FOI-R--1518--SE

. December 2004
1650-1942

SWEDISH DEFENCE _
RESEARCH AGENCY Technical report

Intrusion Analysis in Military Networks
— File Systems and Logging

Arne Vidstrom
Mats Persson
Martin Karresand

Command and Control Systems
Box 1165

SE-581 11 LINKOPING
Sweden

Swedish Defence Research Agency FOI-R--1518--SE

Command and Control Systems December 2004
Box 1165 1650-1942
SE-581 11 LINKOPING

Sweden Technical report

Intrusion Analysis in Military Networks
— File Systems and Logging
Arne Vidstrom

Mats Persson
Martin Karresand

Issuing organization

Swedish Defence Research Agency
Command and Control Systems
Box 1165

SE-581 11 LINKOPING
Sweden

Report number, ISRN Report type

FOI-R--1518--SE Technical report
Programme Areas
C4ISTAR
Month year Project no.
December 2004 E7091

General Research Areas
Commissioned Research

Subcategories

C4l

Author/s (editor/s)

Arne Vidstrom
Mats Persson
Martin Karresand

Project manager

Mikael Wedlin

Approved by
Johan Allgurén

Sponsoring agency

Swedish Armed Forces

Scientifically and technically responsible

Report title

Intrusion Analysis in Military Networks— File Systems and Logging

Abstract

This report presents a study of the technical aspects of four file systems, NTFS, FAT32, Ext2,
and Ext3. Their structure on disk and organization of data, files, and directories is described
at a level enabling further research of the field. This report does, however, not describe how
writing, changing, and deleting files is done in the respective file system.

Apart from file systems the report also covers the basics of logging and different tools for doing
system integrity checking. The report is concluded with a chapter presenting suggested future
work, sprung from the file system and logging studies.

Keywords
Further bibliographic information Language
English

ISSN Pages

1650-1942 36
Distribution Price Acc. to pricelist

By sendlist)

Security classification Unclassified

Utgivare Rapportnummer, ISRN Klassificering
Totalforsvarets forskningsinstitut FOI-R--1518--SE Teknisk rapport
Ledningssystem Forskningsomréade
Box 1165

SE-581 11 LINKOPING Ledning, mformatlonstekmk och sensorer
Sweden Maénad, ar Projektnummer
December 2004 E7091
Verksamhetsgren
Uppdragsfinansierad verksamhet
Delomrade
Ledning med samband, telekom och
IT-system
Forfattare /redaktor Projektledare
Arne Vidstrém Mikael Wedlin
Mats Persson Godkénd av
Martin Karresand Johan Allgurén
Uppdragsgivare /kundbeteckning
FM
Tekniskt och/eller vetenskapligt ansvarig

Rapportens titel

Intrangsanalys i militdra ndtverk— filsystem och loggning

Sammanfattning

Den hér rapporten presenterar en studie av de tekniska aspekterna hos fyra filsystem, NTFS,
FAT32, Ext2 och Ext3. Dessa filsystems struktur pa harddisken beskrivs pa en niva som ska
mojliggora fortsatta studier inom omradet. Dessutom beskrivs filsystemens organisation av
data, filer och kataloger. Rapporten técker dock inte hur skrivning, &ndring och radering av
data gar till.

Forutom filsystem beskriver rapporten dven grunderna for loggning ur olika aspekter och verk-
tyg som kan anvindas for riktighetsverifiering av system. Avslutningsvis presenteras forslag pa
framtida arbete, sprungna ur filsystems och loggningsstudierna.

Nyckelord
Ovriga bibliografiska uppgifter Sprak
Engelska
ISSN Antal sidor
1650-1942 36
Distribution Pris Enligt prislista
Enligt missiv N
Sekretess Oppen

FOI-R--1518--SE

Contents

1 Introduction

1.1 Background
1.2 Purpose
1.3 Scope
1.4 Structure,

2 File systems, logging, and integrity checking

2.1 Filesystem
2.1.1 The NTFS file system
2.1.2 The FAT32 file system
2.1.3 The Ext2 file system
2.1.4 The Ext3 file system

2.2 Logging
2.2.1 Host-based logging
2.2.2 Linux kernel logging

2.3 System integrity checking

3 Future work

3.1 Filesystem
3.2 Logging
3.3 Integrity checking

4 Conclusion

FOI-R--1518--SE

List of Tables

21
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23
2.24
2.25
2.26

The boot sector in NTFS 12
The FILE Record header 12
Reserved positions in the MFT 13
Selected attribute typeso 13
Standard attribute header (Resident version) 13
Standard attribute header (Non-resident version) 14
$STANDARD INFORMATION 15
$FILE NAME 15
DOS File Permissions / Flags in $FILE NAME 15
Filename namespaces 16
Attributes in a directory MFT entry 16
Index Root 16
Index Header of SINDEX ROOT 17
Index Entry 17
Index Header of SINDEX ALLOCATION 17
The boot sector in FAT32 18
FAT32 Directory Entry 19
FAT32 Attributes 19
FAT32 date format 20
FAT32 time format 20
The Ext2 superblock 21
The Ext2 superblock, version 2 additions 21
Group descriptor 21
The inode 22
Directory entry 22
The journal superblock 23

FOI-R--1518--SE

1. Introduction

When trying to catch a spy one very important aspect is to actually get hold
of the real traces left by him or her, not the smoke screens and false tracks
placed by the spy. The deceptive information that conceal the true facts from
the analyst has to be cut away to let him get to the raw data. Performing an
analysis is however as laying a puzzle without knowing what it will look like
in the end, and the pieces are often hidden, or even deleted.

Information hiding and deletion is a real problem for any type of analyst
trying to uncover the truth. The problem might be especially evident in the IT
world, where everything concerns information. A computer intrusion analyst
consequently needs to fully master the interaction between the physical hard-
ware in a computer and the software placed on top. The deeper the analyst
can dig the more traces may be found.

At one of the lower levels in a computer the file system is found. It is one
of the links between the hardware and the OS (operating system) and as such
will contain a lot of traces of information that has been present in the system.
Hence it is a good place to look for signs of intrusions.

Looking for traces in only one place is however not enough. All information
there are will be needed. The system logs, originally implemented to enable
easier debugging, are part of the layer above the file system. Hence they also
are part of the puzzle the analyst has to fit together, piece by piece.

To be able to fully utilize the different possibilities for finding all the pieces
of the puzzle from a system at hand, a good manual is always a help. This
report is meant to be one piece in that puzzle, by providing the technical
foundations of file systems and logging functions.

1.1 Background

This report is one of the reports of the first year in the three year project
named “Warfare in the IT-domain™!, financed by the Swedish Armed Forces.
The project aims at answering the following questions:

e How is a successful battle to be fought when using software based IT-
weapons?

e What type of conventional weapons are needed in addition to the software
based to win a battle in the IT domain?

e What types of IT related threats are there?

e What methods to use for I'T surveillance and intrusion analysis?

