rubber shear modulus µ is slightly differ-
ent, however, determined to achieve zero reflec-
tivity at 9 kHz in the context of the field trun-
cation to lm = 00 and normal beams.

example case from Fig. 16 is used. Specifically,
cf. Sec. V.C, a field representation with the
L00 term of Eqs. (19) and (16) is used within
the rubber layer, and only the normal term
g = 0 of Eq. (18) is kept for the boundary-
condition match at the interfaces to the normal
plane waves in the water and steel half-spaces.

A. Plane-wave reflection and transmis-
sion coefficients

The scatterer interface in the middle of the
rubber layer is considered to be at z = 0. By
restriction to P lm = L00, Eqs. (20)-(21) give

b′ = Ωb+ , b+ =
Ta0

1 − ΩT
. (28)

Here, and in the following in general, P lm =
L00 is omitted from the notation. By Eq. (19),
the spherical wave that is incident on the sphere
at the origin, for example, can thus be written

(

a0 + b′
)

u0L
00 (r) =

a0

1 − ΩT
u0L

00 (r) . (29)

For the basic case of a plane compressional
wave with displacement amplitude unity, a0 =
−i

√
4π and, by applying Eqs. (13) and (18),

Eq. (17) reduces to

usc(r) = Θeik|z| · sgn(z) ez , (30)
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where k = ω/α, ez is the unit vector in the z
direction, and

Θ =
T

1 − ΩT

2π

(kd)2
. (31)

Hence, for this basic incident-wave case, the
complex amplitudes of the reflected and trans-
mitted waves from the scatterer interface be-
come Θ and 1 + Θ, respectively. The quantity
Ω can be expressed as 26, 27

Ω =
∑

R6=0

h+
0 (k|R|) . (32)

The sum must be interpreted in a generalized
sense, for example as a limit for complex k with
positive Im(k) decreasing to zero. Vanishing
normal traction at r = a = 3 mm is obtained
with

T = − ka j0(ka) + 4 (β2/α2) j′0(ka)

kah+
0 (ka) + 4 (β2/α2) (h+

0 )′(ka)
. (33)

z =−h
m m mz = 0

z = h

1↓
Φ↑ Ψ↓

R↑

Γ↓

Figure 17: The rubber layer from Fig. 1 is
shown, with thickness 2h and the scatterer in-
terface at z = 0 in the middle. Hence, the wa-
ter and steel half-spaces appear in z < −h and
z > h, respectively. Notation for some normal
plane-wave complex displacement amplitudes is
also included. These amplitudes are evaluated
at z = 0, except Γ which is evaluated at z = h
(the rubber/steel interface).

Including the rubber/steel interface at the
distance h = 5 mm as illustrated in Fig. 17,
with displacement reflection coefficient σ, Eqs.
(7)-(8), with E = exp(iωh/α), RB1 = RA1 =
Θ, TB1 = TA1 = 1 + Θ, RB2 = E2σ, and TB2

= (1 − σ)E, provide the relations

R = RB =
Θ(1 + 2E2σ) + E2σ

1 − E2σΘ
(34)

Γ = TB =
E(1 − σ)(1 + Θ)

1 − E2σΘ
(35)

for the reflection- and transmission-coefficients
R and Γ, respectively. The water/rubber inter-
face, cf. Fig. 1, can be ignored in the present
context with normal beams only, since the den-
sity and compressional-wave velocity are as-
sumed to be the same in the water and in the
rubber. The complex displacement amplitude
of the incident wave is assumed to be unity at
the scatterer interface.

The wave field between the scatterer and
rubber/steel interfaces can be described by
complex displacement amplitudes Φ and Ψ of
up- and down-going waves, respectively, as
evaluated at the scatterer interface. One veri-
fies readily that

Φ =
R− Θ

1 + Θ
=

E2σ(1 + Θ)

1 − E2σΘ
(36)

Ψ = (1 + Θ) + ΦΘ =
1 + Θ

1 − E2σΘ
.(37)

The magnitudes of R, Θ, Φ, Ψ, Γ are plot-
ted as functions of frequency in the upper panel
of Fig. 18, for the example case with R = 0 at
9 kHz. Of course, the |R| curve is merely a dB
version of a curve from Fig. 16. Corresponding
results within the single-scattering approxima-
tion, i.e., with Ω set to zero, are shown in the
lower panel of Fig. 18. In particular, the mini-
mum of |R| is shifted from 9 kHz to about 7.5
kHz, as has already been seen in Fig. 16.

Corresponding results for an elastic rub-
ber material, with vanishing shear-wave ab-
sorption, are shown in Fig. 19. Large values of
|R| are obtained at all frequencies. Instead of a
minimum, a maximum with almost total reflec-
tion (|R| ≈ 1.0) appears at about 10.0 kHz in
the upper panel. Virtually no energy is trans-
mitted through the scatterer interface at that
frequency. The existence of transmission band
gaps for phononic crystals is well known, 28, 29

and periodic frequency selective surfaces (FSS)
constitute an active research area in electro-
magnetics. 30

Single-scattering results for the elastic rub-
ber are shown in the lower panel of Fig. 19. Un-
physical results are obtained, with |Θ| as well as
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Figure 18: The magnitudes of the quantities
from Fig. 17, and |Θ| as well, are plotted as
functions of frequency for the parameter values
of the example case. The lower panel concerns
the single-scattering approximation, with Ω set
to zero.

|R| exceeding unity. As clarified in Sec. VI.D,
see Eq. (55) below, multiple-scattering effects
are essential to avoid such inconsistencies.

