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1. Introduction

Multi- and hyperspectral image exploitation is a growing �eld not only in remote
sensing within the civilian community but also in defence applications such as re-
connaissance and surveillance. Multi- and hyperspectral electro-optical sensors are
sensors (cameras) that sample the incoming light at several (multispectral sensors) or
many (hyperspectral sensors) di�erent wavelength bands. Compared to a consumer
camera that, typically, uses three wavelength bands, corresponding to the red, green
and blue colours, hyperspectral sensors sample the scene in a large number of wave-
length (or spectral) bands, often several hundred. Moreover, these spectral bands
can be beyond the visible range, i.e, in the infrared domain. Each pixel thus forms a
(spectral) vector of measurements in the di�erent bands. This vector, the observed
spectral signature, contains information on the material(s) present in the scene, and
can be exploited for detection, classi�cation and recognition. This report treats meth-
ods for detecting anomalies and targets in hyperspectral images, using the spectral
information in each pixel.

1.1 Spectral detection
If an observed target spectrum deviates from observed background spectra, this devi-
ation can serve as a measure of anomaly. Ananomaly detector is thus a detector that
detects pixels that "stick out" from the background, without any a priori knowledge
about target or background.

In order to be able to perform a unique classi�cation or signature-based detection,
the spectral properties of the scene elements or targets must be known from labora-
tory measurements or from in situ measurements. Observed spectra are analysed both
from a statistical point of view and compared with laboratory data, that is, a priori
knowledge is used in order to enhance detection probabilities and classi�cation capa-
bilities. The impact of illumination, weather and atmospheric transmission must also
be estimated in order to relate observed spectra to laboratory measurements correctly.
Reference panels and other reference sources in the scene can help in calibrating the
sensor systems and also in estimating the correlation in spectral scene properties from
one trial to another.

1.2 Hyperspectral sensors
The sensor (and the scene) can be characterized with respect to spatial, spectral,
radiometric and temporal resolution (and properties).

The spatial resolution and the distance from the sensor to the target determines
whether a target can be spatially resolved or not. A spatially resolved target covers
at least one pixel completely, which means that the target pixel(s) will bepure, in
contrast the mixed pixel of a sub-pixel target. Generally, sub-pixel targets are very
di�cult to detect and must deviate substantially from the surroundings in order to
be distinguishable. Spatial resolution will therefore be an important performance
parameter.

The spectral resolution determines the number of spectral bands, while the ra-
diometric resolution determines the number of bits per sample and is limited by the
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signal-to-noise ratio. The temporal resolution determines how often a new pixel can
be produced by the sensor.

In practical sensor design, trade-o�s have to be made between spatial, spectral and
temporal resolution. An important issue is therefore to try to establish optimal trade-
o�s with respect to scenarios and applications. In the �nal end, tactical sensors must
be both inexpensive and perform well with respect to spatial, spectral and temporal
information. Hyperspectral information can strongly support such an optimisation.
New technologies might also open up the possibility to make these sensors adaptive
to changes in the spectral content of the scene and the application requirement.

1.3 Outline of this report
This report describes algorithms and methods for target and anomaly detection in
multi- and hyperspectral images. Spatial domain detectors are not considered at all,
even if much of the underlying theory is identical. For such detectors, see the survey
in [5].

No detection results are given in this report. Instead, experiments and experimen-
tal results will be reported in a separate document.

The outline of the report is as follows. In Chapter 2 some mathematical prelimi-
naries are given and di�erent detection principles are de�ned. Chapters3�5 describe
methods for spectral modelling and how they are used for detection. Chapter6 de-
scribes the spatial modelling, basically de�ning how to select signature vectors for
spectral modelling. Chapter 7 contains a summary and a �nal discussion.

The detectors treated in Chapters3�5 are organized according to (primarily) what
model for background clutter they use and (secondarily) what a priori knowledge
about targets they require. The summary in Chapter7 is organized primarily accord-
ing to the task (anomaly or target detection) and secondarily according to a priori
knowledge. The purpose is that the designer of a detector should be able to, given a
task and some knowledge about the targets, look up the speci�c detector that suits
his needs.

Table 1.1 summarizes the mathematical notation used in this report.



Table 1.1: Notation

Symbol Meaning
a, x, φ Scalars
a, x, φ Vectors
A, X, Φ Matrices

a, x Random variables
a, xa, xa, x Random vectors
A,X Models/classes
∼ "is distributed as"

x̂, x̂, X̂ Approximation
x̃, X̃, x̃xx Whitening

Special symbols
0 The zero vector
I The identity matrix
Γ Covariance matrix
σ2 Variance
µ Mean or prototype vector
Φ Basis matrix
B, T Background and target models

Pr(A), PA Probability of the event A
p(x) Probability density function
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2. Spectral Signal Processing and Modelling

This chapter treats some of the preliminaries needed for the rest of the report. The
chapter can be skipped by the reader who is already familiar with signal processing.

The topics covered here, though somewhat super�cially, are basic signal detection
theory, methods for reducing the dimensionality of vector data, and di�erent types of
spectral modelling and detection.

2.1 Signal detection theory
Assume we have a scalar-valued observed quantity. On the basis of this observation,
a decision of two hypotheses, H0 and H1, shall be made. For example, hypothesisH0

could be "no target is present" and hypothesisH1 should then be "a target is present".
Since noise and other unknown factors in�uence the observation, it is regarded as a
random variable x. x can then be characterized by its probability density function
(pdf) p(x) under H0 and H1 respectively, so that

∫ b

a

pk(x)dx = Pr(a < x ≤ b |Hk), k = 0, 1, (2.1)

and our hypotheses are

H0 : x ∼ p0(x)
H1 : x ∼ p1(x).

(2.2)

A threshold t can be de�ned, so that the hypothesis H0 is accepted if x ≤ t, and
H1 is accepted if x > t. The probability Q10(t) of choosing hypothesis H1 when H0 is
actually true ("false alarm") is then

Q10(t) =
∫ ∞

t

p0(x)dx, (2.3)

and the probability Q01(t) of choosing hypothesis H0 when H1 is true ("miss") is

Q01(t) =
∫ t

−∞
p1(x)dx. (2.4)

The value of t depends on the pdf:s and on how much these two di�erent mistakes
will cost. Assuming two values C10 and C01 to de�ne the cost of the respective
mistakes, the risk associated with hypothesis H0 can be de�ned as C10Q10(t) (and
analogously for H1). The average risk C(t) is then dependent on the risks and the a
priori probabilities of H0 and H1 (P0 and 1− P0 respectively). C(t) is calculated as

C(t) = P0C10Q10(t) + (1− P0)C01Q01(t)

= P0C10

∫ ∞

t

p0(x)dx + (1− P0)C01

∫ t

−∞
p1(x)dx

(2.5)
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Naturally, we want to choose the t that minimizes the risk. To �nd this level, (2.5)
is di�erentiated with respect to t and set to zero. The result is

p1(t)
p0(t)

=
P0C10

(1− P0)C01
, (2.6)

from which t can be calculated when assuming speci�c probability densitiespk(x).
The ratio

Λ(x) =
p1(x)
p0(x)

(2.7)

is called the likelihood ratio, and Λ? = Λ(t) is called the decision level. The decision
regions R0 and R1 consists of the points whereΛ(x) < Λ? and Λ(x) > Λ? respectively.
This strategy is known as theBayes solution, and the minimum value ofC(t) is called
the Bayes risk.