LStrid i IT-doménen” in Swedish.

FOI-R--1518--SE

e What is the current state-of-the-art within the area?

The main focus of the report is on the technical aspects of computer file systems
and the logging facilities used in computer systems. A presentation of some
tools for system integrity checking is also included.

The report is tightly connected to the report “Intrusion Analysis in Military
Networks — An Introduction” [1|. They will, together with the other reports
yet to be written in the project, form a suite covering different aspects of the
intrusion analysis field, especially aimed at military networks.

1.2 Purpose

The report is meant to work as a foundation to build future research on, as it
presents the basics of logging and storage of logs. By having that knowledge at
hand, the higher dimensions of intrusion analysis can also be understood. In
the long run that knowledge and the knowledge built on that can be used for
building better intrusion detection, intrusion prevention, intrusion response,
and forensic tools. It may also lead to a better understanding of the computer
security and its related fields in general.

This work is also meant to expose questions that need to be answered and
in that way give a road map to future research within the field.

1.3 Scope

The scope of the report is the on-disk structure of file systems, limited to four
common operating systems. These are NTFS (New Technology File System),
FAT32, Ext2 (The Second Extended File System), and Ext3 (The Third Ex-
tended File System). The two first are used by Windows and the latter ones
are used in the Linux operating system. The report does not cover file creation,
deletion and changing. The technical level is meant to be deep enough to en-
able further research in the area, yet general enough as not to be restricted to
one specific patch level or implementation of the file systems.

The part covering logging does introduce the basics of some logging facilities
in different environments. In addition to that some common tools for system
integrity checking are introduced. The selection of tools is not meant to be
exhaustive.

1.4 Structure

The report is structured into 4 chapters. The first chapter introduces the back-
ground and formalia concerning the report. Chapter 2 deals with the technical
aspects of file systems and their structure. It also presents different logging
facilities at hand and some tools for performing system integrity checking. In
chapter 3 some remaining research issues and unanswered questions are pre-
sented as well as future work related to the project. In the last chapter, number
4, the conclusions drawn from the material in the report can be found.

10

FOI-R--1518--SE

2. File systems, logging, and integrity checking

This is the fundamental part of the report and in this chapter the main types
of file systems will be presented. They are taken from both Windows and
Linux, but all of them represent the x86 architecture of the PC world. What
is presented is only the technical layout of the file systems, how writing and
deletion is done is not covered.

The chapter does also present an overview of logging from different points
of view. There is also a small part on system integrity checking.

2.1 File system

This section will present the NTFS (New Technology File System) and FAT32
file systems from the Windows side of the spectrum. From the Linux side
the Ext2 (The Second Extended File System) and Ext3 (The Third Extended
File System) file systems were chosen. There are however an ever increasing
amount of file systems created on the Linux and BSD side, which might have
to be covered in the future work in the project.

2.1.1 The NTFS file system NTFS (New Technology File System) is
the native file system of the Microsoft Windows NT based operating systems
to date. The fundamental structure of NTFS on disk has not changed much
since it was first introduced. NTFS has been officially described by Microsoft
at some level of detail [2] but the complete specification has not been released.
Several persons have been able to contribute to a better understanding of
NTFS through extensive reverse engineering. Through this work unofficial
detailed documentation has been made available, although still not complete,
as part of the Linux-NTFS Project [3]. The description of NTFS presented
in our report is based on that documentation and verified against an NTFS
partition formatted by Windows XP SP0. What is described here are those
parts of NTFS which at the time of writing were considered to be important
when performing intrusion analysis. As a consequence, the tables presented
do not represent the complete on disk structures but only selected members at
specified offsets.

The starting point when interpreting an NTFS partition is the boot sector,
which is also the first sector of the partition. Table 2.1 describes the layout
of the boot sector. There are a few terms in the table that need some further
explanation at this point. All the clusters in a partition are numbered, starting
at zero, and each one of these numbers is referred to as an LCN (Logical Cluster
Number). The clusters belonging to a particular file are numbered in a similar
way, also starting at zero. In this case the term used is VCN (Virtual Cluster

11

FOI-R--1518--SE

Table 2.1: The boot sector in NTFS

Offset | Size (B) | Description
03h 8 | OEM String "NTFS" (Do not assume this value!)
0bh 2 | Bytes per sector
0dh 1 | Sectors per cluster
28h 8 | Sectors on volume
30h 8 | LCN of VCN 0 of the MFT
40h 4 | Clusters per MFT Record
44h 4 | Clusters per Index Record

Table 2.2: The FILE Record header

Offset | Size (B) | Description
00h 4 | Magic string "FILE"
10h 2 | Sequence number (Number of reuses)
12h 2 | Hard link count
14h 2 | Offset to the first attribute
16h 2 | Flags (1 = In use, 2 = Directory)
18h 4 | Real size of the FILE Record
1ch 4 | Allocated size of the FILE Record
20h 8 | File reference to Base FILE Record

Number). The MFT (Master File Table) is a table containing records for all
files on the file system. Index Records are used to build directories. The MFT
will be explained in detail next, and the Index Records will be explained in
detail later.

Since the LCN of VCN 0 of the MFT can be found in the boot sector, the
MFT can easily be located on the disk. For example, if the LCN is 786432 and
there are 8 sectors per cluster, then the starting sector of the MFT counted
from the beginning of the partition will be 786432 x 8 = 6291456.

The MFT contains FILE Records for all files on the partition. There are
two different kinds of FILE Record. Every file is described with at least a Base
FILE Record. If there is not sufficient space in such a record, then Fxtension
FILE Records can be used as a complement. A FILE Record consists of a
header (Table 2.2), a variable number of attributes (attributes will be explained
later) and an end marker (ffffffffh). The first 24 FILE Records are reserved for
various purposes, and the most important ones as far as intrusion analysis is
concerned are described in Table 2.3. As can be seen in the table, file system
internal file names start with the character $. Attribute names also begin with
the same character.

In a basic file system each file contains only one portion of data, but in
NTFS a file can contain a number of completely separate portions. These
portions are called attributes in NTFS terminology. For example, the regular
data of a file is stored in the so called unnamed $DATA attribute. There are
several types of attributes with different contents, but they all start with an
attribute header. A selection of attributes can be seen in Table 2.4. There are
two variations of the attribute header layout, depending on if the attribute

12

FOI-R--1518--SE

Table 2.3: Reserved positions in the MFT

Position | Filename | Description
0 $MFT | The MFT
2 | $LogFile | Transaction log file
3 | $Volume | Serial number, creation time, dirty flag
5 . | The root directory
6 | $Bitmap | Cluster map (in-use vs. free)
8 | $BadClus | Bad clusters
9 $Secure | Security descriptors (only W2K and onwards)
Table 2.4: Selected attribute types
Type | Name

00h | SSTANDARD INFORMATION
20h | $ATTRIBUTE LIST

30h | $FILE_NAME

60h | SVOLUME NAME

70h | $VOLUME INFORMATION
80h | $DATA

90h | $INDEX ROOT

a0h | $INDEX ALLOCATION

bOh | $BITMAP

is resident or not. The data of a resident attribute is stored inside the FILE
Record itself whereas a non resident attribute is stored at a separate position
on the disk, pointed to from the FILE Record. Tables 2.5 and 2.6 show these
two types of attributes.