A common feature in Figs. 18 and 19 is a
maximum of |Θ|. At low frequency, the inclu-
sions are small in comparison to the wavelength
and Θ is small as well. The maxima for |Θ|
in the lower panels correspond to maxima for
|T |/ω2, cf. Eq. (31), a resonance effect which
is further discussed in Sec. VI.C.

B. Expanding the Riccati reverberation
operator

The reverberation operator [I−RA1·RB2]
−1

appearing in Eq. (7) can be expanded in a ge-
ometric series 18 and individual wavefield com-
ponents can be isolated. Eq. (7) becomes

RB = RB1 + TA1 · RB2 · TB1 +

1.0

0.5

0.0
kHz5 10 15

|Θ|

|R|

|Φ|

|Ψ|

|Γ|
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0.0
kHz5 10 15

|Θ|

|R|

|Φ|

|Ψ|

|Γ|

Figure 19: As Fig. 18 but for an elastic rub-
ber material (the shear-wave absorption in the
rubber is set to zero). Again, the lower panel
concerns the single-scattering approximation.

TA1 · RB2 · RA1 · RB2 · TB1 + ... .(38)

Including vertically travelling plane compres-
sional waves only, Eq. (38) is illustrated in
Fig. 20 for the first three terms.

As applied to R = RB of Eq. (34), with
E = exp(iωh/α), RB1 = RA1 = Θ, TB1 = TA1

= 1 + Θ, RB2 = E2σ, and TB2 = (1 − σ)E,
the basic case of Fig. 16 can be recovered. The
results are shown in Fig. 21. Of course, the
one-term result is merely a dB version of the
|Θ| curve from the upper panel of Fig. 18. Al-
ready the two-term result, with no more than
one wave interaction with the rubber/steel in-
terface, reproduces the anechoic effect rather
well. Including the first multiple, the three-
term case, the result is very similar to that in
Fig. 16. The four-term result provides a further
refinement, and the anechoic effect can be un-
derstood in terms of a destructive interference
among the waves appearing in the right-hand
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Figure 20: Reverberation-operator approxima-
tions with one, two, and three terms according
to Eq. (38) are illustrated with the correspond-
ing (multiply) reflected waves.

side of Eq. (38).
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Figure 21: Reverberation-operator approxima-
tions with (a) one, (b) two, (c) three, and (d)
four terms according to Eq. (38) are used to
recover the result of Fig. 16.

C. Requirements for anechoism

The fraction of the incident energy that is
lost by anelastic absorption is computed as

1 − |R|2 − Zsteel

Zrubber
|Γ|2 , (39)

where Zsteel and Zrubber are the characteris-
tic impedances 31 of the steel and the rubber,
respectively. Multiplication with d2/πa2 pro-
vides the effective normalized absorption cross-
section per cavity, which is shown by curve (a)

of Fig. 22. The results are similar to those in
Fig. 10, for the example of Sec. V with all field
components included.

50

0
kHz5 10 15

(a)

(b)

(c)

Figure 22: For the example case of Sec.
VI, curve (a) shows the frequency dependence
of the effective normalized absorption cross-
section per cavity in the lattice. The contribu-
tion from anelastic absorption within 2 mm of
a cavity is indicated by curve (b). The normal-
ized absorption cross-section for a single spheri-
cal cavity of radius 3 mm embedded in rubber is
shown by (c). Two almost coinciding (c) curves
are shown, the lower one includes only the lm
= 00 contribution.

At a frequency for which R = 0, it follows
from Eqs. (34)-(37) that

Θ = − E2σ

1 + 2E2σ
(40)

Γ =
(1 − σ)

1 + E2σ
(41)

Φ =
E2σ

1 + E2σ
(42)

Ψ =
1

1 + E2σ
. (43)

It can be noted that Φ + Ψ = 1 here, and the
expression (39) for the fraction of the incident
energy that is absorbed reduces to

1 − 1 − σ2

|1 + E2σ|2 . (44)

For the example case at 9 kHz, with R = 0, σ
= 0.9364 and E = 0.9818 + 0.1899 i. It follows,
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for example, that only 0.4 % of the incident en-
ergy is transmitted through the steel half-space.
The remaining 96.6 % are thus absorbed. Fur-
thermore, Θ = -0.3285 - 0.0437 i at 9 kHz. The
cancellation for RB that is expressed by the re-
verberation series (38) takes the form

RB = Θ + (1 + Θ)2E2σ +

(1 + Θ)2(E2σ)2Θ + ... (45)

= (−0.3285 − 0.0437i) +

(0.4106 + 0.1057i) +

(−0.0948 − 0.0913i) + ... . (46)

It remains to understand how the particu-
lar value Θ = -0.3285 - 0.0437 i at 9 kHz can be
achieved, in terms of scattering from the spher-
ical cavities. Normalized cross-section values as
large as 66.0, as seen at 9 kHz in curve (a) of
Fig. 22, indicate the necessity of a strong reso-
nance effect.

The normalized absorption cross-section for
a single spherical cavity of radius 3 mm is
shown by curve (c) of Fig. 22, as a function
of frequency. The single cavity is embedded
in rubber with the same parameters as in the
example case. Of course, the absorption loss
takes place in the surrounding rubber material.
Formulas for computing absorption, as well as
scattering, cross-sections in this context are de-
rived in Appendix C. As compared to curve
(a), the resonance frequency is shifted from 9.0
kHz (where the value is 35.0) to 7.5 kHz, where
the maximum 44.7 appears. The differences are
mainly caused by multiple scattering among the
cavities in the lattice. They are discussed and
quantified in Secs. VI.D and VI.E below.

There are in fact two (c) curves in Fig. 22.
The lower one only includes the lm = 00 con-
tribution, which dominates and the two curves
can hardly be distinguished.