In target detection, the probabilities

PD(t) = Q11(t) =
∫ ∞

t

p1(x)dx (Probability of detection) (2.8)

PFA(t) = Q10(t) =
∫ ∞

t

p0(x)dx (Probability of false alarm) (2.9)

are used as performance measure, as will be discussed in Section2.5.
All the above can be generalized to multivariate distributions. The only changes

needed concerns the dimensionality ofx and pk(x), and consequently the integrals in
(2.3)�(2.5). Alternatively, the input is tranformed to a scalar value, as is exempli�ed
in Section 3.1.4.

In general, the probability distributionspk(x) are not known, and thus a model is
assumed, as will be described in Chapter 3.

2.2 Dimensionality reduction and whitening
Given a set of N -dimensional data samples {xk}K

k=1 to analyse, a problem is often
the massive amount of data, especially if the samplesxk are high-dimensional. One
solution is to reduce the dimensionality of the data, provided that this can be done
without losing important information. A simple and popular way to reduce dimen-
sionality and also to extract intresting features isprincipal component analysis (PCA).
The procedure is as follows.

• Compute the mean and covariance of the training data:

µ =
1
K

K∑

k=1

xk (2.10a)

Γ =
1

K − 1

K∑

k=1

(xk − µ)(xk − µ)T (2.10b)

Perform a singular value decomposition (SVD) or an eigenvalue decomposition
of the covariance matrix, i.e., �nd the matricesΓ = UΣUT , where the columns
of U contain the subspace basis. Σ is a diagonal matrix where the elements σ2

i

of the diagonal indicate the energy distribution of the training samples along
the directions in the corresponding columns ofU. We assume in the following
that the columns of U (and Σ) are ordered so that σ2

1 > σ2
2 > . . ..
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• Alternatively, if we assume that the subspace includes the origin (the zero vec-
tor), we can perform an SVD directly on the data matrixX = [x1 · · ·xK ]. The
mean vector µ can then be omitted from equations (2.12)�(2.14) below.

• The M -dimensional subspace basis is spanned by Φ = [u1 · · ·uM ], where the
vectors ui are called the principal components. Typically, M is chosen so that
a certain amount q, say 99 percent, of the signal energy is preserved, i.e.,

∑M
i=1 σ2

i∑N
i=1 σ2

i

≥ q. (2.11)

• To project a sample x on the subspace, i.e., to reduce the dimensionality, com-
pute

y = ΦT (x− µ) (2.12)

• To whiten data, i.e., to transform it so that its components are uncorrelated and
have equal variance, compute

x̃ = Γ−
1
2 (x− µ) = Σ− 1

2 UT (x− µ). (2.13)

In the case of Γ not having full rank, which means that the training data is fully
contained in a space of lower dimensionality, or if a dimensionality reduction
should be performed for other reasons, use

ỹ = Σ− 1
2 ΦT (x− µ). (2.14)

If we know, or can estimate, the statistics of the noise (for example, from the sensor
characteristics), we can use the combined covariance matrixΓ = ΓSΓ−1

N , where ΓS is
the covariance of the signal and ΓN is the covariance of the noise, for dimensionality
reduction. This is called minimum noise fractions (MNF) [1, 4]. If the sensor noise
is white, this is equivalent to PCA.

2.3 Spectral modelling
Assume that we have a source (for example an electro-optical sensor) outputting a
sequence of samples (measurements). Having no knowledge of the inner workings of
the source, we regard the samples as realisations of a random variable and use the
samples to build a model of the source. The model also gives us a measure telling
us how well each new sample is described by the model (or, the other way around, a
distance from the new sample to the model). Note that when the sensor is multi- or
hyperspectral, the samples are multidimensional, i.e., vector-valued and not scalar-
valued.

A simple model would be to calculate the mean of the received samples so far, and
for each new sample, the deviation from the mean is computed. A large deviation
is to be regarded as an anomaly and the scheme is thus a simple anomaly detector.
Below, we will refer to the samples used for calculating the model parameters as the
training samples and the new samples as the test sample(s).

Naturally, we might have some knowledge on the source that we can exploit when
selecting and training the model. For example, we might assume that all samples are
linear mixtures of a set of end-members.

Models are not necessarily trained from the actual sensor data, but might also
originate from simulations and/or libraries with spectral signatures. If we, for exam-
ple, are looking for certain materials in the scene and know their spectral signatures,
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we can compare the test samples to those signatures and report similar samples as
detections. We call this signature-based target detection or just target detection.

It is of fundamental interest if we are looking for resolved or subpixel targets.
In the case of resolved targets, a sample originates either from the background or a
target, whereas in the subpixel target case, a target sample might be a mixture of
target and background spectra.

In the following chapters, we will describe di�erent models and distance measure
for detection. The treatment is general in the way that it is not limited to spectral
measurements, but can be applied to any type of vector-valued samples.

2.4 Spectral detection algorithms
Target detection is, in this context, about �nding pixels (samples, spectral vectors) in
images that

• does not correspond to some model of the background spectral signature
and/or
• does correspond to a target model.
The case when a target model is available, we here call signature-based target

detection, while the process of detecting an unknown target is calledanomaly detec-
tion. Target detection is discussed brie�y in Section 2.4.2 and anomaly detection in
Section 2.4.1.

In our notation, the detector is a function
D : RN → {true,false}, (2.15)

telling if a (spectral) test vector is a target or not.
Related terms are target classi�cation, i.e., to classify the (detected) target(s)

as a speci�c type of target. This is not treated in this document. Clustering or
unsupervised classi�cation is the process of separating a set of vectors into di�erent
clusters or classes, and is discussed in Chapter 5.

2.4.1 Anomaly detection Anomaly detection is the case when we do not know
the spectral signature of the target, and we try to �nd pixels that deviate from the
background. We use a background modelB, a distance measure d(·), and a threshold
t. We regard a pixel x as an anomaly if d(x,B) > t, and the detector is thus given by

D(x|B) = [ d(x,B) > t ] . (2.16)
To exemplify, recall the example in Section 2.3, where we record the mean vector

of the training samples. The model consists of the mean vectorµ, and the distance
measure is the Euclidean distance, i.e.,

D(x|B) = [ ‖x− µ‖ > t ] . (2.17)
Thus, a model for the background signature is needed, as well as a spatial model,

i.e., from where to choose the spectral vectors to train the model. For example, we
could use a local model (estimating the background signature from a local neighbour-
hood only) or a global model (using all available image data). Spatial models are
disccused in Chapter 6.