The data belonging to a non-resident attribute is stored in one or more
data runs. Each data run consists of a sequential number of clusters, so the
only things needed to define it are the starting cluster and the size measured
in number of clusters. More than one data run is used when attribute data
is fragmented on disk. If a file is compressed or sparse, the representation in
data runs will be different from the basic cases, and these advanced cases will

Table 2.5: Standard attribute header (Resident version)

Offset | Size (B) | Description
00h 4 | Attribute type
04h 4 | Length (Including header)
08h 1 | Non-resident flag (0 = Resident, 1 = Non-resident)
09h 1 | Name length (0 = Not named)
Oah 2 | Offset to the name (Name is in Unicode)
Och 2 | Flags (1 = Compr. 4000h = Encr. 8000h = Sparse)
10h 4 | Attribute length
14h 2 | Attribute offset
16h 1 | Indexed flag

13

FOI-R--1518--SE

Table 2.6: Standard attribute header (Non-resident version)

Offset | Size (B) | Description
00h 4 | Attribute type
04h 4 | Length (Including header)
08h 1 | Non-resident flag (0 = Resident, 1 = Non-resident)
09h 1 | Name length (0 = Not named)
Oah 2 | Offset to the name (Name is in Unicode)
Och 2 | Flags (1 = Compr. 4000h = Encr. 8000h = Sparse)
10h 8 | Starting VCN
18h 8 | Last VCN
20h 2 | Offset to data runs representation
28h 8 | Allocated size of the attribute
30h 8 | Real size of the attribute
38h 8 | Initial data size of the stream

not be covered here.

The most simple case is an ordinary file with only one data run. The data
run representation in the MFT entry starts with a single byte header. The
lower nibble (half byte) tells us how many bytes following the header that are
used to store the length of the data run. The higher nibble tells us how many
bytes following the length that are used to store the starting LCN of the data
run. When the attribute data is fragmented, more than one of these header-
length-LCN combinations are used in sequence. In all the cases the data run
representations are terminated by a null byte header.

Now we are ready to take a more or less complete look at how an ordinary
file is stored on disk. The starting point we need is the MFT entry of the file.
Usually the entry is found through the directory structures, but it can also
be found through some other method. Either way, the MFT entry contains a
FILE Record which in turn contains a number of attributes. For an ordinary
file on a modern NTF'S partition, three different attributes are present. They
are $SSTANDARD INFORMATION, $FILE NAME and $DATA, in that or-
der. The $SSTANDARD INFORMATION attribute contains the information
in Table 2.7 and the $FILE NAME attribute the information in Table 2.8. Tt
is important to remember that the offsets in these tables are relative to the At-
tribute offset in the Standard attribute header that each attribute starts with.
The $DATA attribute is not named and simply contains the data runs of the
file data. What is sometimes referred to as multiple data streams or alternate
data streams is a special case when more than one $DATA attribute is present
and the extra ones are named.

The DOS file permissions of the SSTANDARD INFORMATION attribute,
together with the flags information in the $FILE NAME attribute contain one
of the alternatives shown in Table 2.9. The names of the alternatives indicate
what attribute they belong to of file permission or flag.

It should be noted that the file name is stored in the MFT entry as
well as in the directory. The information held in filename namespace in the
$FILE _NAME attribute is given in Table 2.10. What is also very interesting
is the fact that the timestamps are stored in two places in the MFT entry as

14

FOI-R--1518--SE

Table 2.7: $STANDARD INFORMATION

Offset | Size (B) | Description
00h 8 | C Time (File created)
08h 8 | A Time (File altered)
10h 8 | M Time (MFT changed)
18h 8 | R Time (File read)
20h 4 | DOS file permissions
Table 2.8: $SFILE_ NAME
Offset | Size (B) | Description
00h 8 | C Time (File created)
08h 8 | A Time (File altered)
10h 8 | M Time (MFT changed)
18h 8 | R Time (File read)
28h 8 | Allocated size of the file
30h 8 | Real size of the file
38h 4 | Flags
40h 1 | Filename length in characters
41h 1 | Filename namespace
42h 2L | Filename (In Unicode)
Table 2.9: DOS File Permissions / Flags in $FILE NAME
Flag | Description
0001h | Read-Only
0002h | Hidden
0004h | System
0020h | Archive
0040h | Device
0080h | Normal
0100h | Temporary
0200h | Sparse File
0400h | Reparse Point
0800h | Compressed
1000h | Offline
2000h | Not Content Indexed
4000h | Encrypted

15

FOI-R--1518--SE

Table 2.10: Filename namespaces

Flag ‘ Description

0 | POSIX
1 | Win32
2 | DOS

3 | Win32 and DOS (Both names are identical)

Table 2.11: Attributes in a directory MFT entry

Attribute

$STANDARD INFORMATION
$FILE_NAME

$INDEX ROOT

$INDEX ALLOCATION
$BITMAP

well as in one place in the directory. It might be possible to find out more
information from these three timestamps than if only one had been used. This
will be studied further in our future work.

This far we have seen that the starting point when interpreting the contents
of an NTFS partition is the boot record, and that the MFT is the next place
to go to when trying to find the contents of a file. Now it is time to take a look
at the directory structure in NTFS.

In Table 2.3 we could see that one of the default entries in the MF'T is entry
5, the root directory. Table 2.11 contains a list of attributes that can be found
in a directory MFT entry. Of these attributes the first one to look at is $IN-
DEX ROQOT. Following the Standard attribute header of this attribute comes
an Index Root structure (Table 2.12), an Index Header structure (Table 2.13)
and a variable number of Index Entry structures (Table 2.14).

On our reference disk the $INDEX ROOT of the root directory contained
only one Index Entry with Flags = 3, meaning that the entry was the last
one and that it pointed to a subnode. The VCN of this subnode in the Index
Allocation attribute was zero.