With shear-wave absorption in the sur-
rounding rubber material, the resonance ap-
pears much more clearly in the absorption
cross-section than in the scattering cross-
section. This is realized by comparing to curve
(a) in Fig. 23, with values less than 8.0 at all
frequencies. Curve (a) in Fig. 23 is completely

dominated by its lm = 00 contribution (see Eq.
(97) in Appendix C).
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Figure 23: Normalized scattering cross-
sections, as functions of frequency, for a spher-
ical cavity of radius 3 mm in rubber. The in-
cident wave is a plane compressional wave, as
usual. The scale on the vertical axis is loga-
rithmic. Curve (a) concerns the rubber of the
example case with shear absorption and only
the compressional-wave part remains at large
distances. Curves (b)-(d) concern the elastic
case. Curve (b), for the total cross-section, is
the sum of a compressional-wave part (c) and
an almost negligible shear-wave part (d).

The remaining curves in Fig. 23 concern the
elastic case without rubber shear-wave absorp-
tion. At 8.6 kHz, the single cavity appears to be
much larger,33 with a normalized cross-section
that is almost 330.0. This value exceeds d2/πa2

= 68.5 by a factor of almost five, which is of
course related to the unphysical appearance of
|R| values exceeding 1.0 in the lower panel of
Fig. 19, when multiple scattering is ignored.

The shear-wave contributions to the scat-
tering cross-section are small. Below about
12 kHz, they are negligible in comparison to
the compressional-wave contributions, which
are again completely dominated by the lm =
00 term. In fact, an evacuated spherical inclu-
sion in an elastic solid with a reasonably small
shear-wave velocity has a monopole scattering
resonance when the circumference equals two
shear wavelengths in the solid. This is the clas-
sical Meyer et al. 6 resonance. A generalization
can be found in equation (19) of Ref. [3], see
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also equation (3) of Ref. [32]. It is the radial
displacement amplitude at the sphere surface
that has its maximum at the corresponding fre-
quency (8.611 kHz for the elastic case consid-
ered here). The lm = 00 contribution to the
scattering cross-section is governed by |T |2/ω2,
where T is given by Eq. (33), and this quan-
tity has its maximum at a slightly different fre-
quency (8.637 kHz here). The maximum of |T |
itself appears at yet another frequency (8.664
kHz). It is always unity in the elastic case, for
a vanishing imaginary part, but when signifi-
cant shear-wave absorption is introduced, |T |
is reduced significantly (cf. Fig. 23). Clearly, 3

this classical resonance of a bubble in a solid
is of decisive importance for the anechoic effect
studied here.

D. An energy relation valid for the trun-
cated fields

The effective normalized absorption cross-
section per cavity can be expressed in another
way, where the effects of multiple scattering are
separated in a modulating factor. Specifically,
the following energy relation is valid when k =
ω/α < 2π/d:

d2

πa2

(

1 − |R|2 − Zsteel

Zrubber

|Γ|2
)

=
∣

∣

∣

1+Φ
1−ΩT

∣

∣

∣

2 4|T |2[−1−Re(1/T )]
(ka)2

. (47)

In order to prove (47), Eqs. (34)-(35) and
the relation Zsteel/Zrubber = (1+σ)/(1−σ) are
first used to rewrite the left-hand side as

d2

πa2|1−E2σΘ|2

[

|1 − E2σΘ|2 −
|Θ + E2σ + 2E2σΘ|2 −

(1 − σ2)|1 + Θ|2
]

. (48)

Using Eqs. (31) and (36), the right-hand side
is subsequently rewritten as

|1 + E2σ|2
|1 − E2σΘ|2

(

kd2

πa

)2

|Θ|2
[

−1 − Re

(

1

T

)]

.

(49)
In general, Ω as given by Eq. (32) must be
computed numerically. 19 When k is real with
kd < 2π, however, a wave-theoretic argument

can be used 34 to obtain an explicit expression
for the real part of Ω:

Re(Ω) =
2π

(kd)2
− 1 . (50)

Applying Eq. (50) together with Eq. (31), the
expression (49) takes the form

−2d2|1 + E2σ|2[|Θ|2 + Re Θ]

πa2|1 − E2σΘ|2 . (51)

It follows that Eq. (47) boils down to the rela-
tion

|1 − E2σΘ|2 − |Θ + E2σ + 2E2σΘ|2−
(1 − σ2)|1 + Θ|2 =

−2|1 + E2σ|2
[

|Θ|2 + ReΘ
]

. (52)

Assuming as before that |E| = 1 and that σ is
real, Eq. (52) is easily verified, which concludes
the proof.

Equation (33) for T can be rewritten as

1

T
= −1 − i

ka y0(ka) + 4 (β2/α2) y′
0(ka)

ka j0(ka) + 4 (β2/α2) j′0(ka)
.

(53)
For real α and ka, it follows by applying a
Wronskian expression that

−1 − Re(1/T ) =

4 Im(−β2)
α2 ka |ka j0(ka)+4 (β2/α2) j′

0
(ka)|2

≥ 0 . (54)

Hence, both sides of Eq. (47) are nonnega-
tive. For the particular case when the steel is
replaced by rubber, corresponding to Zsteel =
Zrubber, σ = 0 and it follows from Eqs. (47)
and (54) that

|Θ|2 + |1 + Θ|2 ≤ 1 . (55)

As can be seen from Eq. (31), with small d and
temporarily taking Ω = 0 for a single-scattering
approximation, multiple-scattering effects are
crucial for this physically reasonable bound on
Θ. This has already been noted in connection
with Fig. 19.

