
FOI-R--1586--SE
January 2005

1650-1942

Scientific report

John W.C. Robinson
Ulrik Nilsson

Trimming & Nonlinear Autopilot for the
GSACM Model

Systems Technology Division
SE-172 90 STOCKHOLM

Sweden

Swedish Defence Research Agency
Systems Technology Division
SE-172 90 STOCKHOLM
Sweden

FOI-R--1586--SE
January 2005

1650-1942

Scientific report

John W.C. Robinson
Ulrik Nilsson

Trimming & Nonlinear Autopilot for
the GSACM Model

Issuing organization

Swedish Defence Research Agency
Systems Technology Division
SE-172 90 STOCKHOLM
Sweden

Author/s (editor/s)

John W.C. Robinson
Ulrik Nilsson

Report title

Trimming & Nonlinear Autopilot for the GSACM Model

Abstract

This report describes design and implementation of a trimming routine and a nonlinear controller for
simultaneous attitude and velocity control of a small single engine fighter aircraft. The controller is
very general and should be applicable to other thrust and moment controlled vehicles (rigid bodies)
moving in a gas or fluid as well, such as various forms of unmanned aircraft and underwater vehicles.
It is based on multi-input backstepping theory and utilizes a combination of two motions to archive
the control. One is a geodesic movement on the sphere of unit norm quaternions for oriention control
and the other is a rotation of the body velocity vector into the right direction combined with thrust
control of the engine to set its magnitude. The controller is capable of controlling the orientation and
velocity to trimmed values for straight path flight or constant angular velocity turn for large region
of deviations from these values. A proof of the stabilizing properties of the controller is given. The
aircraft, trim routine and controller are implemented in the Modelica language and simulated in the
Dymola environment. The model for the aircraft is referred to as the GSACM model and is based on
the Admire model. Simulations are presented to illustrate the performance of the controller under
various flight conditions.

Keywords

Control Theory, Modelica, Dymola, Backstepping, Nonlinear, Quaternions

Further bibliographic information

ISSN

1650-1942
Distribution

By sendlist

Report number, ISRN

FOI-R--1586--SE

Report type

Scientific report
Research area code

Strike and Protection
Month year

January 2005

Project no.

E6956
Subcategory

Weapons and Protection
Subcategory 2

Project manager

Mats Fredriksson
Approved by

Monica Dahlén
Sponsoring agency

Swedish Defence Material Administration
Scientifically and technically responsible

Markus Högberg

Language

English

Pages

43

Price Acc. to pricelist

Security classification Unclassified

ii

Utgivare

Totalförsvarets forskningsinstitut
Avdelningen för Systemteknik
SE-172 90 STOCKHOLM
Sweden

Författare/redaktör

John W.C. Robinson
Ulrik Nilsson

Rapportens titel

Trimning och ickelinjär autopilot för GSACM modellen

Sammanfattning

Denna rapport beskriver utformning och implementering av en trimningsrutin och ickelinjär regula-
tor för samtidig reglering av attityd (orientering) och hastighet för ett litet enkelmotorigt stridsflyg-
plan. Regulatorn är dock generell och torde vara användbar för andra dragkrafts- och momentstyrda
farkoster som rör sig i en gas eller fluid, såsom olika former av obemannade flyg och undervattens-
farkoster. Den baseras på multi-input backsteppingteori och använder en kombination av två rörelser
för att åstakomma regleringen. Den ena är en geodetisk rörelse på sfären av kvaternioner med enhets-
norm för reglering av orienteringen och den andra är en rotation av kroppen så att hastighetsvektorn
får rätt riktning i kombination med dragkraftsstyrning så att den får rätt belopp. Regulatorn är ka-
pabel att reglera orienteringen och hastigheten till trimmade värden för rak flygbana eller för sväng
med konstant vinkelhastighet, för ett stort område av avvikelser från dessa värden. Ett bevis för re-
gulatorns stabiliserande egenskaper ges. Flygplanet, trimrutinen och regulatorn är implementerade i
språket Modelica och simulerade i Dymolamiljö. Flygplansmodellen benämns GSACM och baseras
på Admiremodellen. Simuleringar visas som illustrerar prestanda för regulatorn under varierande
flygförhållanden.

Nyckelord

Reglerteori, Modelica, Dymola, Backstepping, Ickelinjär, Kvaternioner

Övriga bibliografiska uppgifter

ISSN

1650-1942
Distribution

Enligt missiv

Rapportnummer, ISRN

FOI-R--1586--SE

Klassificering

Vetenskaplig rapport
Forskningsområde

Bekämpning och skydd
Månad, år

Januari 2005

Projektnummer

E6956
Delområde

VVS med styrda vapen
Delområde 2

Projektledare

Mats Fredriksson
Godkänd av

Monica Dahlén
Uppdragsgivare/kundbeteckning

FMV
Tekniskt och/eller vetenskapligt ansvarig

Markus Högberg

Språk

Engelska

Antal sidor

43

Pris Enligt prislista

Sekretess Öppen

iii

FOI-R--1586--SE

Contents

1 Introduction 1
1.1 Outline . 1
1.2 Notation . 1

2 The GSACM model 3
2.1 The Modelica language . 3
2.2 Structure of the model . 3

3 Equations of motion 5
3.1 Kinematics . 5

3.1.1 Rotational motion. 5
3.1.2 Translational motion. 6

3.2 Dynamics . 6
3.2.1 Force equation. 6
3.2.2 Moment equation. 6

3.3 Total GSACM motion . 7
3.4 Aerodynamics . 7
3.5 Engine . 8

4 Trimming 11
4.1 Trim Algorithm . 11

4.1.1 Force Equilibrium. 12
4.1.2 Moment Equilibrium. 13

5 Autopilot 15
5.1 The attitude-velocity control problem 15
5.2 Backstepping . 15

5.2.1 Lyapunov stability theory. 15
5.2.2 Integrator backstepping. 17

5.3 Backstepping the GSACM model . 18
5.3.1 Equilibrium points. 19
5.3.2 Standard form. 21
5.3.3 Desired dynamics. 21
5.3.4 A two-tier controller. 22
5.3.5 Stability. 25

5.4 Implementation details . 32

6 Simulations 33
6.1 Pull-up maneuver . 33
6.2 Mixed maneuver . 33

A Sperical Linear Interpolation, slerp 39

B Translation between document and code notation 41

v

FOI-R--1586--SE

1. Introduction

The present document describes two computer code modules that implement the
functions of trimming and nonlinear attitude-velocity autopilot for a version of the
Admire aircraft model. These code modules were developed as a part of an evalua-
tion study of the Modelica programming language at FOI department of autonomous
systems.

The Admire model represents a small generic single engine fighter aircraft with
delta-canard configuration and was originally implemented in Simulink. As of this
writing, the latest version of this model is v4.0 and it is freely available on the web
via http://www.foi.se/admire. Recently, the Admire model has been ported
(as FOI sponsored contract work) to the Modelica language, which is a modern ob-
ject oriented language for modeling and simulation targeted mainly on dynamical
systems described by differential-algebraic equations (DAE). 1 The Modelica port 2

of the Admire model is in this report referred to as the GSACM model (which, e.g.,
could stand for Generic Small Aircraft Model).

After the initial port to Modelica, the GSACM model did not contain any pro-
visions for trimming nor any controller. It was therefore decided that the evalua-
tion study of Modelica should include adding such functionality. The first part of
the evaluation project consisted in porting the flight control system (FCS) from the
Simulink version (v3.4h) of the Admire model. This FCS is based on classical design
techniques and gives the aircraft desireable handling qualities, as seen from a pilot’s
view. However, two central research topics at the department are nonlinear control
and unmanned aerial vehicles (UAVs) and it was therefore later decided that a suit-
able initial design task for the GSACM model was to develop a nonlinear autopilot
for attitude and velocity control. This task furthermore required the development
of a suitable standalone trimming routine, so that the controller could be tested on
flight paths containing segments of ascent, descent, and smooth turns, as well as
abrupt turns changes between these types of segments.

1.1 Outline

In the following chapter we describe the structure of the GSACM model and its im-
plementation in Modelica, and in the next chapter we describe the underlying math-
ematical model. In Chapter 4 we describe the trim routine. After this follows the
chapter where we derive the controller and give a proof of its stability. Finally, in
Chapter 6 we present some simulations illustrating the performance of the controller
when applied to the GSACM model.

1.2 Notation

Vectors are generally marked using bold face, e.g V, and scalars using ordinary font.
Hence, the components of a vector V ∈ R

3 are V1,V2,V3. Transposition of a vector V
is marked as VT .

1A starting point for information about Modelica is http://www.modelica.org.
2The GSACM model is in some aspects slightly simplified, for example the mass distribution is con-

stant.

1

FOI-R--1586--SE

2. The GSACM model

2.1 The Modelica language

Modelica is an object oriented language for modeling and simulation of dynami-
cal systems. 1 It focuses on systems described by differential algebraic equations
(DAEs), but can handle discrete (in time and state) and hybrid systems as well. A
key feature of the language is that it permits acausal modeling, i.e. models can be
expressed in their natural equation form without the need to explicitly structure the
calculations sequentially in the form of assignment statements. Moreover, it permits
splitting of equations across the boundaries of objects so that an equation is com-
pleted only when two objects are joined together using a special object class called
connector. Another feature of the language is that it permits documentation (in the
form of HTML code) and graphical information (as vector graphics) to be integrated
directly into the code. This makes documentation and visualization of the model
very straightforward. The object oriented nature of the language inspires modular
design and reuse of classes. Consequently, a number of standard classes for Modelica
have been developed, aimed at modeling tasks in electrical, mechanical and many
other engineering disciplines. (An explicit design objective of Modelica has been to
facilitate multi domain modeling.) The GSACM model employs all of these features of
the Modelica language (cf. e.g. Sec. 5.4).

Currently, there are only a few translators for Modelica available and the two
most important are Dymola of Dynasim AB and MathModelica of MathCore Engi-
neering AB. They both contain a graphical editor for creating Modelica code (e.g. by
drag-and-drop of components from the libraries of standard classes) and they have
the Dymola kernel as its central component. MathModelica is implemented as a note-
book for Mathematica which makes it easy to do supporting symbolic calculations
and use the Modelica model from within Mathematica. Dymola, on the other hand,
is a standalone application and it has facilities for producing 3D animations of the
system simulated (using components from one of the standard “additional” libraries
of classes). Both Dymola and Mathematica are available on the Microsoft Windows as
well as GNU/Linux (x86) platforms. For the present work, the Dymola environment
on GNU/Linux was used.

2.2 Structure of the model

The GSACM model, see Fig. 2.1, is divided into a number of submodels, or ob-
jects, such as Body, Aerodynamics, Atmosphere, Earth, Reference point and
Engine. The Body object represents the dynamics of the aircraft, the Atmosphere
object provides the Mach number and other environmental parameters and the Earth
object provides the value of the gravitation constant at the altitude in question, etc.
The Reference point object is simply a “summing point” for all the quantities
that are calculated as summed contribitions from the various submodels, like total
external force, total external torque (around the center of gravity (CoG)), total mass, to-
tal moment of inertia (around CoG) and so on. Summing operations of this type are

1A comprehensive overview of the Modelica language and is given in [1]. For a shorter (and perhaps
more easily accessible) introduction developed around a number of examples see [2].

3

FOI-R--1586--SE

X

Z

Y

GSAM - no controller

engine
1

2

toEngine

r_rel={0,0,0}

referencePoint

CoG

body

aerodynamics

out

r_table

offset={0}

rc_const

k={0}
lc_const

k={0}

loe_const

k={0}

lie_const

k={0}

rie_const

k={0}

roe_const

k={0}

mux8

le_const

k={0}

1

2

toAC

r_rel={0,0,0}

ra...

d_rc

ra...

d_lc

ra...

d_roe

ra...

d_rie

ra...

d_le

ra...

d_lie

ra...

d_loe

ra...

d_r

d_al...

d_b...

speed

mach

height
h

thrust_const

k={10000}

earth

g = f(h)

atmosphere

Figure 2.1: Graphical representation of the GSACM model rendered from the graph-
ical annotations in the Modelica code. In this setup, only the “bare” aircraft is mod-
eled, no controller is present. (Control surface deflections are entered as constants
in the upper left part of the display, the engine thrust is entered as a constant in the
lower right corner and the other parameters, such as initial values, are embedded
into the code representing each object.) The (blue) lines connecting objects represent
connect statements in the Modelica code that connect the connector objects. To-
gether they represent equalities in equations, which may or may not be “directed,”
i.e. be in the form of assignments, depending on the type of the connector.

conveniently implemented in Modelica using so called flow variables, which is another
feature of the language. A flow variable is a quantity that sums to zero at a connec-
tion point and occurs frequently in physical modeling (not only in the mechanical
context here but also, of course, in electrical and hydraulical engineering).