The SINDEX ALLOCATION attribute starts with a Standard attribute
header followed directly by one or more data runs. The data is a series of Index
Blocks, each of which contain a starting Index Header (Table 2.15) followed by
a variable number of Index Entries. All directory entries (files and other direc-
tories) are represented by an Index Entry each. The Index Entry points to the
correct position in the MFT. Also, the Index Entry contains a Stream, which

Table 2.12: Index Root
Offset | Size (B) | Description
00h 4 | Attribute type
4
1
3

08h Size of Index Allocation entry (In bytes)
Och Clusters per Index Record
0dh Padding (Align to 8 bytes)

16

FOI-R--1518--SE

Table 2.13: Index Header of $SINDEX ROOT

Offset | Size (B) | Description
00h 4 | Offset to the first Index Entry
04h 4 | Total size of the Index Entries
08h 4 | Allocated size of the Index Entries
Och 1 | Flags (SINDEX ALLOCATION present: 0 = no, 1 = yes)
0dh 3 | Padding (Align to 8 bytes)

Table 2.14: Index Entry

Offset | Size (B) | Description
00h 2 | Incremented every entry update (Valid unless last entry)
02h 6 | Offset in the MFT (Valid unless last entry)
08h 2 | Length (L1) of the Index Entry
Oah 2 | Length (L2) of the stream
Och 1 | Flags (1 = Points to subnode, 2 = Last entry)
10h L2 | Stream (Present unless last entry)
L1-38 8 | VCN of subnode in index allocation (Present if last entry)

is a SFILE_NAME attribute structure (see Table 2.8) without the Standard
attribute header in front of it. The Index Entries tied to a directory build a
kind of B-tree that represents all the directory entries.

This concludes our detailed look at NTFS. Major blocks that have been
omitted from the discussion are quotas, security descriptors and journaling.
Security descriptors in particular are very interesting in the field of intrusion
analysis and looking at how they are implemented in NTFS is included in our
future work. Quotas might not be of the biggest interest, while journaling
should at least be looked upon further to make sure how much of it could be
useful in intrusion analysis. It should be noted that journaling seems to be the
least well documented part of NTFS.

2.1.2 The FAT32 file system FAT is an older and much simpler file
system than NTFS. There are three versions with minor variations: FAT12,
FAT16 and FAT32. Nowadays normally only FAT12 and FAT32 are used
- FAT12 for floppy disks and FAT32 for hard disks. Omnly FAT32 will be

covered here since it is probably the most important when performing intrusion

Table 2.15: Index Header of SINDEX ALLOCATION

Offset | Size (B) | Description
00h 4 | Magic string "INDX"
10h 8 | VCN of this Index Block in the allocation
18h 4 | Offset to the Index Entries (Add 18h to this value!)
1ch 4 | Size of Index Entries
20h 4 | Allocated size of Index Entries
24h 1 | 0 = Leaf node, 1 = Not leaf node

17

FOI-R--1518--SE

Table 2.16: The boot sector in FAT32

Offset | Size (B) | Description
03h 8 | OEM String "MSWIN4.1" (Do not assume this value!)
0bh 2 | Bytes per sector
0dh 1 | Sectors per cluster (2" : n =0 to 7 are valid)
Oeh 2 | Reserved sectors (Typically 32)
10h 1 | Number of FAT copies
20h 4 | Number of sectors on the partition
24h 4 | Number of sectors per FAT
28h 2 | Flags (Bit 0-3: # of active FATs, Bit 7: one active FAT)
2ah 2 | FAT32 version number
2ch 4 | Root directory start cluster number

analysis. All FAT versions are officially described in detail by Microsoft [4] [5].
The correct way to determine if a file system is FAT12, FAT16 or FAT32 is to
look at the number of clusters on the volume. If there are at least 65525 clusters
the file system is FAT32. Despite this it should not be assumed that this is
always the case since some disk utilities use incorrect methods to determine
the FAT type. In general however, one can use the simple rule that a FAT
partition larger than 2 GB is most likely FAT32. This means that most FAT
partitions encountered on modern disks are FAT32.

As with NTFS, the starting point when interpreting a FAT32 partition is
the boot sector (Table 2.16). The word at offset Oeh in the boot sector specifies
the number of Reserved sectors in the partition. This value should be added to
the sector number of the first sector of the partition (the boot sector) to find
the starting sector of the File Allocation Table (FAT). The most common case
is a hard disk with only one FAT32 partition starting at sector 63, 32 Reserved
sectors, and thus a FAT that starts at sector 63 + 32 = 95.

The FAT contains a large sequence of 32 bit unsigned integers. Each integer
position corresponds to a physical cluster on disk. When one of these clusters
belong to a file, the value stored in the corresponding FAT position is the
cluster number of the next cluster of that file. Only the 28 least significant bits
of each position are really used since the top 4 bits are reserved. To put things
short: the FAT is responsible for chaining together the clusters of files and
marking which clusters are used for what (store files, damaged, free). The last
cluster in a file is marked Offffftth, while a damaged cluster is marked Offffff7h.
Free clusters are marked 0, and when the file system is mounted the FAT is
scanned and an in-memory list of all free clusters is built.

The first two entries in the FAT are not used in the same way as the rest.
The two most significant bits in the second of these two entries can be used to
determine if ScanDisk should be run at the next boot because the filesystem
was not properly unmounted or because physical errors were encountered while
reading or writing to the partition.

At this point we know how to find all the data in a file as long as we know
the number of its first cluster. The number of its first cluster is usually found
in a directory, and the first directory we can find in a partition is the root
directory. The double word at offset 2ch in the boot sector contains the start

18

FOI-R--1518--SE

Table 2.17: FAT32 Directory Entry

Offset | Size (B) | Description
00h 11 | Short name (8.3)
Obh 1 | Attributes
0dh 1 | 10th of sec. file creation time (0-199) (Optional)
Oeh 2 | File creation time (Optional)
10h 2 | File creation date (Optional)
12h 2 | Last access date (Optional)
14h 2 | High word of first cluster number
16h 2 | Time of last write
18h 2 | Date of last write
lah 2 | Low word of first cluster number
1ch 4 | File size in bytes

Table 2.18: FAT32 Attributes

Value | Description

01h | Read only

02h | Hidden

04h | System

08h | Volume ID

0fh | Long name

10h | Directory

20h | Archive

cluster number of the root directory. It should be noted that the first cluster
of a partition is always numbered 2 - there simply are no clusters 0 or 1.

In the FAT a directory looks just like a regular file. A directory is really
a variable length sequence of 32-byte Directory Entries (Table 2.17). The
attributes of a Directory Entry are shown in Table 2.18, their ordinary usage
is easily understood.

A long file name is stored in one or more Directory Entries before the
regular Directory Entry. For long file name entries a special combination of
attributes is used, which guarantee that these entries will not be mistaken for
regular entries by Windows. The two first cluster entries are always zero for a
long directory entry. The long name storage technique will not be covered in
further detail here.

The first byte in the short name can either be the first character of the
name or a special code. When the value is ebh the entry is free, when it is 00h
the entry is also free and also all entries after it are free, and finally when the
value is 05h the first character in the file name really is e5h. The short name of
the root directory is set to the volume label and its timestamps are not valid.