E. Absorption of energy close to the
spheres

The right-hand side of Eq. (47) has an in-
teresting physical interpretation, that links the
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loss in the rubber layer to the absorption cross-
section for an isolated spherical cavity. The
wave field in the vicinity of the sphere at the
origin, for example, can be expressed as

(1 + Φ)
a0

1 − ΩT

(

u0L
00 (r) + T u+L

00 (r)
)

,

(56)
where a0 = −i

√
4π is the expansion coeffi-

cient for a plane compressional wave of dis-
placement amplitude unity. This follows from
the definition of Φ, cf. Fig. 17, and Eq.
(29) together with Eq. (20). The factor
4|T |2 [−1 − Re(1/T )] /(ka)2 in Eq. (47) equals
the naturally normalized total power loss by
anelastic absorption for the basic spherical
wave field

u(r) = a0
(

u0L
00 (r) + T u+L

00 (r)
)

= −i
(

j′0(kr) + T (h+
0 )′(kr)

)

· er .(57)

This identification follows from Eq. (97) of Ap-
pendix C. The natural normalization is made
with the cross-section power for an incident
plane wave with displacement amplitude unity.

For the example case, the factor
4|T |2 [−1 − Re(1/T )] /(ka)2 for Eq. (47)
has already been plotted as the lower (c)
curve in Fig. 22. The modulating factor
|(1 + Φ)/(1 − ΩT )|2 is shown in Fig. 24,
along with its two contributing partial factors
|(1 + Φ)|2 and |1 − ΩT |−2 taking effects of
multiple scattering into account. As has
already been noted by comparing the (a) and
(c) curves in Fig. 22, the modulation causes
loss magnification and the loss peak is shifted
to the frequency 9 kHz.

A simple factorization of the absorption
loss, as given by Eq. (47), does not seem to
be valid when all plane-wave components are
retained. Indeed, the rubber layer does not ex-
tend to infinity in the z direction and the small
loss contributions for large r are not relevant.
With the given interpretation of its right-hand
side, the attractive factorization of Eq. (47)
seems to be a fortuitous consequence of the re-
striction to truncated fields.

For the wave field of Eq. (57), with cavity
radius and parameters for the surrounding solid

6
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Figure 24: For the parameter values of the ex-
ample case, curve (a) shows the modulating
factor for the effective normalized absorption
cross-section per cavity in Eq. (47). This fac-
tor is the product of |(1 +Φ)|2 and |1−ΩT |−2,
which are shown by curves (b) and (c), respec-
tively.

as in the example case, the time-averaged strain
power density at 9 kHz is plotted as a function
of radius in Fig. 25. An integration over the
centered sphere with radius r provides P(r),
the amount of loss suffered within this sphere
(see Appendix C). The function P(r) is also
plotted in Fig. 25, as normalized with the total
loss given by P(+∞) = limr→∞P(r). It can be
noted that about 78 % of the loss takes place
within r = 5 mm, which is a particular case
already considered in curve (b) of Fig. 22.

For the particular wave field according to
Eq. (57), the dominant contribution to the
strain power density for kr << 1 comes from
the scattered field. Using Eqs. (101)-(102) of
Appendix C, some calculation with spherical
Hankel functions provides the expression

6ω|T |2
(kr)4r2

Im(−µ) (58)

for this dominant contribution, where µ is the
complex shear modulus. The loss appears be-
cause of deviatoric stress and strain in the an-
gular directions θ,φ, that become significant at
small r.

For a wave field given by (57), it might have
been expected that the strain power density
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Figure 25: (a) For the example case with, in
particular, a = 3 mm, the strain power density
for the wave field given by Eq. (57) is shown as
a function of radius r. It is normalized with its
maximum value, which appears at r = a. The
frequency is 9 kHz. (b) Fractions of power loss
by anelastic absorption that take place within
spheres of radius r, centered at the origin.

could be expressed in terms of the modulus ρα2

and the T-matrix coefficient T , without any
need to involve the shear modulus µ explicitly.
This is not the case, however, since the corre-
sponding stress tensor components depend on
µ, as discussed by Blake. 35 For example,

τ rr = ρα2

(

∂u

∂r
+

2u

r

)

− 4µ
u

r
(59)

and a restoring stress −4µu/r can be identified,
which is absent in a fluid. Regimes of stiffness
control and inertia control appear for the spe-
cific acoustic impedance. 35

VII. CONCLUDING REMARKS

The echo reduction by Alberich anechoic
coatings can be studied by semi-analytical wave
theory, as reviewed in Secs. II and III. A fun-
damental property of scatterers in a periodic
planar lattice is to redistribute incoming plane-
wave energy to reflected beams, not only in the
specular direction but in a discrete set of other
directions. A coating that scatters incoming
energy in nonspecular directions could be of in-
terest, even if the energy is not absorbed. The

nonspecular beams are evanescent at low fre-
quency, however, and for the examples in Sec.
IV, only a small amount of energy is linked off
in nonspecular directions.

By choosing the coating impedance appro-
priately, the normal-incidence reflection from
an interface between two arbitrary half-spaces
can be eliminated by a homogeneous quarter-
wavelength coating. 8 As seen in Sec. V, in-
troduction of spherical cavities allows reflection
elimination for a coating with a thickness that
is only 6 % of the wavelength. As quantified
by computations of absorption cross-sections
and energy flux, most of the absorption loss
is suffered in the vicinity of the cavities. It is
quite possible to achieve vanishing reflectivity
with still thinner coatings, in relation to the
wavelength, but the required shear velocity and
shear absorption for the rubber are decreased
and increased, respectively. In the end, the lim-
its for realistic rubber materials are reached.
Continuing with the example of Sec. V, ane-
choism at 6 rather than 9 kHz is obtained at
62.6 rather than 83.6 m/s and 21.1 rather than
14.3 dB/wavelength for the rubber shear pa-
rameters.