Then, to measure the distance from each pixel signature to the background model,
we need a distance measure. The choice of distance measure is restricted, or even
determined, by the model used for the background and thus the assumptions about
background spectral distribution.

Models and distance measures are discussed futher in Chapters3�5.
Finally, we need to set the threshold t. A high threshold will give few detections,

reducing the detection rate (DER), but also the false-alarm rate (FAR).
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2.4.2 Signature-based target detection A signature-based algorithm for tar-
get detection searches for pixels that are similar to a target probe. The target probe
is a model of a certain target signature T i.e., the spectral signature of the target or
target class is known. In contrast, the anomaly detection discussed above assumes
no such knowledge. Basically, we measure the distance from a pixel signature to the
target model. That is, we can classify pixelx as a target pixel if d(x, T ) < t and the
corresponding detector is thus

D(x|T ) = [ d(x, T ) < t ] . (2.18)

Usually, we incorporate background suppression in our target detection scheme in
order to enhance detection performance. There are basically three ways of doing this:

• Separate thresholds. First, run an anomaly detector

DA(x|B) = [ d(x,B) > tA ] . (2.19)

All pixels marked as anomalies are then investigated by the target detector

DT (x|T ) = [ d(x, T ) < tT ] . (2.20)

The advantage is that several di�erent target detectors can be applied to only
a small amount of the test samples.

• Direct comparison. Run the anomaly detector and the target detector on all
test samples and use the compare the results:

D(x|B, T ) =
[

d(x, T )
d(x,B)

> t

]
. (2.21)

• Combined detector. For certain models, a combined detectorD(x|B, T ) can
be derived. That is, instead of measuring a distance to the target and a distance
to the background, a joint measure is derived.

2.5 Performance measures
By changing the threshold t above, the detection rate (DER) and the false alarm
rate (FAR) can be varied. FAR and DER correspond to the probabilites of detection
(PD(t)) and false alarm (PFA(t)) respectively.

Unfortunately both are increased (decreased) simultaneously whereas the wish
would be to increase the detection rate and still keep the false alarm rate low. Thus,
FAR and DER must be related to be meaningful�it is easy to create a detector with
100% detection rate if no requirement is set on the false alarm rate.

There are a few common ways of presenting the performance of a detector:

• The receiver operator characteristics (ROC) is a graph with FAR and DER on
the axes, and a curve showing DER as a function of FAR (found by varying the
threshold), i.e., a parametric curve

x(t) =
(

x(t)
y(t)

)
=

(
FAR(t)
DER(t)

)
, (2.22)

where t is varied so that FAR and DER goes from zero to one.

• The FAR at �rst detection (FFR) is the false alarm rate when the �rst pixel
of a certain target is detected, giving an indication of the minimum achievable
FAR for that type of target, detector, and so on.
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• The area under curve (AUC) is the integral of the ROC, giving one scalar
value describing the performance of the detector. Since the performance of the
detector at high FAR is less intresting, the integral is sometimes computed over
an interval FAR = [0, I], for example AUC0.01 is de�ned by

∫ t0.01

t=t0
DER(t)dt

where the limits are de�ned by FAR(tc) = c.
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3. Detectors using Unstructured Background Models

Using an unstructured model, we infer no speci�c structure on the data. We incor-
porate any additive noise in the model, and make no assumptions based on a priori
knowledge. The unstructured models are also called probabilistic, statistical, and/or
data-driven.

3.1 Probabilistic models
As mentioned earlier, the simplest conceivable model is to compute the mean of the
training samples and use as a model for the source. In that case, our model of a
(background or target) class C consists of a prototype vector µ (the mean) and we use
the squared Euclidian distance to the prototype as distance, i.e.,

dE(x, C) , ‖x− µ‖2 = (x− µ)T (x− µ). (3.1)

The only advantage of this detector is its simplicity and the fact that we need only
one training sample.

Being just a little bit more sophisticated, we might use the within-class variance
σ2 for weighting the distance, i.e.,

dE′(x, C) , dE(C,x)/σ2. (3.2)

However, the within-class variance might di�er signi�cantly for the di�erent dimen-
sions (spectral bands), so let us instead use di�erent weights for di�erent dimensions:

dE′′(x, C) ,
N∑

n=1

(xn − µn)2

σ2
n

= (x− µ)T Σ−1(x− µ),

(3.3)

where Σ = diag(σ2
1 , . . . , σ2

N ).
In practice, the di�erent samples are often correlated between the di�erent dimen-

sions, and we can take this into consideration by using the full covariance matrix for
weighting, i.e.,

dM(x, C) , (x− µ)T Γ−1(x− µ), (3.4)

which is theMahalanobis distance. This is proportional to the log-likelihood func-
tion for a Gaussian, or normal, distribution, i.e.,

dM(x, C) ∝ − log pN (x|µ,Γ), (3.5)

where

pN (x|µ,Γ) , 1

(2π)
N
2 |Γ| 12 e−

1
2 (x−µ)T Γ−1(x−µ) (3.6)
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Thus, if we decide to model the source as a multivariate Gaussian distribution,
then the Mahalanobis distance is an adequate distance measure, which also means
that we can directly relate it to the Bayes solution as will be shown below.

Note that measuring the Euclidean distance after whitening with respect toC (see
Section 2.2) is identical to measuring the Mahalanobis distance.

The Euclidean and Mahalanobis distances are illustrated in Figure3.1.
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Figure 3.1: Isocurves of the Euclidean and Mahalanobis distances.

3.1.1 Estimating model parameters Given a set of N -dimensional training
vectors {xk}K

k=1, we can estimate the mean of the random variable as

µ̂ =
1
K

K∑

k=1

xk. (3.7)

The variances σ2 and {σ2
n}N

n=1 and the covariance Γ can be estimated as well:

Γ̂ =
1

K − 1

K∑

k=1

(xk − µ̂)(xk − µ̂)T (3.8)

σ̂2
n =

1
K − 1

K∑

k=1

((xk)n − µ̂n)2 (3.9)

σ̂2 =
1
N

N∑
n=1

σ̂2
n (3.10)

Note that we need more training vectors the higher the dimensionality and for
each level of complexity the model has. If we have only one training vector, we can
only estimate the mean, and not very reliably�any textbook on statistics will tell
you the variance of the estimate. In that case, we use the squared Euclidean distance
measure (equivalent to modelling the class as a Gaussian with unit covariance).

To estimate a full covariance we need, as a rule of thumb, at leastN2 training
vectors to get a reliabe estimate.

Since dE, dE′ , dE′′ are special cases of dM (Gaussians with covariances I, σ2I,
and diag(σ2

1 , . . . , σ2
N ) respectively), they are not treated separately in the rest of this

document.
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3.1.2 Anomaly detection using a Gaussian background model If we model
the background as a multivariate Gaussian distribution, the resulting anomaly detec-
tor is

DRX(x|B) = [ dM(x,B) > t ]

=
[
(x− µ̂)T Γ̂

−1
(x− µ̂) > t

]

=
[ ‖x̃‖2> t

]
,

(3.11)

commonly known as the RX-detector [8]. t is a parameter controlling the detection
and false alarm rates. Since the Mahalanobis distance isχ2-distributed under the null
hypothesis (no target), t can be set to achieve a speci�c (constant) false alarm rate.