As for timestamps, there is never any time (only date) available for the last
access, which can be seen in Table 2.19. Also, the time of the last write can
only contain an even number of seconds, shown in Table 2.20. The creation
time however is complemented with a 10th of second count, so the even number
of seconds problem does not apply to it. Registering only an even number of

19

FOI-R--1518--SE

Table 2.19: FAT32 date format
Bits ‘ Description
0-4 | Day (1-31)
5-8 | Month (1-12)
9-15 | Year (0-127 = 1980-2107)

Table 2.20: FAT32 time format
Bits ‘ Description
0-4 | 2-second count (0-29 = 0-58 seconds)
5-10 | Minutes (0-59)
11-15 | Hours (0-23)

seconds might perhaps not be a real problem, but it could be in cases where
many things have happened quickly and the order needs to be determined. It
could also be a problem that those not familiar with the design details naturally
assume that all second values are possible.

2.1.3 The Ext2 file system Ext2 (The Second Extended File System)
is one of the most commonly used file systems in Linux. The primary doc-
umentation is the Linux kernel source code but there are other sources of
documentation that are easier to read although not official [6].

The starting point when interpreting an Ext2 partition is the superblock
(Table 2.21), located at the 1024th byte of the partition. An extended version
(2) of the superblock also exists and the additions are shown in Table 2.22.
Everything except the superblock is divided into equal sized blocks. A large
number of blocks are grouped together as a block group, and there are nor-
mally a number of block groups in a partition. Each block group contains a
superblock copy (padded with empty sectors to be one block large), a copy of
the group descriptor (Table 2.23) array, a block bitmap, an inode bitmap, an
inode table, and finally the data blocks. Each one of these is located at a block
boundary. The bits of the block bitmap each represent one block in the block
group. A one means that the block is free and a zero means that it is taken.
The inode bitmap works the same way but for the inodes.

An inode (Table 2.24) is used to represent a file. The block array in the
inode contain a number of entries. Entries 1-12 contain block numbers to the
data of the file. Entry 13 points to a block containing another array of block
numbers pointing to more file data. Entry 14 points to an array of block
numbers pointing to other arrays of block numbers pointing to blocks of file
data. Entry 15 has the same kind of function but with yet another level of
arrays. All in all the block pointers form a tree-like structure with different
depth depending on the number of data blocks needed. How the different
pointer types are related to each other can be seen in Figure 2.1.

Directories are stored as files, with the root directory pointed to by the
second entry in the inode table (inode number 2). It should be noted that
the inode table is not replicated among the block groups, but rather split
among them. The size of the inode table is determined when the file system is

20

FOI-R--1518--SE

Table 2.21: The Ext2 superblock

Offset | Size (B) | Description
00h 4 | Total number of inodes
04h 4 | Total number of blocks
08h 4 | Number of blocks reserved (see 80h & 82h)
12h 4 | Total number of free blocks
16h 4 | Total number of free inodes
20h 4 | Number of the first data block
24h 4 | Block size: 1024 « N, where N = this value
32h 4 | Blocks per group
40h 4 | Inodes per group
44h 4 | The last time the file system was mounted
48h 4 | The last time the file system was written to
52h 2 | Number of mounts since last full check
54h 2 | Max mount times before full check
58h 2 | State to determine if cleanly unmounted
64h 4 | Time of last full check
68h 4 | Max time interval between full checks
72h 4 | Created by OS (e.g. 0 = Linux, 3 = FreeBSD)
76h 4 | 0 = Original version, 1 = Version 2 (Dynamic inodes)
80h 2 | Reserved UID
82h 2 | Reserved GID
Table 2.22: The Ext2 superblock, version 2 additions
Offset | Size (B) | Description
84h 4 | First inode number for use by standard files
88h 4 | Inode size
90h 4 | Block group number hosting superblock
Table 2.23: Group descriptor
Offset | Size (B) | Description
00h 4 | Block id of the first block of the block bitmap
04h 4 | Block id of the first block of the inode bitmap
08h 4 | Block id of the first block of the inode table
12h 2 | Total number of free blocks in the group
14h 2 | Total number of free inodes in the group
16h 2 | The number of inodes allocated to directories
18h 2 | Padding
20h 12 | Reserved

21

FOI-R--1518--SE

Directl

|

Data

Single .

indirect @ Data
Double Single -

indirect indirect @ Data
T [e T o T
indirect indirect indirect

Figure 2.1: The structure of the block pointers in an inode.

Table 2.24: The inode

Offset | Size (B) | Description
00h 2 | File format and access rights
02h 2 | Owner UID
04h 4 | File size in bytes
08h 4 | Last access time (Seconds since 1970-01-01)
12h 4 | Creation time (Seconds since 1970-01-01)
16h 4 | Last modify time (Seconds since 1970-01-01)
20h 4 | Deleted time (Seconds since 1970-01-01)
24h 2 | Owner GID
26h 2 | Links count
28h 4 | Number of blocks reserved for file data
40h 15 x 4 | Blocks array

formatted. A directory consists of a sequence of directory entries (Table 2.25).
In the case that the inode represents a symbolic link with a 60 characters long
target name or less, the name is stored inside the blocks array. If the name is
longer, a block is allocated to hold the name.

2.1.4 The Ext3 file system FExt3 is almost the same as Ext2 except that
it has added journaling support. The journaling in Ext3 is described in quite a
bit of detail in [7] and [8]. Specific structures can be found in the Linux kernel
source code.

The journaling logging can be configured, with an option to the mount
command, to one of three separate levels:

Table 2.25: Directory entry

Offset | Size (B) | Description
00h 4 | Inode number
04h 2 | Offset to the next entry from the beginning of this one
06h 1 | Name length (L)
L

Name

08h

22

FOI-R--1518--SE

Table 2.26: The journal superblock

Offset | Size (B) | Description

Och 4 | Journal block size
4
4
4

10h Total number of blocks in actual log
14h First block of journal file usable for log
1ch First block of actual journal log

Journal, where both metadata and data is logged — the slowest but also the
safest level

Ordered, where nothing but metadata is logged but data is written before
the metadata — the default level

Writeback, where nothing but metadata is logged — the fastest level

The usual way to store the journal is in a hidden file named .journal in
the root directory. The number of the journal inode is specified directly in the
superblock, after the Ext2 structure members, at offset 228h. Although not
used in practice, it is also possible to specify another device for the storage of
the journal.

The journal file starts with a journal superblock (Table 2.26). Following
the journal superblock comes journal records of which there are three kinds:

Revoke Records, used to perform rollback — always one block large
Descriptor Records, used to describe the data — two or more blocks large

Commit Records, used to commit transactions — always one block large

The exact layout of the journal records will not be described in further
detail here. The total journal is not very large compared to the whole disk.
For example, on the 20 GB reference disk used when writing this section, the
journal on the main partition was 4 MB large. Although it can probably
be assumed that there is not that much to be found in the journal from an
intrusion analysis standpoint, this fact ought to be verified in our future work.

2.2 Logging

Logging in computers is the act of writing a short message about some activity
to permanent storage. This generates a list of messages that later can be
viewed and analyzed. Most of the current operating systems have some logging
facility enabled. Since the storage capacities of persistent memory is limited,
the amount of logging also must be limited. If every single instruction executed
in the processor would be logged, the log would quickly fill up all available
storage space.