The nonspecular plane waves are important
for many of the pulse computation results in
Secs. IV (obliquely directed plane waves) and
V (evanescent waves at the water/rubber inter-
face). For the power versus frequency results,
however, truncation of these waves is useful to
obtain the following simplified explanation of
the mechanism for the anechoic effect at 9 kHz
in Fig. 16 (Sec. VI):

A single cavity of radius a = 3 mm has
a monopole (P lm = L00 in Eq. (16)) reso-
nance6,3,32 at about 8.6 kHz in the rubber mate-
rial considered. A small rubber shear velocity is
needed to position this Meyer et al. resonance6

at a low frequency. If the rubber were elastic,
a plane array of cavities in a quadratic lattice
with period d = 44 mm would be capable of pro-
ducing almost total reflection at this frequency
for a normally incident plane compressional
wave. Multiple scattering among the spheri-
cal cavities must be taken into account here, in
order to obtain physically reasonable reflection
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coefficient values. (The normalized scattering
cross-section for a single cavity is about 330.0
at 8.6 kHz, which is much larger than the ra-
tio d2/πa2 = 68.5 between the unit cell and
geometrical cross-section areas.) Including the
shear-wave absorption, most of the resonance
scattering energy disappears by viscoelastic loss
processes, but an appropriate amount remains
to enable destructive interference among upgo-
ing specular compressional waves from the scat-
terer and rubber/steel interfaces.

The wavelength of compressional waves at
9 kHz is 164 mm, and the phase changes of the
compressional waves when passing through the
10 mm thick rubber plate can be neglected in
a simplified analysis. Vanishing reflectivity at
9 kHz would correspond to RB = 0 from Eq.
(7) with RB1 = RA1 = Θ, TB1 = TA1 = 1 + Θ,
and RB2 = 0.94 (the reflection coefficient at
the rubber/steel interface). The equation that
is obtained is

0 = Θ +
0.94(1 + Θ)2

1 − 0.94Θ
. (60)

It is solved by Θ = -0.326, which is very close to
Θ = -0.3285 - 0.0437 i that was obtained in Sec.
VI.C when phase changes of the compressional
wave were included. The main cancellation of
the direct reflection Θ from the scatterer inter-
face is produced already by the first-order in-
teraction with the steel given by 0.94(1 + Θ)2,
cf. Eq. (38).

With monopole scattering resulting in equal
amplitudes in the upward and downward direc-
tions, as expressed by Eq. (30), a cancellation
mechanism of the type described is the only way
to achieve anechoism. As stated in Ref. [10],
the coating and the underlying structure must
be considered together. Extinction of the inci-
dent wave already before interaction with the
steel, for example, would require cancellation
with a downwards scattered wave that would
entail an undesired and uncancelled scattered
wave in the upward direction.

Energy is lost mainly by absorption of
spherically symmetric compressional waves
close to the spherical cavities. A large rubber
shear-wave absorption is effective in producing

this loss. The amount of loss that is suffered
is related to the absorption cross-section of an
isolated cavity, as modulated according to the
complex amplitudes of the insonifying waves,
including multiply scattered ones. Within the
framework of truncated wave fields, includ-
ing only vertically travelling plane waves and
spherical waves of P lm = L00 type, this rela-
tion can be expressed as an exact factorization,
Eq. (47). The effects of multiple scattering
are isolated, and the single-scattering approxi-
mation gives rise to clearly noticeable errors in
the examples shown.

A coating useful in practice has to pro-
vide significant echo reduction within a broad
frequency interval. The theoretical winding-
number method of Sec. V, to achieve vanishing
reflectivity at a particular frequency, is not ad-
equate for this objective. Global optimization
techniques, such as genetic or differential evo-
lution algorithms, are better adapted to design
such coatings. 36 The present semi-analytical
technique allows fast calculations, which is im-
portant in connection with coating design. It
is appropriate to use coatings with more than
one scatterer interface. Different “local” peri-
ods can be allowed for the different scatterer in-
terfaces, as long as there is an overall period d,
which is a multiple of each of the local ones. 36

Several other extensions of the theory reviewed
in Secs. II and III appear possible. Nonspheri-
cal scatterers could be allowed by incorporating
existing T-matrix routines for such bodies, 37

and point-source results could be synthesized
by wavenumber integration.

APPENDIX A: CONDITIONS FOR
VERTICAL ENERGY FLUX WITH-
OUT CROSS-TERMS

The vertical component Fz(r) of the time-
averaged energy flux vector F(r) can be ex-
pressed as38

Fz =
ω

2
Im
(

τxzu
∗
x + τyzu

∗
y + τzzu

∗
z

)

, (61)

in terms of the indicated components of the
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complex displacement amplitude vector u(r)
and stress amplitude tensor τ(r). A time
dependence according to exp(−iωt) is under-
stood, and the complex conjugate is denoted
by an asterix.

The expression of Eq. (61) is quadratic.
Specialization is now made to the particular
case of a wave field given by a linear combi-
nation of plane waves of different horizontal
wavenumbers k|| + g with g according to Eq.
(2), polarizations j=1,2,3, and vertical direc-
tions s=+,− according to

u(r) =
∑

gjs

Agjs exp(iKs
gj · r) · ej . (62)

The polarization vectors ej and vertical
wavenumbers Ks

gj have been defined in Eqs.
(3)-(5). When Eq. (62) is inserted into Eq.
(61), terms involving |Agjs|2 appear, but cross-
terms involving Agjs A∗

g′j′s′ for gjs 6= g′j′s′ ap-
pear as well. Without loss of generality, z is
put to zero for simplicity.