Since we make no assumptions whatsoever about the targets, this detector is valid
for subpixel as well as for resolved targets. Naturally, resolved targets give signi�cantly
better detection performance.

3.1.3 Gaussian target model We recall the likelihood ratio (2.7) and model the
background and target classes B and T as multivariate Gaussian distributions. For
example, the two distributions pB(x) and pT (x) corresponding to H0 and H1 could
be the distributions for background and target spectra respectively. The competing
hypotheses are:

H0 : xxx ∼ N (µB ,ΓB)
H1 : xxx ∼ N (µT ,ΓT ).

(3.12)

Inserting (3.5) in (2.7) we see that

log Λ(x) = log pT (x)− log pB(x)
∝ dM(x,B)− dM(x, T ),

(3.13)

i.e., the vector that (simultaneously) maximizes the distance to the background
model and minimizes the distance to the target model maximizes the likelihood of the
vector being a target. Given costs and a priori probabilities, we classify a sample as
a target if

dM(x,B)− dM(x, T ) > Λ′ = 2 log
P0C10|ΓB | 12

(1− P0)C01|ΓT | 12
. (3.14)

The resulting generalized likelihood ratio (GLRT) detector is thus
DB(x|B, T ) = [ dM(x,B)− dM(x, T ) > t ] . (3.15)

The decision line for two (two-dimensional) Gaussian models is illustrated in Fig-
ure 3.2.

The hypotheses (3.12) are stated for resolved targets, but since the models incor-
porate additive noise, the same detector is valid for subpixel targets.

3.1.4 Known target signature The situation where we try to detect a known
signal disturbed by additive Gaussian noise is common in communication systems
[7], for examle, a speci�c radio wave might be transmitted and the receiver receives
the signal plus background noise. In remote sensing, the signal would be the spec-
tral signature for a certain material, and the noise would be the background clutter,
atmospheric e�ects, and sensor noise. The hypotheses are

H0 : x = bbb, bbb ∼ N (µ,Γ)
H1 : x = t + bbb.

(3.16)
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Figure 3.2: Samples from two Gaussian distributions (with di�erent mean and covari-
ance) and the decision line separating them for di�erent decision levels.

If the noise bbb is coloured, i.e., Γ 6= σ2I, the problem is simpli�ed by whitening x
with respect to bbb,

x̃ = Γ−
1
2 (x− µ), (3.17)

giving us the simpler hypotheses

H0 : x̃ = b̃bb, b̃bb ∼ N (0, I)

H1 : x̃ = t̃ + b̃bb.
(3.18)

This signal can then be correlated with the matched �lter t̃, giving us a scalar
output x = t̃T x̃ and the one-dimensional problem

H0 : x = b, b ∼ N (0, 1)

H1 : x = ‖t̃‖2+b,
(3.19)

which can be directly inserted in the GLRT framework above.
Creating x′ = x

‖t̃‖2 to make the mean (underH1) equal one, the resulting detector
is

DAMF(x|B, T ) =
[

t̃T x̃
‖t̃‖2 > t

]

=
[

(t− µ)T Γ−1(x− µ)
(t− µ)T Γ−1(t− µ)

> t

]
.

(3.20)

This is called the adaptive matched �lter (AMF) detector. This detector is opti-
mum only when the target and background follow the same (Gaussian) distribution,
which in real applications is highly unlikely.

3.1.5 Known target signature with unknown norm If we know the target
signature except for the norm, for example in the subpixel case or due to transmission
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e�ects, we instead have the following hypotheses:

H0 : x = bbb, bbb ∼ N (µ,Γ)
H1 : x = kt + bbb,

(3.21)

where k is an unknown parameter.
An alternative formulation is that we know the structure but not the level of the

noise.
The angle α between x and t is uniformly distibuted in the interval [−π, π] under

H0 and centered around zero under H1. The resulting detector is called the spectral
angle mapper (SAM). Using the cosine instead of the angle, we get

DSAM(x|T ) = [ cos α > t , ]

=
[

t · x
‖t‖‖x‖ > t

]
.

(3.22)

The disitribution of the correlation between two random variables have been stud-
ied extensively [3].

3.1.6 Subspace target model Modelling target variability as a linear combina-
tion ΦT aT of target exemplars or target subspace basis vectors, we get the following
hypotheses

H0 : x = bbb

H1 : x = ΦT aT + kbbb,
(3.23)

where k is related to �ll factor of the target, i.e., how large part of the pixel that is
occupied by the target. The coe�cient vectora incorporates the �ll factor to simplify
notation.

We use a Gaussian backgound model bbb ∼ N (µ,Γ) and whiten x as well as ΦT

with respect to the background according to (2.13). Still following the generalized
likelihood approach, the resulting detector is

DACE(x|B, T ) =

[
x̃T P̃T x̃
x̃T x̃

> t

]

=
[
cos2α > t

]
,

(3.24)

where P̃T is the projection and reconstruction operator onto the whitened target
subspace, i.e.,

P̃T = Φ̃T (Φ̃
T

T Φ̃T )−1Φ̃
T

T , (3.25)
and α is the angle between the whitened target subspace and the whitened test vector.
The detector is called the adaptive coherence/cosine detector (ACE) [6].

Linear subspaces will be discussed further in the next chapter.

3.2 Nearest neighbour
Observing that the background signature vectors being (spectrally) closest to the test
vector(s) probably are the most important, a natural approach would be to consider
these vectors only. Instead of representing the background class with its mean we
could use a weighted mean

µ′ =
1
K

K∑

k=1

wkxk (3.26)
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where {xk} are the background vectors and wk is a weight depending on the
distance between xk and the test vector x. To simplify notation, assume that the
vectors are sorted according to their distance to x (so that x1 is the closest). The
simplest weighting would be

wk =
{

1 if k ≤ C
0 if k > C

(3.27)

(C nearest neighbours). The simplest case, C = 1, i.e., the distance to the nearest
neighbour, is illustrated in Figure 3.3. The detector is

DNN(x|B) =

[
‖x− 1

K

K∑

k=1

wkxk‖ > t

]
(3.28)
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Figure 3.3: Isocurves of the nearest neighbour distances.

3.3 Summary of detectors using unstructured background models
In this chapter we have studied detectors using unstructured background models.
Depending on which model we use for target signatues, we get di�erent detectors.
The background models and distances we have studied are the Gaussian distribution
with the corresponding Mahalanobis distance (with (weighted) Euclidean distance as
a special case), spectral angle mapper, and the nearest neighbour.

Table 3.1 summarizes the various detectors.

Table 3.1: Target models and corresponding detectors using an unstructured back-
ground model.