In order to make a good intrusion analysis you need as much logging as
possible. Not only what the processor does, but every single bit processed
anywhere in the computer. Theoretically, you want to log every transition of
state in the computer, so the states later can be reconstructed up to the point

23

FOI-R--1518--SE

where the computer were compromised. This is of course impossible since
the activity of the logging would be logged itself, generating an exponential
increase of log messages. This problem is mentioned in Laurie’s article [9].

Therefore the entropy of the logging must be increased by some sort of
aggregation. At higher levels of security requirements each event, packet or
block could be logged. At lower levels of requirements the unimportant parts
can be stripped off or only the important events is logged. The easiest way is
to just let some applications send general log messages or let the kernel only
send critical messages to the log files. This is how most operating systems do.

Usually, operating systems logs authorization requests like login and logout.
Also, they often logs starting and stopping of services. Some applications
like mail servers or web servers logs each connection attempt and a note of
what they sent or received. It is possible to let the built in firewall log each
packet on the network, but this is not usually the case. The default logging on
most operating systems is critical kernel message and messages from sensitive
applications.

Logging can be divided into two major types, host based and network based.
The network packets can be logged at many points. In the computer by using
a network logger program, like tcpdump in Linux, or letting the firewall make
the logs. The switches or routers can do logging of the packets, or a network
tap can listen to a connection.

2.2.1 Host-based logging There are a lot of different things you can log
in a computer, but generally they can be divided into the following types:

e Filesystem calls. Log each block written or read.

e Kernel system calls (including parameters). These tend to be difficult to
interpret since they are so many.

e Memory audit. Each byte written is impossible to log, but memory status
can be logged. In Linux there are programs like wmmemfree, memdump
or vmstat.

e Process accounting. Log each process started or stopped, the program
executed and the username which started the process.

e Application messages. Including security appliance logs which contains
security policy violations.

What is currently logged in different operating systems? In Price’s
thesis [10] there is a large survey of logging capabilities in different operating
systems. The thesis mentions the older VAX Security Kernel [11] which did
have quite extensive logging capabilities, and this made it reach the highest
security classifications. A few other operating systems, (HP-UX, Solaris, Win-
dows NT) are analyzed in this thesis. Generally, the logging facilities in these
must be explicitly enabled or a special module installed. Unfortunately, they
are only logging certain sensitive applications like remote login, or in HP-UX
case, omitting some applications that are “trusted”. Many had detailed logs

24

FOI-R--1518--SE

of system calls, but often they lacked some small important piece of log data,
which made them difficult to audit.

The Crosbie and Kuperman paper [12] concluded that commercial kernel
audit was inadequate. There is a conflict between what type of logging is
provided by the OS and what an intrusion detection/analysis system needs.
Furthermore, the paper suggest a model for kernel audit in real-time, by letting
the kernel write records about system calls into a special driver interface. The
records is then read by a audit system.

An extensive overview of logging is available at Ranum’s web site [13].

What is logged in Linux? Logging in Linux (and in many other Unix-es)
is seen as convenient tool for the system administrator to check the status of
the system. Or to see what went wrong when something crashed. In all Linux
distributions the default logging is saved in the /wvar/log directory. Here you
usually find

e The syslog and messages which contains messages from running services.
When they start and stop, or when they encounter a special event. These
log files can also get messages from the kernel.

e The kern.log contains messages from the kernel.

e The login and logout of users are recorded inwtmp and can also be logged
in auth.log

e Process accounting is stored in some file in /var/log but the filename
varies. In this you can see how data which processes has started and how
much time they have spent.

This level of logging is of course inadequate for doing a good intrusion
analysis. The problem with these simpler logs is that they are intended to be
human readable so they are stripped of some detailed information. Automatic
tools can handle much more detailed logs.

What is logged in Windows? Windows uses a proprietary binary format
(.evt) that logs into three files: system, application and security. The system
log contains records about system crashes, component failures and other events
of interest. The application log contains records from applications. The se-
curity log contains security critical events such as logging in and out, system
overuse and accesses to system files. An event viewer is used to examine the
logs or export them to a file of comma separated entries. [14]

2.2.2 Linux kernel logging In the older 2.4 version of the Linux kernel
there existed some patches for the kernel that made it possible to log all system
calls. Every system call was logged including the parameters for the call.
When the newer 2.6 kernel was developed they decided to remove this facility
and replace it with the much improved Linux Security Modules. With these
modules it should be possible to log many more events in the kernel with
the help of hooks at security critical places. For some reason, which will be

25

FOI-R--1518--SE

explained later, the old system call logging functionality was re-introduced in
the 2.6.7 kernel.

Since the source code of Linux is openly available, it is easier to see exactly
what is logged, and where in the kernel code this happens.

LSM - Linux Security Modules Linux Security Modules is a part of the
SELinux kernel [15]. LSM is intended as way to control operations at the
various security critical points in the Linux kernel. This is done by adding
a set of security attributes to some kernel structures and by inserting some
hooks in the kernel code. When a LSM is loaded its hook functions are added,
and the hooks are called when some security critical event happens. The LSM
function can then check the security attributes and accept or deny the access.
For example, it can deny loading of certain binaries by adding a function in
the Program Loading Hook.

The hooks into the kernel are placed at the most convenient places, where
they maximize the security functionality. This goal is not compatible with
adequate kernel logging, since logging needs to be consistent and all-embracing.
In other words, every log record should be in the same event domain, all should
be system calls. And all system calls should be recorded, none should be
excluded. Since LSM has hooks only at important points, it is not good for
logging purposes.

auditd In the 2.6.7 kernel it is possible to do a trace of every system call. This
tracing inside the kernel must be enabled at boot time, and to get access to the
tracing functionality during runtime from user-space you must recompile the
kernel. This connection to user-space is done via a netlink socket and through
this, you control the tracing.

A software package named auditd contains two user-space programs to
control and receive log messages. The name “auditd” would be somewhat
misleading since auditing means reviewing records, or should mean in this
special situation analyzing system calls. The auditd program is actually only a
daemon listening for log messages and printing them to the screen or somewhere
else. This package contains a program named auditct]! which is used to control
the auditing. With this you enable or disable the logging, set filters, receive
log messages and limit the rate of messages per second. It is possible to filter
certain system calls or certain parameters to the calls. The help page gives
these options:

usage: auditctl [options]
-h Help
-8 Report status
-e [0]1] Set enabled flag
-f [0..2] Set failure flag
O=silent 1=printk 2=panic
-p <pid> Set pid of auditd (testing only)
-r <rate> Set limit in messages/sec (O=none)
-1 List rules
-a <1,a> Add rule at end of <1>ist with <a>ction

26

FOI-R--1518--SE

-A <1,a> Add rule at beginning <1>ist with <a>ction

-d <1,a> Delete rule from <1>ist with <a>ction
1=task,entry,exit a=never,possible,always

-S syscall Build rule: syscall name or number

-F f=v Build rule: field name, value

-m text Send a user-space message
-L uid,txt Set login uid and send login message

Unfortunately, from a forensic viewpoint, the auditd package actually tries
to do auditing and not really complete logging. It is possible to do some
filtering, which could exclude many system calls deemed to be unimportant.
It also do not include all the parameters in the system call since they tend
to become quite large, or that some parameter values does not matter. For
example, the system call chroot("foo") would fail when a ordinary user calls
it since users are not allowed to even try to call it. The parameter “foo” does
not matter at all, and is therefore not logged. From a audit viewpoint this
is correct, but when doing forensics this can be an important key to solve a
puzzle.