Concerning the terms with g = g′, formulas
(7.19)-(7.27) and (7.49)-(7.55) of Ref. [9] can
directly be utilized. For each particular g, one
obtains a P-SV contribution

ρ|α|2
(

γ∗ − (2βk/ω)2Re(γ)
)

·
(

|Ag1+|2 − |Ag1−|2
)

+

ρ|α|2
(

(2βk/ω)2Im(γ) − iγ∗
)

·
2 Im

(

Ag1+ A∗
g1−

)

+

ρ|β|2
(

ν∗ − (2βk/ω)2Re(ν)
)

·
(

|Ag2+|2 − |Ag2−|2
)

−
ρ|β|2

(

(2βk/ω)2Im(ν) − iν∗
)

·
2 Im

(

Ag2+ A∗
g2−

)

−
4ρ(β/ω)2k Re [αβ∗γν∗

(Ag1+ − Ag1−)(Ag2+ + Ag2−)∗]−
2ρ(β/ω)2k(k2 + ν2)Re [αβ∗

(Ag1+ + Ag1−)(Ag2+ − Ag2−)∗] (63)

to τxzu
∗
x + τzzu

∗
z, and an SH contribution

−ρβ2ν
(

|Ag3+|2 − |Ag3−|2+
2i Im(Ag3+ A∗

g3−)
)

(64)

to τyzu
∗
y. For convenience, the additional nota-

tion

k = |k|| + g| (65)

γ = −iK+
g1z (66)

ν = −iK+
g2z = −iK+

g3z (67)

has been introduced here. In addition, the hor-
izontal coordinates have been rotated for the
particular k|| + g to align the SH displacement
with the y axis.

Assuming that β is real, the P-SV cross-
term contribution to Fz disappears, as seen
from Eq. (61) and the last two terms of (63).
The P (j = 1), SV (j = 2), SH (j = 3) parts are
thus separated. The shear waves may be prop-
agating, corresponding to an imaginary ν with
Im ν ≤ 0, or evanescent, corresponding to a real
ν ≥ 0. Assuming that α is real as well, an anal-
ogous distinction can be made between propa-
gating and evanescent compressional waves, in
terms of γ. In principle, cross-terms between
down- and up-going evanescent waves might
still appear. Restriction is made, however, to
regions, typically half-spaces, where such waves
do not exist simultaneously. It follows that the
contribution to Fz from the waves sharing a
common g reduces to

ρωα2

2 (−Imγ)
(

|Ag1+|2 − |Ag1−|2
)

+

ρωβ2

2 (−Im ν)
(

|Ag2+|2 + |Ag3+|2−
|Ag2−|2 − |Ag3−|2

)

. (68)

Cross-terms from waves with different g,g′

involve exp
(

ix(gx − g′x) + iy(gy − g′y)
)

as a fac-
tor. Such terms disappear if an averaging over
horizontal position is performed, to get (Fz)ave.
The final result is

(Fz)ave =

ρωα2

2

∑

g Re(K+
g1z)

(

|Ag1+|2 − |Ag1−|2
)

+

ρωβ2

2

∑

g Re(K+
g2z)

(

|Ag2+|2 + |Ag3+|2−
|Ag2−|2 − |Ag3−|2

)

. (69)

It should be observed that the assumptions of
real α and β imply a restriction to the elastic
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case. Thus, application of Eq. (69) should typi-
cally be made in the water and steel half-spaces,
and not in the rubber layer.

APPENDIX B: CHANGE OF PULSE
SHAPE WITH A NOTCH FILTER

A general function g(t) of time t is
considered, with Fourier transform G(ω) =
∫

g(t) exp(iωt) dt. It is the input to a linear
filter with impulse function h(t) and transfer
function H(ω) =

∫

h(t) exp(iωt) dt. Thus, the
output is given by the convolution (h∗g)(t) with
Fourier transform H(ω)G(ω). It is assumed
that h(t) is real-valued, hence H(−ω) = H∗(ω).

In the vicinity of ±ω0, where ω0 is a cer-
tain positive angular frequency, H(ω) is now
approximated by a linear function according to

H(ω) ≈ a + i b sgn(ω) + c (|ω| − ω0) +

i d (ω − ω0 sgn(ω)) , (70)

where a,b,c,d are the appropriate real constants.
For a function g(t) with spectrum concentrated
to neighborhoods of ±ω0 and Hilbert transform
(Hg)(t), it follows that

(h ∗ g)(t) ≈ a g(t) − b (Hg)(t) −
c
(

(Hg)′(t) + ω0 g(t)
)

−
d
(

g′(t) − ω0 (Hg)(t)
)

, (71)

which shows how the pulse shape of g(t) is
changed upon filtering. Eq. (71) is readily ob-
tained from Eq. (70) by noting that the Fourier
transforms of a derivative and a Hilbert trans-
form are obtained by multiplication with −iω
and −i sgn(ω), respectively.

For the particular case when g(t) is a linear
combination of the functions exp(+iω0t) and
exp(−iω0t), it follows that (Hg)′(t) + ω0 g(t) ≡
0 and g′(t) − ω0 (Hg)(t) ≡ 0. Hence,

(h ∗ g)(t) ≈ a g(t) − b (Hg)(t) . (72)

A less trivial example of a function g(t) with
spectrum concentrated to the neighborhoods of
±ω0 is furnished by G(ω) = Φ(ω−ω0)+Φ(ω +
ω0), where Φ(ω) is a real-valued, nonnegative,

symmetrical function that is concentrated to a
neighborhood of the origin. It follows that

g(t) = 2 cos(ω0t)ϕ(t) , (73)

where ϕ(t) is the inverse Fourier transform of
Φ(ω). Apparently, ϕ(t) is a real-valued and
symmetrical function fulfilling |ϕ(t)| ≤ ϕ(0) for
all t. Hence, ϕ′(0) = 0, ϕ(t) is approxima-
tively constant in a neighborhood of the origin
and Eq. (72) is applicable for small t. For a
notch filter with H(±ω0) = 0, a = b = 0 and
(h ∗ g)(t) becomes negligible for t close to the
origin. The apparent pulse splitting noted in
the lower panel of Fig. 9 is thus explained.