In the setup depicted in Fig. 2.1 there is no controller present; the aircraft is free-
flying with fixed engine thrust and control surface deflections. The first thing to
accomplish when modeling an aircraft is usually to achieve sustained flight. Unless
the control surface deflections and engine thrust (as well as initial values of the state
in the dynamics) entered in the model correspond to an equilibrium for the differen-
tial equations representing the dynamics, this condition will not be met. 2 Therefore,
the first thing to add to the setup in Fig. 2.1 to make it more useful is a trimming rou-
tine to find such equilibria. In the next chapter we describe the equations of motion
in the GSACM model (in the form depicted in Fig. 2.1) before we turn to the details
of the trimming routine and autopilot in the following chapters.

2If the equilibrium in question is unstable, the time for sustained flight will be very short, but finding
such equilibria is still in general the first task to accomplish.

4

FOI-R--1586--SE

3. Equations of motion

The equations describing the motion of the aircraft are contained in the Body object
and consist of kinematical as well as dynamical relations expressed in two different
(cartesian) coordinate systems. The first, denoted Fe, is earth fixed and is considered
as an inertial system, and the other, denoted fb, is body fixed with its origin in CoG of
the aircraft. 1 All of what is presented here can be found in any standard textbook
on rigid body mechanics or aircraft mechanics, such as [3].

3.1 Kinematics

3.1.1 Rotational motion. If fb is translated to that its origin coincides with that
of Fe, the orientation of fb expressed in terms of the coordinates of Fe can be repre-
sented by a rotation matrix R such that

U = Ru,

where U is an arbitrary vector expressed in Fe and u is the corresponding vector
in fb. If the system fb rotates smoothly in Fe (with its origin fixed) with the angular
velocity vector Ω (expressed in Fe), i.e. if R varies smoothly, then the angular velocity
ω of this rotation expressed in fb is given by

ω = R−1Ω. (3.1)

Alternatively, the rotation represented by the matrix R can be expressed by a unit
norm quaternion Q. For the time derivative Q̇ of this quaternion we have

Q̇ =
1
2
Ω̃ ◦ Q, (3.2)

where Ω̃ = (0,Ω) is the pure quaternion (real part zero) formed from the three-
vector Ω and ◦ denotes the quaternion product. By using (3.1) and writing out and
rearranging the components on the right hand side of (3.2) this relation can be put
on the form

Q̇ =
1
2
Q ◦ ω̃ =

1
2
A(ω)Q, (3.3)

where ω̃ = (0, ω) is the pure quaternion formed from ω = [ω1, ω2, ω3]T , the matrix
A(ω) is given by

A(ω) =




0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0


 (3.4)

and the product on the right hand side of (3.3) is ordinary matrix vector product (i.e.
the quaternion Q is considered merely as an ordinary four-vector there). For future
use we note that the matrix function A is linear in its argument and skew symmetric.

1The CoG is considered fixed in body coordinates in this version of GSACM.

5

FOI-R--1586--SE

3.1.2 Translational motion. Turning to translational motion, we have

V = Rv, (3.5)

where V and v are the velocity of the aircraft CoG expressed in Fe and fb, respec-
tively. For the acceleration we obtain from the theory of relative motion

V̇ =
d

dt

(
Rv

)
= Rv̇ + Ω× Rv = R(v̇ + ω × v). (3.6)

3.2 Dynamics

3.2.1 Force equation. The linear motion for the CoG of the body is given by New-
ton’s second law in the inertial frame Fe as

mV̇ = F, (3.7)

where F is the sum total of all the external forces acting on the body and m is its
mass. 2 The total force f expressed in fb is given by

f = R−1F,

and if we combine this with (3.6) we can express the force equation (3.7) in the body
coordinate system fb as

m(v̇ + ω × v) = f (a) + t + mg, (3.8)

where f (a) and t are, respectively, the sum of all the aerodynamical and thrust forces
acting on the aircraft expressed in fb, and g is the vector of gravitational constants
in fb (i.e. g = R−1G where G = [0, 0, g]T is the gravitation vector in Fe and g is the
gravitational constant). In this version of the GSACM model the engine is assumed
to be mounted on the x-axis in fb, the aircraft body frame, so the thrust vector t is of
the form t = [τ, 0, 0]T , for some τ .

3.2.2 Moment equation. The rotational motion around the origin in Fe is given
by Euler’s equation. If we denote the moment of inertia tensor around CoG in Fe by
J we thus have

JΩ̇ = M, (3.9)

where M is the total torque around CoG in Fe. If we further introduce the moment
of inertia tensor j around the origin in fb as

j = R−1JR

we see that we can rewrite (3.9) using the theory of relative motion as

M =
d

dt

(
RjR−1Ω

)
=

d

dt

(
Rjω

)
= Rjω̇ + Ω × Rjω = R(jω̇ + ω × jω). (3.10)

Since the torque m around the origin in fb is given by

m = RM

we see that (3.10) gives us the moment equation around the origin in fb as

m = jω̇ + ω × jω, (3.11)

where m is the sum of all aerodynamical and thrust torques 3 in fb around the origin
(i.e. the CoG in Fe).

2It is assumed in this version of GSACM that the mass distribution, and hence the total mass, of the
aircraft is constant.

3Since the engine is assumed to be mounted on the aircraft x-axis, and produces thrust along the same
axis, it doesn’t give any contribution to the torque.

6

FOI-R--1586--SE

3.3 Total GSACM motion

Summing up, the equations of motion in the Body object of the GSACM model are
the four equations (3.5),(3.3), (3.8), and (3.11) which we collect here for easy reference

V = Rv, (3.12)

Q̇ =
1
2
A(ω)Q, (3.13)

f (a) + t = m(v̇ + ω × v − g), (3.14)
m = jω̇ + ω × jω. (3.15)

To get the complete location–orientation description of the aircraft one has to solve
(3.13)–(3.15) and also integrate (3.12) to get the location O of the origin of fb ex-
pressed in Fe. We note in passing that there are no inherent theoretical or numerical
difficulties with the solution of (3.13)–(3.15) since for bounded f (a), t,m the system
is uniformly Lipschitz continuous in Q,v, ω.

3.4 Aerodynamics

The aerodynamic forces and moments are defined in the body fixed coordinate sys-
tem fb as illustrated in Fig. 3.1. The x-axis is the roll axis, the y-axis is the pitch axis

Figure 3.1: The definitions of the the coordinate axes in the body fixed coordinate
system fb used in the GSACM model. (In this figure a second body fixed coordinate
system is indicated by dashed lines, the aerodynamic frame, but in the version of the
GSACM model discussed in this report it coincides with the CoG centered frame fb.)

and the z-axis is the yaw axis. The aerodata used in the GSACM model is the Generic
Aerodata Model (GAM) data from SAAB that is also part of Admire and is given in
parametric form in terms of coefficients C(·) for force and moment in the standard

7

FOI-R--1586--SE

fashion. Thus, if f (a) = [f (a)
1 , f

(a)
2 , f

(a)
3]T and m = [m1, m2, m3]T we have

f
(a)
1 = qSrefCx, (3.16)

f
(a)
2 = qSrefCy, (3.17)

f
(a)
3 = qSrefCz , (3.18)
m1 = qSrefbrefCl, (3.19)
m2 = qSrefcrefCm, (3.20)
m3 = qSrefbrefCn, (3.21)

where the dynamic pressure q is given by

q =
1
2
ρV 2 (3.22)

and ρ is the air density, and V = ‖v‖ = ‖V‖ is the absolute air speed or aircraft
velocity. The constants Sref ,bref and cref are reference numbers with dimension,
chosen such that the coefficients C(·) are dimensionless. 4 The coefficients C(·)
have different parametric dependence on the state and environmental parameters
(see Chap. 4). 5 All the coefficients C(·) also depend on the control surface deflections
δlc,δrc,δloe,δroe, δlie,δrie,δ�e,δr where δlc,δrc are the left and right canards, δloe,δroe are
the left and right outer elevons, δlie,δrie are the left and right inner elevons, δle is the
leading edge flaps and δr, finally, is the tail rudder. The control surface configuration
is illustrated in Fig. 3.2.

Figure 3.2: Control surface configuration on the GAM aerodata model employed by
the GSACM aircraft model.

3.5 Engine

The engine is modeled as a simple thrust source with no parameteric dependence
on the environment but with a simple first order dynamics representing the engine

4All the details about the aerodynamic data can be found in the GAM documentation that accompanies
the Admire model.

5There is also a (weak) dependence on the state derivatives.

8

FOI-R--1586--SE

inertia;
τ̇ = b(τ − uτ), (3.23)

where τ is the value of the engine thrust (directed along the x-axis in fb) and uτ is
the control input (desired thrust) to the engine. The time constant b is set to 0.5.

We now turn to the problem of trimming the GSACM model, i.e. finding equilib-
ria for the differential equations (3.13)–(3.15).

9

FOI-R--1586--SE

4. Trimming

The trimming routine computes equilibrium states in the two aircraft dynamical
equations (3.14), (3.15) and the engine thrust equation (3.23) for trimmed wings level
flight or for steady turns, for given values of altitude h, Mach number M , flight path
angle γ and (total) angular velocity ω. Here, the flight path angle γ is defined in
terms of the aircraft velocity V = [V1, V2, V3]T in Fe as γ = arcsin(V3/Vxy), where
Vxy is the projection of V on the xy-plane in Fe, and the angular velocity ω is simply
defined as ω = ‖Ω‖ = ‖ω‖. Since the GAM model has redundant control surfaces,
i.e. two elevons on each wing and canards, the control commands for a specific set of
trimmed states are not unique. For this reason both elevons on each wing are always
set to have the same deflection, and the canard deflection can be specified with an
additional input, preferably zero or the angle of attack α with switched sign. This
effectively reduces the aircraft to one with a simple control surface configuration in
the form of aileron (roll), elevator (pitch) and rudder (yaw), with deflections given
by the vector δ̄ = [δa, δe, δr]T .

The course of action is to first obtain force equilibrium in body (i.e. fb) z-direction,
assuming that only the angle of attack α has influence on the aerodynamic force f(a).
It is also assumed that the resulting aerodynamic force f

(a)
1 in body x-direction can

be balanced by thrust τ . Forces in body y-direction is not wanted, thus the force
balance here is trivial.

Next, the pitch moment mpitch = m2 is considered. The elevator deflection yield-
ing zero pitch moment is computed. Finally, the aileron and rudder deflections
are determined for yaw and roll moment balance, i.e. balance for myaw = m3 and
mroll = m1.

The trimming routine provides trimmed values of angle of attack α(0), elevator,
aileron and rudder control surface deflections δ̄(0) = [δ(0)

a , δ
(0)
e , δ

(0)
r]T , desired thrust

τ (0), body frame velocity v(0) and angular velocity vector ω(0), load factor n
(0)
z and

roll angle ϕ(0).

4.1 Trim Algorithm

For a given Mach number M and altitude h, compute the aircraft velocity V = ‖V‖ =
‖v‖ using standard atmosphere properties

V = Vs(h)M

where Vs(h) is the altitude dependent sonic speed. When a non-zero angular velocity
ω is provided, the required centripetal acceleration acen is the the cross product of the
angular velocity vector and the velocity vector, or equivalently, with the available
scalars

acen = ωV cos(γ),

where γ is the flight path angle. For a trimmed turn we desire no forces in body
y-direction, only in the xz-plane of the aircraft, see Figure 4.1. With this the roll angle
ϕ is determined by

ϕ = arctan
(acen

g

)
,

11

FOI-R--1586--SE

LT

ϕ

macen

mg

Figure 4.1: Bank angle for no acceleration in body y-direction.

where g is the acceleration of gravity, and further the load factor nz is given by

nz =
cos(γ)
cos(ϕ)

.

In Figure 4.1, LT = m
√

a2
cen + g2 is composed of aerodynamic forces and thrust, and

is to balance the weight and the centrifugal force.