Hopefully, it is possible to modify the auditd package and the kernel to
generate complete records of system calls in the Linux kernel.

2.3 System integrity checking

When doing an intrusion analysis it is useful to quickly be able to see what
damage is done to the system which is stored on the hard discs. The damage
can be modified or deleted files. It is much more difficult to detect files that
have been copied or just read.

Tripwire [16] is a system integrity tool that maintains a database of check-
sums over specified files and directories in a system. The program monitors
key attributes of files that should not change, including binary signature, size,
expected change of size or modification dates. With Tripwire it is possible
to run periodical checks to see if anything has changed and send warnings to
the administrator. This can be used as a slow intrusion detection system, but
also for integrity assurance, change management, policy compliance, or later
analysis.

Cfengine [17] is a tool better used for policy compliance. It is actually
an engine for distributed configuration and administration of large computer
networks. It has a autonomous agent with a special policy language. With
this language you describe the state of the configuration in the whole network.
If for example a configuration file changes somewhere in the network, cfengine
detects this and restore the file to its original state. When doing intrusion
analysis it is useful when cfengine logs the state changes in the network.

There is also a tool that according to its creator is meant to be better than
Tripwire. The following is a citation from the AIDE manual [18].

“AIDE (Advanced intrusion detection environment) is an intru-
sion detection program. More specifically a file integrity checker.

27

FOI-R--1518--SE

Aide constructs a database of the files specified in Aide.conf,
Aide’s configuration file. The Aide database stores various file at-
tributes including: permissions, inode number, user, group, file size,
mtime and ctime, atime, growing size and number of links. Aide
also creates a cryptographic checksum or hash of each file using one
or a combination of the following message digest algorithms: shal,
md5, rmd160, tiger (crc32, haval and gost can be compiled in if
mhash support is available).

Typically, a system administrator will create an AIDE database
on a new system before it is brought onto the network. This first
AIDE database is a snapshot of the system in it’s normal state and
the yardstick by which all subsequent updates and changes will
be measured. The database should contain information about key
system binaries, libraries, header files, all files that are expected to
remain the same over time. The database probably should not con-
tain information about files which change frequently like log files,
mail spools, proc filesystems, user’s home directories, or temporary
directories.

After a break-in, an administrator may begin by examinining
the system using system tools like ls, ps, netstat, and who — the
very tools most likely to be trojaned. Imagine that ls has been
doctored to not show any file named "sniffedpackets.log" and that
ps and netstat have been rewritten to not show any information for
a process named "sniffdaecmond". Even an administrator who had
previously printed out on paper the dates and sizes of these key sys-
tem files can not be certain by comparison that they have not been
modified in some way. File dates and sizes can be manipulated,
some better root-kits make this trivial.

While it is possible to manipulate file dates and sizes, it is much
more difficult to manipulate a single cryptographic checksum like
md5, and exponentially more difficult to manipulate each of the en-
tire array of checksums that Aide supports. By rerunning Aide af-
ter a break-in, a system administrator can quickly identify changes
to key files and have a fairly high degree of confidence as to the
accuracy of these findings.

Unfortunately, Aide can not provide absolute sureness about
change in files. Like any other system files, Aide’s binary and/or
database can also be altered.”

YAFIC (Yet another file integrity checker) [19] is the name of exactly such
a tool. It is using the SHA-1 algorithm and once again the author states that
is is meant to be better than the other integrity checkers there are. Its main
feature seems to be its size and consequently its speed. The following is quoted
from the web site of the tool:

“yafic is Yet Another File Integrity Checker, similar to programs
like Tripwire, integrit, and AIDE. I created yafic because no existing
file integrity checker did all the things I wanted. I wanted some-
thing fast, simple, and yet be flexible enough to be used in different

28

FOI-R--1518--SE

situations. yafic uses NIST’s SHA-1 hash algorithm to fingerprint
files.”

There is also a list [19] of features of yafic. The list is quoted below:

Configuration file format similar to Tripwire.

Ability to track changes in file attributes like permissions/mode, inode
#, number of links, user id, group id, size, access time, modification time,
creation/inode modification time.

Hashes files using SHA-1, a 160-bit hash algorithm.

Attribute templates (like Tripwire). Add/subtract individual attribute
flags.

Configuration files are parsed in order, making them more intuitive. For
example, a rule that prunes a directory can still have its subdirecto-
ries/contents scanned by subsequent explicit rules.

An alternate root besides / may be specified. Paths specified in the
configuration file will be interpreted relative to the new root. Useful for
checking multiple jail(8) installations.

Attempts to be platform independent. Makes no assumption about the
size of stat(2) fields. If your platform’s off t or time t are 64-bits wide,
yafic will adjust. The tradeoff is that databases cannot be shared across
platforms with differing stat’s. (Though doing so doesn’t really make
much sense.)

Report is short, and to-the-point, allowing easy parsing by scripts. In-
spired by integrit.

Optionally displays SHA-1 hash of resultant database in report. (You
can use sha to verify it.)

Can view the contents of any resultant database.
Can compare the contents of any two databases.

Can cryptographically sign and verify databases.

Sentinel [20] is a program that also equals the Tripwire tool, but this tool
uses the RIPEMD-160 hashing algorithm instead of the MD5 that Tripwire

uses.

The tool is only available for Linux. There is not much of information

regarding the tool, but in the readme.sentinel file accompanying the source
code download the following text can be found:

“Sentinel is designed to detect changes to the integrity of di-
rectories and files on a disk. It tries to defeat the usual attacks
(even by persons with root/superuser equivalent access) that have
plagued other products such as the commercial "Tripwire(TM)",
fcheck.pl or viper.pl. It is by no means a replacement for any other
product and does not claim to offer *any* of the functionality of

29

FOI-R--1518--SE

any other product such as Tripwire(TM) , fcheck or viper. It is
not a replacement for any of these products or any others. It
is by no means *better* or *worse* than any of these tools. It
cannot be compared as it has a different purpose and a different
development model with different goals.”

30

FOI-R--1518--SE

3. Future work

In this chapter issues and questions left for future work are presented. As this
is the first year report most of the work is still left to be done. We will not be
able to cover all of the questions that are raised in this chapter during the two
remaining years, but we have included them here both for others to be able to
continue our work and as a guide for us.

