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Abstract

During the last ten to fifteen years, simulated annealing and genetic algorithms have become
routine tools in the field of underwater acoustics for solving difficult optimisation and inverse
problems. However, other global optimisation methods have recently been introduced, some of
which have been reported to outperform the previous ones.

In the present report, four such more modern global optimisation techniques are tested and
compared: Adaptive Simplex Simulated Annealing (ASSA), Differential Evolution (DE), Neigh-
bourhood Algorithm (NA), and Enhanced Continuous Tabu Search (ECTS). The techniques
have been tested on synthetic optimisation problems and applied to the design of Alberich
anechoic coatings. ASSA and DE performed best of the four algorithms in the synthetic test
problems, as well as in the coating design problem. For the other two algorithms, NA and
ECTS, further research is desired in order to improve their exploring capabilities.

In the context of inverse problems, a solution appraisal stage is important, and an evaluation
of a recently developed method for that purpose is reported. A Bayesian inversion problem
was formulated concerning the Alberich anechoic coatings, and the optimisation algorithms
were applied to obtain least-squares solutions. An extension of NA was then used to assess the
variable estimate uncertainties, by resampling the obtained search ensembles. This extension,
called NA-Bayes, was found to be useful tool for the solution appraisal stage, provided that the
search domain is well sampled by the optimisation technique used.
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Chapter 1

Introduction

Hanna Gothall and Rune Westin

The ability to solve optimisation problems
improves as computers get more powerful.
However, the brute force method to exhaus-
tively search the parameter space is generally
out of the question, even with the computing
power available today. There is a need for
algorithms that effectively search for optima.
Search methods that make use of local linear
approximations can be used for solving linear
or weakly non-linear problems.

A difficulty arises, however, when the global
optimum is desired, while the function to be
optimised has many local optima. Derivative-
free global search methods are needed to han-
dle difficult non-linear problems. The algo-
rithms do not know if an optimum found is the
global optimum. What the algorithms need is
the ability to move their attentions from re-
gions with good values in order to search glob-
ally for regions with potentially better values.

In this study, four modern global optimi-
sation techniques have been tested and com-
pared. These four techniques are: Adap-
tive Simplex Simulated Annealing (chapter [3)),
Differential Evolution (chapter [4)), Neighbour-
hood Algorithm (chapter [5), and Enhanced
Continuous Tabu Search (chapter [6). They
have been tested on the synthetic test prob-
lems described in chapter [2| and the different
methods are compared in chapter |7, The opti-

misation techniques have also been applied to
the non-linear problem of optimising the design
of Alberich anechoic coatings (chapter [g)).

Furthermore, an inversion problem, based
on the Alberich anechoic coatings, has been
studied. In chapter [9 the inversion prob-
lem and Neighbourhood Algorithm — Bayes
are described. This algorithm is used to as-
sess variable estimate uncertainties, by resam-
pling search ensembles. The ensembles are cre-
ated by the four optimisation techniques when
solving inversion problems in the least-squares
sense.

1.1 Definitions

When studying what is written on the sub-
ject of global optimisation techniques, it is ap-
parent that there are wide variations in the
nomenclatures used in different fields of science
and for different types of algorithms. Many of
the central concepts in global optimisation are
described in different ways depending on what
paper, book or web page is consulted.

The intention is to use a consistent nomen-
clature throughout this report, implying that
some common terms for certain techniques are
replaced. Some of the terms used are defined
below.



1.1.1 Models in the Search Domain

The optimisation involves the determination of
a vector m in a search domain which is as-
sumed to be a subset of Euclidian space with
dimension N. Each vector m is called a model.
The elements of m are called model variables
and are denoted m;, where ¢ =1,..., N.

1.1.2 Objective Function

The objective of a global optimisation tech-
nique is to find the lowest (or in some cases

the highest) possible value of a function f(m).
This function f(m), uniquely associating each
possible model m with a real, scalar value, is
in this report called an objective function. The
associated value is in turn called the objective
function value.

The purpose of the optimisation is to find
the model, in the search domain, with the low-
est (or highest) objective function value.

All optimisations in the present report con-
cern minimisation.



Chapter 2

Synthetic Test Problems

Hanna Gothall and Rune Westin

The performance of an optimisation tech-
nique often depends greatly on the tuning of
control parameters, such as the population size
for Differential Evolution or the cooling fac-
tor for Adaptive Simplex Simulated Anneal-
ing. It is desired to have guidelines for choos-
ing control parameters values when optimis-
ing applied problems where the global optima
are not known. Therefore, five test problems
are used to evaluate the different optimisation
techniques. These test problems are functions
of two or six variables.

Statistics are gathered in order to evaluate
the reliability of the optimisation techniques
for different values of the control parameters.
The reliability of each technique is measured
by estimating the probability of success in find-
ing the global optima for the different test
problems. Since the techniques are intended
to find a model ”close enough” to the global
optimum rather than the global optimum it-
self, a limit for ”close enough” for success has
to be defined. In the tests, the following crite-
rion from [I] is used:

f(myow) < flimit Where

2.1
Slimit = f(mopt) + €rel - ’f(mopt)’ + €abs ( )

and mygy, is the model with the lowest objective
function value found, mygp; is the analytical

global optimum, €, = 10~% and €4, = 1076,
This gives the objective function value limit
fiimit that has to be reached for the optimisa-
tion to succeed.

2.1 Phases

A phase is defined as a number of optimisa-
tion runs with a particular control parameter
value setup for which a series of statistics is col-
lected as described below. The statistics give
information on the suitability of this particular
setup.

2.1.1 Estimated Probability

For a certain phase, let P be the probability of
success in finding the global optimum (as de-
fined above). The stochastic variable X is de-
fined as the number of successful optimisations
during n,, runs. The probability of success for
a phase is estimated by the outcome of r—
The stochastic variable X is binomially dis-

tributed and the standard deviation o of nfi -
is
P-(1-P
o= r(z)’ (2.2)

providing an indication of the uncertainty of
the estimate. The maximum o appears at P =



0.5. For example, the maximum o is 5-1073 for
Npun = 10000 and 1.6 - 1072 for ny., = 1000.
P can also be considered as a function of
Neval, the number of objective function eval-
uations performed. This can be emphasised
by writing P(7eyqr). At predetermined val-
ues for neyq in the optimisations, the outcome
Z(Neval) of X (neyqr) is observed, and P(neyqr)
for the corresponding phase is estimated by

x(neval)

Nyrun

Pest (neval) == (23)

2.1.2 Mean Deviation from Opti-
mum

In addition to the estimated probability of suc-
cess, the best models found at different values
of Neyqr are observed and denoted mygy (Neyar)-
The mean deviation from the global optimum
can then be calculated as

(f(mIOW(neval)) - f(mopt))-
(2.4)

I
—
3
-
3

2.2 Test Problems

2.2.1 Mexican Hat

This test function has also been studied in [2].
The objective function, illustrated in figure[2.1
has a global minimum value at the origin. The
other local minima are circles around the ori-
gin and the objective function values of these
minima increase slowly with increasing radius.

sin?(y/z% + 23) — 0.5
(1+0.001(z? + 23))?
(2.5)

f(ml, 1‘2) = —0.5+

e Number of variables: N =2

Objective
function
value

Lo

=
1S

Figure 2.1: The Mexican Hat test problem
on the interval [-10,10] on both axes.

7 =

Search domain: —100 < x; < 100,
1,2

Local minima: Several

e Global minima: One
Mept = (070)7 f(mopt) =-1
e Limit for successﬂ Srimit = —0.99

There are actually two regions with objec-
tive function values below the limit. One is
the region immediately around the global min-
imum at the origin. The other region is the
bottom of the first circular ”valley”.

2.2.2 Fallat-Dosso

This test function is taken from [3] and bears
a closer resemblance to real inversion problems
than the other test functions. There are many
local minima and the global minimum is situ-

ated at the origin (see figure .

'In Mexican hat, the limit given in equation [2.1] was
exchanged for the limit used in [2] to make comparisons
possible.
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Figure 2.2: The test problem Fallat-Dosso.
The objective function value plotted against
each of the six variables. The scale for all vari-
ables is [-2,2].

(1,32, 23, 24, 25, 26) =
=4.8 + 27 + ba3 + 0.123
+0.052% + 22 + 22
— 0.3 cos(4m(z1 — x2))
— 1.4 cos(4m(z1 + x2))
— 0.5cos(107(0.05z4 — 0.01x3))
— 1.0 cos(107(0.0524 + 0.1x3))
—0.25 cos(bm (x5 — x6))
— 1.35cos(b7 (x5 + x6))

(2.6)

(
(
Number of variables: N = 6

Search domain: i =

1,...,6

Local minima: Several

Global minima: One
mopt - (07 07 07 07 07 0)7 f(mopt) = 0

Limit for successﬂ flimit = 1-107°

2In Fallat-Dosso, the limit given in equation [2.1] was
exchanged for the limit used in [3] to make comparisons
possible.

Objective function value

-2

2

Figure 2.3: The Easom test problem on the
interval [-2,6] on both axes. Note that the
search domain spans the interval [-100,100] in
both dimensions.

2.2.3 Easom

Easom has been studied in [I] and features a
function that is mostly uniform, except for a
"well” around m = (7, ) as illustrated in fig-
ure 2.3l The flat area extends far outside what
is shown in the figure, making the well a very
small part of the search domain. There are ex-
tremely small variations in the objective func-
tion value in the ”flat” surface. The magnitude
of these variations are controlled by the factor
e where r = V(T —21)2 + (7 — 22)? is the
distance from (7, 7) as seen in equation (2.7)).
For example, at distances r > 5 from (m,7),
\f(a:l,xg)| < 10710,

f(z1,22) = — cos(x1) cos(x2)

—((w1—m)?+(z2—7)?) 27)

e
e Number of variables: N =2

e Search domain: —100 < z; < 100,
1,2

1 =
e Local minima: Several, but essentially in-
significant. Outside a radius of 1.57 from
the global minimum, |f(z1,22)| < 1071,

10



=[1+ (21 +z2 + 1)
(19 — 141 + 327 — 14
+ 62129 + 323)]
-[30 + (221 — 329)?
- (18 — 32x1 + 1227 + 48,
— 36x129 + 2713))

><105 f(xI,I'Q)

i
N

i
o

(2.8)

Objective function value

NO N R O ©

e Number of variables: N = 2

e Search domain: —2<z; <2, i=1,2

e Local minima: Four
10° f(1.2,0.8) = 840,
f(1.8,0.2) = 84,
f(=0.6,0.8) = 30,
f(0,-1)=3

e Global minima: One
Mept = (07 _1)7 f(mopt) =3

e Limit for success: filimit = 3.000301

Objective function value

2 2

2.2.5 Shubert
Figure 2.4: The Goldstein-Price test problem

on the interval [-2,2] on both axes. Note the
large maximum value of the objective function
value. The scales of the vertical axis in the
lower panel is logarithmic.

Shubert has also been studied in [I] and has
18 global minima in contrast to the other test
functions. In figure a ninth of the search
domain is shown and it can be seen that the

surface of the objective function is very rugged.
The surface shown in figure is repeated

throughout the search domain.
e Global minima: One

mopt = (ﬂ'a 7T)7 f(mopt) =-1
f(@1,22) = Z]COS (J+ D1+ )
e Limit for success: fiimit = —0.99989 j=1
> geos((j+ a2 + )

2.2.4 Goldstein-Price 7=l

(2.9)
This test function has als.o beel? studied in [I]. e Number of variables: N — 2
It has only three local optima with smooth sur-
faces in between as illustrated in figure e Search domain: —10 < z; <10, i=1,2

11
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Figure 2.5: The test problem Shubert. Here,
only a ninth is shown for clarity. The interval
is [-4,4] on both axes.

e Local minima: 760

e Global minima: 18
f(mept) = —186, 7309

e Limit for success: fiimiy = —186.7122
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Chapter 3

Adaptive Simplex Simulated

Annealing

Hanna Gothall

3.1 Background

The hybrid inverse methods are relatively new
alternatives to local and global inversion al-
gorithms. The hybrids combine a local and
a global algorithm and intend to retain the
advantages of both, but get rid of the dis-
advantages. The goal is to effectively move
downhill but avoid becoming trapped in lo-
cal minima. The Adaptive Simplex Simulated
Annealing (ASSA) algorithm is based on the
two search algorithms Fast Simulated Anneal-
ing (FSA) and Downbhill Simplex (DHS).

3.1.1 Simulated Annealing

Simulated Annealing (SA) is a global search
algorithm which only remembers one model:
the one it is working with at the moment. The
model parameters are perturbed randomly one
by one with perturbations drawn from some
probability distribution, in order to walk to the
next model and see if that one is better. The
idea is to escape local minima and continue to
search for a better model closer to the global
optimum. The new perturbed model is always
accepted if the objective function value f is
decreased (criterion 1), otherwise the model

is accepted with a probability drawn from the
Boltzmann distribution

P(Af) = e &/T (3.1)
where Af is the difference in objective func-
tion values for the new and the old model (cri-
terion 2). The above formula is part of the
Metropolis algorithm. 7' is the temperature,
a control parameter which is decreased succes-
sively. The temperature is decreased in order
to have a global search in the beginning and a
more local search in the end[l]

The annealing schedule is defined by the con-
trol parameters for SA. The parameters are the
initial temperature, the cooling rate, the num-
ber of temperature steps and the number of
perturbations per temperature step.

After all the temperature steps are run
through, quenching takes place to ensure that
the bottom of the closest minimum is reached.
In this procedure, the temperature is set to
zero such that only values that decrease f are
accepted.

!The terminology above is often used in the SA
context because of the analogy with thermodynamics.
Usually E (energy) is used in the SA context, but here
f is used.

13



Fast Simulated Annealing (FSA)

In Fast Simulated Annealing (FSA), the per-
turbations are drawn from the Cauchy dis-
tribution about the current parameter values.
The width of the distribution is decreased lin-
early with temperature to accelerate conver-
gence. This is why the algorithm is named fast.
Large perturbations are required in the begin-
ning to get a wider search, but the search gets
more and more local when the temperature de-
creases. An appropriate annealing schedule is
required for FSA to be effective.

Shortcomings of SA and FSA are their lack
of memory and their poor ability to move
quickly downhill. For example, a good model
can be visited in an early stage of the search
and never be revisited, since it has not been
stored in any memory.

Table 3.1: A summary of the FSA algorithm

1. Choose a model at random in parameter
space;

2. Perturb the model parameters at ran-
dom with perturbations drawn from the
Cauchy distribution;

3. Check if the model has lowered the ob-
jective function value or is accepted by
the Boltzmann probability (see equation

. If not accepted, go back to

4. Decrease the temperature. Go back to
unless all iterations have been made;

5. Set the temperature to zero and perform
quenching for a certain number of itera-
tions.

3.1.2 Downhill Simplex

Downbhill Simplex (DHS) is a local derivative-
free search algorithm which does not involve
solving systems of equations. Nelder and Mead
[4] were the first to formulate the algorithm.

DHS uses a simplex involving N + 1 mod-
els mygy, ..., Mondphigh Mhigh, where N is the di-
mension of parameter space (see figure [3.1)(a)
where N = 2), my,, is the model with the
lowest objective function value, mynapigy, is the
model with the second highest objective func-
tion value and my;g, is the model with the
highest objective function value. my;gy, is first
reflected through the simplex made by the N
models with the lower objective function val-
ues, which is a line segment in two dimensions
(see figure [3.1(b)). If the objective function
value of the reflected model, f(myeq), lies be-
tween f(myoy) and f(mgnay;gp), Myren replaces
Mpigh-

If fmpen) < f(Migyw), Muyign is reflected
through the same simplex as before but the
distance it is reflected is expanded by a fac-
tor two (see figure [3.1)c)) and a new model
m,AExp is created. This is a way to check if the
models continue to get better in this particular
direction as the objective function value of the
reflected model indicated. The model of my,.q
and myefpyx, With the lowest objective function
value replaces myjgp.

If f(myepn) is higher than or equal to
f(mp;gn ), the distance is instead contracted by
a factor of two and the model m¢,, is created.
The model then lies between my;,, and the
smaller simplex made of the IV best points in
the simplex with the N + 1 models (see figure
(d)) If f(mcon) < f(mhigh)a mco, replaces
my;e. Otherwise a multiple contraction is per-
formed.