4.1.1 Force Equilibrium. Obtaining force equilibrium amounts to finding equilib-
rium points in the state equation (3.14) for body velocity using the relations (3.16)–
(3.18) and (3.23). The force Cx, Cy , Cz and moment coefficients Cl, Cm, Cn are func-
tions of a variety of variables, such as Mach number M , angle of attack α, sideslip
angle β, deflections of the control surfaces δlc,δrc,δloe,δroe, δlie,δrie,δ�e,δr, angular ve-
locity vector ω, etc. For simplicity it is assumed that the force coefficients is mostly
affected by the angle of attack α, defined as

α = arccos
(v1

V

)
(4.1)

(the angle of side slip is set to zero), and that the control surface deflections δ̄ =
[δa, δe, δr]T (aileron, elevator and rudder, respectively) have small influence. Fig-
ure 4.2 shows the forces acting on the aircraft. The dotted line in the Figure represent
the plane perpendicular to the vector of total acceleration, i.e., the sum of the ac-
celeration of gravity and the centrifugal acceleration. (For the wings level case, the
plane is the horizontal plane.) With this assumption we can pose the body z force
equilibrium equation as

q Sref Cz(M, α, ωy, δ̄) = m
√

a2
cen + g2 cos(γ + α), (4.2)

where Cz(M, α, δ̄) is the non-dimensional body z aerodynamic force coefficient, q is
the dynamic pressure in (3.22), Sref is the wing reference area and m is the mass of

12

FOI-R--1586--SE

T

V̄

α

γ′

Fz

Fx

m
√

a2
cen + g2

Figure 4.2: Forces acting on the aircraft.

the aircraft. The Cz(α) coefficient is typically obtained from aerodata tables, and thus
an explicit solution for α can not be obtained by (4.2). The angle of attack is instead
obtained numerically using e.g. the secant method. Knowing the angle of attack α,
the body frame equilibrium velocity vector v(0) is given by

v(0) = [V cosα, 0, V sin α]T , (4.3)

and since the thrust force acts along the body x-axis through the center of mass, the
required equilibrium thrust τ(0) is

τ (0) = qSrefCx(M, α, δ̄) + m
√

a2
cen + g2 sin(γ + α), (4.4)

where Cx(M, α, δ̄) is the non-dimensional body x aerodynamic force coefficient.

4.1.2 Moment Equilibrium. The state equation for angular velocity in body frame
is the moment equation (3.15) viz.,

m = jω̇ + ω × jω, (4.5)

where m = [mroll, mpitch, myaw]T is the moment around the origin in fb produced by
the aerodynamics. For trimmed flight the total moment ma is zero, and for the trivial
case of no turn all terms on the right hand side of (4.5) are zero. However, for a steady
state turn, only the first term on the right hand side vanishes. In an arbitrary turn the
aircraft does not generally rotate around a principal inertia axis. Hence, the inertia
coupling produces a moment that has to be balanced by an opposite aerodynamic
moment for a sustained steady turn. In other words, we must have

m = ω × jω, (4.6)

or equivalently, using (3.19)–(3.21),

 mroll

mpitch

myaw


 =


 qSrefbrefCl

qSrefcrefCm

qSref brefCn


 =


 mx

my

mz


 , (4.7)

13

FOI-R--1586--SE

where the vector [mx, my, mz]T defined as

 mx

my

mz


 = ω × jω

is introduced for convenience. Computation of the elevator deflection δe by e.g. the
secant method is straight-forward, assuming that this control surface only affects the
pitch moment

Cm(M, α, ωy, δe)qSrefcref − my = 0, (4.8)

where cref is the reference mean wing chord. Obtaining the aileron and rudder de-
flections are a bit bore complicated since both of those affect both the roll and yaw
moments. One would like to solve the minimization problem on the form

min (mroll(M, α, ωx, ωz, δa, δr) − mx)2 + (myaw(M, α, ωx, ωz, δa, δr) − mz)2.
δa,δr

(4.9)
In the absence of optimization routines (4.9) is solved by alternating between two
sub problems. Since the aileron has a larger influence on the roll moment than on
the yaw moment (and vice versa for the rudder), δr is held fixed and δa is computed
from

Cl(M, α, ωx, ωz, δa, δr)qSrefbref − mx = 0, (4.10)

where bref is the reference wing span. Now δa is held fixed and δr is solved out of

Cn(M, α, ωx, ωz, δa, δr)qSrefbref − mz = 0. (4.11)

When alternating between (4.10) and (4.11), updating δa and δr, the objective of (4.9)
is obtained with satisfactory precision after just a few iterations.

Now we have a trimmed condition that is fairly good. To increase accuracy one
can preferably repeat the procedure from the force equilibrium computation, using
the control surface deflections obtained from the moment equilibrium condition. It-
erating the whole trimming algorithm three or four times result in a very accurate
trimmed condition.

14

FOI-R--1586--SE

5. Autopilot

5.1 The attitude-velocity control problem

The three-dimensional attitude-velocity control problem can be cast as the problem
of controlling all three components of the aircraft velocity vector V in the frame Fe.
If we only consider a fixed relation between the components of the vector V, i.e. only
consider the direction of V, we obtain a natural three-dimensional generalization of
the standard two-dimensional definition of flight path angle γ used in Chap. 4. The
three dimensional version of the problem considered here thus has one added degree
of difficulty, namely the control of the magnitude of V. Controlling the attitude and
velocity in three dimensions can be considered as the most basic task for an autopilot
to accomplish.

If we recall the relation (3.12) the velocity in the frames Fe and fb respectively as

V = Rv,

we see that attitude-velocity control problem can (neglecting wind) be split into two
separate problems; (i) the problem of controlling the body components (i.e. in fb) of
the airspeed vector v and (ii) simultaneously controlling the orientation R of the
aircraft (in Fe). Since R can be viewed as a member of SO(3), the group of ro-
tations in three-dimensional space R

3, which is a three-dimensional manifold, the
attitude-velocity control problem is six-dimensional. The generalized control sur-
face deflections represented by δ̄ = [δa, δe, δr]T together with the thrust control input
uτ constitute our primary control commands, and these clearly correspond to a four-
dimensional manifold. Hence, the control problem is underactuated.

5.2 Backstepping

Backstepping is a methodology to systematically design stabilizing controllers for
nonlinear systems using a recursive procedure. It requires the system to be of a cer-
tain diagonal type but allows the designer a large degree of freedom in the design
process. In particular, it allows the designer to keep nonlinear terms that act stabi-
lizing and to focus on destabilizing terms, thus reducing the need for control action.
Backstepping is described in many textbooks, see e.g. [4, Sec. 14.3] or the standard
reference [5]. Most of what is presented below about backstepping is taken more or
less directly from [5].

5.2.1 Lyapunov stability theory. The central component in backstepping is the
concept of a Lyapunov function, and particularly control Lyapunov function (CLF).
In this section we are going to review some of the basic results concerning such func-
tions that are used in backstepping. The treatment will be brief. For proofs and more
detailed developments on the definitions the reader is referred to the references men-
tioned above.

To begin with we introduce the generic nonlinear system model that we are going
to use. The autonomous version of this model is simply

ẋ(t) = f(x(t)), t ∈ R, x(0) = x0, (5.1)

15

FOI-R--1586--SE

where the state vector x belongs to R
n and f is a Lipschitz continuous function R

n →
R

n. By standard results for ordinary differential equations we know that for each
x0 ∈ R

n the initial value problem in (5.1) has a unique solution defined over some
time interval containing the origin. Moreover, we have the following fundamental
result (a proof can be found in [5]).

Theorem 5.2.1. Let x = 0 be an equilibrium point of (5.1) and let V : R
n → [0,∞) be a

continuously differentiable positive definite and radially unbounded function such that along
the solutions x(t) to (5.1) we have

d

dt
V(x(t)) =

∂V
∂x

(x(t))ẋ(t) =
∂V
∂x

(x(t))f(x(t)) ≤ −W (x(t)) ≤ 0, ∀t ∈ R, (5.2)

where W : R
n → R is a continuous function. Then, all solutions x(t) of (5.1) are globally

uniformly bounded and satisfy
lim

t→∞W (x(t)) = 0.

In addition, if W is positive definite, then the equilibrium at x = 0 is globally uniformly
asymptotically stable.

Remark 5.2.2. Implicit in this theorem is the assumption of global existence of solu-
tions to (5.1), which is not guaranteed by the local Lipschitz continuity of f . How-
ever, the local Lipschitz continuity together with existence of a compact positively
invariant set (see below) is sufficient to guarantee global existence and uniqueness
for solutions starting in this set, cf. e.g. [4, Thm. 3.3].

The function V in the theorem is called a Lyapunov function. It frequently happens
that one cannot guarantee (5.2) to hold for all starting points x(0) in R

n but only a
subset thereof, and for this case a more general version of Theorem 5.2.1 is needed.
We shall present one such generalization, based on the concept of invariant sets,
known as LaSalle’s Theorem. A set M ⊆ R

n is called an invariant set for the solutions
x(t) to (5.1) if

x(0) ∈ M ⇒ ∀t ∈ R : x(t) ∈ M.

In other words, the solution can never cross the border and is confined to either M or
Mc (the complement of M) at all times. Similarly, a set M ⊆ R

n is called a positively
invariant set for the solutions x(t) to (5.1) if

x(0) ∈ M ⇒ ∀t ≥ 0 : x(t) ∈ M.

In this case the solution can enter M but never escape (in forward time). A typical
invariant set is an equilibrium point or limit cycle for the system (5.1) and a typical
positively invariant set is the set

{x(0) ∈ R
n : V(x(0)) ≤ c0 and

d

dt
V(x(t)) ≤ 0, t ≥ 0},

where c0 is some constant.

Theorem 5.2.3 (LaSalle). Let M be a compact positively invariant set of (5.1) and let
V : R

n → [0,∞) be a continuously differentiable function such that

d

dt
V(x(t)) ≤ 0, ∀x(0) ∈ M, t ≥ 0.

Let M0 be the set

M0 = {x(0) ∈ M :
d

dt
V(x(t)) = 0, t ≥ 0}

and let M̄ be the largest invariant set contained in M0. The, every solution x(t) to (5.1)
with x(0) ∈ M converges to M̄ as t → ∞.

16

FOI-R--1586--SE

A proof of Theorem 5.2.3 can be found in [4].
We now turn to controlled systems and we consider systems on the generic affine

form
ẋ(t) = f(x(t)) + g(x(t))u(t), (5.3)

where f is as in (5.1), g : R
n → R

n×m is continuous and u(t) is a vector in R
m of

continuous (control) functions. A smooth positive definite and radially unbounded
function V : R

n → [0,∞) is called a control Lyapunov function for the system (5.3) if it
holds that

inf
u∈Rm

∂V
∂x

(x)
(
f(x) + g(x)u

)
< 0, ∀x �= 0.

Intuitively, the existence of a CLF for the system (5.3) suggests that by proper choice
of control signal u the system can be stabilized. To see this more clearly, assume that
a smooth feedback law
 : R

n → R
m has been chosen such that

u =
(x), (5.4)

which renders the system (5.3) on the form

ẋ(t) = f(x(t)) + g(x(t))
(x(t)). (5.5)

The feedback connected system (5.5) is of the form (5.1). Thus, if there exist a Lya-
punov function V for (5.5) and “rate margin function” W as in Theorem 5.2.1 the
feedback connected system (5.5) is stable. Indeed, for the important case of a scalar
control signal u there is a standard procedure (known as Sontag’s formula) by which
such an
 and W can be constructed (for a large class of f, g), given a CLF. 1

5.2.2 Integrator backstepping. In backstepping one doesn’t start with the concept
of CLF and derive a stabilizing control law from it, but instead a stabilizing control
law together with a CLF are constructed simultaneously, with a recursive procedure
evolving state by state. The main condition imposed on the systems to be controlled
is one about stabilizability:

Assumption 5.2.4. Consider the system in (5.3) and assume that there exist a smooth
feedback law
 as in (5.4) and a smooth, positive definite and radially unbounded
function V : R

n → [0,∞) such that

∂V
∂x

(x)
(
f(x) + g(x)
(x)

) ≤ −W (x) ≤ 0, ∀x ∈ R
n, (5.6)

for some continuous W : R
n → R which is positive definite.

Under assumption 5.2.4, there exists a standard procedure for recursively con-
structing a Lyapunov function and feedback control law that renders the feedback
connected system stable. 2 We are later going to apply this procedure to a slightly
augmented version of the system (5.3), namely

ẋ(t) = f(x(t)) + g(x(t))ξ(t), (5.7)
ξ̇(t) = h(ξ(t)) + ku(t), (5.8)

where ξ takes values in R
m, the function h : R

m → R
m is continuous and k is an

invertible matrix in R
m×m. Since k in (5.8) is nonsingular, and we can choose the

1More generally, the existence of a CLF has been shown to be both necessary and sufficient for global
asymptotic stabilizability as in Thm. 5.2.1.