3.1 File system

The section describing the file system basics raised a lot of questions. Some
of them are not directly connected to file systems, but to the surrounding
layers. Many of the questions concern the hardware layer, and especially disk
controllers and cache. We also saw that the tools used for intrusion analysis
are important to understand in detail.

The main questions that need to be answered by future work are:

e How do other common file systems work in detail? Primarily ReiserFS.
e How does file deletion work in all the file systems investigated?

e What happens on disk when various log cleaning and manipulation tools
are used?

e What can various forensics tools do, and in which areas can they be
tricked to misinterpret a disk?

e How do disk controllers work? How does this relate to intrusion analysis?

e Do disk controllers change anything on disk without being asked to by
the operating system?

e How does the interfaces to ATA, S-ATA and SCSI work in detail?
e What is the state-of-the-art in data recovery from crashed hard disks?

e [s there any information remaining in the caches of a hard disk when it
has been wiped, but the power is still switched on?

e Do CD-ROM disks contain slack space?

e What pitfalls are there to be avoided when performing secure disk wip-
ing?

e Which tools correctly handle disks that have a setmax other than the
size of the physical disk?

31

FOI-R--1518--SE

e How do the G and P lists work in detail? How can they be read and /
or manipulated?

e How well do disk write blockers work?

e How can the information in swap files and partitions be extracted in the
best way? Which information is available from them?

e Can the journal in a journaling file system be used for intrusion analysis?

e How can as much information as possible be extracted, using software
only, from a damaged hard disk?

As can be seen from the list the questions might raise yet other questions.
These are of course possible to address directly, but we chose to leave them out
because the list tended to grow exponentially when we increased their level of
detail.

3.2 Logging

What special requirements does intrusion analysis have on logging? How do
you stop the hackers from turning off logging or modifying the logs? There
are a number of logging utilities that offer secure and remote logging [14], but
are they secure, and what security measures are used to protect the central log
servers? The logs can get quite large if they are not filtered or aggregated, but
how should such a filtering be done? What log messages are uninteresting and
hence should be filtered out? Finally, when the logs are properly filtered, the
correct way to perform the intrusion analysis has to be chosen.

Tepdump is a logging facility for network traffic and thus important to
know. The requirement for an effective tcpdump log is to use a binary format,
but that has to be converted into a human readable format to be of any real
use. Hence we have to learn the core of the tcpdump tool and its different
logging formats.

Having the correct time is utterly important in an intrusion analysis situa-
tion. Therefore we have to study how the system clock is handled in different
operating systems. This issue is also connected to file systems, for example
NTEFS saves MAC times in three different places (see Section 2.1.1). Are all of
those the same and what time is really written to them, raw system clock or
the OS converted time?

Different applications also retain information, a typical example is Word.
What other applications do the same, what can be found, and how can this be
counter-acted?

3.3 Integrity checking

The tools for integrity checking presented in the previous chapter are only
a small part of all the tools available. Thus a more thorough survey of the
tools has to be made. At the same time the have to be evaluated and tested
empirically to give an idea of their advantages and disadvantages.

The concept of controlling the integrity of the binaries and executables in
the computer is a interesting idea that has to be further developed.

32

FOI-R--1518--SE

4. Conclusion

This chapter contains the conclusions drawn from the material presented in
the report.

Our studies of different file systems pointed us towards the importance of
really understanding the core parts of a computer. Without knowledge of how
the storage is structured, we cannot follow an intruder’s every step. Nor can
we develop countermeasures and security solutions if we do not know what
really is happening during an intrusion.

The studies showed that there are several important questions left that
need to be answered, one is how time is handled in different operating systems.
Another is how deletion is done and what can be recovered when deleted. We
also need to expand the studies to include newer journaling file systems from
the Linux family.

Logging is in a way connected to all of the above mentioned issues. The
report presented the basics of logging from which we can see that the way
logging has been done over time has changed back and forth. One example
is the kernel hooks that were available in earlier versions of the kernel, then
disappeared, only to be reinstated again in kernel 2.6.7.

All these issues show one thing, the unquestionable need for more research
in the field. Intrusion analysis is the key to many different security related
areas and if we do not master the foundation on which everything rests we
cannot succeed in securing our systems. Thus we need to keep pace with the
hackers and one way to do that is by being able to trace their actions in our
systems.

33

FOI-R--1518--SE

Bibliography

1]

2]

3]

4]

[5]
(6]
7]
8]
19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

M. Karresand, “Intrusion analysis in military networks — an introduction,”
Dept. of Systems Development and IT Security, Command and Control
Systems, Swedish Defence Research Agency, P.O. Box 1165, SE-581 11
Link6ping, Sweden, Tech. Rep. FOI-R-1463-SE, Dec. 2004.

D. Solomon and M. Russinovich, Inside Microsoft Windows 2000. Mi-
crosoft Press, 2000.

R. Russon, “NTFS documentation,” http://linux-ntfs.sourceforge.net/
ntfs/, last visited 2004-11-16.

Microsoft Corporation, “FAT: General overview of on-disk format, version
1.02,” 1999.

——, “Long filename specification, version 0.5,” 1992.

D. Poirier, “The second extended file system - internal layout,” 2002.

S. Tweedie, “The linux journalling filesystem layer, 1.0 draft,” 2001.

D. Bovet and M. Cesati, Understanding the Linux kernel. O’Reilly, 2002.

B. Laurie, “Network forensics,” ACM Queue, vol. 2, no. 4, pp. 50-56, June
2004.

K. Price, “Host-based misuse detection and conventional operating sys-
tems audit data collection,” Master’s thesis, Purdue University, 1997.

K. F. Seiden and J. P. Melanson, “The auditing facility for a vinm security
kernel,” in Proceedings of the IEEE Symposium on Research in Security
and Privacy, May 1990.

M. J. Crosbie and B. A. Kuperman, “A building block approach to intru-
sion detection,” in RAID 2001 Fourth International Symposium on Recent
Advances in Intrusion Detection, 2001.

M. Ranum, “Log analysis,” http://www.loganalysis.org/, last visited 2004-
11-26.

C. Peikari and A. Chuvakin, Security Warrior. O’Reilly, Jan. 2004.

National Security Agency, “SELinux,” http://www.nsa.gov /selinux/, last
visited 2004-11-26.

“Tripwire,” http://www.tripwire.org/, last visited 2004-11-30.

35

FOI-R--1518--SE

[17] M. Burgess, “Cfengine - a configuration engine for unix and windows,”
http://www.cfengine.org/, last visited 2004-11-30.

[18] R. Lehti, “The Aide manual,” http://www.cs.tut.fi/ rammer/aide/
manual.html, last visited 2004-12-03.

[19] A. Saddi, “Yet another file integrity checker,” http://philosophysw.com/
software /yafic/, last visited 2004-12-03.

[20] Zurk Technology Inc., “Sentinel security toolkit development,” http://
zurk.sourceforge.net /zfile.html, last visited 2004-12-03.

36