If f(mpen) is between f(mgnapp) and
f(mpign), then the model with the highest ob-
jective function value is moved by a reflection
and contraction to lie between the reflected

14
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Figure 3.1: DHS steps in two dimensions

point and the simplex of the N best points,
as shown in figure e). If f(mpeficon) <
f(Mpigh), Myeacon replaces myjen. Otherwise
a multiple contraction is performed.

In a multiple contraction, the N models with
the highest objective function values in the
simplex are moved towards the model with
the lowest objective function value (see figure
BIY)).

The iterations (stepthrough step@in table
are repeated until the difference between
f(mpign) and f(myey) relative to their average
is less than some tolerance e:

f(myign) — f(Mew)

(f(mhigh) + f(mlow>)/2

A summary of the above explanation of the
algorithm can be found in table

<€ (3.2)

3.2 Description of the ASSA
Algorithm

As stated by Dosso et al. [6], the adaptive
simplex simulated annealing (ASSA) algorithm
is based on perturbations that combine local
DHS steps and a random component with the
size of the random component for each para-
meter reduced in an adaptive manner based

on recent search statistics, rather than in an
arbitrary manner as in standard FSA.

The algorithm was published by Dosso,
Wilmut and Lapinski [6] in the year 2001.

Before ASSA was developed, DHS and FSA
had been combined by Fallat and Dosso into
Simplex Simulated Annealing (SSA) [3], [7].
Hedar and Fukushima have also published an
algorithm combining SA and DHS [g].

The description here is only a short sum-
mary of the algorithm, for a more thorough
explanation, see Dosso et al. [6].

The ASSA algorithm is an adaptive combi-
nation of DHS and FSA. ASSA uses a simplex
of models (N+1 models) instead of only one
model as SA and FSA do (figure[3.2] (a)). This
leads to an increase of the algorithm memory
from one model to N+1 models, and the best
model visited is always saved in the simplex.

After a DHS step (figure (b)), all para-
meters in the new model are perturbed (figure
(c)) with a perturbation drawn from a tem-
perature dependent Cauchy distribution (as in
FSA). A DHS step can be a reflection, expan-
sion or contraction; cf. step [2] through step
in table If the perturbed model, for ex-
ample my.apert, is accepted by one of the two
SA criteria, the simplex is updated (figure
(@)).

A summary of the ASSA algorithm is found
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Table 3.2: A summary of the DHS algorithm
(after [5])

in tables [3.3] and DHS steps including per-
turbations are performed repeatedly. A reflec-

1.

6.

Choose a simplex with N + 1 models at
random in the parameter space (figure

B.1(a));

. Reflect (figure B.1j(b)) the model with

the highest objective function value in
the simplex, my;p. If the objective
function value of the reflected model,
f(myen), fulfils:

(a) f(mlow) < f(mrcﬂ) < f(m2ndhigh)7
replace Mgy with myeq, go to[7

(b) f(mreﬁ) < f(mlow)a go to
(C) f(mreﬁ) > f(mhigh), go to

(d) f(m2“dhigh) < f(mreﬂ) < f(mhigh>a
go to [}

. Reflect my,;g, and expand by a factor two

(figure (c)) to get Myefpxp. The one
of myeq and myefpy, With the lowest ob-

jective function value replaces my;gp,. Go

to [7}

. Contract myje, by a factor two (fig-

ure (d)) to get meon. If f(mcon) <
f(muyign) then replace myign with meqy

and go to[7], else go to [6}

. Reflect my;g, and contract by a fac-

tor two (ﬁgure (e)) to get MyeAcon-
If f(mreicon) < f(mupjen) then replace
My, With myencon and go to [7} else go

to [6}

Perform a multiple contraction (figure

B.1(f)) around myey. Go to

Continue from [2] until the stop criterion,
equation (3.2)), is fulfilled.

tion (step [2)) is possibly followed by an expan-
sion (step [4]) or a contraction (step , and the
process is repeated starting with another re-
flection step. The temperature is reduced when
enough models have been accepted at the cur-
rent temperature (step [6] through step [7)).

When perturbing a model, the width of the
distribution for each parameter is adaptively
scaled using a factor of s > 1 times the run-
ning average of the last S corresponding ran-
dom perturbations for which the model was in-
cluded in the simplex. This is done to be able
to generate new perturbations with a reason-
able probability of acceptance. The perturba-
tions are also dependent on the temperature.
They are at first large, but they decrease with
time in order to have a more global search in
the beginning and a more localised search in
the end. In general, the larger the factor s, the
slower but more thorough the parameter search
[6]. Because of these perturbations from FSA,
ASSA is able to climb up from local minima
and is therefore an improvement in relation to
DHS.

The temperature is decreased with a factor
(0, see the control parameter section) until all
iterations are done. The initial temperature,
Tp, is chosen such that 90% of the models are
accepted in the beginning of the run. A sum-
mary of the ASSA algorithm is found in tables

B.3 and 3.4

Quenching was removed because it rarely
improved the result if a good cooling rate was
chosen (Dosso, personal communication).

Multiple contractions are not included in the
original ASSA algorithm. However, see section

0.4.2)
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Figure 3.2: Illustration of the replacement of one model in ASSA. (a) An initial simplex is chosen
randomly in the search domain. (b) A DHS iteration is performed for the model with the highest
objective function value in the initial simplex. In this case, a reflection is made. (c) The reflected
model m,.q is perturbed with a Cauchy distributed perturbation and the model myegpert iS cre-

ated. (d) If the perturbed model, m,capert, is accepted, the simplex is updated and the procedure
continues.
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Table 3.3: First part of a summary of the
ASSA algorithm. Continued in table

1. Randomly initialise N +1 models to gen-

erate a starting simplex, for a problem
with dimension V;

. Reflect and perturb the model with the
highest objective function value in the
simplex, myign, to get myegpert; cf. fig-
ure 3.2l Check with the two SA criteria
(see section if myeapert i to replace

my;gp in the simplex;

. If the objective function value of the re-
flected and perturbed model, myegpert,
fulfills:

(a) f(mreﬁPert) < f(mlow) go to
(b) f(mreﬂPert) > f(mgndhigh) go to
(c) Else, go to [6}

. Expand and perturb mycgpert, which
must have been included in the simplex

in this case, to get mexppert; cf. figure
B.Ic). Check with the first SA crite-

rion (see section [3.1.1)) if mexppert is to

replace Myepert in the simplex. Go to[6}

. Contract and perturb one of my;s, and
Myefipert that is present in the simplex
to get Meonpert; cf. figure (d) and (e).
Check with the two SA criteria (see sec-
tion if meonpert is to replace the
model in the simplex which was con-
tracted. Go to[6}

Table 3.4: Second part of a summary of the
ASSA algorithm. Continued from table

6. If at least one new model replacement
has taken place in the simplex, the num-
ber of accepted models is increased by

If enough models have been ac-

cepted at the present temperature, go to

else go to

7. Reduce temperature. Unless the re-
quired number of temperature steps has
been taken, go to

one.

3.3 The Contractions

Both types of contractions (seen in figure
3.1{d) and (e)) are performed in the ASSA
code, although this is not emphasised in the
papers [3] and [6]. In the papers, the im-
pression given is that only the first kind of
contraction is made. The different circum-
stances under which the different contractions
are made can be read from tables B.3] and
Apparently, f(mioy) < f(Mrefpert) as
well as f(mondpigy) < f(Mrefpert) must be ful-
filled. The type of contraction is determined
by whether or not my.gpert was included in the
simplex.

3.4 Enhancements

When testing the algorithm on several syn-
thetic test problems, a few problems arose.
The program got caught in infinite loops and it
could not terminate. The solutions presented
below may not be the best but they eliminate
the risk of infinite loops.
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3.4.1 Mirroring

In the process of generating a new point, there
is a chance that the simplex is situated such
that the reflections (see figure [3.1(b),(c) and
(e)) create a new model outside the search do-
main (see figure[3.3). A perturbation is added
to the new model. If the perturbation is large
(i.e. the temperature is high), there is a chance
of moving the model inside the search domain.
If the perturbation does not succeed in get-
ting the model inside, the algorithm tries to
perturb it once again and continues so until it
has succeeded. If the temperature is low, the
probability that the new model is perturbed
into the search domain is very small, and the
risk of getting effectively caught in an infinite
loop is considerable.

Limit of search

domain ! Typical size of
\l perturbation at
Model with P Reflection current T
highest e
objective
function
value New model

Figure 3.3: A case in which ASSA can get
trapped in an infinite loop. A simplex is re-
flecting the model with highest objective func-
tion value outside the search domain. The
temperature is very low and the new model is
therefore not perturbed enough to get inside
the search domain again. The algorithm tries
over and over again to perturb the reflected
model, but the chance of a perturbation large
enough is so small that the algorithm effec-
tively gets caught in an infinite loop.

To avoid that perturbations are tried too
many times (or even that the algorithm gets
trapped in an infinite loop), a control para-
meter (mirrorIndex) has been introduced to
trigger a mirroring of the latest calculated
model (after it has been perturbed) into the
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search domain. The mirroring starts after
mirrorIndex of perturbations have been tried
and discarded.

3.4.2 Multiple Contraction

Another problem with infinite loops can for ex-
ample take place when having a hill (models
with high objective function values) between
the best models included in the simplex (see

figure .

Typical size of perturbation at current T Models with

high objective
~---.__function values

Model with
highest
objective
function
value

Reflected and o Reflected model

contracted model

Figure 3.4: Another case in which ASSA can
get trapped in an infinite loop. A simplex is re-
flecting the model with highest objective func-
tion value, but there is a hill with high objec-
tive function values resulting in another model
with high objective function value. The tem-
perature is low and the new model is therefore
only slightly perturbed, and it is not accepted
by the second SA criterion. The algorithm
tries over and over again, but with almost the
same result, and it can not escape from the
situation.

The algorithm reflects the model as illus-
trated in figure [3.4 The reflected model is
perturbed, but for certain hills, it is probable
that the objective function value of mpey is
higher than that of my;g,. The reflected model
is not accepted by the first SA criterion. ASSA
tries to reflect, contract and perturb over and
over again without getting a new model with
a lower objective function value such that it
would be accepted by the first SA criterion (see
page . When the temperature is low, the
perturbations are small, and in practice, the
new models may not be accepted by the sec-
ond criterion either. Therefore, the algorithm
may try over and over again without getting



off the hill and it may get effectively trapped
in an infinite loop.

This has been taken care of by including a
multiple contraction on occasions as described
above. The multiple contraction is triggered if
the objective function value for my,e is greater
than or equal to the highest objective function
value in the simplex and if the number of times
the simplex has been left unchanged is greater
than (multContrIndex).

3.4.3 Control Parameters

A short description of the control parameters
are given here along with suggested values (af-
ter [6], [3]). The values suggested within the
parentheses may not give the best results, but
then have shown to work reasonably well for
most problems.

e Initial temperature Ty or tOfakt, where
tO0fakt is used to calculate an initial
temperature when there is no knowledge
about the problem: Typ=t0fakt-A fiaz,
where A fjae is the maximum f differ-
ence in the initial simplex. (It is chosen
such that about 90% of the models are ac-
cepted at the start)

e Cooling rate (8 = 0.95-0.995 for easy to
very hard problems, but it can be lower
for very easy problems)

e Number of temperature steps (nTemp =
1500)

e Number of accepted perturbations re-
quired at each temperature value (nPert
= 5)

e Factor which controls the temperature
dependence of the Cauchy distribution
(nPertfactor = 4)

e Number of previously successful perturba-
tions to average over when the width of

the Cauchy distribution is determined (S
= 20)

e Factor for the width of the Cauchy distri-
bution (s = 3.0)

e Number of times to randomly pick a new
model before starting to mirror it into the
search domain (mirrorIndex = 10) (an
additional parameter by the author, see

section [3.4.1))

e Number of times to try a new model
before trying a multiple contraction
(multContrIndex = 2000) (an additional
parameter by the author, see section

The temperature is on average decreased
with the factor Gwert per accepted new model.

The width of the Cauchy distribution is cal-
culated as s times the running average of the
S last successful perturbations times a fac-
tor. This factor is decreased with the fac-
tor 8 when nPertFactor - nPert DHS itera-
tions have been made with a perturbation af-
ter each step. One DHS iteration includes step
through step [6] in table

3.5 Results

For ASSA, variations have been made within
two groups of control parameters. One group
is constituted by 3, nPert and nPertFactor
and the other group by S and s. A reference
phase has been chosen for each test example,
which is the same for both groups of control
parameters. In each figure, the reference phase
is the first phase (the blue dotted and dashed
curve). The different control parameters have
been varied with the reference phase as a start-
ing point. In general, a phase giving a good re-
sult quickly was chosen as the reference phase.
A good result is used for a phase with high
success fraction and a fast ascent.
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Figure 3.5: The statistics results for the test
problem Mexican hat. The upper panel shows
group 1 and the lower group 2. Both panels
show the estimated probability for a model to
be accepted after a certain number of model
evaluations. The reference phase is in this
case (tOfakt, 8, S, nPert, s, nPertFactor)
= (20.0, 0.95, 10, 5, 1.0, 5).

A reference phase is useful, since the number
of phases quickly becomes cumbersome. Only
parameter variations within each group have
been tested here.

The parameters Ty or tOfakt are kept con-
stant for all phases for each test problem. The
parameters were chosen such that the proba-
bility for a model to be accepted should be ap-
proximately 90% at the start (see figure .

For each test problem, the estimated success
probabilities and the mean deviations from the
optimum are shown in separate figures for the

different groups of control parameters.

In the test problems, the values of
the control parameters mirrorIndex and
multContrIndex are 10 and 2000, respectively,
except for Shubert for which multContrIndex
= 50.

Mexican Hat

The phase (tOfakt, [, S, nPert, s,
nPertFactor) = (20.0, 0.95, 10, 5, 1.0, 5) was
chosen as the reference phase for the test prob-
lem Mexican Hat (see figures|3.6{and . The
reference phase is in this case also the best
phase with a success fraction of 100% and a
fast ascent.

Group 1

The phase (20.0, 0.95, 10, 1, 1.0, 1) (see figure
is the fastest phase, but it often gets stuck
in local minima. This phase reaches about
85%. (20.0, 0.995, 10, 1, 1.0, 1) is the phase
coming closest to performing as well as the ref-
erence phase. It is only slightly slower and
reaches the success fraction 100% after about
2750 evaluations compared to about 2000 for
the reference phase.

Group 2

For the second group, it can be seen in fig-
urethat the poorest result (success fraction
65%) is obtained by the phase (20.0, 0.95, 1, 5,
1.0, 5), and the result closest to the reference
phase is obtained by the phase (20.0, 0.95, 20,
5, 1.0, 5) which needed only about 250 more
evaluations than the reference phase.

Fallat-Dosso

The reference phase for the Fallat-Dosso
test problem is (tOfakt, [, S, nPert, s,
nPertFactor) = (10.0, 0.975, 15, 10, 1.0, 10)
(see figures and . None of the phases in
either group reaches success fraction 100%, but
the reference phase reaches about 90% which
is the highest maximum of the phases.
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Figure 3.6: The statistics results for the test
problem Mexican hat, group 1. The reference
phase is in this case (tOfakt, 3, S, nPert, s,
nPertFactor) = (20.0, 0.95, 10, 5, 1.0, 5). The
upper panel shows the estimated probability
for finding an objective function value below
the limit. The lower panel shows the mean
deviation from the global optimum.
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Figure 3.7: The statistics results for the
Mexican hat test problem, group 2. The
reference phase is (tOfakt, 3, S, nPert, s,
nPertFactor) = (20.0, 0.95, 10, 5, 1.0, 5).
The upper panel shows the estimated proba-
bility for finding an objective function value
below the limit. The lower panel shows the
mean deviation from the global optimum.



Group 1

Of all the phases which can be seen in fig-
ure the three worst performing phases also
have slow ascents. The phase (10.0, 0.995,
15, 1, 1.0, 1) reaches only about 20% and the
phases closest to the reference phase are (10.0,
0.975, 15, 5, 1.0, 10), (10.0, 0.975, 15, 10, 1.0,
5) and (10.0, 0.995, 15, 1, 1.0, 10).