2Note that Assumption 5.2.4 merely is a statement about existence of a Lyapunov function and accom-
panying stabilizing control law and no uniqueness is implied.

17

FOI-R--1586--SE

control u freely, the system in (5.7), (5.8) is equivalent to the apparently simpler sys-
tem

ẋ(t) = f(x(t)) + g(x(t))ξ(t), (5.9)
ξ̇(t) = u(t). (5.10)

The system in (5.9), (5.10) differs structurally from (5.5) only by the extra integrator
states in (5.10), and for this reason the control design method applied to (5.9), (5.10)
is called integrator backstepping. The main result summarizing the method is the
following.

Theorem 5.2.5. Consider the system (5.9), (5.10) and suppose that (5.9) satisfies Assump-
tion 5.2.4 with ξ replaced by the control u in (5.4). If the function W is positive definite, then

Va(x, ξ) = V(x) +
1
2
‖ξ −
(x)‖2 (5.11)

is a CLF for the full system (5.9), (5.10) (i.e. ξ plays the role of a control in (5.11)) and
there exists a feedback law u =
a(x, ξ) that makes the full system (5.9), (5.10) globally
asymptotically stable around x = 0, ξ = 0. One such control law is

u = −c(ξ −
(x)) +
∂
(x)
∂x

(
f(x) + g(x)ξ

) − (∂V
∂x

(x)g(x)
)T

, c > 0. (5.12)

If the function W is only positive semidefinite, then there exists a feedback law
a such that

d

dt
Va(x(t), ξ(t)) ≤ −Wa(x(t), ξ(t)) ≤ 0, (5.13)

where Wa(x, ξ) > 0 whenever W (x) > 0 or ξ �=
a(x, ξ). This guarantees global bounded-
ness and and convergence of the vector

[
x(t)
ξ(t)

]

to the largest invariant M̄a set in

Ma =
{[

x
ξ

]
∈ R

n+m : W (x) = 0, ξ =
a(x, ξ)
}

.

A proof of Theorem 5.2.5 can be found in [5] for the case m = 1 and in [4] for the
more general multi-input case treated here. We point out that the control law sug-
gested in the Theorem is often not the best choice in applications since it may mean
cancellation of useful nonlinearities. The requirement to make the left hand side of
(5.13) negative (or nonpositive) can in general be met in a number of ways, yielding
several useful control laws in applications. Furthermore, the two most important de-
sign choices available when applying the above theorem is the selection of V and the
accompanying feedback law
. Indeed, once these two components are chosen, the
remaining task to stabilize the full system (5.9), (5.10) using Va is to select a feedback
law such that ξ tracks
 well, i.e. such that the error dynamics ξ −
 are stable.

5.3 Backstepping the GSACM model

We shall now show how to bring the GSACM model in (3.12)–(3.15) on the standard
form (5.9),(5.10) used for integrator backstepping.

18

FOI-R--1586--SE

The complete aircraft kinematics and dynamics are described by the system of
equations formed by (3.12)–(3.15) and (3.23). For the attitude-velocity control prob-
lem outlined in Sect. 5.1 we only need (3.13)–(3.15) and (3.23). As the (full) state vector
we therefore take 


v
Q
ω
τ


 ,

and as control variables we take m in (3.15) and uτ in (3.23). (It would perhaps be more
natural to view the (generalized) control surface deflections δ̄(0) = [δ(0)

a , δ
(0)
e , δ

(0)
r]T as

control variables, but we shall tacitly assume that we only consider the set of control
deflections for which there is an invertible relation between δ̄(0) and m (which, e.g.,
excludes the stall region). Hence, we may equivalently take the components of m as
control variables.)

We shall also have reason to consider the reduced system described by only the
body relations (3.14), (3.15) and (3.23), for which the state vector is


 v

ω
τ


 . (5.14)

(The control variables are then the same as for the full system.)

5.3.1 Equilibrium points. Let




v0

Q0

ω0

τ0


 (5.15)

be an equilibrium point for the (full) state dynamics in (3.13)–(3.15) and (3.23). A
glance at (3.13) reveals that ω0 must be 0 at such an equilibrium. For the reduced sys-
tem (3.14), (3.15) and (3.23), however, we may have equilibria where ω0 is nonzero.
Obtaining such equilibria for the reduced system, using procedures analogous to
those described in Chap. 4, is what is usually referred to as “trimming” in the liter-
ature. In Appendix A it is shown that for constant nonzero ω0 the derivative Q̇ is
constant and nonzero so for an equilibrium point of the reduced state vector (5.14)
such that ω0 �= 0 the orientation Q is time varying. For the special case of equilib-
rium for the reduced state it is therefore convenient to reserve the symbol Q0 for
the time-varying reference value of the orientation that the equation (3.13) produces.
Moreover, since we assume that such a time-varying reference point is a solution
trajectory to the full system (3.13)–(3.15) and (3.23) we have

Q̇0 =
1
2
A(ω0)Q0.

Now, a change of variables




v
Q
ω
τ


 →




v + v0

Q + Q0

ω + ω0

τ + τ0




19

FOI-R--1586--SE

brings the system (3.13)–(3.15) and (3.23) onto the form

v̇ =
1
m

f (a) +
1
m

t + g + (v + v0) × (ω + ω0), (5.16)

Q̇ + Q̇0 =
1
2
A(ω + ω0)(Q + Q0), (5.17)

ω̇ = j−1(m − (ω + ω0) × j(ω + ω0)), (5.18)
τ̇ = b(τ + τ0 − uτ), (5.19)

where we have written out the derivative Q̇0 since it may or may not be zero depend-
ing on if we study an equilibrium for the full or the reduced state vector. In (5.19)
(and henceforth), the variables v,Q, ω, τ thus represent, in the case we consider an
equilibrium for the full state vector, deviations from the equilibrium in (5.15). In
the case of an equilibrium for the reduced state vector in (5.14) the variables v, ω, τ
represent deviations from equilibrium values and Q represents deviation from the
time-varying reference value Q0.

Further, the aerodynamic forces f (a) are mainly dependent on v+v0, the aerody-
namic moments m are mainly dependent on v+v0, ω+ω0, and the thrust t acts only
along the aircraft x-axis, i.e. the x-axis in the body fb. We can make this dependence
explicit by writing

f (a) = f (a)(v + v0), m = m(v + v0, ω + ω0), t = (τ + τ0)ex, (5.20)

where ex is a unit vector in the fb body x-direction. Likewise, the gravity vector g is
only dependent on Q + Q0 and therefore we can write

g = g(Q + Q0). (5.21)

If we now define the vector functions f̃ (a)(v,v0), m̃(v,v0, ω, ω0), and g̃(Q,Q0) by

f̃ (a)(v,v0) = f (a)(v + v0) − f (a)(v0), (5.22)
m̃(v,v0, ω, ω0) = m(v + v0, ω + ω0) − m(v0, ω0), (5.23)

g̃(Q,Q0) = g(Q + Q0) − g(Q0), (5.24)

and use (5.20) we can rewrite the dynamics in (5.16)–(5.19) in terms of the dynamics
around the equilibrium point (5.15) as

v̇ =
1
m

f̃ (a)(v,v0) +
1
m

τex + g̃(Q,Q0) + (v + v0) × ω + v × ω0, (5.25)

Q̇ =
1
2
A(ω)(Q + Q0) +

1
2
A(ω0)Q, (5.26)

ω̇ = j−1(m̃(v,v0, ω, ω0) − (ω + ω0) × jω − ω × jω0), (5.27)
τ̇ = b(τ − ũτ), (5.28)

where we have used the fact that many terms cancel or vanish per definition at the
equilibrium and also introduced ũτ as

ũτ = uτ − τ0.

(Note that there is no linearization involved in (5.25)–(5.28), it is still the full non-
linear equations albeit rewritten such that terms that sum to zero are omitted.) On
the form (5.25)–(5.28) the state dynamics are really (almost) on the standard form for
integrator backstepping, with m̃(v,v0, ω, ω0) and ũ as the control variables.

20

FOI-R--1586--SE

5.3.2 Standard form. Before we can explicitly write the state dynamics (5.25)–
(5.28) around the equilibrium (5.15) on standard form we need to introduce two
more quantities. The first is the matrix function B taking values in R

4×3 obtained
via the identity

A(ω)Q = B(Q)ω, (5.29)

i.e. by simply rearranging the terms on the matrix-quaternion product on the left
hand side. The second quantity needed is the matrix function C taking values in
R

3×3 representing the cross product, so that e.g.

C(v)ω =


 0 −v3 v2

v3 0 −v1

−v2 v1 0





 ω1

ω2

ω3


 = v × ω. (5.30)

By the properties of the cross product the matrix C is skew-symmetric, i.e. CT = −C.
Using these quantities we can now rewrite the state equations (5.25)–(5.28) one final
time as

v̇ =
1
m

f̃ (a)(v,v0) + g̃(Q,Q0) + v × ω0 + C(v + v0)ω +
1
m

τex, (5.31)

Q̇ =
1
2
A(ω0)Q +

1
2
B(Q + Q0)ω, (5.32)

ω̇ = j−1(jω × (ω + ω0) + jω0 × ω) + j−1m̃(v,v0, ω, ω0), (5.33)
τ̇ = bτ − bũτ . (5.34)

The state dynamics in (5.31)–(5.34) are now indeed on the standard form (5.7), (5.8),
which can be seen by making the identifications (here ∼ means “corresponds to”)

x ∼
[

v
Q

]
, ξ ∼

[
ω
τ

]
, u ∼

[
m̃(v,v0, ω, ω0)

ũτ

]
(5.35)

and

f ∼
[

1
m f̃ (a)(v,v0) + g̃(Q,Q0) + v × ω0

1
2A(ω0)Q

]
, (5.36)

g ∼
[

C(v + v0) 1
mex

1
2B(Q + Q0) 04×1

]
, h ∼

[
j−1(jω × (ω + ω0) + jω0 × ω)

bτ

]
, (5.37)

k ∼
[

j−1 03×1

01×3 −b

]
. (5.38)

For an equilibrium point (5.15) to the full state dynamics (5.31)–(5.34) the expressions
above simplify since we know that ω0 in this case must be zero, so the terms in f, h
above involving ω0 vanish.

5.3.3 Desired dynamics. The first task when developing a controller for the sys-
tem on standard backstepping form is to find a suitable Lyapunov function V as in
Thm. 5.2.5 and an accompanying feedback law
 such that the feedback connected
first part of the system, corresponding to (5.7), is stable with suitable dynamics.
When determining what is “suitable” dynamics for the system (5.31), (5.32) we must
take into account at least two obvious requirements; (i) the need to aerodynami-
cally stabilize the aircraft and (ii) the desire to solve the attitude and velocity control
problem outlined in Sec. 5.1. It is intuitively clear that these two requirements can
not be dealt with independently since rotating the aircraft body so that the body ve-
locity vector v takes a desired value does not necessarily mean that the aircraft has
a desired orientation Q. (An additional complication is that we are dealing with an

21

FOI-R--1586--SE

underactuated system, as mentioned at the end of Sec. 5.1.) We are going to solve
this problem via a two-tier approach where the controller basically acts as a stabiliz-
ing controller as long as the error in the velocity vector v is large and only when this
error has become small will the controller engage the attitude-orientation control,
using a smooth transition.

5.3.4 A two-tier controller. We are now going to mathematically develop the con-
trol strategy outlined in the section above. The result will be a feedback law like

in Thm. 5.2.5 which, when inserted instead of ξ in the system equation (5.7) (i.e. in
(5.31), (5.32)), will give the system represented by (5.7) the “desired dynamics.” 3

Such a feedback law is also called a “virtual control” because it acts as a control on
the upper half of the system represented by (5.7). We are going to develop the control
strategy in two parts, just as indicated above, and after we have presented the parts
give a proof of stabilizing properties of the total controller in the following section.