Target model Detector
None RX Eq. 3.11
None NN Eq. 3.28
Known t AMF Eq. 3.20
Known up to norm k t SAM Eq. 3.22
Gaussian ΓT , µT Bayesian Eq. 3.15
Subspace ΦT ACE Eq. 3.24
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4. Detectors using Structured Background Models

It is important to realize that all distance measures imply a model for the within-class
distribution. In each case, the models should be checked for physical validity, i.e., is
this model relevant regarding the physical reality the data is sampled from?

Using a structured model we infer some kind of structure attained from a priori
knowledge on the data. In spectral imaging, the inferred structure should be related to
the underlying physics of the observed source. Considering that an observed spectrum
is a mixture of the spectra corresponding to the materials in the pixel's footprint, and
assuming linearity in the mixing process, all observed spectra should lie in the subspace
spanned by the spectra of the materials in the scene. Thus, a linear subspace model
should be useful. The subspace could be computed from a spectral library or directly
from data, as described below. Note that spectra from a library need to be modi�ed
according to the current sensing conditions, i.e., weather and light conditions.

4.1 Linear subspaces
Assume, for the sake of illustration, that our data samples are two-dimensional, and
consider the toy example in in Figure 4.1 where our training samples are plotted.
Apparently, the data is mainly distributed along a line, i.e., in a one-dimensional
subspace of the two-dimensional data space. We call the one-dimensional subspace
(the line) the feature space of the data, and we use the (squared) Euclidean distance
to the feature space as distance measure.

A linear subspace is represented by a (1) set of basis vectors that spans the sub-
space, and (2) an o�set vector. The o�set vector is often omitted, thus assuming that
the origin is included in the subspace.

Assume that a subspace is spanned by the vectors{a1, . . . , aK}. Any vector x in
the subspace can then be written as a linear cominbation

x =
K∑

k=1

akak = Aa, (4.1)

where a is the coe�cient or weight vector.
We de�ne the projection matrix for the the subspace A as

PA , A(AT A)−1AT , (4.2)

that is, the component of a vector x within the subspace A is

x̂ = PAx. (4.3)

This is called the approximation or reconstruction ofx by the subspace A.
The component of x begin perpendicular to A, i.e., the residual when approxi-

mating x using A, is given by

r = x− x̂ = P⊥Ax, (4.4)
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Figure 4.1: Measuring the distance to a one-dimensional feature space in a two di-
mensional space.

where

P⊥A , I−PA

= I−A(AT A)−1AT
(4.5)

The squared norm of the residual vector is given by‖r‖2 = xT QAx where

QA , (P⊥A)T P⊥A. (4.6)

This is called the distance from feature space (DFFS)

dFFS(x,A) , xT QAx. (4.7)

and is illustrated in Figure 4.2
If the origin is not included in the subspace, an o�set vectorµA is needed as well.

This can in fact be any vector in the subspace. The expression for reconstruction
becomes

x̂ = µA + PA(x− µA). (4.8)

4.1.1 Estimating model parameters If we have a few noise free examples of
signatures (i.e., training vectors) that we want to use as model for a linear subspace,
we can simply merge them to a subspace basis matrix as in (4.1). This is the typical
case if we have a few target signatures in a data base.

However, if the training set is noisy, we need a larger set and a statistical method
for eliminating the noise. Also, if our training set is large compared to the dimen-
sionality M of the subspace (i.e., our training vectors are linearly dependent), we
might simplify our computations by creating an orthonormal basis matrixΦA with
M columns instead of K. The common solution to both problems is to use PCA as
described in Section 2.2.

Below, we will use ΦA for the basis matrix that represents the subspace modelA
regardless if it us computed using PCA or ifΦ = A.
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Figure 4.2: Isocurves of the distance to a one-dimensional feature space in a two-
dimensional data space.

4.1.2 Anomaly detection using a subspace background model Modelling
the background as anM -dimensional subspace plus noise, and assuming no model for
the targets, the distance from feature space gives us the anomaly detector

DDFFS(x|B) = [ dFFS(x,B) > t ]

=
[
xT QBx > t

]
.

(4.9)

Note that this is basically the same as the RX detector if the variances are thresh-
olded so that the the M largest eigenvalues are set to in�nity and the others to one.

4.1.3 Known target signature A widely used detector is the orthogonal sub-
space projector (OSP) [2]. It uses a subspace model for the background and a single
signature vector t as target model:

H0 : x = ΦBaB + nnn, nnn = N (0, σ2
nI)

H1 : x = ΦBaB + t + nnn
(4.10)

By removing the component of x within the background subspace and matching
with the target signature we get the detector

DOSP(x|T ,B) =
[
tT P⊥Bx > t

]
. (4.11)

This is basically the same as the AMF detector in the subspace complementary to
the background subspace.

4.1.4 Subspace target model Modelling the background as well as target vari-
ablility with subspaces gives us two di�erent detectors depending on if we assume
full-pixel targets or not.
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• In the subpixel case we have the following two hypotheses:

H0 : x = ΦBaB + nnn, nnn ∼ N (0, σ2
nI)

H1 : x = ΦBaB + ΦT aT + nnn = ΦAaA + nnn
(4.12)

giving us the detector

DASD(x|B, T ) =
[

dFFS(x,B)− dFFS(x,A)
dFFS(x,A)

> t

]

=
[

xT (QB −QA)x
xT QAx

> t

]
,

(4.13)

whereA is the combined target and background subspace model (ΦA = [ΦB ΦT ]
and aT = [aT

B aT
T ]T . This detector is known as the adaptive subspace detector

(ASD). In statistics, it is known as the F-test, and the random variable is F-
distributed. The false alarm rate is constant and speci�ed by

PFA(t) = 1− FMt,N−Mt−Mb
(0, t), (4.14)

where Mt and Mb are the dimensionalities of the target and background spaces
respectively.

• In the full-pixel case we have the following two hypotheses:

H0 : x = ΦBaB + nnn, nnn ∼ N (0, σ2
nI)

H1 : x = ΦT aT + nnn
(4.15)

giving us the detector

DASD′(x|B, T ) =
[

dFFS(x,B)
dFFS(x, T )

> t

]

=
[

xT QBx
xT QT x

> t

]
.

(4.16)

4.2 Linear mixing models
The reasoning around linear subspaces above is useful, but actually somewhat �awed.
If the observed spectrum x is mixture of a set of M end-members em, i.e.,

x =
M∑

m=1

amem = Ea, (4.17)

where the coe�cient am describe the proportion of the mth end-member (em) in
the sample, then the possible values of x do not �ll the entire subspace spanned by
E. Instead, only the convex hull of {em} should be considered as non-anomalous.

If a spectral library of materials is available, and we assume thatM of these ma-
terials/spectra are present in the scene, we must relateM to the data dimensionality
N . If M << N , then the di�erence between using a linear subspace model and a
linear mixing model is probably insigni�cant. However, if the end-members span the
spectral space (or a large part thereof), a subspace model is quite useless.