Group 2

The phase (10.0, 0.975, 30, 10, 1.0, 10) gives a
result almost identical to that of the reference
phase. The phase (10.0, 0.975, 1, 10, 1.0, 10)
has an early take-off, but it reaches only about
20%.

Easom

The reference phase for Easom is (Tp, 3, S,
nPert, s, nPertFactor) (10.0, 0.8, 20, 1,
1.0, 5). Note that in this case, the parameter
tO0fakt is exchanged for Tj.

Group 1

All phases in this group of control parameters
perform well for this test problem. The phase
(10.0, 0.8, 20, 1, 1.0, 1) is quite close to reach-
ing 100% success fraction with 98% and it is
also slightly faster than the reference phase.
The phases (10.0, 0.8, 20, 5, 1.0, 1) and (10.0,
0.95, 20, 1, 1.0, 1) give similar results, and they
are the ones closest to perform as well as the
reference phase.

Group 2

The results for the phases in this group of pa-
rameters are more varying than for group 1.
The phase (10.0, 0.8, 1, 1, 1.0, 5) is fast but
reaches only about 70% while the phase (10.0,
0.8, 20, 1, 3.0, 5) is just a little slower than the
reference phase.

Goldstein-Price

The Goldstein-Price reference phase is

=0.975, S=15, nPert=10, s=1, nPertFactor=10
=0.975, S=15, nPert=5, s=1, nPertFactor=10
=0.975, S=15, nPert=10, s=1, nPertFactor=5
=0.995, S=15, nPert=1, s=1, nPertFactor=1
=0.995, S=15, nPert=1, s=1, nPertFactor=5
=0.995, S=15, nPert=1, s=1, nPertFactor=10
=0.995, S=15, nPert=5, s=1, nPertFactor=1
=0.995, S=15, nPert=10, s=1, nPertFactor=1
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Figure 3.8: The Fallat-Dosso problem, group
1. Here, the phase (tOfakt, 3, S, nPert, s,
nPertFactor) = (10.0, 0.975, 15, 10, 1.0, 10)
was chosen as the reference phase. The up-
per panel shows the estimated probability for
finding an objective function value below the
limit. The lower panel shows the mean devia-
tion from the global optimum.

(nsamplei, 3, S, nPert, s, nPertFactor)
(20.0, 0.95, 1, 1, 3.0, 1).

Group 1

The phase (20.0, 0.995, 1, 5, 3.0, 1) does not
succeed at all before 5000 evaluations. The
phase (20.0, 0.95, 1, 1, 3.0, 5) has the same be-
haviour as the reference phase, with the same
slope for its ascent. The difference is that the
reference phase reaches 100% after 600 eval-
uations, while (20.0, 0.95, 1, 1, 3.0, 5) needs
about 1100 evaluations.
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Figure 3.9: The test problem Fallat-Dosso,
group 2. The reference phase is (t0fakt, 3, S,
nPert, s, nPertFactor) = (10.0, 0.975, 15, 10,
1.0, 10). The upper panel shows the estimated
probability for finding an objective function
value below the limit. The lower panel shows
the mean deviation from the global optimum.

Group 2

All but one phase in this group have about the
same behaviour. The phase which deviates is
(20.0, 0.95, 1, 1, 1.0, 1). This phase has an
earlier take-off. Among the other phases, (20.0,
0.95, 10, 1, 1.0, 1) is the one coming closest to
the reference phase.

Shubert

The reference phase for the test problem
Shubert is (nsamplei, (3, S, nPert, s,
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Figure 3.10: The Easom test problem, group
1. The reference phase is (7o, 3, S, nPert, s,
nPertFactor) = (10.0, 0.8, 20, 1, 1.0, 5). The
upper panel shows the estimated probability
for finding an objective function value below
the limit. The lower panel shows the mean
deviation from the global optimum.

nPertFactor) = (30.0, 0.9, 30, 1, 3.0, 4).
Note the difference in number of evaluations
in the different groups.

Group 1

For this test problem and these control para-
meters, four subgroups appear with different
ascent slopes. The phase (30.0, 0.9, 30, 1, 3.0,
2) and the reference phase have the fastest as-
cent and the earliest take-off, although (30.0,
0.9, 30, 1, 3.0, 2) does reach about 97%. The
other subgroups have much slower ascents, and
two phases have just left the bottom at 10000
evaluations.
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Figure 3.11: The results for the test problem
Easom, group 2. The reference phase was cho-
sen to be (Tp, B, S, nPert, s, nPertFactor)
= (10.0, 0.8, 20, 1, 1.0, 5). The upper panel
shows the estimated probability for finding an
objective function value below the limit. The
lower panel shows the mean deviation from the
global optimum.
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Figure 3.12: The results for the Goldstein-
Price problem, group 1. The reference phase
is the phase (nsamplei, [, S, nPert, s,
nPertFactor) = (20.0, 0.95, 1, 1, 3.0, 1). The
upper panel shows the estimated probability
for finding an objective function value below
the limit. The lower panel shows the mean
deviation from the global optimum.
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Figure 3.13: The statistics result for the test
problem Goldstein-Price, group 2. The refer-
ence phase for this problem is (nsamplei, 3,
S, nPert, s, nPertFactor) = (20.0, 0.95, 1, 1,
3.0, 1). The upper panel shows the estimated
probability for finding an objective function
value below the limit. The lower panel shows
the mean deviation from the global optimum.

Group 2

All phases in this group of control parameters
have almost the same ascent slope. The dif-
ferences concern the take-off of the curves and
whether or not 100% is really reached. The
phase (30.0, 0.9, 10, 1, 1.0, 4) is fastest, and
it has reached 97% after less than 800 evalua-
tions. The reference phase has the latest take-
off, and it reaches 100% after 1200 evaluations.
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Figure 3.14: The statistics result for the
problem Shubert, group 1. The refer-
ence phase is (nsamplei, (3, S, nPert, s,
nPertFactor) = (30.0, 0.9, 30, 1, 3.0, 4). The
upper panel shows the estimated probability
for finding an objective function value below
the limit. The lower panel shows the mean
deviation from the global optimum.

mirrorIndex

The mirrorIndex control parameter is often
quite low (10) in the examples, but can be cho-
sen both higher and lower, depending on what
suits the specific problem. As already pointed
out, the main advantage with mirroring is that
the threat of getting trapped in certain long
loops is eliminated.

Tests have been made to compare the fol-
lowing two cases with the original one: 1. only
mirroring (instead of continued perturbations)
2. mirrorIndex = 10 (see section |3.4.1)). The
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Figure 3.15: The statistics result for the
test problem Shubert, group 2. The reference
phase is the phase (nsamplei, 3, S, nPert, s,
nPertFactor) = (30.0, 0.9, 30, 1, 3.0, 4). The
upper panel shows the estimated probability
for finding an objective function value below
the limit. The lower panel shows the mean
deviation from the global optimum.

original case included only perturbing. The
differences between the original case and the
two other cases with mirroring were not bigger
than the uncertainty in the probability estima-
tion for these examples, for which the long-loop
problem was not critical.

multContrIndex

The control parameter multContrIndex is usu-
ally set to a high number (2000), but for
certain kinds of problems ASSA can produce
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Figure 3.16: Four phases for the test prob-
lem Shubert. This test problem causes trou-
bles for the algorithm as can be seen by the
plateau shape in two of the curves. This could
be avoided by shifting multContrIndex to a
smaller number (from 2000 to 50 in this case),
as can be seen by comparing to the two curves
without plateaus. Notice that the results are
better or similar with much faster ascents of
the curves.

better results if multContrIndex is changed.
As can be seen in figure the value of
multContrIndex is very important when work-
ing with the test problem Shubert. When
multContrIndex = 2000, plateaus appear with
length around 2000 evaluations, but when de-
creasing the value to multContrIndex = 50
the plateaus can not be seen. Also note that
the method gives good results much faster with
more multiple contractions.

3.6 Discussion

The reason why ASSA does not produce as
good values for the Fallat-Dosso problem as
the other test problems may be found in the
control parameters. If there was more time
to adjust the parameters, ASSA could perhaps
improve the results.



Group 1 Control Parameters

When the value of the cooling rate, [,
is changed, the ascent is changed and/or
the take-off of the success fraction curve is
changed. This behaviour can be observed in
all figures for group 1, when only 3 is changed.
When S is increased the ascent is slower, and
when (3 is decreased the ascent is faster.

The algorithm becomes more greedyﬂ in
its search when nPert or nPertFactor are
lowered separately (see the control parame-
ter section, page [20). The search seems to
go even faster if nPert and nPertFactor are
lowered simultaneously, but it also gets stuck
in local minima more often. If [ is in-
creased, the ascent is slower, but if nPert
and/or nPertFactor are decreased simultane-
ously, the affect of the increase in G can be
counteracted. This behaviour can be seen in
figure [3.6]

The change in nPertFactor does not seem
to have such a drastic effect as that in nPert
has. When nPert is increased the ascent is
much slower, as can be seen in figure

Group 2 Control Parameter

For the parameter s (see the control parameter
section, page [20)), in general, an increase leads
to a more greedy search and a decrease leads
to a more slow and thorough search (see figure
3.7). When s is decreased, the algorithm be-
comes more and more local. When s = 0, the
algorithm is very similar to pure DHS.

In the Fallat-Dosso problem (see figure ,
the effect of changing S can be observed. If S is
increased, there is almost no effect, but if S is
decreased instead, there is a drastic effect: the
take-off is earlier, but the success is only ap-

2A greedy algorithm considers only what is best for
the moment and not in the long run. In most cases, this
means that the algorithm always uses the best model
yvet found as a basis for its creation of new models.
Increased greediness usually means faster optimisation
at the cost of increased risk of getting trapped in local
minima.

proximately 20%. Apparently, a change of S
from a small to a moderate value has a larger
effect than a change from a moderate to a large
value. The interpretation for S is not as sim-
ple as that for s. It seems natural, however,
that there is a larger difference between, for
example, the running averages of the last two
and the last ten perturbations than between
the running averages of the last ten and the
last twenty perturbations.

In figure and figure the behaviour
when both S and s are changed can be ob-
served. If S is decreased and s is increased,
the take-off is delayed. If the parameters are
changed in opposite directions, they may coun-
teract to some extent.

The large number of control parameters is
of course a drawback of the technique. Still, it
is manageable because some of the control pa-
rameters are seldom changed (as for example,
multContrIndex and mirrorIndex) and be-
cause the suggested numbers (see section
often provide good starting points for tuning.
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Chapter 4

Differential Evolution

Rune Westin

4.1 Background

Differential Evolution (hereafter called DE)
was developed by Rainer Storn and Kenneth
Price, in the mid nineties [9], [10]. Their idea
was to find a simple, fast and reliable global
optimisation algorithmE]

The basics for DE came out of Kenneth
Price’s attempts to solve a Chebychev Poly-
nomial fitting problem. Price proposed the
method of using differences between models to
perturb the model population and a discussion
between Price and Storn commenced. Since
1994-1996, many improvements on DE have
been made by Storn, Price and an increasing
community of researchers working on the algo-
rithm.

DE is much related to genetic algorithms
and other evolutionary algorithms in the sense
that it works with a population of models
evolving towards the global optimum. Hence,
is is useful to start with a brief description of
genetic algorithms.

4.1.1 Genetic Algorithms

The genetic algorithm is a natural evolution-
inspired stochastic search method that oper-

!General information and codes for a wide variety
of compilers can be found at the Differential Evolution
Homepage [11].

ates on a population Pop of models m; ﬂ

Pop:{m17m27"'7mNP}7

where NP is the size of the population. In
some cases, it is convenient to refer to a model
as a member of the population. Each model
m; has an objective function valud’| f(m;) and
the purpose of the algorithm is to minimise f
by updating the population for a number of
generations.

In order to generate the next generation, the
algorithm combines different members of the
population into new models and selects the
best models, keeping the population size NP
constant.

The models must be stored in a way suit-
able for computers. Each variable is limited
by boundaries based on some prior knowledge
of the problem, and the j:th variable can be
discretised as a string of n; bits (n; is a pos-
itive integer). This gives 2™ possible values
between the boundaries, where n; corresponds
to the required resolution for the j:th variable.
The variable bit strings can then be put to-
gether to form a model string with Zj n; bits

2In genetic algorithms, a model is often called a
genome or a chromosome and the variables it consists
of are called genes.

3The objective function value is usually referred to
as fitness in genetic algorithms.
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Figure 4.1: Illustration of population, model and variable as strings of bits.

(see Figure [4.1)).
The genetic algorithm is outlined in table
and described more thoroughly in what fol-

lows.

Population Initialisation

The genetic algorithm starts with the initiali-
sation of the population. NP models are ran-
domly created and the objective function val-
ues f for all member models are evaluated.

Offspring Creation

In every generation, a certain number of off-
spring models are created, each of which has
two parent models. The parents are randomly
chosen with probabilities based on their objec-
tive function values. Models with low f have
higher probabilities to be chosen as parents
than models with high f.

The new models are created with their char-
acteristics taken from their parents in a process
called crossover. There are many variations of
the genetic algorithm and the crossover process
differs between them. In some, each individual
bit is taken from parents randomly. In others,
whole variables are inherited.

Offspring Mutation

The offspring models are also mutated to ob-
tain more diversity in the population. This is
usually done by randomly choosing a few bits
to ”flip” in the model string [1]

Next Generation

The created offspring models and the members
of the previous generation are sorted accord-
ing to their objective function values. The NP
models with the lowest f values are kept to
the next generation of the population. The re-
maining models are discarded.

There are variations of this step as well.

Termination Criterion

The algorithm is stopped either when a model
with a sufficiently low objective function value
has been found or when a predetermined num-
ber of generations have passed.

4 A bit is flipped by changing it from 0 to 1 or from
1 to 0.
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Table 4.1: Basic outline of genetic algorithms

1. Initialise a population of NP ran-
domly chosen models.

2. Evaluate the objective function value
f for each member model.

3. Proceed iteratively until a member
with a sufficiently low f has been
found, or until a predetermined num-
ber of generations have passed:

(a) Select the members that should
mate according to their objec-
tive function value rank in the
population.

Create offspring members that
inherit characteristics from their
parents. Mutate the offspring.

Calculate f for each new mem-
ber.

Remove the members with the
highest objective function val-
ues.

4.2 Description of the DE Al-
gorithm

As stated earlier, DE is related to genetic algo-
rithms (GA) in the sense that it works with a
population of NP models. There are some dif-
ferences between DE and GA. The models in
GA are bit strings representing some discreti-
sation of the search domain, in close relation to
genes and computers. The models in DE are
vectors of real numbers, thus giving a continu-
ous representation of the search domain.

In GA, new models inherit bits or bit strings
from their parent models. DE, in contrast, uses
the difference between model vectors as a basis
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Table 4.2: Basic outline of Differential Evo-
lution

1. Initialise a population of NP ran-
domly chosen models m,;.

2. Calculate the objective function value
fi for each model m,;.

3. Proceed iteratively until a model with
a sufficiently low f has been found,
or until a predetermined number of
generations have passed:

(a) For each model m;, randomly
select three other member mod-
els mn(i), m,, (7) and mm(i).
(b) Create NP new models v; =
m, ;) + F - (my,) — m ).
Create NP new models u;,
where each variable in u; comes
from v; with probability CR and
from m; with probability 1— CR.

()

Calculate the objective function
value for each model u;. If
f(u;) < f(m;), m; is replaced
by u; for the next generation.

for its new models. Also, in contrast to GA,
there are no mutations in DE.

4.2.1 Outline of DE

I have used a Fortran 77 version of DE based on
a Fortran 90 codd’] published on the Differen-
tial Evolution home page [I1]. The algorithm
is outlined in table 4.2l and described in detail
here.

5The Fortran 90 code was developed by Dr. Feng-
Sheng Wang at the department of chemical engineering
at National Chung Cheng University in Taiwan.



Population Initialisation

DE starts by creating a population of NP ran-
domly chosen models throughout the search
domain. It is recommended to allow as much
variation as possible of the model population
by not constraining the randomisation.