Recently, the related problem of controlling the velocity and angular velocity of
a rigid body model of an aircraft has been treated by Glad and Härkegård [6]. They
assume, however, that the thrust force of the engine is always aligned along the ve-
locity vector and this is clearly not the case in general. We present a solution to the
simultaneous attitude and velocity control problem that employs a velocity control
similar to that of Glad and Härkegård but extends it to the case of nonaligned thrust
and combines it with a quaternion based control for attitude control. The attitude
control utilizes spherical linear interpolation (slerp) on the sphere S3 ⊆ R

4 to com-
pute a geodesic representing the minimal rotation of the body needed to control the
attitude to the desired value. The velocity control employs rotation of the airspeed
vector and thrust control to stabilize angle of attack, the sideslip angle and the abso-
lute velocity to trimmed values.

Stabilizing the velocity vector. The problem of aerodynamically stabilizing the air-
craft, without regard to its orientation, is not hard once the system has been brought
onto the form (5.31)–(5.34). For instance, one can control m(v,v0, ω, ω0) such that
the velocity vector v+v0 is rotated into a position aligned with v0, while simultane-
ously controlling the thrust setting ũτ so that the magnitude becomes right.

A simple way of achieving a rotation of the velocity vector v + v0 in the right
direction is to use a (virtual) control of the form

ωdes
v (v,v0) = − cv

‖v0‖2
v × v0, (5.39)

where cv is some positive constant. To give some motivation at this point for the
choice (5.39) of a (virtual) control ωdes

v (v,v0) one can note that

− (v + v0) × 1
‖v0‖2

(v × v0) = −v × 1
‖v0‖2

(v × v0) − v0 × 1
‖v0‖2

(v × v0)

= −v × 1
‖v0‖2

(v × v0) − P[v0]⊥(v), (5.40)

where the first term on the right is perpendicular to v and the second is the negative
projection of v onto the subspace of vectors in R

3 that are orthogonal to v0. The first
term is in general much smaller in magnitude than the second and therefore, when
inserted instead of ω in (5.31), the (virtual) control ωdes

v (v,v0) in (5.39) can act to
reduce the error v. However, since the main reduction of the velocity error v is in the
component of it that is orthogonal to v0 there is a need to complement the control
with some action also in the direction of v0.

3For this reason, the feeback �(x) is often in the literature denoted ξdes(x), and we shall also use this
notation here.

22

FOI-R--1586--SE

The direction of v0 is normally almost the same as the direction in which the
thrust acts (here, in the body x-direction) and therefore it is natural to try to achieve
control action in the v0 direction by (virtual) thrust control. To see how this can
be done it is instructive to study in more detail the first component of the system
equation (5.31) which, when written out, reads

v̇1 =
1
m

f̃
(a)
1 + g̃1 + ((v + v0) × ω)1 +

1
m

τ

=
ρ

2m
‖v + v0‖2Sref Cx(‖v + v0‖, α) + g̃1

+((v + v0) × ω)1 +
1
m

τ, (5.41)

where the angle of attack α is defined in (4.1), we have inserted the expression (3.22)
for the dynamic pressure and neglected the influence of the control surface deflec-
tions δ̄ in the expression for Cx. The object of a virtual control for the thrust in (5.41)
would be to give the right hand side a more suitable appearance (when the variable
ω is substituted for whatever total virtual control ωdes for the angular velocity is
finally selected).

The first term on the right hand side of (5.41) could be a target for the virtual
thrust control to effect, but it acts stabilizing (for most aircraft configurations/flight
conditions) and will therefore be omitted from consideration here. The second term,
however, would be a suitable target for compensation via virtual control action. Still,
to make things simple we choose here not to compenstate for any of these terms but
introduce instead only a simple negative velocity feedback to achieve some control
along the direction of v0, giving the virtual thrust control τdes(v,v0,Q,Q0) as

τdes(v,v0,Q,Q0) = − cτmv1

c� + v2
1

(vT v0

‖v0‖
)2 = − cτmv1

c� + v2
1

∥∥P[v0](v)
∥∥2

, (5.42)

where cτ , c� are positive constants and P[v0](v) is the projection of v onto the one
dimensional subspace spanned by v0. This type of virtual thrust control would, if
v is large and mostly aligned with v0, approximately give a stable linear first order
contribution to the dynamics in (5.41). (For small v this control would under the
same conditions do essentially nothing.) Therefore, when cτ is close to cv it is clear
from (5.39) and (5.40) that the combined effect of the virtual controls ωdes

v (v,v0) and
τdes(v,v0,Q,Q0) for large v is to give the overall system roughly first order stable
(virtual) dynamics for the error v.

Getting the orientation right. We now turn to the problem of controlling the atti-
tude of the aircraft. When conceiving a solution to this problem we will, in analogy
with the approach above, neglect the other part of the control problem, viz. the prob-
lem of aerodynamically stabilizing the aircraft. The attitude control is achieved by
rotating the body along the shortest path from the current orientation to the desired
orientation on the set of unit norm quaternions, which we here identify with (one
“half” of) S3, the unit sphere in ordinary four dimensional space. Such a shortest
path is the same as a geodesic (in the ordinary Euclidean metric on the tangent space
of S3). A simple parameterization for this type of geodesic called Spherical Linear
Interpolation (cf. Appendix A), or slerp, was introduced by Shoemake in 1985 [7]
and is widely used in computer graphics.

The slerp that describes the path from unit norm quaternion Q1 to unit norm
quaternion Q0 is given by

Q(t) =
sin((1 − t)θ)Q0

sin(θ)
+

sin(tθ)Q1

sin(θ)
, t ∈ [0, 1], (5.43)

23

FOI-R--1586--SE

where θ is given by
cos(θ) = QT

0 Q1 (5.44)

and the inner product on the right hand side is calculated as for ordinary vectors in
four-space. The time-derivative of the slerp is easily calculated as

Q̇(t) =
θ

sin(θ)
(cos(tθ)Q1 − cos((1 − t)θ)Q0), t ∈ [0, 1], (5.45)

and this shows that the motion along the path takes place at constant speed i.e.
‖Q̇(t)‖ ≡ const. In our application, where we want to design a feedback law based
on the slerp formula (5.43), the start quaternion Q1 will be constantly changing and
so we really only use the expression (5.45) for the slerp velocity vector, and evaluate
it at the (changing) starting point. Indeed, at least in the case that Q0 is constant (i.e.
ω0 = 0) it is clear that what we want to achieve with the (virtual) control is

Q̇ = cQQ̇(0), (5.46)

where Q is the state quaternion in (5.32) and Q+Q0,Q0 in (5.32) are used instead of
Q0,Q1 in (5.45), for some positive constant cQ. This gives a condition for the sought
virtual angular velocity ωdes

Q (Q,Q0) for attitude control as

1
2
B(Q + Q0)ωdes

Q (Q,Q0) = cQ
θ

sin(θ)
(
Q0 − cos(θ)(Q + Q0)

)
, (5.47)

where now θ is given by
cos(θ) = (Q + Q0)T Q0. (5.48)

From (5.47) it might appear impossible to solve (uniquely) for ωdes
Q (Q,Q0) since the

matrix B is not square, but if we remember that the left hand side of (5.47) is re-
ally just another way of writing the product of two quaternions (cf. the discussion
on how (5.16)–(5.19) is transformed into (5.31)–(5.34)), one unit norm and one pure,
we can determine ωdes

Q (Q,Q0) explicitly. Working through the algebra we get (cf.
Appendix A)

ωdes
Q (Q,Q0) = cQ

2θ

sin(θ)
�(Qc ◦ Q0) (5.49)

(with θ as in (5.48)) where �(·) denotes quaternion imaginary part, (·)c denotes
quaternion conjugation (sign change on the imaginary part) and ◦ denotes quater-
nion product. In case ω0 is constant but nonzero it is clear, after a moments contem-
plation, that the same principle for selecting ωdes

Q (Q,Q0) ought to apply, and that
the resulting dynamics in this “moving” scenario on S3 then becomes the same as in
(5.32), if we replace ω there by ωdes

Q (Q,Q0). We then have

d

dt
(Q + Q0) = Q̇ + Q̇0 =

1
2
B(Q + Q0)(ωdes

Q (Q,Q0) + ω0), (5.50)

with Q̇ as in (5.46) and ωdes
Q (Q,Q0) as in (5.49).

Putting together the complete controller. The complete (virtual) controller corre-
sponding to
 in Thm. 5.2.5 is now given by the vector(

ωdes(v,v0,Q,Q0)
τdes(v,v0,Q,Q0)

)
=

(
ωdes

v (v,v0) + ωdes
Q (Q,Q0)

τdes(v,v0,Q,Q0),

)
, (5.51)

with the components on the right hand side given by (5.39),(5.49) and (5.42). It
should be pointed out, however, that many other controller solutions are possible.
Once the model has been put on the standard form as in (5.31)–(5.34) there are many
ways of constructing stabilizing controllers using backstepping. The slerp is, as re-
marked before, frequently appearing in texts on computer graphics but to the best of
the authors’ knowledge the application to aircraft (or indeed rigid body) control is
new.

24

FOI-R--1586--SE

5.3.5 Stability. We shall now give a proof of stability for the proposed controller.
First we introduce the Lyapunov function that we are going to base our development
on and then we give some mathematical details that will be used in the analysis.
Then, we give a proof of stability. The calculations use some standard properties of
quaternions that can be found in standard texts on flight mechanics, such as [3].

Lyapunov function. As a candidate for the “inner” Lyapunov function V as in
Thm.5.2.5 we shall take

V(v,Q) =
γv

2
‖v‖2 +

γQ

2
‖Q‖2, (5.52)

where γv, γQ are two positive constants 4 (to be determined later) and the norms are
ordinary 2-norms in R

3 and R
4, respectively. With this choice, the time derivative of

V along the solutions of (5.31),(5.32), and with ω, τ replaced by ωdes, τdes as in (5.51),
is given by

d

dt
V(v,Q) = γvvT v̇ + γQQT Q̇

= γvvT
(1
m

f̃(v,v0) + g̃(Q,Q0) + (v + v0) × ωdes +
1
m

τdesex

)
γQ

2
QT A(ω0)Q + γQQT

(1
2
B(Q + Q0)ωdes

)
=

γv

m
vT f̃(v,v0) + γvvT g̃(Q,Q0)

+γvvT (v0 × ωdes
v) + γvvT (v0 × ωdes

Q) + γv
v1

m
τdes

+
γQ

2
QT B(Q + Q0)ωdes

v +
γQ

2
QT B(Q + Q0)ωdes

Q , (5.53)

where we have used the fact that A(ω0) is skew symmetric. We are now going to
study the terms on the right hand side of (5.53) in more detail.

Preliminaries for the Lyapunov function terms. To begin with we shall collect
some results that will be used several times below. The first result is the standard
matrix-vector representation of a quaternion product, of which we have seen a spe-
cial case in (3.4) before.

Let Q1 = (a1,b1), Q2 = (a2,b2) be two quaternions with real parts a1, a2 ∈ R

and imaginary parts b1,b2 ∈ R
3, respectively. Then the quaternion product Q1 ◦ Q2

can be written in terms of an ordinary matrix-vector product as

Q1 ◦ Q2 = T(Q1)Q2,

where the matrix T(Q1) is given by

T(Q1) =
[

a1 −bT
1

b1 C(b1) + a1I3×3

]
, (5.54)

and C is the skew-symmetric matrix in (5.30) giving the vector product. The quater-
nion norm N(·) is defined as the square of the ordinary 2-norm for vectors in R

4 and
a fundamental property of the quaternion norm is

N(Q1 ◦ Q2) = N(Q1)N(Q2). (5.55)

4The reason we introduce two independent weighting constants here is that we want to be able to
control the relative magnitude of all three terms of the resulting total control law in (5.12).

25

FOI-R--1586--SE

It therefore follows that if Q1 is a unit norm quaternion we have

‖T(Q1)‖ = sup
‖Q2‖=1

‖T(Q1)Q2‖ =

sup
‖Q2‖=1

‖Q1 ◦ Q2‖ = sup
‖Q2‖=1

(
N(Q1)N(Q2)

)1/2 = 1, (5.56)

where ‖ · ‖ denotes both the ordinary 2-norm on R
4 and its induced counterpart on

R
4×4, respectively.