Note that the linear mixing model is an approximation of the physical reality.
When estimating the coe�cientsam to investigate the proportions of various materials
in a scene, a non-linear mixing model is more accurate. However, for the purposes in
this report, the linear mixing model is satisfactory.
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4.2.1 Estimating model parameters There are several approaches to end-
member extraction from data. One fundamental di�erence is if they assume the
presence of pure pixels in the training data, i.e., do they assume that the end-members
are present, or are they extrapolated?

A basic approach is to search for a simplex, i.e., a polyhedron withM = N + 1
corners, where the corners (vertices) are the end-members. IfM < N+1 end-members
is searched for, the simplex search must be preceded by a dimensionality reduction
step, searching for end-members in a (M − 1)-dimensional subspace.

In the pure pixel case, a popular approach is the N-FINDR [9] algorithm, see
Appendix A. N-FINDR traverses the samples in the training data and �nds the
M = N + 1 samples that forms the simplex with the maximum volume.

In the mixed pixel case, we instead search for the minimum simplex containing all
the training data. The vertices are thus extrapolated from the simplex vertices. This
is a somewhat more complicated procedure.

4.2.2 Anomaly detection using a linear mixture model The anomaly de-
tector is given by the distance from a vectorx to the convex hull of the end-members

DLMM(x|B) = [ dLMM(x,B) > t ]

=
[ ‖x−Ea‖2 > t

]
,

(4.18)

where a is the least-squares solution toEa = x constrained by
{

0 ≤ am ≤ 1∑
am = 1 (4.19)

4.3 Summary of detectors using structured background models
In this chapter we have studied detectors when using structured background models.
Depending on which model we use for target and background signatues, we get dif-
ferent detectors. The background models we have studied are linear subspaces and
linear mixture models.

Table 4.1 summarizes the various detectors.

Table 4.1: Target models and corresponding detectors using a structured background
model.

Target model Background model Detector
None Subspace ΦB DFFS Eq. 4.9
None Linear mixture E LMM Eq. 4.18
Known t Subspace ΦB OSP Eq. 4.11
Subspace ΦT Subspace ΦB

- subpixel ASD Eq. 4.13
- resolved ASD Eq. 4.16
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5. Detectors using Cluster and Mixture Models

Consider the data set illustrated in Figure 5.1. The crosses are samples from a back-
ground distribution, and we estimate their mean and covariance in order to use a
Gaussian model. When we receive a test signature vector (is this vector an anomaly
or not?), we measure the Mahalanobis distance dM to the background model. Using
the solid isocurve as decision level, we see that the point P1 is classi�ed as a non-
anomaly when it is quite clear that it does not match the background samples. Using
the same decision level, we also see that the point P2 will be classi�ed as an anomaly,
which it clearly should not.

To overcome this problem, we suggest two alternative solutions:

1. Use a more complex model. If the Gaussian model does not model the sampled
data well, then use another one! The model that will be discussed here is a
simple but very general extension of the Gaussian distributions � theGaussian
mixture model (GMM).

2. Cluster the data. The sample data in Figure5.1 seems to come from two di�erent
sources, each having a less complex distribution. This is typically the case when
we sample spectral vectors from the real world. We could then try to separate
the samples that (probably) originate from each source, and use a di�erent model
for each. Thus, a test vector that is an anomaly with respect to all clusters is
regarded as an anomaly.
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Figure 5.1: Using a Gaussian model for non-Gaussian data.
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5.1 Clustering
Given a set of K training vectors (pixel spectral signatures)xk, a clustering algorithm
organizes the vectors into clusters or classes, giving each vector a class label or a class
membership value. The resulting clusters can also be used as aclassi�er that assigns
class labels or class membership values to new vectors.

Classi�cation can be supervised or unsupervised. An unsupervised classi�er au-
tomatically clusters the training samples during training, while a supervised classi�er
also needs class labels for the training data as input. The term clustering is commonly
used as synonymous to unsupervised classi�cation.

5.1.1 Hard clustering A hard clustering assign integer class labels to the vectors,
so that a vector belongs to one cluster only. The output is:

• Clustering: A class label ck ∈ {1, 2, . . . , L} for each vector, telling to which class
it belongs.

• Classi�er: A discrimination function c = fd(x) producing a class label for a new
vector x.

5.1.2 Soft clustering A soft or fuzzy clustering assign membership values to the
vectors, so a vector belongs to several clusters to a varying degree. The output is:

• Clustering: A membership value mkl ∈ [0, 1] for each vector in each class.

• Classi�er: A membership function ml = fm(x, Cl).

5.2 A class of clustering methods
There is a number of algorithms for clustering, of which many comply to the following
scheme:

1. Assume a set of training vectors and initialize the classes randomly.

2. For each training vector, (re)compute the distance to each class.

3. Recompute the classes using the distances.

4. Repeat steps 2 and 3 until convergence.

By de�ning di�erent distance functions, membership functions, and class repre-
sentations we get di�erent algorithms. Theexpectation-maximization (EM) algorithm
uses the Mahalanobis distance, the Linde-Buzo-Gray (LBG) or K-means algorithm
uses squared Euclidian distance, and fuzzy C-means uses the Euclidian distance to
the power of a design variable c. The LBG algorithms assigns a discrete membership
value to each vector, while the EM and Fuzzy C-means combines the distances to all
classes from each vector. Variations of EM include classi�cation EM and stochastic
EM, as described in Appendix B.

5.3 Anomaly detection using a cluster model
After performing the clustering of the available background data, i.e., adapting a
cluster model B to a set of training vectors, we can for a test vector measure x
measure how well it �ts to B by computing the distance

dC(x,B) = min
l

d(x,Bl). (5.1)

Figure 5.2 illustrates this distance measure using the same data set as in Figure5.1.
Both spherical clusters (LBG) and Gaussian clusters (EM) solves the example problem
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Figure 5.2: Isocurves of the distance to the nearest cluster center using the spherical
clusters (left) or Gaussian clusters (right).

of classifying P1 as an anomaly and P2 as a background, however, three spherical
clusters are needed compared to two Gaussian clusters.

Note that when using Gaussian clusters, this is similar to the RX detector with
the spatial model de�ned by the cluster. Thus, the detector is sometimes callesclass
conditional RX or Gaussian mixture RX:

DGMRX(x,B) =
[

min
l

(dM(x,Bl)) > tl

]

=
[

min
l

( (x− µl)
T Γ−1

l (x− µl) ) > tl

]
.

(5.2)

A threshold can be computed for a speci�c CFAR for each cluster.

5.4 Anomaly detection using a Gaussian mixture model
A Gaussian mixture model (GMM, a.k.a a mixture of Gaussians or a multimodal
Gaussian) can be used for modelling complex mixtures. The pdf of a GMM is a
weighted sum of L Gaussian distributions

pGMM(x|C) =
∑

k,l

wl pN (xk|µl,Γl), (5.3)

where C = {wl, µl,Γl}L
l=1.