The objective function value f for each
model is evaluated and the model my,, with
the lowest objective function value fioy is de-
termined.

The rest of the algorithm is performed in an
iterative manner. Each iteration involves the
creation of a new generation.

Partner Model Creation

All population member models mate to create
offspring models, one offspring per population
member. In order to mate, each member m;
must have a mating partner model v; which is
created for this sole purpose (i = 1,..., NP).

For each mating partner v;, three models —
m,., (;), My, (;) and m,, ;) — are chosen randomly
from the population (r1(7), r2(i), r3(i) and ¢
all different). v; is calculated as the weighted
difference between m,, ;) and m,,(; added to
mrl(i):

Vi = My (3) +F- (mTz(i) - st(i)) (41)

where F' is a weighting factor given by the user
(F > 0). This is repeated NP times with differ-
ent ry, 9 and r3 each time, giving each model
in the population a partner.

The partner creation is illustrated in steps

a) through c) in figure

Offspring Model Creation (Crossover)

The old population members m are combined
with their partner models v to create NP off-
spring models u in a crossover process. An off-
spring model u; takes variables randomly from
its parents m; and v;.

The user given control parameter CR is the
probability that a variable in u; will be cho-
sen from v;. Correspondingly, a variable of
u; will be chosen from m; with probability
1 — CR. This means that in a search domain
of N dimensions, there are 2!V possible choices
for each u;, including v; and m;. This is illus-
trated in step d) in figure [4.2)[%]

Once the NP offspring models u are created,
the parent models v are discarded.

Selection for the Next Generation

The objective function values for the NP off-
spring models are evaluated. Each offspring
model u; is compared to its parent m; and the
model with the lowest objective function value
is selected as m; for the next generation.

In order to keep track of the best model
found, f(myey) is compared to the objective
function value of the best model in the new
generation. If necessary, myy, is updated.

Termination Criteria

There are two termination criteria.

1. A model with a sufficiently low objective
function value has been found.

2. A predetermined number of generations
have passed.

If one of these criteria is fulfilled, the algo-
rithm stops. The best model myg, and its ob-
jective function value f.y, are presented as the
proposed minimum.

4.2.2 Algorithm Variations

Storn and Price have proposed some varia-
tions of the algorithm concerning the creation

5The original DE by Storn and Price uses a slightly
different scheme for the crossover described in [9] and
[10].
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Figure 4.2: Illustration of the partner generation and crossover process. For each model m;, a

partner model v; = m, ;) + F- (mrz(i)

—m,,(;) is generated. In this example i = 2, r1(i) = 7,

r2(i) = 4 and r3(¢) = 5. a) The population with ms highlighted. b) ms and my highlighted with
the vector my — mj in between. c¢) vo = my7 + F - (my — mj5). d) The four possible choices for the
new model uy after the crossover process where each variable of us is taken from vy with probability

CR and from my with probability 1 — CR.

of partner models. The scheme described in

section equation (4.1)), is called DE1 or
DE/rand/1.

DE2

Another scheme is called DE2 and includes the
best model of the population in the creation of
partner models [9]:

v; = m;+ - (myy, —m;)+ F- (mrl(i) _mm(i))'

Here, A is introduced as a control parameter
used to enhance the greediness of the scheme

by making use of the best model yet found.
This increases the speed of the algorithm but
also makes it more prone to get trapped in local
minima.

DE/best/2

The scheme called DE/best/2 is also based on
the best model of the population, which in-
creases the greediness. Here, a fourth random
model m,, ;) is included in the generation of
V.

ra(i

Vi = Mgy +F (mTl (7) +m7‘2(i) 10 _mr4(i))
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Other Schemes

There are a few more schemes in the Fortran
90 code I based my implementation on:

Vi = Mgy + F - (my ) — my,;)

vi=m; + F - (Mo, — m; +m,, ;) — m,q))

Vi = mr5(z’)+F'(mrl(i)_mTQ(i)+mT3(i)_m7‘4(i))

vi = m;+Fop (Mg —m;)+F-(m,. ) —m,, ;).

The last scheme includes a linear crossover
combination of m; and my.y,. Fog is a random
number 0 < Fgor < 1.

Of all the scheme variations, I found
DE/rand/1, described in section [1.2.1] to give
the best overall results in my tests. All re-
sults described henceforth are obtained with
DE/rand/1.

4.2.3 Control Parameters

The user has five control parameters to set.
Two of them concern the stopping criteria: the
objective function value for which the algo-
rithm stops and the maximum number of gen-
erations.

This leaves three control parameters that ac-
tually control the behaviour of DE:

e The population size NP. NP is a posi-
tive integer and is usually set to five to
ten times the dimension N of the search
problem.

e The weighting factor F' is a positive real
number, usually smaller than 1.

e The crossover factor CR. CR is a prob-
ability and is therefore a real number be-
tween 0 and 1.

4.3 Results

To obtain knowledge of the effect of different
choices of control parameter values, DE was
run on the five synthetic test functions de-
scribed in chapter [2| I chose two different val-
ues for each of the three control parameters
and tested the eight possible combinations (i.e.
phases). The number of runs in each phase
(nrun) was 10000.

The choices for the population size NP were
NP = 5N and NP = 10N, where N is the
dimension of the test function. The weighting
factor was set to F' = 0.5 and F' = 0.9. The
crossover factor was set to CR = 0.5 and CR =
0.9.

Mexican Hat

The probability curves for the different phases
seen in figure can be divided into four
groups with varying rise speed and reliability.
The fasted phase has a low population size, a
high crossover factor and a low weighting fac-
tor. The slowest phase has the opposites of
these characteristics.

The phases in between seem to group them-
selves according to how many control parame-
ters have values similar to the slowest or the
fastest phase.

Generally in Mexican hat, slower rise speed
means higher reliability.

Fallat-Dosso

Figure shows the results of the DE optimi-
sations on Fallat-Dosso. The fastest phase is
the same as in the Mexican hat optimisation.
The fastest phase with a high reliability has
a low population size, a low crossover factor
and a low weighting factor. Two of the phases
have not risen above P, = 0.01 within the
given number of evaluations.
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Figure 4.3: DE optimisation of Mexican hat.
Top: The estimated success probabilities. Bot-
tom: The mean deviations from the global op-
timum.

Easom

The results from the DE optimisation of Easom
are seen in figure The fastest phase is the
same as for the previous test functions. Here,
the fastest phase with a high reliability has a
high population size, a high crossover factor
and a low weighting factor.

Goldstein-Price

Figure shows the results from the DE
optimisation of Goldstein-Price. Again, the
fastest phase has a low population size, a high
crossover factor and a low weighting factor.
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Figure 4.4: DE optimisation of Fallat-Dosso.
Top: The estimated success probabilities. Bot-
tom: The mean deviations from the global op-
timum.

There are two fast phases with a high reliabil-
ity. Both have high crossover factors but one
has a high population size and the other has
a high weighting factor. The former of these
phases is more reliable while the latter phase
is faster.

Shubert

As seen in the DE results from Shubert in fig-
ure [47] the fastest phase has a low popula-
tion size, a high crossover factor and a low
weighting factor. Again, there are two phases
that combine speed and reliability. Both have
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Figure 4.5: DE optimisation of Easom. Top:
The estimated success probabilities. Bottom:
The mean deviations from the global optimum.

high population sizes and low weighting fac-
tors. The phase with a high crossover factor is
faster and the phase with a low crossover factor
is more reliable.

4.4 Discussion

The results show that DE is a reliable, fast
and versatile optimisation algorithm. The es-
timated probability reached 100 % for several
phases in all test functions. The algorithm is
easy to understand and convenient to program.
Also, since DE creates a new population of
independent models in each generation, it is

Number of model evalutaions

Figure 4.6: DE optimisation of Goldstein-
Price. Top: The estimated success probabili-
ties. Bottom: The mean deviations from the
global optimum.

well suited for a parallel computing implemen-
tation.

Another advantage of DE is that there is no
problem with varying magnitudes in the ranges
of the different variables in the search domain.

For example, consider a two-dimensional ob-
jective function where the range of the first
variable z1 is 0 < x1 < 0.1 and the range of the
second variable x5 is 0 < 2o < 10°. Some opti-
misation techniques might have to use scaling
factors to be able to search the whole range of
9 while staying between the boundaries of x7.
Since DE bases its new models on the differ-

36



0.8

0.6

—=+-NP=10, CR=0.5, F=0.5

0.4F U +++++ NP=10, CR=0.5, F=0.9 {

S NP=10, CR=0.9, F=0.5
o - = — NP=10, CR=0.9, F=0.9
4/ o] == NP=20,CR=05, F=05||

0.2p “1i NP=20, CR=0.5, F=0.9

NP=20, CR=0.9, F=0.5
= = =NP=20, CR=0.9, F=0.9

Estimated probability for finding a model with misfit < 1.0187

. :
2000 3000
Number of model evalutaions

4000 5000

T T
——=-NP=10, CR=0.5, F=0.5
- NP=10, CR=0.5, F=0.9

NP=10, CR=0.9, F=0.5
— — = NP=10, CR=0.9, F=0.9
= =NP=20, CR=0.5, F=0.5
+rorn NP=20, CR=0.5, F=0.9
NP=20, CR=0.9, F=0.5|1
= = =NP=20, CR=0.9, F=0.9

Mean deviation from global optimum

) A
2000 3000
Number of model evalutaions

I
1000 4000

Figure 4.7: DE optimisation of Shubert.
Top: The estimated success probabilities. Bot-
tom: The mean deviations from the global op-
timum.

ence vectors between old models, no extra care
has to be taken to explore the whole search
domain.

4.4.1 Choices of Control Parameter
Values

Common for all of the DE optimisations in the
tests is that there is a trade-off between speed
and reliability for the different phases. It is
mostly the case that the values of each of the
three control parameters can be set to make
the optimisation either fast or reliable.

Population Size

It can generally be said that a higher popu-
lation size means a slower but more reliable
optimisation.

On the DE home page [11], there is a sugges-
tion of which control parameter values to start
with when facing a new optimisation problem.
The recommendation is to chose NP = 10N,
where N is the number of dimensions in the
objective function.

I found that NP = 5N, or a slightly larger
population size, was enough for most test prob-
lems. In an applied problem, however, the
global optimum is not known and the extra
reliability of a larger population might be de-
sirable despite the extra evaluations needed.

Crossover Factor

According to the DE home page [I1], the choice
of CR has less influence on performance than
the other control parameters and should be
used for fine tuning. A suggestion could be
to set CR to 0.9, and lower it if the results are
not satisfactory.

A higher CR usually means a faster but less
reliable optimisation.

Weighting Factor

Concerning the weighting factor, a higher F
usually means a slower but more reliable op-
timisation. The recommendation in [I1] is to
start with F' = 0.8 and adapt from there.

4.4.2 Keeping Models within the

Search Domain

It is important to check if the partner model v
is created outside the search domain. A model
outside the search domain must be moved in-
side, preferably by mirroring as described be-
low.
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If v; > 2 max, where v; is the j:th element
of v and 7 max is the upper boundary for the
J:th objective function variable z;, then v is
mirrored by setting

Vg, mirrored = Lj,max — (Uj - xj,max)' (42)

If v;j < @jmin, Where x;min is the lower
boundary for the j:th objective function vari-
able x;, then v is mirrored by setting

(4.3)

Vj,mirrored = Zj,min + (CCj,min - Uj)'

It may be necessary to perform these mirroring
steps repeatedly.
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Another method used in the Fortran 90 code
I based my implementation on was to simply
change one or more variables of the model to
move it to the closest possible place within
the search domain. This place is always on
a boundary of the domain (vjmoved = Zjmax
Or Vjmoved = ¥j,min), resulting in a gathering
of the population at the boundaries.

I found the optimisation results to be better
when using the mirroring method compared to
the other method, possibly because of the more
diverse distribution of the population obtained
by mirroring.



Chapter 5

Neighbourhood Algorithm

Hanna Gothall

5.1 Background

The Neighbourhood Algorithm (NA) was in-
troduced by Sambridge in 1999 [12] and was
tested by Resovsky and Trampert in 2002 [13].
A Dbasic question asked by Sambridge was:
"How can a search for new models be best
guided by all previous models for which the
forward problem has been solved (and hence
the data-objective function value evaluated)?’
[12]. This question led to the algorithm as it is
described in the next section.

The algorithm was originally designed for in-
verse seismology problems. It has already been
prepared for parallel processing.

5.2 Description of the Algo-
rithm

The algorithm is conceptually simple with only
two control parameters and with the use of the
rank of a data fit criterion instead of a numeri-
cal value. Hence, scaling of the objective func-
tion values are immaterial.

NA consists of a number of iterations. In
the zeroth iteration, ny models are chosen ran-
domly and the Voronoi cells around these mod-
els are calculated. The Voronoi cells are the
nearest neighbourhood regions to the models
around which they are created. The intersec-

tion between two cells are at half the distance
between the models as shown in figure
This is a unique way of dividing the multi-
dimensional parameter space into smaller re-
gions.

Figure 5.1: A random walk in a Voronoi
cell. The models from the previous iterations
are marked with a large dot, the intermediate
steps with an x and the new models with a
circle around the x.
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Table 5.1: A summary of the NA algorithm

1. Generate an initial set of ng models uni-
formly (or otherwise) in parameter space
(the zeroth iteration);

2. Calculate the objective function values
for the ng most recently generated mod-
els and determine the n, models with
the lowest objective function value of all
models generated so far;

3. Generate ng new models by performing
one uniform random walk in each of the
Voronoi cells for the n, best models (i.e.
7> models in each cell);

4. Go to[2 until all iterations are done.

Based on the objective function values of
the models in the ensemble, the ranking of the
models is made. In each of the following iter-
ations, ns models are uniformly created in the
n, best cells by performing a random walk in
each of these cells. The cell decomposition is
remade after each iteration, and the sizes and
shapes of many cells are thereby changed. One
such NA iteration consists of step [2| through
step [4] in table [5.1I] where a summary of the
NA algorithm is found.

When the cell decomposition is remade the
chance to find the optimum is increased, since
the regions with low objective function val-
ues may become parts of Voronoi cells around
models with high ranking. The random walks
will then have a chance to walk down valleys
in function space.

To increase the chances, n, should be large
(of the same size as ng). With a large n,, a
large amount of cells are re-sized in each iter-
ation and the chance to have included the op-
timum in one of the new cells is increased. A

large n, results in a more global search. When
ns is large in relation to n, the search is more
local.

Intensification with NA search is shown in
figure The upper left panel (a) shows the
Mexican Hat test problem from above. Here
the interval is [-10, 10] for both variables. The
global minimum is in the middle (in (0,0)) and
the depths of the valleys increase with decreas-
ing radius. Panel (b) shows the Voronoi cells
for the randomly chosen models in the initial
ensemble. In panel (c), 1200 models have been
created by NA search and added to the initial
ensemble.
to the global optimum and as vague circles
around the optimum. In the last panel (d), the
intensification is clear, showing that NA sam-
ples the important regions well. In (d) 2600
models in addition to those in (¢) have been
created with NA search (in total 4300 models).

Intensifications can be seen close

The Need of Another Control Parameter

The algorithm is designed with only two con-
trol parameters, ns and n,, but when running
the test problems, the size of the initial ensem-
ble, nsamplei, showed to be of importance as
well. Sambridge does not include this parame-
ter in the papers (see [12] and [14]), but it is
included in the NA code.

5.2.1 Control Parameters

The control parameters for the NA algorithm
are now specified. For recommended values,
see the results.