APPENDIX C: ABSORPTION AND
SCATTERING CROSS-SECTIONS

Returning to the time-harmonic case, ab-
sorption and/or scattering cross-sections for
scatterers in a bounded region with a surround-
ing homogeneous medium have been derived by
several authors. 39, 7, 33, 40 In the present case,
with a surrounding viscoelastic solid having a
real compressional-wave velocity α and a possi-
bly complex shear-wave velocity β, absorption
loss may take place in the surrounding solid,
not only within viscoelastic scatterers. Deriva-
tions for this case are included in this appendix.

The time-averaged power that is transferred
into a sphere of radius r, centered at the origin
and surrounding the scatterer region, can be
expressed as

P(r) =

∫

|r|=r

∫

ω

2
Im (−T(r) · u∗(r)) dS(r) ,

(74)
where dS(r) is the surface area element. As
usual, u(r) is the displacement vector, and T(r)
is the corresponding traction vector acting on
a spherical surface with |r| = r.

The wave field u(r) can be expanded in
spherical waves according to

u(r) =
∑

P lm

a0P
lmu0P

lm(r) +
∑

P lm

b+P
lm u+P

lm (r) (75)

=
∑

P lm

1

2
a0P

lmu−P
lm (r) +
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∑

P lm

(

1

2
a0P

lm + b+P
lm

)

u+P
lm (r) , (76)

where the a0P
lm and b+P

lm coefficients concern the
incident (including possible multiple-scattering
contributions b

′P
lm, cf. Sec. III) and scat-

tered fields, respectively. The basic vector wave
functions u−P

lm (r) are defined according to Eqs.
(13)-(14) with fl chosen as the spherical Hankel
function h−

l .
It is convenient to expand the basic solu-

tions u±P
lm (r) in a system of vector spherical

harmonics that is complete and orthonormal
over the surface of the unit sphere. With θ,φ
as the angular variables of r, such a system is
defined in equations (8.14) of Ref. [9]:

Rm
l (θ, φ) = Y m

l (θ, φ) er(r) (77)

Sm
l (θ, φ) =

1
√

l(l + 1)

(

∂Y m
l (θ, φ)

∂θ
eθ(r)+

1

sin θ

∂Y m
l (θ, φ)

∂φ
eφ(r)

)

(78)

Tm
l (θ, φ) =

1
√

l(l + 1)

(

1

sin θ

∂Y m
l (θ, φ)

∂φ
eθ(r)−

∂Y m
l (θ, φ)

∂θ
eφ(r)

)

. (79)

It is understood that S0
0(r) and T0

0(r) vanish
identically. The expansions may be written

u±P
lm (r) = U±P

l (r)Rm
l (θ, φ) + V ±P

l (r)Sm
l (θ, φ) +

W±P
l (r)Tm

l (θ, φ) (80)

along with analogous expansions

T±P
lm (r) = R±P

l (r)Rm
l (θ, φ) + S±P

l (r)Sm
l (θ, φ) +

T±P
l (r)Tm

l (θ, φ) (81)

of the corresponding traction vectors acting on
a spherical surface with |r| = r, needed for an
expansion of T(r) similar to Eqs. (75)-(76).
It follows from Eqs. (13)-(15), and equations
(8.33)-(8.34) of Ref. [9], that

U±L
l (r) = (h±

l )′(kr) (82)

V ±L
l (r) =

√

l(l + 1)

kr
h±

l (kr) (83)

R±L
l (r) = ρk

(

(
2β2l(l + 1)

(kr)2
− α2)h±

l (kr)−

4β2(h±
l )′(kr)

kr

)

(84)

S±L
l (r) =

2ρβ2
√

l(l + 1)

r

(

(h±
l )′(kr)−

h±
l (kr)/kr

)

(85)

W±M
l (r) = i h±

l (ksr) (86)

T±M
l (r) = iρβ2ks

(

(h±
l )′(ksr) −

h±
l (ksr)

ksr

)

(87)

U±N
l (r) = −

√

l(l + 1)

ksr
h±

l (ksr) (88)

V ±N
l (r) = −(h±

l )′(ksr) − h±
l (ksr)/ksr (89)

R±N
l (r) = −2ρβ2

√

l(l + 1)

r

(

(h±
l )′(ksr)−

h±
l (ksr)/ksr

)

(90)

S±N
l (r) = ρβ2ks

(

(1 − 2l(l + 1) − 2

(ksr)2
)h±

l (ksr)+

2(h±
l )′(ksr)

ksr

)

. (91)

The wavenumbers k and ks appearing here are
defined as k = ω/α and ks = ω/β, respectively.
Furthermore, ρ is the density of the surround-
ing medium, and µ = ρβ2 is its shear modulus.
The remaining functions W±L

l (r),T±L
l (r),

U±M
l (r),V ±M

l (r),R±M
l (r),S±M

l (r), and

W±N
l (r),T±N

l (r) vanish identically.
By exploiting the orthonormality properties

of Rm
l (θ, φ), Sm

l (θ, φ) and Tm
l (θ, φ), P(r) from

Eq. (74) can be expressed as

P(r) =

−ωr2

2

∑

lm Im
[ (

∑

P
a0P

lm

2 R−P
l (r)+

∑

P (
a0P

lm

2 + b+P
lm )R+P

l (r)
)