If u,U ∈ R
3 are two vectors and R ∈ R

3×3 is a rotation matrix such that U = Ru
we have

(0,u) = Qc ◦ (0,U) ◦ Q, (5.57)

where Q is the unit norm quaternion corresponding to R and (·)c denotes quater-
nion conjugation (sign change on the imaginary part). (In fact, we can define Q by
this relation.) In connection with expressions of the form (5.57) we shall have reason
to consider also expressions of the form

�(Q1 ◦ (0,U) ◦ Q2), (5.58)

where Q1,Q2 are two arbitrary quaternions. The expression (5.58) will occur in con-
nection with matrix-vector products of the form[

0
�(Q1 ◦ (0,U) ◦ Q2)

]
=

[
0 01×3

03×1 I3×3

]
Q1 ◦ (0,U) ◦ Q2

=
[

0 01×3

03×1 I3×3

]
T(Q1 ◦ (0,U))Q2

= ‖Q1‖‖U‖
[

0 01×3

03×1 I3×3

]
T(

Q1

‖Q1‖ ◦ (0,
U
‖U‖))Q2

= ‖Q1‖‖U‖S(Q1,U)Q2,

where the matrix S(Q1,U) is given by

S(Q1,U) =
[

0 01×3

03×1 I3×3

]
T(

Q1

‖Q1‖ ◦ (0,
U

‖U‖))

From (5.55) and (5.56) it follows that we have a bound for the matrix S(Q1,U) as

‖S(Q1,U)‖ ≤ 1.

Finally we shall make an elementary observation about maximization of bilinear
forms. Let x,y ∈ R

4 be two arbitrary vectors. By the Cauchy-Schwarz inequality
we then have

sup
D∈R4×4,‖D‖≤1

yT Dx ≤ ‖x‖‖y‖.

It is easy to see that the supremum indeed is a maximum and is attained for the
rank-1 matrix D̂1 given by

D̂1 =
1

‖x‖‖y‖yxT .

Thus, if we collect three vectors u1,u2,u3 ∈ R
4 that are orthonormal and orthogonal

to x and likewise collect three more vectors v1,v2,v3 ∈ R
4 that are orthonormal and

orthogonal to y, and form the matrix D̂(x,y) given by

D̂(x,y) =
[

y
‖y‖ v1 v2 v3

]



xT

‖x‖
uT

1

uT
2

uT
3


 (5.59)

26

FOI-R--1586--SE

we have

sup
D∈R4×4,‖D‖≤1

yT Dx = yT D̂(x,y)x = ‖x‖‖y‖

where the maximizer D̂(x,y) is an orthogonal matrix.

Properties of Lyapunov function terms. Gravity term. If we define (in R
4) the em-

bedded velocity error v̄ as

v̄ =
[

0
v

]
,

where v, as before, is the velocity error in (5.31), we can, using (5.57) write the second
term on the right in (5.53) as

γvvT g̃(Q,Q0) = γvv̄T
(
(Q + Q0)c ◦ (0,G) ◦ (Q + Q0) − Qc

0 ◦ (0,G) ◦ Q0

)
= γvv̄T

(
Qc ◦ (0,G) ◦ Q + Qc

0 ◦ (0,G) ◦ Q− (Qc
0 ◦ (0,G) ◦ Q)c

)
= γvv̄T

(
Qc ◦ (0,G) ◦ Q + 2(0,�(Qc

0 ◦ (0,G) ◦ Q))
)

= γv‖Q‖‖G‖v̄TT
(Qc

‖Q‖ ◦ (0,
G

‖G‖)
)
Q + 2γv‖G‖v̄T S

(
Qc

0,
G

‖G‖
)
Q

≤ 20 γv|v̄T T
(Qc

‖Q‖ ◦ (0,
G

‖G‖)
)
Q| + 20 γv|v̄T S

(
Qc

0,
G
‖G‖

)
Q|

≤ 40 γv sup
D∈R4×4,‖D‖=1

v̄T DQ

= 40 γvv̄T D̂(v̄,Q)Q, (5.60)

where D̂(v̄,Q) is the matrix function in (5.59) and we have used the facts that ‖Q0‖ =
1, ‖Q‖ ≤ 2 and that for the inertial gravity vector G (defined in connection with (3.8))
we have ‖G‖ ≤ 10.

Desired velocity control term. For the term involving v and the virtual control ωdes
v

we have similarly

γvvT (v0 × ωdes
v) = −γvcvvT

(v0

‖v0‖ × (v × v0

‖v0‖)
)

= −γvcvvT
(v0

‖v0‖ × (
(P[v0](v) + P[v0]⊥(v)

) × v0

‖v0‖)
)

= −γvcvvT
(v0

‖v0‖ × P[v0]⊥(v) × v0

‖v0‖)
)

= −γvcvvT P[v0]⊥(v)

= −γvcv
(
P[v0](v) + P[v0]⊥(v)

)T
P[v0]⊥(v)

= −γvcv‖P[v0]⊥(v)‖2, (5.61)

where the fourth equality follows from standard properties of the vector product.

Undesired velocity control term. In order to obtain a bound for the term in (5.53)

27

FOI-R--1586--SE

involving both v and ωdes
Q we shall assume that |θ| ≤ π/2. We can then write

γvvT (v0 × ωdes
Q) = γvvT

(
v0 × 2cQθ

sin(θ)
�(Qc ◦ Q0)

)

= −γvcQ
2θ

sin(θ)
vT C(v0)�(Qc

0 ◦ Q)
)

= −γvcQ
2θ

sin(θ)
v̄T

[
0 01×3

03×1 C(v0)

]
T(Qc

0)Q

= −γvcQ
2θ

sin(θ)
‖v0‖v̄T

[
0 01×3

03×1 C(v0
‖v0‖)

]
T(Qc

0)Q

≤ γvcQπ‖v0‖ sup
D∈R4×4,‖D‖=1

v̄T DQ

= γvcQπ‖v0‖v̄T D̂(v̄,Q)Q, (5.62)

where we have used the easily verified fact that ‖C(v0)‖ = ‖v0‖, the bound (5.56)
for T(Qc

0) and the bound 1 ≤ θ/ sin(θ) ≤ π/2 for |θ| ≤ π/2.
Virtual thrust term. The virtual thrust control term in (5.53) is simply

γv
v1

m
τdes = −γvcτ

v2
1

c� + v2
1

‖P[v0](v)‖2. (5.63)

Undesired attitude control term. For the term involving Q and ωdes
v we start by

recalling that by the definition (5.29) of B we have

B(Q + Q0)(v × v0) = A(v × v0)(Q + Q0)
= −A(C(v0)v)(Q + Q0)
= −(Q + Q0) ◦ (0,C(v0)v)

= −‖v0‖T(Q + Q0)
[

0 01×3

03×1 C(v0
‖v0‖)

]
v̄.

With this we obtain the following estimate

γQ

2
QT B(Q + Q0)ωdes

v = − γQcv
2‖v0‖2

QT B(Q + Q0)(v × v0)

=
γQcv
2‖v0‖QT T(Q + Q0)

[
0 01×3

03×1 C(v0
‖v0‖)

]
v̄

= − γQcv
2‖v0‖ v̄T

[
0 01×3

03×1 C(v0
‖v0‖)

]
TT (Q + Q0)Q

≤ γQcv
2‖v0‖ sup

D∈R4×4,‖D‖=1

v̄T DQ

=
γQcv
2‖v0‖ v̄T D̂(v̄,Q)Q. (5.64)

Desired attitude control term. From the defining relation (5.47) for ωdes
Q we have

γQ

2
QT B(Q + Q0)ωdes

Q = γQcQ
θ

sin(θ)
QT

(
Q0 − cos(θ)(Q + Q0)

)

= −γQcQθ cot(θ)‖Q‖2 + γQcQ
θ

sin(θ)
(1 − cos(θ))QT Q0

= −γQcQθ cot(θ)‖Q‖2 − γQcQ
θ

sin(θ)
(QT Q0)2, (5.65)

where we have used the fact that (5.48) implies 1 − cos(θ) = −QT Q0 for the last
equality.

28

FOI-R--1586--SE

Before we are ready for our first stability result we must introduce the following
assumption about the local behavior of the aerodynamic forces near an equilibrium.

Assumption 5.3.1. Assume that the function v �→ vT f̃ (a)(v,v0) in (5.22) is locally
negative definite, i.e. for some open set U ⊆ R

3 containing the origin the following
expansion holds

f̃ (a)(v,v0) = F(v0)v + O(‖v‖2), v ∈ U ,

where the symmetric part 1
2 (F(v0) + FT (v0)) of F(v0) is a negative definite matrix

(of “stability derivatives”), and that the constants c� and cv can be selected such that

1
m

vT f̃(v,v0) − cv‖v‖2 + cv
(
1 − v2

1

c� + v2
1

)‖P[v0](v)‖2 ≤ −(σcv + cc)‖v‖2,

v ∈ U , (5.66)

for some positive constants σ, cc such that σ > π/2.

The condition of negative definiteness of the symmetric part of F(v0) is for most
aircraft configurations satisfied under normal flying conditions. To see that also the
condition (5.66) can be reasonable to assume we let λ3 ≤ λ2 ≤ λ1 < 0 be the eigen-
values of the symmetric part 1

2 (F(v0)+FT (v0)) of F(v0). Then, locally around v = 0
we have

1
m

vT f̃(v,v0) − cv‖v‖2 + cv
(
1 − v2

1

c� + v2
1

)‖P[v0](v)‖2 =

1
m

vT F(v0)v − cv‖v‖2 + cv
(
1 − v2

1

c� + v2
1

)‖P[v0](v)‖2 + O(‖v‖3) ≤
λ1

m
‖v‖2 − cv‖v‖2 + cv

(
1 − v2

1

c� + v2
1

)‖P[v0](v)‖2 + O(‖v‖3) =

λ1

m
‖v‖2 − cv(‖v‖2 − ‖P[v0](v)‖2) + O(‖v‖3) ≤

λ1

m
‖v‖2 + O(‖v‖3), (5.67)

where we have used the fact that

‖v‖2 = ‖P[v0](v)‖2 + ‖P[v0]⊥(v)‖2. (5.68)

The first term on the right hand side in (5.67) is negative definite and if moreover

λ1

m
< −σcv (5.69)

then there exists a cc > 0 such that (5.66) is satisfied in some U ⊆ R
3 containing the

origin. For many aircraft configurations the set U can be quite large and the condition
(5.66) can be fulfilled not only locally. Indeed, when v becomes large the left hand
side of (5.66) is determined by the first two terms only. We note also that (5.69) gives
a bound for the possible velocity feedback gain values cv as

cv < − λ1

mσ
. (5.70)

We have now everything in place for our first stability result.

Lemma 5.3.2. Suppose that Assumption 5.3.1 holds, for some set U and constants σ >
π/2, cc > 0, let cτ = cv and assume that there exists a positive constant θ0 < π/2 such that

γv(40 + cQπ‖v0‖) +
γQcv
2‖v0‖ ≤ 2

√
γvcvγQcQσθ0 cot(θ0). (5.71)

29

FOI-R--1586--SE

Then the Lyapunov function candidate in (5.52) is indeed an “inner” Lyapunov function
for the integrator backstepping problem for (5.31)–(5.34) over the domain of (v,Q) such
that v ∈ U and θ in (5.48) satisfies |θ| < θ0, i.e. the Lyapunov function candidate satisfies
condition (5.6) in Assumption 5.2.4 over this domain.