The parameter nsamplei is here defined as a
control parameter. The value of the parameter
is set to a constant value for all phases (500 for
all test problems, except Fallat-Dosso where it
is 200). The parameter is evaluated in section
B3
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Figure 5.2: Illustration of NA sampling the parameter space. The axes are from -10 to 10 for both
variables. (a) The Mexican Hat seen from above (on the interval [-10, 10] for both variables). Black
indicates a valley with low objective function values. The global minimum is in the middle. The
depths of the circular valleys are increasing with decreasing radius. (b) NA has randomly chosen
500 models, here with their corresponding Voronoi cells. (¢) Another 1200 models, in addition to
the first 500, have been created by random walks. An intensification in the middle and in a circular
fashion around the middle can be seen. (d) Another 2600 models have been created and added to
the total ensemble (total 4300 models). Here the intensification is evident in the areas with low
objective function values.
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e Size of initial ensemble (nsamplei)

e Number of models to generate at each sub-
sequent iteration (ns, positive integer)

e Number of cells to resample at each itera-
tion (n,, 1 < n, < min(ns, nsamplei))

5.3 Results

As can be seen in the figures for each of the test
problems below, there are curves not reaching
as far to the right as the other ones. This de-
pends on the choices of ng. A larger ng re-
sults in more models in each iteration, and the
curves stretch further for each raise in ng since
the number of iterations is the same.

The size of the initial ensemble has been in
all cases been chosen to be nsamplei = 500 ex-
cept for Fallat-Dosso where nsamplei = 2000.

The values of ng and n, have in all cases,
except Fallat-Dosso (107?), been chosen to be
2, 20, 100. The reason for this is to present
examples which are easy to compare. This may
not include the best choice, but it gives a hint.
As can be seen in all figures, different choices
of ng and n, give different results.

To get statistics, NA has been run 1000
times with different random seeds. The rea-
son why 1000 runs were performed instead of
10000, as for the other three algorithms, is the
considerable time consumption of NA.

Mexican Hat

NA does not perform very well in this test
problem as can be seen in figure The best
result for the estimated probability for find-
ing a model below -0.99 is just over 60% with
the phase (nsamplei, ng, n,) = (500, 100, 20),
which is a phase with a fast ascent as well. The
phase (100, 100) with a comparable result, ex-
hibits a slower ascent. A low value of n, gives
a fast ascent and a high value for n, a slower
ascent.

Estimated probabilty for finding a model with f < ~0.99

L L L L L L
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of model evalutaions

-0 n=100,n,=20
— n_=100, n=100

global optimum

107 T

Mean deviation fror

107

L L L L L L L L L
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of model evalutaions

Figure 5.3: Here is the test problem Mexi-
can Hat. As can be seen in the upper panel,
the phase (nsamplei, ng, n,) = (500, 100, 20)
gives a good result with a fast ascent.

Fallat-Dosso (success limit = 0.159)

In this case the limit for success is 0.159 and
not 107° as was decided to be the limit for
Fallat-Dosso. The results when using the other
limit is found in the next section. The limit
0.159 was decided after observing figure If
the objective function value is below 0.159, the
search is likely to have reached the valley of the
optimum for all variables.

The best result is just above 70% by the
phase (nsamplei, ng, n,) = (2000, 100, 100)
(see figure [p.4)). If n, is lowered (the phases
(2000, 100, 2) and (2000, 100, 20)) the greedi-
ness of the algorithm is increased. This is seen
as the plateaus not reaching as high a value of
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Figure 5.4: This is the test problem Fallat-
Dosso. As can be seen in the upper panel, the
choice (nsamplei, ng, n,) = (2000, 100, 100)
gives the best result. The limit for success is
here 0.159.

the estimated probability. The phase (2000, 2,
2) does not manage at all in this case.

The test problem has a higher dimension
than the other test problems, which makes the
size of the search domain a lot bigger. The
size of the initial ensemble has therefore been
increased and nsamplei = 2000.

Fallat-Dosso (success limit = 107°)

The limit for a run to be counted as successful
is here 107°. Observe the different values for
ns and n,, which are here 100 and 200, since
otherwise there would not have been any suc-

- n=100, n,=100
=200, n,=100

— n =200, n =200

Estimated probability for finding a model with f < 107
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Figure 5.5: This is the test problem Fallat-
Dosso with the limit for a successful run equal
to 107°. As can be seen in the upper panel,
the choice (nsamplei, ng, n,) = (2000, 200,
200) gives the best result.

cessful results.

As can be seen in the figure increased
values for the control parameters give better
results. The phase (2000, 200, 200) is best,
but the other two phases are not far behind.

The size of the initial ensemble is, as for the
other Fallat-Dosso case, nsamplei = 2000.

Easom

The phase (nsamplei, ng, n,) = (500, 100, 2) is
the one getting the best results for the Easom
test problem with around 90% (see figure .
For each choice of n,, a low ng gives a faster
ascent than a high value does.
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Figure 5.6: NA search for the test problem
Easom. As can be seen in the upper panel, the
choice (nsamplei, ns, n,) = (500, 100, 2) gives
the best result as well as a fast ascent.

Goldstein-Price

As can be seen in figure the phase
(nsamplei, ng, n,) = (500, 2, 2) finds the op-
timum faster than the other five phases. All
phases reach 100% but (2, 2) is ascending
fastest. Similar observations can be made as
for Easom: a smaller n, gives a faster ascent
and for a given n,, a smaller ng gives a faster
search.

Shubert

In this test problem, NA succeeds quite well
for the phases (nsamplei, ng, n,) = (500, 2, 2)
and (500, 20, 2). They both have fast ascent
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Figure 5.7: As can be seen in the upper

panel, the phase (nsamplei, ng, n,) = (500,
2, 2) reaches 100 % fastest for the test prob-
lem Goldstein-Price.

and reach about 95%. If 100% is required then
the phase (500, 20, 20) is the one getting up
fastest (see figure . Also here a similar be-
haviour as for Easom and Goldstein-Price can
be observed.

nsamplei

As can be seen for the Mexican Hat prob-
lem, there are big differences between the three
choices of values of the parameter nsamplei
(see figure . The significance of the pa-
rameter depends on the problem. For some
problems it works all right having the size of
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Figure 5.8: In the test problem Shubert
(nsamplei, ng, n,.) = (500, 20, 20) is the phase
which reach 100 % first, but the phases (500,
2, 2), (500, 20, 2) and (500, 100, 2) are rising
faster and are almost as good.

the initial ensemble of the same size as ng, but
for more difficult problems as the Mexican Hat,
it is of great importance that the initial ensem-
ble has explored the search domain well before
beginning the NA search. NA can be a greedy
algorithm. If it has not sampled the favourable
parts of the search domain from the start, it
might choose the wrong cells to search within
and never find the global optimum.

Choosing a large nsamplei is expensive and
therefore it is more to take into account than
only good performance.
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Figure 5.9: Different choices of nsamplei
give different results in the estimated proba-
bility (upper panel) and mean deviation from
optimum (lower panel). (nsamplei, ng, n,) =
(500, 100, 20) was the phase with the best re-
sult for Mexican Hat (see figure[5.3)), and (n,
n,) = (100, 20) here too.

Some of the results above can probably be
improved by increasing nsamplei, but there
was not enough time to make more tests in
this study.

5.4 Discussion

It appears that the value of n, is very impor-
tant for how fast the curves for the phases as-
cend. As can be seen in all test problems, a low
n, gives a fast ascent, but it does also, in most
cases, result in a more greedy search. A low ng
also seems to make the search faster and also



more greedy, although the behaviour is not as
significant and clear as for n,.

When it comes to the relative importance of
n, and ng, it seems that n, is more important
for both the ascent and for how greedy the al-
gorithm becomes.

The test problem Mexican Hat is a difficult
analytical problem for NA (as can be seen in
figure . There are a lot of valleys in func-
tion space to get trapped in, and high hills in
between. The algorithm easily gets trapped in
a valley, without any ability to check if lower
objective function values appear behind the
surrounding hills (see figure .

The fact that NA does not reach 100% in the
Fallat-Dosso case can be explained by the num-
ber of dimensions. In Fallat-Dosso there are
six dimensions instead of two as in the other
test problems. Fallat-Dosso is a tricky prob-
lem and a lot of exploration is needed. Specif-
ically, nsamplei and n, need to be large, and
the algorithm needs to check in a lot of cells for
the optimum. This can be illustrated with the
phases (2000, 100, 100), (2000, 100, 20) and
(2000, 20, 20) in figure (2000, 100, 100)
reaches the highest value, and the other two
phases provide much worse results. The num-
ber of models created in each cell, ng, is not
the important parameter. Since (2000, 20, 20)
and (2000, 100, 20) are very much alike, the
setting of n, is determining the performance.

Note the difference between the two cases
with the two different limits for success for the
test problem Fallat-Dosso. When the limit is
decreased, the chance for NA to succeed is of
course also decreased. When NA has been suc-
cessful in 70% of the cases after 20000 eval-
uations for the limit 0.159, the success frac-
tion is less than 20% at 20000 evaluations for
the lower limit. For the lower limit, all three
phases give results which are quite close to each
other.

Sambridge [12] has emphasized the signifi-
cance of the adaptively changed Voronoi cell

structure for finding the optimum, as the it-
erations proceed. Still, however, the perfor-
mance is not always good enough according to
the results here; the algorithm is too greedy. A
way to improve could be to increase nsamplei
(which is quite expensive) or to develop the al-
gorithm in such a way that it chooses other
models than the best ones for the random
walks. In the latter case, ideas from Simulated
Annealing (see section could perhaps be
used.

Sambridge says that the choice of n, and ng
is important since the search gets more explo-
rative if they are almost equal and quite large
and more local if n, is small and n; is large.
But Sambridge also says that if you choose n,
= 2 you will get as good results as if you had
chosen a larger value, if the algorithm runs long
enough [I2]. This statement has not been con-
firmed in the test runs presented in this report.

A larger value of ns; moves the take-off of the
success fraction curve to the right, implying
a larger number of model evaluations, which
makes the run more expensive.

Sambridge says in [12] and [I5] that NA was
created to find ensembles of models that sam-
ple the regions with low objective function val-
ues well and not primarily to find a single opti-
mal model. In the articles [12], [I5], he concen-
trated on ensembles of models. But Sambridge
also states that although NA is intended for
collecting ensembles, it performed just as well
as any other approach to the global optimisa-
tion in his tests [12]. The results above give a
hint of how the control parameters affect the
outcome of the runs for optimisation applica-
tions.

All four global search techniques are com-
pared and discussed in chapter [ See also
chapter [0, where the algorithms are used on
an inverse problem and an ensemble of models
is collected.
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5.4.1 Tips and Suggestions

The NAB program package is well suited and
prepared for parallel computing. Guides to the
NA program package can be found in [16] and
[14].

Time Consumption

In contrast to the other three optimisation al-
gorithms, the time consumption of NA has a
quadratic increase with the number of model
evaluations. This can be seen in figure [5.10
which concerns the synthetic test example
Mexican Hat for which the CPU time for the
actual model evaluations is very small. The
quadratic increase arises from the computa-
tions of Voronoi cell intersections with axes
along which the random walks take place.

To see the time consumption of the subrou-
tines in NA, a profiler was run for the Mexican
Hat problem. In this way, it was made clear
that the three subroutines for the calculations
of the Voronoi cell intersections with lines are
using almost all time spent (together almost
100%). The time for the actual model evalua-
tions is negligible in this case. When applying
NA to a more applied problem, the time con-
sumption for the model evaluations is typically
dominant.

Suggestions for Further work

e In NA/ only the n, cells with the lowest
objective function values are chosen for
the random walks. If there was a probabil-
ity of choosing other cells with higher ob-
jective function values, maybe NA could
find the optimum more often. The prob-

ability could be decreased with time (cf.
Simulated Annealing, section [3.1.1)).

e As it is now, the first axis along which a
random walk step is supposed to be taken,
is randomly chosen. After that, the axes
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Figure 5.10: The three dotted curves show
the CPU time versus number of model evalua-
tions for different values of n, for the Mexican
Hat problem. ng = 200 and nsamplei = 1000
in each case. A legible quadratic appearance is
seen. The remaining three curves show best-
fitting quadratic curves.

are cycled through until all axes are con-
sidered. If the order of the axes was to-
tally random, maybe the algorithm would
make an improved search.

The subroutines concerning the cell in-
tersections are the most time consuming.
If most of the points in the search do-
main were ignored, the calculations in
these subroutines would be faster. An
idea could be to take into account only the
models in a region cut out around the cur-
rent model, in whose Voronoi cell the algo-
rithm is to walk. The computations time
would be reduced, but there is a risk that
the resulting Voronoi cell estimate would
be larger than the correct Voronoi cell.

If nsleep, the number of direction axes
cycles to make before accepting a new
model, was a control parameter instead of
a fixed number in the code, maybe this
could give better results.



Chapter 6

Tabu Search

Rune Westin

6.1 Background

The basics of Tabu Search were developed by
Glover in 1977 when he attempted to incor-
porate artificial intelligence into an optimisa-
tion algorithm. The word ”tabu” is Tongan - a
polynesian language - and indicates something
that cannot be touched because it is sacred.
In Tabu Search, certain forbidden (or tabu)
moves are stored in memory lists to prevent en-
trapment in cycles. The algorithm is intended
for combinatorial problems but attempts have
been made to adapt it to continuous problems.
I am currently aware of three different vari-
ants of Tabu Search for continuous optimisa-
tion problems.

Discretised Tabu Search (Directional)
is used by Vinther and Mosegaard [17].
Certain move directions are tabu.

Discretised Tabu Search (Model-wise)
is used by Michalopoulou and Ghosh-
Dastidar [18], [19]. Certain models are
tabu. Michalopoulou and Ghosh-Dastidar
use the name ”Tabu”.

Enhanced Continuous Tabu Search is
developed by Chelouah and Siarry [I]
as an improvement on Continuous Tabu
Search, developed by Siarry and Berthiau

[20]. Tt is also implemented by Teh and
Rangaiah [21].

6.1.1 The Notion of the Current
Model

Since Tabu Search searches for optima by mov-
ing its attention from model to model accord-
ing to certain rules, a set of variables keeping
track of the current position of the algorithm
is needed. The current model, in this text de-
noted m*, is the point of view for the Tabu
Search algorithm at each moment.

6.2 Discretised Tabu Search

As listed above, I have encountered two vari-
ants of Tabu Search that discretise the con-
tinuous search domain [17], [18], [19]. T call
this category of algorithms ”Discretised Tabu
Search” (DTS).

6.2.1 Discretisation and Movement

Common for both DTS algorithms is the way
they discretise the search domain and define
the neighbourhoods around each model.

The search domain of N dimensions is dis-
cretised with some step 4, in each dimension
n =1,...,N. This means that the search do-
main is restricted to a model space containing
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Figure 6.1: Definition of the neighbourhood
in DTS in a two-dimensional search domain
for both the index vector v and the real vector
m. v, denote neighbours of v and m/ denote
neighbours of m.

a finite number of models. Every model m can
be represented in an indezx space by a vector v
of N integer indices. A change in v, by 1 will
give a change in the corresponding m,, by d,

(see figure [6.1]).

The neighbourhood to m is defined as all
models that can be reached by changing one el-
ement of v by 1 in index space. In model space,
this means moving one step d, in only one di-
mension n (see figure [6.1). In other words,
diagonal moves are not allowed. Each model
has 2N neighbours (except for models at the
boundaries of the search domain).

At the beginning of the algorithm, an initial
model m* is either chosen or randomly selected
depending on the preference of the user. In
each iteration, the neighbours of m* are deter-
mined. For each neighbour m!,, the objective
function value f], is calculated and the neigh-
bour with the lowest objective function value
Jtest 18 chosen as the the new current model
m*, even if this leads to a model with a higher
objective function value than the previous cur-
rent model (i.e. fr., > fiq). Thus, DTS can
climb from a model with a lower objective func-
tion value to a model with a higher objective
function value.
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6.2.2 Discretised Tabu Search (Di-
rectional)

This variant of DTS is used by Vinther and
Mosegaard on seismic inversion problems [17].
It distinguishes itself from other variants of
Tabu Search by making directions for moves
tabu. I have therefore used the name ” Discre-
tised Tabu Search (Directional)” (or DTSp for
short) whilst Vinther and Mosegaard use the
name ”Tabu Search” in their article.

Tabu List

To avoid moving back to previous models and
risk getting stuck in cycles, the algorithm keeps
track of the latest move directions. The reverse
move directions are made tabu (i.e. forbidden)
and are stored in a tabu list with a length de-
fined by the user.

Whenever a move is to be made, the algo-
rithm checks if the direction of the move giv-
ing the lowest objective function value is in the
tabu list. If it is, this move is discarded and the
move giving the next lowest objective function
value is checked, and so on until the best non-
tabu move is found. This move is then made,
giving a new m*, and the opposite move direc-
tion is recorded in the tabu list.