A Gaussian mixture model (GMM) can be used for anomaly detection in the same
way as a Gaussian model. While estimating the parameters of a single Gaussian is
straightforward, estimating the parameters of a GMM is done using the EM algorithm
(or a variation thereof). Note that a GMM can approximate any pdf arbitrarily well,
given a large enough number of components (Gaussians).

An anomaly is, as earlier, a vector that does not �t well to the model of background
data, so we can thus use the pdf as an (negative) anomaly score, i.e.,

DGMM(x|B) = [ pGMM(x|C) < t ]

=

[ ∑

l

wl pN (x|µl,Γl) < t

]
,

(5.4)
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where the parameters {wl, µl,Γl}L
l=1 are estimated using the EM algorithm. The

distance measure is illustrated in Figure5.3; the same data set as in Figure 5.1 is used
and the points P1 and P2 are classi�ed correctly.
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Figure 5.3: Isocurves of the pdf of a Gaussian mixture model estimated using the
EM-algorithm. Note the similarity to Figure 5.2 (right).

5.5 Reducing the computation time
Estimating a cluster set or a multimodal pdf from high-dimensional data is a time-
consuming process. However, we can subsample the data spectrally and/or spatially
prior to the clustering without sacri�cing detection performance. The scheme would
be as follows:

1. Reduce the size of the data set, e.g., by spatial subsampling.

2. Reduce the spectral dimensionality of the data set, e.g, by PCA or spectral
binning.

3. Cluster the reduced data set and return the class labels.

4. Restore the dimensionality of the data set and use the class labels to re-compute
the parameters.

5.6 Summary of detectors using cluster and mixture models
Clustering the available image data using LBG or K-means we get spherical clusters.
In practice, however, Gaussian clusters and the corresponding GMRX detector have
proven more useful. By assuming a Gaussian mixture model, quite similar to the
Gaussian cluster model, we get the GMM detector. The detectors are summarized in
Table 5.1.



Table 5.1: Detectors using a cluster or mixture background models.

Target model Background model Detector
None Spherical clusters {µl}
None Gaussian clusters {µl,Γl} GMRX Eq. 5.2
None Gaussian mixture {wl, µl,Γl} GMM Eq. 5.4
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6. Spatial Modelling

The detection methods discussed above require spatial and spectral models for targets
and background. Here, we disregard spatial patterns, and thus the spatial models
basically only tell us which pixels to consider as background and potential target, i.e.,
where to collect data to train our spectral model(s).

To measure a distance from a pixel signature to, for example, the background
model, we need to de�ne the spatial area that represent the background, i.e., what
pixel signature to chose as training vectors for the model. We de�ne the following
areas (illustrated in Figure 6.1):

• The center pixel is the pixel we are currently examining.

• The global background is the entire available image.

• The local background contains all pixels within a distance of nL pixels from
the center pixel. Typically the L1 distance is used, making the neighbourhood
square. Pixels within a distance nG pixels, the guard distance, from the center
pixel might be excluded from the local background.

• The Target area contains the pixels within a certain distance from the center
pixel. Each pixel is weighted as to re�ect the likelihood of the target stretching
to the pixel. Commonly, a Gaussian distribution is used. The resulting value
should be normalized so that it sums to 1 over all target area pixels.

nG

nL

lT

wT

Target area Potential target Potential target Local neighbourhood

Figure 6.1: Target area, guard distance, and local neighbourhood.

From the global and/or local background we can build the background modelB
or even several background models if we perform a clustering of the background. The
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target signaturex is estimated as the weighted average of the target area pixels. Given
a target probe T that can be a single signature vector or a representation of a class,
we then measure d(x,B) and d(x, T ), as mentioned above.

A global model is useful when statistics on the entire scene is necessary (for ex-
ample, end-member extraction) or when the model is advanced enough to handle a
complex scene (for example, Gaussian mixture models). Global models also have the
advantage that they are not re-trained for each pixel.

Yet another spatial model is to segment the image and use di�erent background
models for di�erent parts of the image. This corresponds to the class conditional RX
detector described in Section 5.3.
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7. Summary and Discussion

In this report, several methods for target detection in multi/hyperspectral imagery
have been discussed. Experimental results are accounted for in a separate report. For
reference, the use of many of the algorithms can be found in the literature.

7.1 Anomaly detectors
Various anomaly detectors have been described, di�ering in what kind of model they
use for background data. The detectors are summarized below and in Table7.1.

• The most common detector is the RX detector modelling the background as
a multivariate Gaussian distribution. The model can be applied locally as well
as globally, however a global Gaussian model is typically not very accurate and
give poor results. If the dimensionality (number of spectral bands) is high,
the number of samples needed to estimate the model parameters get very high,
prohibiting the use of a small local neighbourhood.

• The problems of RX are solved by using aGaussian mixture model (GMM)
as background model. Since the model can handle complex distributions, it
can be applied globally without deterioration. In fact, it can be trained quite
quickly, and although the traversal of the test pixels is slower than for global
RX, it is faster than for local RX. It tends to outperform both.

• The nearest neighbour detector tends to be very slow if the spatial model is
large since it includes a sorting step. It outperforms RX and is sometimes on
par with Gaussian mixture models.

• The distance from (background) feature space (DFFS) detector is basi-
cally a simpli�cation of RX.

• The linear mixture model (LMM) relies on the extraction of end-members,
and treat all test pixels not being a linear mixture of these end-members as
anomalies.

• The class conditional RX or Gaussian mixture RX (GMRX) assumes
clustering by LBG or EM (or a variation). However, a GMM detector (see
above) performs better and is only slightly slower in the training phase. If
the dimensionality is high, the peformance is nearly identical since the pdf of
a Gaussian mixture model is then often dominated by the closest component
anyway.

7.2 Target detectors
Depending on what knowledge we have about the background and target, we select
di�erent detectors. Regarding the background, we can model it as a Gaussian distri-
bution or a linear subspace. The target can be modelled as a certain signature vector,
a combination of signature vectors, or a Gaussian distribution.
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Table 7.1: Summary of anomaly detectors.

Assumption/model for background Detector Spatial model
Gaussian distribution RX Eq. 3.11 Global or local
Complex distribution GMM Eq. 5.4 Global
Only the closest background samples are NN Eq. 3.28 Local
worth considering
Linear subspace DFFS Eq. 4.9 Global or local
Background samples are mixture of LMM Eq. 4.18 Global
end-members
Background samples are clustered in GMRX Eq. 5.2 Global
spectral space

The detectors using Gaussian or subspace background models, all target detec-
tors and two anomaly detectors, are summarized in Table 7.2. The table tells what
parameters need to be known about background and targets for using the respective
models, and the corresponding detectors are given with name and reference to the
de�ning equation. Thus, for example, if you know (or can estimate) the meanµB

and covariance ΓB of the background clutter, and you know the signature t of the
target you want to detect, then Table7.2 tells that the AMF detector de�ned in (3.20)
should be used.