·
(

∑

P
a0P

lm

2 U−P
l (r) +

∑

P (
a0P

lm

2 + b+P
lm )U+P

l (r)
)∗

+
(

∑

P
a0P

lm

2 S−P
l (r) +

∑

P (
a0P

lm

2 + b+P
lm )S+P

l (r)
)

·
(

∑

P
a0P

lm

2 V −P
l (r) +

∑

P (
a0P

lm

2 + b+P
lm )V +P

l (r)
)∗

+
(

∑

P
a0P

lm

2 T−P
l (r) +

∑

P (
a0P

lm

2 + b+P
lm )T+P

l (r)
)

·
(

∑

P
a0P

lm

2 W−P
l (r)+
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∑

P (
a0P

lm

2 + b+P
lm )W+P

l (r)
)∗ ]

. (92)

Eqs. (74)-(92) are valid for general α. The
restriction to a real α is made from now on,
as is the restriction to a compressional incident
wave. Hence, a0M

lm = a0N
lm = 0 for all lm.

For large r, it follows by applying stan-
dard asymptotic expressions for spherical Han-
kel functions, and neglecting terms of magni-
tude O(r−2), that

U±L
l (r) ∼ (∓i)l exp(±ikr)/kr (93)

R±L
l (r) ∼ −(∓i)l+1ρα2 exp(±ikr)/r (94)

W+M
l (r) ∼ −V +N

l (r)

∼ (−i)l exp(iksr)/ksr (95)

T+M
l (r) ∼ −S+N

l (r)

∼ −(−i)l+1ρβ2 exp(iksr)/r, (96)

while all remaining components are either irrel-
evant or negligible. For the anelastic case, with
Im(ks) > 0, the components in Eqs. (95)-(96)
are negligible as well.

Substitution in Eq. (92) reveals that all
coupling terms disappear when the imaginary
part has been isolated, between “−L” and
“+L” terms, as well as between terms of dif-
ferent P = L,M ,N types. For the anelastic
case,

limr→∞P(r) = ρα3

2 ·
∑∞

l=0

∑l
m=−l |b+L

lm |2
[

−1 − Re

(

a0L
lm

b+L
lm

)]

(97)

is obtained, while the elastic case with its van-
ishing absorption provides the relation

ρα3

2

∑∞
l=0

∑l
m=−l |b+L

lm |2
[

−1 − Re

(

a0L
lm

b+L
lm

)]

=

ρβ3

2

∑

P=M,N

∑∞
l=0

∑l
m=−l |b+P

lm |2 . (98)

The power in outgoing scattered compres-
sional waves is readily identified as

ρα3

2

∞
∑

l=0

l
∑

m=−l

|b+L
lm |2 . (99)

In the elastic case, the power

ρβ3

2

∑

P=M,N

∞
∑

l=0

l
∑

m=−l

|b+P
lm |2 (100)

in outgoing, scattered shear waves also remains
at large r.

Absorption and scattering cross-sections are
obtained from Eqs. (97) and (99)-(100), respec-
tively, by dividing with the intensity of the in-
cident compressional wave. The typical case
is a plane wave of unit displacement ampli-
tude, for which the intensity is ραω2/2. For an
isolated spherical scatterer of radius a, a fur-
ther division with the geometrical cross-section
πa2 provides dimensionless normalized cross-
sections. The extinction cross-section, 33 de-
fined as the sum of the absorption and scatter-
ing cross-sections, represents the total redistri-
bution of power from the incident wave field, in
relation to the incident intensity.

The truncation for the example case of Sec.
VI implies, in particular, a restriction to the
spherically symmetric part of the wave field
around each cavity. For such a wave field, of the
type u(r) = u(r) · er, the function P ′(r)/4πr2

represents the time-averaged strain power den-
sity at r, which can be explicitly expressed as41

−ω
2 Im

(

τ rr(err)∗ + τ θθ(eθθ)∗+

τφφ(eφφ)∗
)

= (101)

−ω
2 Im

(

τ rr(err + eθθ + eφφ)∗+

4µ
(

u
r − ∂u

∂r

)

u∗

r

)

. (102)

Here, τ rr,τ θθ,τφφ and err,eθθ,eφφ are the indi-
cated spherical components of the stress and
strain tensors, respectively. For the case of a
spherical cavity with radius a centered at the
origin, τ rr(a) = 0 and Im(−µ) appears as a
factor for the strain power density at r = a.

For the particular case of a homogeneous
medium without scatterers, and a regular
spherical wave u(r) = u0L

lm(r), some elementary
calculations with j0(kr) and h+

0 (kr) provide the
asymptotic expression

ρω|k|2
8π

Im

(

4

3
β2 − α2

)

(103)

for the strain power density as r tends to zero.
A complex α is here allowed again and, indeed,
Im(−α2) ≥ 4 Im(−β2)/3 is required in order
to fulfil the physical requirement of a nonneg-
ative strain power density. This is only the
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well known condition of a nonpositive imagi-
nary part for the bulk modulus. 41

For the examples of Secs. V and VI, for ex-
ample, a compressional-wave absorption in the
rubber of about 0.06 dB/wavelength would ac-
tually be needed. This is quite insignificant,
however, and the use of a real α in this pa-
per is justified. It has facilitated the theoreti-
cal analysis considerably, and the discussion of
cross-sections would have been less clear with
absorption loss already in an incident compres-
sional plane wave.
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