For example, if a move has been made in
the positive n-axis direction, the negative n-
axis direction is added to the tabu list. When
a new direction is recorded in the tabu list, the
oldest direction in the list is removed so that
the length of the list is kept constant.

In this way, the tabu list gives the algorithm
the ability to climb upwards to higher objec-
tive function values and helps it avoid getting
trapped in local minima.

Aspiration Criterion

Sometimes, the tabu list prevents the algo-
rithm from moving in a direction that would be



desirable to explore. For example, one neigh-
bour of m* could have a significantly lower ob-
jective function value compared to all previ-
ously visited models, while the move to this
neighbour from m* is forbidden because the
direction of the move is in the tabu list.

To avoid missing such interesting models, an
exception called the aspiration criterion is in-
troduced. The idea is that the tabu status of
a move can be ignored when the move leads to
a model with an exceptionally good objective
function value.

Termination Criterion

There are several ways to stop the search. One
way is to define a small objective function
value that must be reached before the search
is ended. Another one is to define a maximum
number of moves. Often, several different ter-
mination criteria are combined.

6.2.3 Discretised Search

(Model-wise)

Tabu

This algorithm was used and described by
Michalopoulou and Ghosh-Dastidar for appli-
cation to source localisation and geoacoustic
inversion [I§]. The variant makes certain mod-
els forbidden and therefore I call it ”Discre-
tised Tabu Search (Model-wise)” (or DTSy
for short). In their article, Michalopoulou and
Ghosh-Dastidar use the name ” Tabu”.

Tabu Lists

This part of the algorithm differs substantially
from the list described in Here, a move
is defined as a direction and a model. There
are three lists.

Reverse List: This list contains the past K
moves that led to an improvement (K =
2N where N is the dimension of the search
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Figure 6.2: A sample DTSy search of 16
moves in a two-dimensional search domain.
Notice in moves 2-3 and 8-9 how the algorithm
moves over small “ridges”. The algorithm can
only make one move ”uphill” in order to find a
better model on the other side. If more moves
are required it falls back to the previous model.

domain). These moves must not be re-
versed. In figure this is illustrated in
for example move 10 which is not reversed.

Forward List: This list contains the past M
moves, where M is given by the user.
These moves must not be repeated. Move
4 in figure[6.2]is for example not repeated.

Objective function value List: This list
contains objective function values for
the last evaluated models to avoid un-
necessary calculations.  The objective
function value for the model reached in
move 6 in figure had already been
evaluated when the direction for move 2
was determined.

Expansion

After some time, a model is reached from which
all moves are tabu. In this case, a local min-
imum has been found. This minimum could



(Ul—k,vg-i-k) 1}1,1)2+k ’l}l-‘rk U2+k)

— k, 1)2) (’Ul, ’UQ ’01 + k ’02

k,va — k) (1)1, Vo — k) (’1)1 + k,va — k)

(v1 —

Figure 6.3: Definition of the DTSy ex-
pansion neighbourhood in a two dimensional
search domain for the index vector v. k is a
random integer larger than one.

of course be the global minimum but in most
cases it is not. In order to escape this mini-
mum and explore other regions, a longer move
— called a ”jump” — is made.

A new kind of neighbourhood is defined
where the neighbours m’ of a model m are
those models that can be reached by changing
either one or all elements of the corresponding
index vector v by k where k is a random inte-
ger grater than 1 (see figure [6.3). This means
that also diagonal moves are allowed. The total
number of neighbours in this new neighbour-
hood will be 2N + 2%V,

It is sometimes desirable to make a more
thorough exploration by defining two more
neighbourhoods with increasing size. The sec-
ond and the third neighbourhood is generated
by doubling and tripling k. The neighbour
with the best objective function value is chosen
as the new current model.

The combined neighbourhood will have a
size of 3(2N + 2V) models making this kind of
expansion very cumbersome for problems with
a large number of dimensions.

6.2.4 Implementation of DTSy,

I decided to test DTSy in a Fortran 77 im-
plementation based on the description in [18].
To my knowledge, the only significant devia-
tion from the description that I made was the

51

|/

14}

Figure 6.4: A path of the DTSy walker min-
imising Mexican Hat. Darker areas are regions
of lower objective function values.

inclusion of mirroring. This was needed when
the algorithm ventured outside the search do-
main.

I discovered that without expansion, the
algorithm was extremely greedy and would
not climb more than one step upwards, which
would seldom allow it to escape local minima.
The consequence was that an expansion was
needed every time the algorithm was trapped.
Figure[6.4] shows one of the few successful min-
imisations of Mexican Hat. Many expansions
were performed before a sufficiently good start-
ing point was found for the local search. It
should be pointed out that the distances cov-
ered by the local searches are only a fraction
of the distances covered in the expansions.

The conclusions from these premises were:

e DTSy is a fairly fast local optimiser.

e Global optimisation requires many expan-
sions.

e One expansion requires 3(2N +2") objec-



tive function evaluations, making minimi-
sation of functions of many variables very
costly.

Considering that the applications foreseen
for our optimisation algorithms (see chapter
have 10 to 24 dimensions, I decided to search
for other variants of Tabu Search for continu-
ous optimisation problems.

6.3 Enhanced
Tabu Search

Continuous

The previous variants of Tabu search discretise
the search domain for a convenient definition of
neighbourhoods. This also simplifies the man-
agement of tabu lists that contain previously
visited models. It is, however, sometimes use-
ful to have a higher resolution and flexibility
than that which can be obtained with a rea-
sonable discretisation.

Siarry and Berthiau proposed an adaptation
where models could be chosen from anywhere
in the continuous search domain in a procedure
called ”Continuous Tabu Search” (CTS) [20].
Later, Chelouah and Siarry improved CTS by
redefining the neighbourhood and adding an
exploration stage. The resulting algorithm is
called ”Enhanced Continuous Tabu Search”
(ECTS) [1].

6.3.1 Neighbourhood

The neighbourhood of a model m* in CTS con-
sists of 7 neighbours m/ where 7 is twice the
number of dimensions up to a maximum of 10
(n = min[2N,10]). To determine the neigh-
bours, we consider a set of n + 1 concentric
spheres centred on m*. The spheres have radii
ho,hi,...,hy where hg < hy < ... < hy. A
neighbour m/ is placed randomly between the
shells of two spheres so that h;—; < |lm* —
m'|| < h; where ||...|| denotes the Euclidian
norm.

The partitioning of the neighbourhood de-
pends on three parameters: the radius of the
outer sphere h,, the radius of the inner sphere
ho and the number of neighbours n. Three par-
titioning methods for h; are proposed:

1. Geometrical partitioning. Fach radius is
half of the next larger radius (see figure
. This promotes placing neighbours
close to m*.

(6.1)

2. Linear partitioning. The distances be-
tween shells are equal (see figure .

hy(n—i+1)
hy—iv1 = ” ,

1=1,...,7n

(6.2)

3. Isovolume partitioning. The volumes be-
tween the shells are equal. Here, the pre-
set h, has no consequences for the parti-
tioning. The outermost shell radius will
be calculated from Ay and 7.

WY\~
hi+1:(hf\71> , i=0,...,n—1

"
(6.3)

When developing ECTS, Chelouah and
Siarry decided to replace the hyperspheres
with hypercubesE] (see figure because it
is practically easier to select a uniformly dis-
tributed random model in a cubical than in a
spherical shell. h; represents the half-length of
the sides of hypercube 3.

Teh and Rangaiah have proposed a conve-
nient method for selecting the neighbours [21].
I have reformulated the description in their ar-
ticle slightly:

Tn [1], Chelouah and Siarry refer to the neighbour-
hood as hyperrectangular but since all sides of the hy-
perrectangles are equal, I find it more suitable to use
the term hypercube.
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Figure 6.5: Different partitioning methods in
CTS. Geometrical partitioning (top) and lin-
ear partitioning (bottom). Geometrical parti-
tioning promotes neighbours close to m*.
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Figure 6.6: Geometrical partitioning in
ECTS. The hyperspheres of CTS have been
replaced by hypercubes.

. Calculate h; with the selected partitioning

so that hg, hq,..
0.

., hy are known. Set i =

. Update ¢ = i+ 1 with the intention of gen-

erating a neighbour m/ between the shells
of hypercube 7 and hypercube 7 — 1.

. Evaluate the upper bounds U]' = m;, + h;

and lower bounds L} = m;, — h; for hyper-
cube i, where n = 1... N is the dimension
and m;, is the n-component of m*.

. Generate a uniformly random model x; =

(z},22,...,2}N) within the bounds, using
N rectangularly distributed random num-

bers ry, in the interval [0,1] and

(6.4)

. Calculate the shortest distances o] be-

tween the components of the generated
model x; and the lower bounds L}, given
by af = x} — L.

CIf (hl’ —hi_1 < Oé? < h; + hifl) is fulfilled

for all of',n = 1,2,...,N, then x; lies



within hypercube i —1 and must be regen-
erated from step 4. Otherwise, m} = x;.

Table 6.1: First part of a summary of the
ECTS algorithm. Continued in table

7. Repeat steps 2 to 6 until all neighbours
have been generated.

6.3.2 Tabu and Promising Lists

ECTS has two lists keeping track of specific
locations in search space, the promising list
for especially interesting regions and the tabu
list for forbidden regions. These regions are
defined as balls centred on points (models)
recorded in the list. The balls have radii given
by the algorithm, one radius for the promising
balls and one for the tabu balls. To find out
if a model m lies within a ball, the Euclidian
norm |/m — x||, where x is the centre of the
ball, is compared to the radius of the ball.

6.3.3 Outline of ECTS

ECTS consists of five stages: Parameter
setting, diversification, search for the most
promising region, intensification and output.
The algorithm is outlined in tables[6.1 and
and its stages are described more thoroughly in
what follows.

Parameter Setting

Some parameters are given by the user. These
include the sizes of the tabu and promising lists
(N¢ and N), the search domain and possibly
the starting point. Others are calculated from
the given parameters, for example the initial
radii of the tabu and promising balls (h; and
hp) and the size of the hypercubical neighbour-
hood (h,, and hg). A complete guideline for the
parameters are given by Chelouah and Siarry

.

1. Parameter setting: Some parame-
ters are given by the user and some are
calculated. A starting model is defined.

2. Diversification: A number of promis-
ing regions are detected.

(a)

1 neighbours to the current model
are generated.

If a promising model is detected,
it is recorded in the promising list.

The best neighbour is taken as the
current model and the previous
model is recorded in the tabu list.

Steps are repeated until the
stopping criteria are met.

3. Search for the most promising re-
gion: The most promising region is de-
tected.

(a)

All promising models worse than
the average objective function
value in the promising list are re-
moved.

The tabu ball radius and the
neighbourhood size are halved.

1 neighbours are generated for
each promising model. A promis-
ing model is replaced by its best
neighbour if the neighbour is bet-
ter.

The worst promising model is re-
moved.

Step are repeated until only

one promising model remains.

The user can also select the partitioning
methods to be used at the different stages.
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Table 6.2: Second part of a summary of the
ECTS algorithm. Continued from table

4. Intensification: The most promising
region is more thoroughly searched.

(a)
(b)
()

(f)

The most promising model is
taken as the current model.

1 neighbours to the current model
are generated.

The best neighbour is taken as the
new current model and the previ-
ous model is recorded in the tabu
list.

Steps are repeated until a
specific number of iterations with-
out an improvement have passed.

The tabu ball radius and the
neighbourhood size are halved.
The best model yet is taken as the
current model.

Steps are repeated until the
stopping criteria are met.

5. Output: The best model found is pre-
sented.

Diversification

The aim of this stage is to make a wide search
in order to find the most promising regions of
the search domain. At the beginning of the
stage, the tabu list is emptied and the promis-
ing list is filled with random models. A start
model m* is either randomly selected or given
by the user.

A neighbourhood to m* is defined accord-
ing to section and 7 neighbours are gen-
erated. Neighbours within tabu balls or out-
side the search domain are regenerated until all
neighbours are non-tabu and within the search
domain. The objective function values for all
neighbours are evaluated and the neighbour
with the lowest objective function value is cho-
sen as the new current model m*, even if it
is worse than the previous one. New neigh-
bours for the new m* are generated and so on.
Whenever a new model is chosen, another it-
eration has passed.

When a new current model m* has been
chosen, the previous one is added to the tabu
list. If the tabu list is full, the oldest model in
the list is removed to make place for the new
model.

The objective of the diversification stage is
to fill the promising list with interesting mod-
els, preferably separated from each other to
avoid redundancy. A value called the ”thresh-
old” is equal to the mean value of the objective
function values for all models in the promis-
ing list. A visited model m* is inserted in the
promising list if it fulfills three criteria:

e The objective function value of m* must
be better than the threshold.

e All neighbours of m* must have higher ob-
jective function values than m*.

e m* must not lie close to an already exist-
ing promising model (i.e. within a promis-

ing ball).



If a model m* fulfills these criteria, the worst
model in the promising list is removed and m*
is inserted in its place. The new threshold is
calculated.

The diversification stage continues until a
given number of successive iterations have
passed without detecting a new promising re-
gion and also without finding a new best model

mbestﬂ»

Search for the Most Promising Region

This stage is performed to narrow down the
list of promising regions to one single promis-
ing region. First, all models with an objective
function value higher than the threshold are re-
moved from the list. The remaining models in
the list are dealt with in an iterative manner:

. The radii of the tabu balls (h;) and the
size of the hypercubic neighbourhoods (h,,
and hg) are halved.

. Neighbourhoods are defined and neigh-
bours are generated for all promising mod-
els in the list.

Each promising model is replaced by its
best neighbour, but only if the objective
function value is lowered.

The worst model in the promising list is
removed.

Steps 1-4 are repeated until only one
promising model remains.

2The second test was not included in the original
ECTS as described in [I]. I added it after experiencing
that the algorithm sometimes would reach a really good
model at the end of the diversification stage without
recording it in the promising list because it did not
fulfill the criteria.

In my implementation, I also found it useful to finish
the stage only if the last iteration was from a model
with a lower objective function value to a model with
a higher objective function value.
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The remaining model in the promising list is
taken as the new current model m*.

Intensification

This stage intensifies the search for the most
promising region. The ball with radius h,
around the remaining promising model is taken
as the new search domainPif]

At the beginning of the stage, the tabu list
is emptied.

A new search is initiated as in the diversifica-
tion stage with the exception that the promis-
ing list is ignored; a neighbourhood is defined
and n neighbours are generated and checked
against the tabu list. The best neighbour is
taken as the new m*, even if it is worse than
the previous current model. In each iteration,
the algorithm keeps track of the best model
found so far my,g;.

When a predetermined number of successive
iterations have passed without an improvement
of myeg, the radius of the tabu balls (hy) and
the size of the hypercubic neighbourhoods (h,,
and hg) are halved and the tabu list is emptied.
The best model found so far is used as the new
current model (m* = my.s) and the search
continues from there.

There are two stopping criteria for the in-
tensification stage.

e A predetermined number of successive re-
ductions of the tabu balls and the hyper-
cubic neighbourhoods have passed with-
out detection of a new mypeg;.

31t is possible that this is an unnecessary restriction
of the search domain since the neighbourhoods have be-
come very small and the algorithm is unlikely to move
large distances. However, if it does move large dis-
tances, this should not have a negative impact on the
search since it is always the best model that counts. In
my implementation, I kept the original search domain.

Tt is, as in the case of the neighbourhood in sec-
tion [6.3.1] convenient to use a hypercube instead of a
hypersphere as the new search domain.



e A predetermined number of iterations
have passed since the beginning of the in-
tensification stagdﬂ

Output

At this stage, m* is presented to the user along
with its objective function value and relevant
statistics.