Proof. For the time derivative of the Lyapunov function candidate (5.52) along the
solutions to the system (5.31), (5.32), with the virtual controls (5.51) inserted, we get
using (5.53) and (5.60)–(5.65) the following estimate

d

dt
V(v,Q) =

γv

m
vT f̃ (a)(v,v0) + γvvT g̃(Q,Q0) + γvvT (v0 × ωdes

v)

+γvvT (v0 × ωdes
Q) + γv

v1

m
τdes

+
γQ

2
QT B(Q + Q0)ωdes

v +
γQ

2
QT B(Q + Q0)ωdes

Q

≤ γv

m
vT f̃ (a)(v,v0) + 40 γvv̄T D̂(v̄,Q)Q− γvcv‖P[v0]⊥(v)‖2

+γvcQπ‖v0‖v̄T D̂(v̄,Q)Q− γvcτ
v2
1

c� + v2
1

‖P[v0](v)‖2

+
γQcv
2‖v0‖ v̄T D̂(v̄,Q)Q− γQcQθ cot(θ)‖Q‖2 − γQcQ

θ

sin(θ)
(QT Q0)2

=
γv

m
vT f̃ (a)(v,v0) − γvcv‖v̄‖2 + γvcv

(
1 − v2

1

c� + v2
1

)‖P[v0](v)‖2

−γQcQθ cot(θ)‖Q‖2 − γQcQ
θ

sin(θ)
(QT Q0)2

+
(
γv(40 + cQπ‖v0‖) +

γQcv
2‖v0‖

)
v̄T D̂(v̄,Q)Q, (5.72)

where we in the last equality have used the facts (5.68) and ‖v̄‖ = ‖v‖ as well as the
assumption cτ = cv. If we apply condition (5.66) we can proceed one step further
with (5.72) to obtain

d

dt
V(v,Q) ≤ −γvcvσ‖v̄‖2 − γvcc‖v̄‖2

−γQcQθ cot(θ)‖Q‖2 − γQcQ
θ

sin(θ)
(QT Q0)2

+
(
γv(40 + cQπ‖v0‖) +

γQcv
2‖v0‖

)
v̄T D̂(v̄,Q)Q (5.73)

From condition (5.71) we get for |θ| < θ0 that

−γvcvσ‖v̄‖2 − γQcQθ cot(θ)‖Q‖2

+
(
γv(40 + cQπ‖v0‖) +

γQcv
2‖v0‖

)
v̄T D̂(v̄,Q)Q ≤

−γvcvσ‖v̄‖2 − γQcQθ0 cot(θ0)‖Q‖2

+
(
γv(40 + cQπ‖v0‖) +

γQcv
2‖v0‖

)
v̄T D̂(v̄,Q)Q ≤

−γvcvσ‖v̄‖2 − γQcQθ0 cot(θ0)‖Q‖2

+2
√

γvcvγQcQσθ0 cot(θ0)v̄T D̂(v̄,Q)Q =

−‖√γvcvσv̄ −
√

γQcQθ0 cot(θ0)D̂(v̄,Q)Q‖2, (5.74)

30

FOI-R--1586--SE

and if we combine (5.73) with (5.74) we therefore have

d

dt
V(v,Q) ≤ −γvcc‖v̄‖2 − γQcQ

θ

sin(θ)
(QT Q0)2

−‖√γvcvσv̄ −
√

γQcQθ0 cot(θ0)D̂(v̄,Q)Q‖2

≤ −γvcc‖v‖2 − γQcQ
θ

sin(θ)
(QT Q0)2, (5.75)

for v ∈ U , |θ| < θ0. Thus, if we take

−W (v,Q) = −γvcc‖v‖2 − γQcQ
θ

sin(θ)
(QT Q0)2, (5.76)

and make the identifications (5.35), (5.36) we see that we satisfy condition (5.6) in
Assumption 5.2.4 for v ∈ U , |θ| < θ0.

Remark 5.3.3. Even though the Assumption 5.2.4 is global in nature it is clear that it
can be applied in a local version, as is done here. It may not be immediately clear
that the second term in (5.76) is negative definite in Q but if we recall that for θ �= 0
we have 1 > cos(θ) = (Q + Q0)T Q0 = QT Q0 + 1 and thus QT Q0 < 0, and at the
same time θ/ sin(θ) > 0 for |θ| < π/2 this should be clear.

Having established the above lemma we can now present our main result.

Theorem 5.3.4. Assume that the conditions in (5.3.2) are fulfilled. Then the integrator
backstepping problem for the attitude-velocity control problem for (5.31)–(5.34) is solvable
using the standard method in Theorem 5.2.5 (using the identifications in (5.35)–(5.38)) and
one stabilizing control law is given by (5.12).

Proof. The result follows immediately from Lemma 5.3.2 above.

It is instructive to take a closer look at the condition (5.71), which equivalently
can be written

γv

γQ
(40 + cQπ‖v0‖) +

cv
2‖v0‖ ≤ 2

√
γv

γQ
cvcQσθ0 cot(θ0). (5.77)

Solutions to the condition (5.77) for the Lyapunov gain ratio γv/γQ and orientation
feedback gain cQ can be expressed in terms of the velocity feedback gain constant cv
as

0 <
γv

γQ
<

2cvσθ0 cot(θ0)
π(cv + 80‖v0‖) ,

−cvπ γv

γQ
− 80‖v0‖π γv

γQ
+ 4cvσθ0 cot(θ0)

2‖v0‖2π2 γv

γQ

−
√

2
√
− c2

vθ0 cot(θ0)π
γv
γQ

σ+80cvθ0 cot(θ0)‖v0‖π γv
γQ

σ−2c2
v(θ0 cot(θ0))2σ2

‖v0‖4(γv
γQ

)2

π2
≤ cQ ≤

−cvπ γv

γQ
− 80‖v0‖π γv

γQ
+ 4cvσθ0 cot(θ0)

2‖v0‖2π2 γv

γQ

+

√
2
√
− c2

vθ0 cot(θ0)π
γv
γQ

σ+80cvθ0 cot(θ0)‖v0‖π γv
γQ

σ−2c2
v(θ0 cot(θ0))2σ2

‖v0‖4(γv
γQ

)2

π2
.

Together with the inequality (5.70) this is enough information to select cv, cQ, γv and
γQ.

31

FOI-R--1586--SE

5.4 Implementation details

As mentioned before, the GSACM model employs a number of the features of Model-
ica language, such as the ability to express equations in an acausal form and solving
of both differential and algebraic equations simultaneously.

An example of this is in the moment to control surface inversion object (cf. Fig. 6.1
below). The required generic control surface deflections δ̄ (cf. Chap. 4) are computed
(using a fixed control allocation over the physical control surfaces) by simply solv-
ing for δ̄ given the desired moments mx, my, mz , using the aerodynamical functions
that calculate mx, my, mz given δ̄. Another example is the transformation from the
form (5.7),(5.8) to the form (5.9),(5.10). (Recall that the result in Thm. 5.2.5 is given
for a system on the form (5.9),(5.10) but should be applied to a system on the form
(5.7),(5.8).) If the system we were working with would be of the form (5.9),(5.10) we
would, by Thm. 5.2.5 and (5.10), for the error ξ −
(x) have the following differential
equation

d

dt

(
ξ −
(x)

)
= −c(ξ −
(x)) − (∂V

∂x
g(x)

)T
. (5.78)

(This can be viewed as an equation for ξ which, when applied to (5.9),(5.10), is suf-
ficient for stabilization of the feedback connected system (5.5).) However, in the
variables that we actually have the differential equation for the error reads

d

dt

(
ξ −
(x)

)
= h(ξ) + ku− ∂
(x)

∂x
(f(x) + g(x)ξ). (5.79)

(This can be viewed as an equation for u in (5.8).) Now, by simply equating the right
hand sides of (5.78) and (5.79) we formally perform the required transformation, and
this is the way it is implemented in the controller for the GSACM model.

32

FOI-R--1586--SE

6. Simulations

In this chapter we shall give some examples of the behavior of the controller devel-
oped in the previous chapter when used in conjunction with the GSACM model. An
overview of the model with the controller added is given in Fig. 6.1. In this setup
there are no actuator dynamics present and the body dynamics and controller are
exactly as described in the text. The aerodynamics (both in the model used by the
controller for moment to control surface deflection computation and the aircraft aero-
dynamics) are the full aerodynamics, as given by the aerodata tables in the Admire
model. The simulations have been carried out using the Dymola integrated develop-
ment environment on a personal computer running GNU/Linux.

6.1 Pull-up maneuver

A flight trajectory lasting for 120 seconds was programmed consisting of a pull-up
maneuver followed by a short dive, executed on a straight track, see Fig. 6.2. It starts
at wings level flight at an altitude of 3000 meters. About 5 seconds after the start a
pull-up maneuver is executed resulting in a maximal flight path angle of about 35◦,
after which the aircraft levels out at an altitude of about 7000 meters. Finally, a short
dive is executed followed by a leveling out at a little over 6000 meters. The various
constants occurring in the controller description were chosen to give a stable system
with moderate performance.

The programmed maneuvers consist of a series of small (piecewise linear) changes
in the set point value (i.e. trim value) for attitude. However, the value ω0 for the
trimmed angular velocity is held at zero at all times in this example. This means that
only during those brief periods of time when the angular velocity of the nominal
flight path is actually zero can the values for orientation and velocity be expected
to converge to their trimmed counterparts. Despite this, the controller shows good
tracking abilities also during periods where the attitude set point changes.

As can bee seen from Fig. 6.3, the deviations in Mach number and velocity from
trimmed values are moderate over the entire flight path until the dive is executed.
During the dive the Mach number and velocity deviation in body x-axis both rise,
which is natural since no air brakes are used. The values move back towards trimmed
values at the end of the flight when the dive is interrupted.

In Figure 6.4 the angle of attack and Euler angles are displayed. The angle of at-
tack in Fig. 6.4(a) shows clear deviations from the trimmed values, and this is caused
by the repeated small changes in trimmed flight path angle. The largest deviation
occurs at the start of the pull-up maneuver. The Euler angles in Fig. 6.4(b) show
good tracking of the trimmed values and they converge during the periods when
the trimmed values are constant.

6.2 Mixed maneuver

In this case a flight trajectory lasting for 200 seconds was programmed which in-
cluded maneuvering as well as straight path flight. The other parameters were the
same as for the pull-up maneuver. The chosen flight trajectory is shown in Figure 6.5
and starts at wings level flight at an altitude of 3000 meters. The following right and

33

FOI-R--1586--SE

X

Z

YBackstepping control setup

1

2

toEngine

r_rel={0,0,0}

referencePoint
1

2

toAC

r_rel={0,0,0}

earth

g = f(h)

atmosphere

aeroDynInvMom...

M
aeroDynamicsBasic

M

bodyCtrled engineWithDyn

height...
h

pathTable

trimBox
deMultiplex4

controlBS

trimout2trim...

Figure 6.1: Backstepping attitude and velocity controller setup for the GSACM
model. The body object in Fig. 2.1 has here been replaced with the bodyCtrled
object which has added connectors to the controlBS object, which implements
the backstepping controller. The aeroDynInvMoment object (shown just above the
controlBS object) performs the inversion form control moments to control surface
deflections, which are then in turn forwarded to the aeroDynamicsBasic object.
The latter object calculates the aerodynamic forces and moments based on velocity,
angular velocity air density and control surface deflections. At the top of the figure
are shown the objects pathTable and trimBox which are responsible for creating
the nominal flight path and calculating the corresponding trim values for the state
variables, respectively.

left turns require bank angles of about 30
◦
. As the left turn is completed, the aircraft

begins an 11
◦
-12

◦
climb. During this climb, the Mach number is gradually increased

from 0.6 to 0.7 shown in Figure 6.6(a). The trajectory ends at an altitude of about 8000
meters. In this case, there are long periods where the set points (trimmed values) are
constant where, if everything else is held constant, the values of attitude and veloc-
ity should converge since the trimmed value ω0 for the angular velocity is set to its
correct (in general nonzero) value.

The velocity tracking yields quite small velocity deviations from the trimmed
values, as seen in Figure 6.6(b). There seem to be a steady state velocity error in the
last part of the trajectory. The reason is that we require a constant Mach number
during the climb, but the controller tracks the velocity. Since the velocity of sound
decreases with altitude, the velocity of the aircraft will be decreased as well. Hence
the velocity deviation.

Figure 6.7(a) shows the actual angle of attack as well as the trimmed angle of
attack at each time instant. The discrepancies in these values seen between 75 sec-
onds and 120 seconds can be explained by the pull-up maneuver for the climb and

34

FOI-R--1586--SE

0

20

40

60

80

100

0
0.5

1
1.5

2
2.5

3

x 10
4

2000

2500

3000

3500

4000

4500

5000

5500

6000

y [m]

Flight trajectory

x [m]

z
 [
m

]

Figure 6.2: Flight trajectory, pull-up maneuver.

by the increase in velocity. The increasing angle of attack after 120 seconds is due to
the climb since the air gets thinner. The small mismatch during the climb originates
from the velocity deviation discussed above. As desired, the sideslip angle is small
during the whole simulation, see Figure 6.7(b).

The orientation of the aircraft stays very close to the trimmed orientation, shown
in Figure 6.8. The somewhat larger discrepancy in these values occurring between
75 and 100 seconds comes from the maneuver when the aircraft finishes the turn,
by banking to wings level flight, and simultaneously pulls up for the climb. In the
last half of the simulation, the slowly increasing angle of attack can be noted in the
aircraft orientation.

Finally, in Figure 6.9, the value of the time derivative of the “inner” Lyapunov
function used (corresponding to V in Thm. 5.2.5) along the solutions to the feedback
connected system (corresponding to (5.5)) is displayed. It can be seen from Fig. 6.9(a)
that the overall behavior of the time derivative is as expected with the most negative
values occurring shortly after the start when the system moves towards an equilib-
rium corresponding to straight path flight. The large negative values here can be
explained by the fact that the aircraft starts at Mach 0.5 but the trimmed value is 0.6.
The time derivative of the Lyapunov function becomes positive on a few occasions
when the set point values change between trimmed values. These periods of time
correspond to the most dramatic changes in trimmed angular velocity ω0 (as can be
inferred from e.g. the trimmed roll angle, cf. Fig. 6.8(b)) and during these periods the
Lyapunov function rate of change need not be negative.