• If the target signature is known, that is, we search for a speci�c target signature,
and the background/noise is modelled as a Gaussian distribution, we use the
adaptive mathced �lter (AMF). The background model is typically trained
from image data. The AMF whitens both test vector and target signature with
respect to the background/noise, and computes their scalar product.

• If the target signature is not known, but not the norm of the signature vector
(as would be the case for a subpixel target or when the noise level is unknown)
we instead use the spectral angle mapper (SAM). SAM measures the angle
between the target signature and test vector.

• In case the background is modelled as a linear subspace, theorthogonal sub-
space projector (OSP) can be used. OSP matches the component of the test
vector that is orthogonal to the background subspace with the target signature.

• In the rare case that so many target training vectors are available that a Gaus-
sian model can be trained for the target, then theBayesian classi�er can be
used directly.

• Using a subspace model for targets, which is a common way to do when sev-
eral target signatures are available, we can use theadaptive cosine detector
(ACE) when modelling the background as Gaussian and the adaptive sub-
space detector (ASD) when modelling the background as a subspace. ACE
relates to the angle between the whitened test vector and the whitened target
subspace. ASD has di�erent formulations for resolved or subpixel targets.



Table 7.2: Summary of target detectors.

Background model
Target model Gaussian µB ,ΓB Subspace ΦB

None RX Eq. 3.11 DFFS Eq. 4.9
Known t AMF Eq. 3.20 OSP Eq. 4.11
Known up to norm k t SAM Eq. 3.22 ASD Eq. 4.11
Gaussian µT ,ΓT Bayes Eq. 3.15 Not treated, use ACE
Subspace ΦT ACE Eq. 3.24
- subpixel ASD Eq. 4.13
- resolved ASD Eq. 4.16
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A. End-member Extration Using N-FINDR

The N-FINDR algorithm [9] selects M = N + 1 pixels in a scene (samples in training
data) as end-members, whereN is the number of spectral bands. N-FINDR traverses
the samples and �nds the ones that form the simplex with maximum volume.

The algorithm is as follows:

1. Randomly pick M samples as end-member candidates e1 . . . eM and create the
matrix

E0 =
[

1 · · · 1
e1 · · · eM

]
. (A.1)

2. Compute the simplex volume

V (E0) =
1

(N − 1)!
|E0|. (A.2)

3. Let i go from 1 to K (the number of training vectors).

4. Replace, one by one, each of the end-member candidates withxi, i.e., create the
matrices

Em =
[

1 · · · 1 1 1 · · · 1
e1 · · · em−1 xi em+1 · · · eM

]
. (A.3)

for m = 1, . . . , M . Compute the corresponding volumes V (Em) and select the
simplex with the largest volume, i.e., let

E0 = Em? , (A.4)

where
m? = arg max

m=0,...,M
V (Em). (A.5)
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B. Clustering Methods

There is a number of related algorithms for clustering. Many variants comply to the
following scheme (unsupervised clustering):

1. Assume K training vectors xk. Initialize L classes Cl.

2. For each vector xk, measure the distance

dkl = d(xk, Cl) (B.1)

and compute the membership value

mkl = fm(dkl). (B.2)

3. Recompute the classes

Cl = fc({mkl}, {xk}) (B.3)

4. Repeat steps 2 and 3 until convergence.

By de�ning di�erent distance functions d(·), membership functions fm(·), and
class representations/functions fc(·) we get di�erent algorithms. A few examples are
given here; Linde-Buzo-Gray (LBG) or K-means and three variations ofExpectation-
Maximization (EM, CEM, and SEM). The LBG algorithms uses the squared Euclidean
distance and assigns a discrete membership value to each vector. The EM algorithm
uses the Mahalanobis distance and adapts a Gaussian mixture model to the training
data. CEM is similar to LBG, but uses the Mahalanobis distance. CEM is also similar
to EM, but assigns discrete class labels to the training samples.

The formal de�nitions follow.

B.1 Linde-Buzo-Gray
For the LBG algorithm, each class is represented by the mean vector, i.e.,

Cl =< µl > . (B.4)
The distance is the squared Euclidian distance

d(x, Cl) = ‖x− µl‖2, (B.5)
and the membership function is

fm(dkl) =
{

1 if dkl = minl dkl

0 otherwise. (B.6)

The class update function is simply

µl =
1
|Cl|

∑

k

mklxk, (B.7)
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and the �nal discrimination/classi�cation function is

fd(x) = arg min
l

d(x, Cl). (B.8)

To measure the quality of the �nal clustering, the function

fq({xk}, {Cl}) =
∑

k

dklmkl) (B.9)

can be evaluated.

B.2 Expectation-Maximization
The EM-algorithm is an algorithm for estimating the parameters for a Gaussian mix-
ture model with a pdf

pGMM(x|M) =
∑

l

wl pN (x|µl,Γl), (B.10)

where the mixture model M = {Cl}L
l=1 is a set of L components, where each

component Cl is represented by a prototype vector, a covariance matrix, and a weight,

Cl =< wl, µl,Γl > . (B.11)

There are several variations, of which a few are mentioned below. They all aim to
optimise the summed log-likelihood function of the pdf over the training data, i.e.,

fq({xk}, {Cl}) =
∑

k

− log pGMM(xk)) (B.12)

• Expectation. Compute the weighted pdf and the membership function for
each training sample with respet to each component

pkl = wl pN (xk|µl,Γl) (B.13)
mkl =

pkl∑
l pkl

. (B.14)

• Maximization. Compute the new model parameters, i.e., the class function

wl =
∑

k pkl

K
(B.15a)

µl =
1
K

∑

k

mklxk (B.15b)

Γl =
1

K − 1

∑

k

mkl(xk − µl)(xk − µl)
T . (B.15c)

B.3 Classi�cation Expectation-Maximization
A somewhat simpli�ed variation is Classi�cation Expectation-Maximization (CEM).
It is basically the same as LBG, but with Gaussian clusters.

• Expectation. As above.
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• Classi�cation. Assign a label to each training sample, i.e.,

ck = arg min
l

pkl (B.16)

mkl =
{

1 if ck = l
0 otherwise (B.17)

• Maximization. Compute the new model parameters

wl =
∑

k pkl

K
(B.18a)

µl =
1
|Cl|

∑

k

mklxk (B.18b)

Γl =
1

|Cl| − 1

∑

k

mkl(xk − µl)(xk − µl)
T , (B.18c)

B.4 Stochastic Expectation-Maximization
Stochastic Expectation-Maximization (SEM) is very similar to EM, but uses the com-
puted probabilities for a stochastic classi�cation of the training samples. SEM is less
likely to get stuck in local minima than EM, and tends to converge somewhat faster.

• Excpectation. As above.

• Stochastic classi�cation. Stochastically assign a label to each training sample

ck = l with the probability mkl, (B.19)

and recompute the membership function as

mkl =
{

1 if ck = l
0 otherwise (B.20)

• Maximization. As in CEM.
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