6.3.4 Control Parameters

There are a lot of parameters that can be
tuned. Chelouah and Siarry have pointed out
some guidelines [I] that should work for prob-
lems with several different numbers of dimen-
sions. The control parameters are presented
in the following list with Cheloah and Siarry’s
proposals for parameter values (N is the num-
ber of dimensions and ¢ is the shortest side of
the hyperrectangular search domain).

e Tabu list size (N; = 7).
e Promising list size (N, = 10).

e Maximum number of successive iterations
without detection of a new promising re-
gion in the diversification stage (Max, =
2N).

e Maximum number of successive iterations
without detection of a new best model in
the intensification stage (Max, = 5N).

e Maximum number of successive reduc-
tions of the hypercubic neighbourhood in
the intensification stage (Max, = 2N).

e Maximum number of iterations in the in-
tensification stage (Max; = 50N).

5Again, I found it useful to let the algorithm con-
tinue until all neighbours of the current m* had worse
objective function values than m*, even if this criterion
was fulfilled.

e The initial radius of the tabu balls (h; =
o0):

e The initial radius of the promising balls
(hp = 5%)

e The initial size of the hypercubic neigh-
bourhoods (h, = g)

e The number of neighbours in a neighbour-
hood (n = min[2N, 10]).

All these parameters can of course be var-
ied. In my study, I limited myself to vary-
ing N¢, Np, Max,, Max;, Max, and Max;. I
later discovered that increasing N, or Max,
did not improve my results significantly and
that Max; only needed to be increased if the
algorithm was stopped while the results were
still improving. This means that I was down to
three parameters for variation: Ny, Max, and
Maxb.

6.4 Results

I tested ECTS on the five synthetic test
problems: Mexican hat, Fallat-Dosso, Easom,
Goldstein-Price and Shubert. Each problem
was optimized with five different parameter
settings (i.e. phases) and the number of runs
(nyun) in each phase was 10000. One of the
parameter settings tested is the recommended
one from [I] (phase one in each graph), three
are deviations from this setup by one parame-
ter (phases two through four) and one is a com-
bination of deviations in all parameters (phase
five). The estimated probability for success for
the different phases was observed according to
equation , and the mean deviation from
the global optimum was calculated according

to equation ([2.4)).
Mexican Hat

The results are displayed in figure
the best parameter setting, ECTS succeeded

In
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Figure 6.7: ECTS optimisation of Mexican
hat. Top: The estimated success probabilities.
Bottom: The mean deviations from the global
optimum.

in finding an objective function value less than
—0.99 in approximately 30 % of the runs.

Three of the phases are slightly more reliable
than the one with the recommended parame-
ter values. One is the phase where the max-
imum number of successive iterations without
detecting a new promising region (Max,) is
increased. This prolongs the diversification
stage, giving ECTS a better chance of finding
a good promising region to search more thor-
oughly, at the expense of making the algorithm
slower.

The second more reliable phase is the one

Figure 6.8: The regions where Mexican hat
has an objective function value less than -0.99
are marked in black.

where the maximum number of successive it-
erations without detecting a new best objec-
tive function value (Maxy) is increased. I be-
lieve that this improvement corresponds to the
choice of limit for success in Mexican hat.
There are two regions for Mexican hat with
an objective function value less than -0.99, one
immediately around the origin and one in the
circular valley closest to the origin (see figure
. Both of these regions require good local
optimisation capability to be found, and in-
creasing Max; increases this capability in the
intensification phase.

The last phase causing improvement involves
a combination of prolonged diversification and
intensification. This means that the optimisa-
tion in this phase is generally more reliable but
also more slow than in the other phases in this
test.

Fallat-Dosso

Figure illustrates that ECTS did not per-
form well on Fallat-Dosso. The plot of mean
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Figure 6.9: ECTS optimisation of Fallat-
Dosso. Top: The estimated success probabil-
ities. Bottom: The mean deviations from the
global optimum.

values shows that phases with prolonged di-
versification stages generally find models with
smaller objective function values.

Easom

The results are shown in figure [6.10] Here,
phases with a prolonged intensification stage
are much less successful in finding the global
optimum than the other phases.
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Figure 6.10: ECTS optimisation of Easom.
Top: The estimated success probabilities. Bot-
tom: The mean deviations from the global op-
timum.

Goldstein-Price

ECTS works fairly well on Goldstein-Price as
seen in figure There is a small trade-off
between speed and reliability, since a prolonged
diversification stage increases the probability
of success but slows the process down.

Shubert

It should be noted that there are many global
optima in the search domain of Shubert. The
estimated probability of finding one is illus-
trated in figure [6.12] Here, it is clear that an
increase in Max, as well as in Max; improves
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the chances of success while slowing the process
down.

6.5 Discussion

There are both advantages and disadvantages
of ECTS. The main advantage is speed. ECTS
uses a comparably small amount of objective
function evaluations. Another advantage is
that ECTS is a good local optimiser, although
it is perhaps not as good as designated local
optimisers.

The main disadvantage is that ECTS is not
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Figure 6.12: ECTS optimisation of Shubert.
Top: The estimated success probabilities. Bot-
tom: The mean deviations from the global op-
timum.

particularly reliable. The optima that ECTS
finds are sometimes global but in most cases
they are not. In Goldstein-Price, the objective
function has only three local minima, with an
easy, mostly downhill, path to the global min-
imum. In Shubert, there are many global min-
ima to choose from, improving ECTS’s chances
of finding a good starting point for its intensi-
fication.

An observation is that ECTS finds the global
minimum fast if it finds a sufficiently good
promising region in the diversification phase.
Therefore, attempts to improve the objective
function value should be focused on setting the
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control parameters to prolong the diversifica-
tion stage.

One of the most puzzling results is ECTS’
low probability in finding the global optimum
of Easom when using a prolonged intensifica-
tion stage (see figure . I have not been
able to understand why this behaviour occurs.

Throughout my tests, I could not reproduce
the outstanding results presented in the origi-
nal ECTS article [I]. One observation made by
Headar and Fukushima [g] is that there might
be inconsistencies in some of the results of Ch-
elouah and Siarry [I]. The success fractions
for some of the test functions reported were
100 % even though the average error — given
as the difference between the found optimum
and the analytical optimum — was greater than
the criterion for success.

My conclusion is that although ECTS may
not be as reliable as the other optimisation
techniques in the tests, it should not be over-
looked. If sufficiently low minima are enough
and if speed is a major issue, ECTS might be
a good choice. There is potential in the algo-
rithm and if improvements were to be done on
the diversification stage, increasing its reliabil-
ity, the speed of ECTS would be a competitive
factor. However, at present, the performance
of ECTS is not good enough compared to al-
gorithms such as Adaptive Simplex Simulated
Annealing and Differential Evolution.

61

6.5.1 Other Implementations

During my tests, I came upon one article de-
scribing an implementation of ECTS for appli-
cation to phase equilibrium calculations [21].
The authors, Teh and Rangaiah, had used
ECTS for diversification and the search for
the most promising region. The intensifica-
tion stage was performed by local optimisers (a
modified Simplex method and a quasi-Newton
method).

6.5.2 Tips and Tricks

ECTS cannot normally handle problems where
the search domain in one or more dimensions
has the same upper bound as lower bound.
This might be a problem in cases where one
would like to keep one variable in the search
constant by limiting its domain to just one
value. The reason for this problem is that
ECTS bases the size of the neighbourhood on
the extent of the least extensive search domain
dimension §. If the extent is zero, the size of
the hypercubic neighbourhood will be zero and
the algorithm gets stuck in the initial point.

In order to circumvent this problem, I de-
fined a search space for the algorithm where
the extent in all dimensions is [0,1]. I then
created a shell around the objective function
routine which transformed the search space of
the algorithm to the search space of the objec-
tive function. In this way, I could also handle
problems where different dimensions have dif-
ferent scales.



Chapter 7

Algorithm comparison

Hanna Gothall and Rune Westin

In this chapter, the performances of the four
optimisation techniques are compared.

7.1 Comparison of Results

For each of the different synthetic test prob-
lems, the best phase of each technique has
been chosen. The corresponding results for
the different techniques are plotted together.
The control parameters of the displayed phases
are shown in the following manner (the pages
where the control parameters are described are
shown within parentheses):

Algorithm

Control parameters

ASSA (p. p0)

DE (p.

ECTS (p.

NA (p.

(tofakt / Ty, 3, S,
nPert, s, nPertfactor)
(NP, F, CR)

(N¢, Max,, Maxy)
(nsamplei, ng, n,)

where tOfakt is used in all cases in ASSA, ex-
cept in the test problem Easom where Tj is
used instead.

Mexican Hat

The best results for each optimisation tech-
nique on Mexican hat are shown in figure |7.1
It can be seen that DE and ASSA reach success
fractions of 100% with DE being slightly faster
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Figure 7.1: A comparison of optimisations of
Mexican hat. Phases chosen are: ASSA: (20.0,
0.95, 10, 5, 1.0, 5), DE: (20, 0.5, 0.9), ECTS:
(10, 16, 20) and NA: (1000, 100, 20).
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Figure 7.3: A comparison of optimisations of
Easom. Phases chosen are: ASSA: (10.0, 0.8,
20, 1, 1.0, 5), DE: (20, 0.5, 0.9), ECTS: (10, 4,
10) and NA: (500, 100, 2)

Figure 7.2: A comparison of optimisations
of Fallat-Dosso. Phases chosen are: ASSA:
(10.0, 0.975, 30, 10, 1.0, 10), DE: (30, 0.5, 0.5),
ECTS: (7, 12, 60) and NA: (2000, 200, 200)

than ASSA. The fastest ascent is exhibited by
ECTS, but it only reaches a success fraction
of approximately 30 %. NA finds the required
optimum in 60 % of the runs.

in optimising Fallat-Dosso, regarding speed
as well as attained success fraction. ASSA
reaches 90 % after approximately 25000 evalu-

Algorith Control t
goriiim ‘ Omtro. parameters ations and NA reaches 30 % after 41000 evalu-

ASSA (20.0, 0.95, 10, 5, 1.0, 5) ations. ECTS gets trapped in local minima in
DE (20, 0.5, 0.9) N

ECTS (10, 16, 20) AHHOSE Al TIS.

NA (1000, 100, 20)

Algorithm ‘ Control parameters

Fallat-Dosso ASSA (10.0, 0.975, 30, 10, 1.0, 10)
DE (30, 0.5, 0.5)

The Fallat-Dosso results are shown in figure ECTS (7, 12, 60)

DE is by far the most successful algorithm NA (2000, 200, 200)

63



Easom

For the optimisation of Easom, ASSA and DE
perform best of the four algorithms (see fig-
ure(7.3)), with ASSA somewhat faster than DE.
NA, with a success rate of 90 %, is slightly
faster than ASSA. ECTS is fastest at the be-
ginning, but it only reaches 45 % for the frac-
tion of successful runs.

Algorithm ‘ Control parameters

ASSA (10.0, 0.8, 20, 1, 1.0, 5)
DE (20, 0.5, 0.9)

ECTS (10, 4, 10)

NA (500, 100, 2)

In the control parameters for ASSA, Tj is dis-
played instead of tOfact.

Goldstein-Price

All of the four optimisation algorithms give
similar results for Goldstein-Price, as displayed
in figure Only ECTS, with its 95 % suc-
cess fraction, does not succeed in all the runs.
NA is the fastest of the algorithms. It should
also be noted that the initial sample size for
NA is 500 models.

Algorithm ‘ Control parameters

ASSA (20.0, 0.95, 1, 1, 3.0, 1)
DE (20, 0.5, 0.9)
ECTS (7, 20, 10)
NA (500, 2, 2)
Shubert

The results for Shubert are displayed in figure
[7.5] Here, ASSA and NA have very similar
results, both reaching success fractions of 100
%. DE reaches 100 % as well, but it needs far
more evaluations to do so. ECTS is fast, but
it only reaches a success fraction of 85 %.

Estimated probability for finding a model with f < 3.0003

T L L
400 600 800 00
Number of model evalutaions

200

Mean deviation from global optimum

. . .
400 600 800 1000
Number of model evalutaions

I
200

Figure 7.4: A comparison of optimisations
of Goldstein-Price. Phases chosen are: ASSA:
(20.0, 0.95, 1, 1, 3.0, 1), DE: (20, 0.5, 0.9),
ECTS: (7, 20, 10) and NA: (500, 2, 2)

Algorithm ‘ Control parameters

ASSA (30.0, 0.9, 30, 1, 3.0, 4)
DE (20, 0.5, 0.9)

ECTS (10, 16, 20)

NA (500, 100, 20)

7.2 Discussion

The performances of the four optimisation al-
gorithms vary with the objective function. It
does not seem possible to choose an algorithm
that works well on all optimisation problems.
In most cases in these comparisons, ASSA and
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Figure 7.5: A comparison of optimisations of
Shubert. Phases chosen are: ASSA: (30.0, 0.9,
30, 1, 3.0, 4), DE: (20, 0.5, 0.9), ECTS: (10,
16, 20) and NA: (500, 100, 20)

DE are the most reliable algorithms. How-
ever, ASSA has some problems to optimise
Fallat-Dosso and DE is quite slow compared
to the other algorithms when optimising Shu-
bert. Generally, however, ASSA and DE seem
to be good choices of algorithms for future opti-
misations of objective functions with unknown
optima.

Concerning the results for ASSA when op-
timising the Fallat-Dosso test problem, it may
be interesting to note another similar optimi-
sation test. Fallat and Dosso used SSA, an-
other algorithm combining Downhill Simplex

and Simulated Annealing, to optimise the same
test problem and obtained a success fraction of
93 % with at least twice or even three times as
many evaluations as with ASSA [3]. However,
Fallat and Dosso performed only 100 optimi-
sation runs. Thus, the success probability es-
timate of 93 % has an uncertainty of perhaps
+3 % according to equation .

ECTS is the least reliable of the four algo-
rithms, regardless of which of the five synthetic
test problems is optimised. For most test prob-
lems, ECTS provides the fastest initial ascent
of the success fraction curve. However, the
curves flatten out well before reaching 100 %.
Further research aiming at improvements of
ECTS is desirable. Such improvements should
probably be concentrated to the diversification
stage, as discussed in chapter [6]

NA is originally designed for finding ensem-
bles of models, rather than finding a single
global optimum. Sambridge states that al-
though NA is intended for this, it performed
just as well as other global optimisation tech-
niques in his tests [12]. However, NA does not
perform as well as ASSA and DE in the opti-
misation examples studied in this chapter.

Sambridge also discusses a fusion between
NA and other search methods, for example ge-
netic algorithms [12]. This could be an inter-
esting topic for further research in this field.

In Karlsson 2], a Simulated Annealing algo-
rithm (SA) and a Genetic Algorithm (GA) are
used to minimise Mexican hat. Since the test-
ing procedure and the limit for success are sim-
ilar to the ones used in this study, it is possible
to compare the test results. The main differ-
ence between the two studies is that Karlsson
uses Npyn = 100, implying a larger maximum
uncertainty ¢ = 0.05, while ny, = 10000 is
used in this study (for NA, ny, = 1000).

During the first 1000 objective function eval-
uations, SA is more likely to find an objective
function value below —0.99 than any of the four
algorithms tested in this study. After that,
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DE and ASSA surpass SA, since SA reaches its GA and SA perform worse than ASSA and DE
maximum success fraction at 85%. GA reaches but better than NA and ECTS.
85% after 2000 evaluations. This means that
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Chapter 8

Acoustic Applications

Hanna Gothall and Rune Westin

During the first world war, attempts were
made to detect submarines by transmitting un-
derwater sound pulses (called pings) and lis-
tening for the echoes. The British acronym
for these detection devises was ASDIC (Anti-
Submarine Detection Investigation Commit-
tee) and the US term, used in the second world
war and thereafter, is SONAR (SOund, NAv-
igation and Ranging) [22]. The latter term is
widely used today.

The time between a transmitted ping and
the received echo provides the distance to the
detected object, and the frequency shift in the
response provides information about the move-
ment direction of the object.

The submarine, on the other hand, uses
countermeasures to improve its ability to avoid
sonar detection. One such countermeasure is
an anechoic coating on the outer hull of the
submarine that reduces the sound power being
reflected back to the sonar. There are several
ways to design these coatings.

When avoiding detection, it is mainly the re-
flection coefficient of normally incident sound
that is relevant since it is this sound that will
be reflected back to a monostatic sonar (a
sonar with the transmitter and the receiver
close together. A bistatic sonar, however, can
detect echoes from sound with other angles of
incidence than 0°.).