35

0 20 40 60 80 100 120
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

Time [s]

M
ac

h
nu

m
be

r
[−

]

Mach number
Desired Mach number

(a) Mach number

0 20 40 60 80 100 120
−30

−25

−20

−15

−10

−5

0

5

10

15

20

Time [s]

V
el

oc
ity

 d
ev

ia
tio

n
[m

/s
]

Velocity deviation in body x
Velocity deviation in body y
Velocity deviation in body z

0 20 40 60 80 100 120
−30

−25

−20

−15

−10

−5

0

5

10

15

20

Time [s]

V
el

oc
ity

 d
ev

ia
tio

n
[m

/s
]

Velocity deviation in body x
Velocity deviation in body y
Velocity deviation in body z

(b) Velocity deviation

Figure 6.3: Mach number and velocity deviation, pull-up maneuver.

0 20 40 60 80 100 120
2

2.5

3

3.5

4

4.5

5

5.5

6

Time [s]

A
ng

le
 o

f a
tta

ck
 [d

eg
re

es
]

AoA
Trimmed AoA

(a) Angle of attack

0 20 40 60 80 100 120
−20

−10

0

10

20

30

40

Time [s]

E
ul

er
 a

ng
le

s
[d

eg
re

es
]

Yaw angle
Pitch angle
Roll angle
Trimmed Euler angles

(b) Euler angles

Figure 6.4: Angle of attack and Euler angles, pull-up maneuver.

0 2000 4000 6000
0

0.5

1

1.5

2

2.5

3

3.5

x 10
4

0

2000

4000

6000

8000

y [m]

Flight trajectory

x [m]

z
 [

m
]

Figure 6.5: Flight trajectory, mixed maneuver.

0 20 40 60 80 100 120 140 160 180 200
0.5

0.55

0.6

0.65

0.7

0.75

Time [s]

M
ac

h
nu

m
be

r
[−

]

Mach number
Desired Mach number

(a) Mach number

0 20 40 60 80 100 120 140 160 180 200

−8

−6

−4

−2

0

2

4

Time [s]

V
el

oc
ity

 d
ev

ia
tio

n
[m

/s
]

Velocity deviation in body x

Velocity deviation in body y

Velocity deviation in body z

(b) Velocity deviation

Figure 6.6: Mach number and velocity deviation, mixed maneuver.

0 20 40 60 80 100 120 140 160 180 200
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

Time [s]

A
ng

le
 o

f a
tta

ck
 [d

eg
re

es
]

AoA

Trimmed AoA

(a) Angle of attack

0 20 40 60 80 100 120 140 160 180 200
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time [s]

S
id

e
sl

ip
 a

ng
le

 [d
eg

re
es

]

(b) Sideslip angle

Figure 6.7: Angle of attack and sideslip angle, mixed maneuver.

0 20 40 60 80 100 120 140 160 180 200
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time [s]

Quaternion components
Trimmed quaternion components

(a) Quaternion components

0 20 40 60 80 100 120 140 160 180 200
−40

−30

−20

−10

0

10

20

30

40

50

60

Time [s]

E
ul

er
 a

ng
le

s
[d

eg
re

es
]
Yaw angle
Pitch angle
Roll angle
Trimmed Euler angles

(b) Euler angles

Figure 6.8: Components of the quaternion and corresponding Euler angles, mixed
maneuver.

0 20 40 60 80 100 120 140 160 180 200
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Time [s]

Lyapunov function

(a) Lyapunov function rate of change

0 20 40 60 80 100 120 140 160 180 200
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5
x 10

−3

Time [s]

Lyapunov function

(b) Detail of (a)

Figure 6.9: Lyapunov function rate of change, mixed maneuver.

FOI-R--1586--SE

A. Sperical Linear Interpolation, slerp

The slerp [7] was introduced as a canonical way to smoothly interpolate between
two orientations described by quaternions. There have been several extensions of
the idea, such as interpolations between several orientations, but we shall only make
use of the slerp here.

In order to introduce the slerp we need to recall some properties of quaternions.
The first and most basic property is that if we, as usual, associate with each unit norm
vector u ∈ R

3 a pure quaternion (one with real part zero) ũ = (0,u) we have

ũ ◦ ũ = −1 = (−1, 0) (A.1)

(in analogy with the case for complex numbers). This means that for φ ∈ R we can
write down the following formal series expansion

exp(φũ) = 1 + φũ +
(φũ)2

2!
+

(φũ)3

3!
+ . . .

(where the powers of course are for quaternion multiplication) and if we employ
(A.1) we see that the series in fact converges in the usual topology of R

4. Next we
note that any quaternion with norm less than or equal to π can be uniquely expressed
as φũ with φ ∈ [0, π] and ũ a unit norm quaternion. Hence, if we recall the power
series for sin and cos we see that we can in fact rigorously define the exponential
function injectively for pure quaternions with norm less than or equal to π as

exp(φũ) = cos(φ) + sin(φ)ũ

(which is the quaternion analogue of Euler’s formula). Moreover, by the above any
unit norm quaternion Q is in the range of the exponential function, i.e.

Q = cos(φ) + sin(φ)ũ (A.2)

for some unique φ, ũ with φ ∈ [0, π] and ũ unit norm and pure, and therefore we can
likewise define the logarithm function as

log(Q) = φũ, (A.3)

where the right hand side is a pure quaternion. Having defined the exponential and
logarithm functions it is easy to proceed and define the power of of a unit norm
quaternion Q as

Qt = exp(φũ)t = cos(tφ) + sin(tφ)ũ, t ∈ R (A.4)

(which is the quaternion analogue of de Moivre’s identity). This gives us the follow-
ing important differential equation

d

dt
Qt = −φ sin(tφ) + φ cos(tφ)ũ = (cos(tφ) + sin(tφ)ũ) ◦ φũ = Qt ◦ log(Q).

It implies in particular that if Q0 is another quaternion we have

d

dt
(Q0 ◦ Qt) = (Q0 ◦ Qt) ◦ log(Q). (A.5)

39

FOI-R--1586--SE

Next we shall show that the slerp in (5.43) satisfies an equation of the form (A.5).
To begin with we note that since Q0,Q1 both are unit norm quaternions we have

Q−1
0 ◦ Q1 = Qc

0 ◦ Q1 = (cos(θ), sin(θ)u) = cos(θ) + sin(θ)ũ (A.6)

for a certain unit norm u ∈ R
3, where θ is the angle defined in (5.44) and ũ = (0,u).

Therefore, the formula (5.43) for the slerp can be written

Q(t) = Q0 ◦
(sin((1 − t)θ)

sin(θ)
+

sin(tθ)
sin(θ)

Q−1
0 ◦ Q1

)

= Q0 ◦
(sin((1 − t)θ)

sin(θ)
+

sin(tθ) cos(θ)
sin(θ)

+ sin(tθ)ũ
)

= Q0 ◦ (cos(tθ) + sin(tθ)ũ)
= Q0 ◦ (Q−1

0 ◦ Q1)t, t ∈ [0, 1], (A.7)

where we have used (A.2),(A.4) as well as some standard trigonometric identities.
Thus, if we take Q = Q−1

0 ◦ Q1 in (A.5) we see that the slerp satisfies the differential
equation

d

dt
Q(t) = Q(t) ◦ log(Q−1

0 ◦ Q1) = Q(t) ◦ θũ =
1
2
Q(t) ◦ (0, 2θu), (A.8)

where ũ is the one occurring in (A.6) and θ is the angle defined in (5.44). Since ũ
is a pure quaternion, this shows that the slerp satisfies a differential equation of the
same form as (3.3) but where the angular velocity is given by the constant vector 2θu.
Moreover, as an initial value problem it is clear that for bounded ω the differential
equation (3.3) has (by the global Lipschitz continuity) a unique solution. It follows
that the solution to (3.3) is a slerp if and only if the angular velocity vector driving the
equation is constant in time. The angular velocity vector in question for the slerp in
(5.43),(A.7) is 2θũ with ũ = (0,u) as in (A.6), where u ∈ R

3 represents the constant
axis of turning for the rotation described by the slerp. The solution to the differential
equation (3.3) in this case at time t is thus the quaternion Q(t) as in (5.43),(A.7) which
represents a rotation 2tθ radians along the axis given by the vector u ∈ R

3.
The only item remaining in order to fully understand the connection between the

slerp in (5.43),(A.7) and the solutions to the differential equation (3.3) is to derive an
explicit expression for the vector u occurring in (A.6). This is quickly done however,
since by (A.6) we have

1
sin(θ)

(Qc
0 ◦ Q1 − cos(θ)

)
= ũ = (0,u).

This shows that the left hand side in fact is pure and we can therefore write

u =
1

sin(θ)
�(Qc

0 ◦ Q1 − cos(θ)
)

=
1

sin(θ)
�(Qc

0 ◦ Q1).

It is now easy to verify that the vector 2θu becomes identical with ωdes
Q (Q,Q0) in

(5.49) for the case cQ = 1 if we replace Q0,Q1 by Q + Q0,Q0, respectively.

40

FOI-R--1586--SE

B. Translation between document and code notation

In Tables B.1,B.2 we have listed, side by side, the quantities describing the the kine-
matics and dynamics of the aircraft in their notation as we have presented it here and
in the notation used in the Modelica code of the GSACM model.

Document vs. code notation, BF defined quantities
This document GSACM code Annotation

v v Velocity vector
ω w Angular velocity vector
ω1 p_w Roll rate
ω2 q_w Pitch rate
ω3 r_w Yaw rate

f (a) + t F Total force† vector
m M Total moment vector about CoG
j I_CoG Moment of inertia about CoG

Table B.1: Translation table between notation used in this document and the notation
used in the GSACM model Modelica code for body frame fb (BF) defined quantities.
† Note that there is not an exact correspondence between the total force in the docu-
ment and code, respectively, since one part of the total force is expressed separately
(explicitly) in the code, namely the “gravity vector” (denoted g in the code).

Document vs. code notation, misc. quantities
This document GSACM code Annotation

O r Body CG location in IF
Q Q Body orientation quaternion in IF
m m_tot Total mass of the body
R Tmat Rot. matrix BF→IF (corrsp. to Q)

Table B.2: Translation table between notation used in this document and the notation
used in the GSACM model Modelica code for inertial frame Fe (IF) defined quantities
and quantities that are defined without reference to a frame.

41

FOI-R--1586--SE

Bibliography

[1] P. Fritzson, Principles of Object-Oriented Modeling and Simulation with Modelica 2.1,
IEEE Press, Piscataway NJ, 2004.

[2] Michael A. Tiller, Introduction to Physical Modeling with Modelica, Kluwer, Boston
MA, 2001.

[3] B.L. Stevens and F.L. Lewis, Aircraft Control and Simulation, Wiley, Hoboken NJ,
2003.

[4] H.K. Khalil, Nonlinear Systems, 3:rd ed., Prentice Hall, NJ, 2002.

[5] M. Krstić, I. Kanellakopoulos and P. Kokotović, Nonlinear and Adaptive Control
Design, Wiley, New York, 1995.

[6] T. Glad, and O. Härkegård, “Backstepping Control of a Rigid Body,” Proc. CDC
’02, Las Vegas NV, 2002.

[7] K. Shoemake, “Animating Rotation with Quaternion Curves,” Proc. SIGGRAPH
’85, ACM, San Francisco, CA, 1985, pp. 245–254.

43

	Introduction
	Outline
	Notation

	The GSACM model
	The Modelica language
	Structure of the model

	Equations of motion
	Kinematics
	Rotational motion.
	Translational motion.

	Dynamics
	Force equation.
	Moment equation.

	Total GSACM motion
	Aerodynamics
	Engine

	Trimming
	Trim Algorithm
	Force Equilibrium.
	Moment Equilibrium.

	Autopilot
	The attitude-velocity control problem
	Backstepping
	Lyapunov stability theory.
	Integrator backstepping.

	Backstepping the GSACM model
	Equilibrium points.
	Standard form.
	Desired dynamics.
	A two-tier controller.
	Stability.

	Implementation details

	Simulations
	Pull-up maneuver
	Mixed maneuver

	Sperical Linear Interpolation, slerp
	Translation between document and code notation