This chapter deals with the optimisation of
anechoic coatings. First, the geometry and ma-
terial properties of a classic type of coatings are
optimised. These coatings are made of rubber
and they contain air-filled cavities.

Then, a study of the material in certain coat-
ings is described briefly. The sound velocity
and sound absorption profiles of these materi-
als can also be optimised.

8.1 Alberich Anechoic Coat-
ings

8.1.1 Background

Anechoic coatings have been in use since the
second world war, when the German navy used
rubber coatings with air-filled cavities to re-
duce the echoes from the hull of its submarines.
The code name for these anechoic coatings,
that cover the outer steel hull of the subma-
rine (see figure [8.1)), was ” Alberich” [23].

The principal idea of Alberich anechoic coat-
ings is that incident sound energy from an
active sonar, wich enters the rubber coating,
is scattered by the cavities and dissipated by
anelastic attenuation in the rubber (see figure
. The amount of sound energy reflected
back to the sonar is thus reduced.

There are several ways to design anechoic
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Water

Water

Figure 8.1: An illustration of an Alberich
anechoic coating on the outer hull of a subma-
rine.

Incident
sound energy

Scattered
sound energy

Figure 8.2: The function of the cavities in
the rubber coatings. Normally incident sound
energy is scattered and dissipated by anelastic
attenuation.
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coatings. The thickness can range from a few
millimetres up to 100 mm. However, the use
of cavities in the coatings reduces the thick-
ness needed. The cavities can be placed in one
or several layers and they can have equal or
different sizes and shapes. An important ques-
tion is: How should the coatings be designed
to minimise the sound reflection coefficient?

8.1.2 Problem Description

In order to minimise the reflection coefficient of
the anechoic coatings, an optimisation problem
is formulated based on a theoretical model of
the coatings.

Theoretical Model

Ivansson and Frenje Lund have described
methods to calculate the reflection coefficient
of certain kinds of Alberich anechoic coatings
for different sound frequencies [24]. The coat-
ing to be considered here has two layers of
spherical cavities distributed at equal distances
from each other (see figure . In prac-
tice, coatings with cylindrical cavities are more
common, but coatings with spherical cavities
are easier to handle computationally.

Based on the method in [24], Ivansson has
written a Fortran 77 program calculating the
reflection coefficient of Alberich coatings for
different frequencies. For the application con-
sidered in this report, the input parameters
comprise three variables representing acoustic
characteristics of the rubber, and seven vari-
ables representing geometrical characteristics
of the rubber and the cavities.

The program returns the reflection coeffi-
cient of a coating described by the ten vari-
ables, i.e., the model m. The variables are:

1. Factor for distance between cavities

2. Shear wave velocity in the rubber (m/s)



3. Shear wave damping in the rubber (dB/\)
4. Factor for the radii of the upper cavities

5. Factor for horizontal shift between the
cavities in the two layers

6. Factor for the distance between the cavity
layers

7. Factor for the radii of the lower cavities
8. Factor for extra rubber thickness

9. Factor for rubber thickness above the up-
per cavities

10. Longitudinal wave damping (dB/\)

The boundaries of the search space are set
to limit the optimisation to feasible coating de-
signs. For example, a rubber material with
the specified acoustic characteristics should be
possible to manufacture.

The thickness of the outer steel hull is here
set to six millimetres. The thickness of the rub-
ber coating is required to be less than six mil-
limetres. The radii of the cavities are between
0.25 and 2.5 millimetres, and the distances be-
tween the upper cavities range from about 2.5
to 12.5 cavity radii.

Two of the model variables, ms (horizontal
shift) and mio (longitudinal wave damping),
are set to be constant, meaning that the upper
limits of these variables are equal to the lower
limits.

Objective Function Value

To be precise, the calculated reflection co-
efficient for a particular m is the quotient
between the corresponding normally reflected
sound power W, and the normally incident
sound power W;. The reflection coefficient, in
dB scale, is

-10f

Reflected sound power level (dB)

-15
0

10 20 30 40 50 60
Frequency (kHz)

Figure 8.3: A sample reflection coefficient as
a function of frequency.

Wi (fs, m)

Ly (fs,m) =10 - log; <VV'i(f57m)> , (8.1)
where f; is the sound frequency (see example
in figure . The objective function value to
be minimised is defined as the mazimum re-
flected sound power level between 15 and 30
kHz This means that only the frequency band
between 15 an 30 kHz is considered (see figure
. Thus, the expression for f(m) becomes

f(m) = max(Lw (fs, m)),

(8.2)
15 kHz <f; < 30 kHz

8.1.3 Results

Evaluating the reflection coefficient of a cer-
tain Alberich model is much more computa-
tionally cumbersome than evaluating the ob-
jective function value of any of the synthetic
test functions described in chapter On the
computers available in the study, one objective
function evaluation takes two to three seconds.

Also, the fact that the models consist of ten
variables (eight actually, since two of the vari-
ables are fixed) indicates that the optimisation
of the Alberich coating design requires more
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Reflected sound power level (dB)

_15 i . .
0 30 40 50
Frequency (kHz)

10 20 60

Figure 8.4: The horizontal black solid line
shows the maximum reflected sound power
level between 15 and 30 kHz. This is the ob-
jective function value to be minimised.

evaluations than the optimisation of the syn-
thetic test functions.

Therefore, exhaustive testing with different
control parameters was not possible with the
limited time available. The experience ob-
tained about control parameters during the
test function optimisations was used to select
control parameter setups for the optimisation
techniques.

The optimisation of the coating was per-
formed up to five times with each technique.
When necessary, the control parameters were
tuned for the optimisations to give better re-
sults. The best reflection coefficient curves
found by the different techniques are shown in
figure The control parameters used in the
best optimisation runs are given for each algo-
rithm.

ASSA

ASSA required 8500 evaluations to find the
model with the reflection coefficient shown in
figure Based on all optimisations in the
test, this is believed to be close to the global
optimum. This was also similar to the best re-
sults in all performed ASSA optimisations, al-
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Figure 8.5: The reflectivities of the best de-
signs found by the different optimisation al-
gorithms. The reflectivities are shown in the
considered frequency band (15-30 kHz).

though sometimes, over 40000 evaluations were
needed.

The control parameters used
(T, B, S, nPert, s , nPertfactor)
(20.0, 0.995, 1, 1, 3.0, 3).

were

DE

The best result by DE was close to the best
ASSA result. However, DE normally used ap-
proximately 40000 evaluations. The results of
DE were consistent among the performed op-
timisations.

The control parameters used were (NP, F,
CR) = (300, 0.7 ,0.9).

ECTS

ECTS was the fastest of the techniques, using
only about 4000 evaluations. However, it never
found the global optimum, and the results were
not consistent among the different runs.

The control parameters used were (Ny,
Max,,, Max;) = (100, 80, 50).



NA

NA used about 20000 evaluations to find the
model with the reflection coefficient shown in
figure This was a typical result for NA.
The control parameters used
(nsamplei, ng, n,) = (10000, 15, 15).

were

8.2 Material Profile Design

In the example with the Alberich anechoic
coatings above, the rubber material between
the cavities is homogenous. This section deals
very briefly with a coating where the sound ve-
locities and dampings of the material vary with
the depth of the coating.

Such coatings have been considered by
Bjorkert et al [25]. The sound velocities and
dampings of longitudinal as well as transverse
waves vary with the depth. The acoustic ab-
sorber adheres to the outer steel hull of the
submarine.

In order to find the optimum material profile
design for the acoustic absorber, the authors of
[25] used a trust region method for nonlinear
least-squares minimisation problems.

8.2.1 Algorithm Tests

It was desired to test if ASSA, DE, ECTS and
NA could reproduce the results of the origi-
nal optimisation in [25]. The four optimisa-
tion techniques were used on the material pro-
file design problem (an optimisation problem
of 24 variables).

Without going into details, it was found that
all four techniques could match, and in some
cases slightly improve, the results given in [25].

8.3 Discussion

In its best optimisation run on the Alberich
anechoic coatings, the performance of ASSA
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Figure 8.6: The reflectivities from figure
shown from one to 60 kHz.

was unmatched by the other optimisation tech-
niques when considering both speed and ob-
tained objective function value. However, this
run was exceptional and in most cases, ASSA
and DE gave similar results when optimising
the coating design. One conclusion is that
the results may depend much on the choice of
control parameter values and, to some extent,
luck. If the algorithm happens to start in a for-
tunate place in the search domain, it is more
likely to find the global optimum fast.

ECTS was as usual very fast but not very re-
liable. If the diversification stage of ECTS en-
counters a good enough promising region, from
which to intensify the search later on, ECTS
will presumably be the fastest technique to find
the global optimum. However, the required
promising region appears to be very small com-
pared to the search domain, and it is not likely
that the diversification stage will be successful
enough.

NA did not succeed in finding the optimum
coating design. In its present version, the al-
gorithm appears to be too greedy, with a too
poor ability to climb out of local minima.

It should be pointed out that the assumed
global optimum of the coating design is resided
at an edge of the search domain. Both the fac-
tor for the distance between cavities (m;) and



the shear wave damping (ms) are at the upper
limits of their allowed ranges. Whether this af-
fects the optimisation or not is unclear. How-
ever, a knowledge that some optimal model
variable is at an edge of the domain could be

used to reduce the number of dimensions in
the optimisation problem, since variable val-
ues could be fixed. This would enhance the
performance of all algorithms.
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Chapter 9

A Bayesian Inversion Problem

Hanna Gothall and Rune Westin

Inverse problems are problems where certain
values or data are known and one wishes to find
the model associated with these data. For ex-
ample, an inverse problem arises when a signal
has been received and one wishes to locate the
source of the signal based on available theories
of signal propagation. Inversion is used to fit
variables to data.

More specifically, suppose that d is the
known data, where d can be any set of data.
Furthermore, let mgz be the unknown origi-
nal model that d is associated with. If g(m)
is a vector-valued function based on a the-
ory on how data are associated with models,
d =~ g(meig). To compute g(m) for a given m
is called to solve the forward problem.

An objective function f(m) can be defined
according to

f(m) = [|g(m) —d]],

where ||...|| denotes a norm chosen by the
user. This objective function, for which the
value is always equal to or greater than zero,
signifies the data misfit corresponding to the
model m. Since g(merig) ~ d, it can be as-
sumed that f(merg) =~ 0, providing an op-
portunity to find the unknown original model
Merig by minimising f(m).

Actually, in inverse problems the objective
function value f is often called misfit to em-

(9.1)

phasise its relation to how well a model fits
the data. It will also be the term used in this
report when dealing with inverse problems.
This chapter deals with the inversion of a
synthetic reflection coefficient from the Al-
berich anechoic coatings described in chapter

B

9.1 A Synthetic Inverse Prob-
lem on Alberich Anechoic
Coatings

In addition to ordinary optimisation, it was de-
sired to test the four optimisation techniques
on an inversion problem. For this, an inversion
problem was designed based on the Alberich
anechoic coatings (see chapter , since a com-
puter program for calculating the coating re-
flection coefficient associated with a model was
available.

9.1.1 Description of the Problem

It was decided to simulate the measurement of
a certain reflection coefficient and try to find
the model variables of the corresponding Al-
berich anechoic coating. The computer pro-
gram for calculating the reflection coefficient,
associated with a certain coating, provides the
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function g(m), where the model m describes
the coating design.

To simulate a measurement, a feasible re-
flection coefficient was needed. An original
model my,iz was chosen and the associated re-
flection coefficient g(meyig) was calculated for
Ny = 16 uniformly spaced frequencies between
15 and 30 kHz. In order to make the "mea-
sured” reflection coefficient a bit more realis-
tic, a vector e of Gaussian noise was added to
the reflection coefficient to simulate measure-
ment noise. Thus, the original data were sum-
marised in a vector given by d = g(my,ig) + €.
The Gaussian noise component variables were
identically distributed and independent.

The problem is to find the ”unknown” origi-
nal model mg,i;. Given d and g(m), mgj; can
be estimated by minimising f(m) = ||g(m) —
d||?. The norm is here defined as

Ny
lalf? =" a2 (92)
i=1
where Ny is the number of frequency compo-
nents for the reflection coefficient. Therefore,
the inversion problem can be formulated as a
least-squares minimisation of the residual vec-
tor g(m) — d.
The simulated Gaussian measurement noise
had a standard deviation of 3-1073, giving the
original model m,ig a misfit of

f(morig) :||g(morig) - dH2 =
:||g(morig) - g(morig) - eHz =
=lle|®>~ 1.44-107*
(9.3)

for Ny = 16 (see equation (9.2))). This should
be considered the lowest misfit of interest, since
misfits below f(mgg) are likely to be more
adapted to the measurement noise than to the
original reflection coefficient.

9.1.2 Least-Squares  Minimisation

Results

The four optimisation techniques were used on
the inversion problem and stopped when they
reached the misfit of the original model. The
numbers of evaluations needed for the differ-
ent techniques to reach f(mgg) are shown in
the table below. ECTS was the fastest of the
four, DE and ASSA used approximately twice
as many evaluations as ECTS. NA used more
than three times as many evaluations as ECTS
making it the slowest of the techniques.

Algorithm Number of evaluations

ECTS 5 500
DE 9 600
ASSA 10 700
NA 17 700

The control parameters giving these results for
the different algorithms are:

ASSA: (Ty, 8, S, nPert, s, nPertfactor) =
(30.0, 0.975, 10, 5, 1.0, 3)

DE: (NP, F, CR) = (80, 0.8, 0.9)

ECTS: (N, Max,, Max;) = (100, 100, 50)
NA: (nsamplei, ng, n,) = (5000, 150, 100).

9.2 Neighbourhood
Algorithm — Bayes

Until now, the inversion problem has been
treated as a particular optimisation problem,
involving the search of a "best” model. How-
ever, it is not certain that this model is in-
deed mis. Suppose, for example, that there
are many models in the search domain associ-
ated with similar reflectivities. The question is:
What is the degree of confidence that the found
model agrees well with the original model?

In order to answer this question, knowledge
of the accuracy of the data is needed, as is some
prior idea (before taking the data into account)
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of a probability distribution in the search do-
main. A more general question is: What is the
probability density for the estimated location
in the search domain of the original model?

Prior Probability Density

Sometimes, there is a prior idea of the proba-
bility density. This prior probability density,
denoted p(m), may arise from some former
knowledge about the problem. For example,
suppose that the problem is to estimate the
length of a person, in a known population, from
some data. It seems reasonable to assign a nor-
mally distributed prior probability density.

In many cases, there is no prior preference
concerning different locations in search space.
The prior probability density is typically cho-
sen to be uniform within the search domain
under such circumstances (p(m) = constant).

Posterior Probability Density

If the misfit f(m) = ||g(m) — d||? is known
for all models and if the noise of the data d
(as defined in section is Gaussian with
a standard deviation of o, the natural poste-
rior probability density (PPD), denoted P(m),
fulfills

f(m)

Pm)~p(m)-¢ 2% (9.4)

according to Bayes’ rule [26], [27].
Apparently, the right-hand side of equa-
tion can be evaluated for each particu-
lar model m in the search domain. For ex-
ample, the relative posterior probability for
a number of specified models can directly be
determined. Absolute PPD values are more
difficult to obtain, however, since the propor-
tionality constant inherent in equation
is unknown. This proportionality constant is
needed to achieve [ P(m)-dm = 1. Important
questions are how to resolve this proportional-
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ity problem and how to determine the regions
in the search domain with high PPD values.

9.2.1 The Search Ensemble

When a least-squares solution to an inverse
problem has been obtained, as in section [9.1.2
much more information than the single best
model found is actually available. A whole en-
semble of calculated models has been collected
during the search! The question is if the infor-
mation in this search ensemble can be used to
gain information about the PPD.

An immediate idea is to plot ensemble mar-
ginal distributions for different search domain
variables.  Figure shows marginal dis-
tributions for the search ensemble from the
least-squares minimisation done by DE (sec-
tion . Four model variables are chosen
here: the factor for the distance between cavi-
ties, the rubber shear wave velocity, the rubber
shear wave damping and the factor for cavity
radius. The original parameters are indicated
with vertical dotted lines.

It is not certain, however, that these distri-
butions give a truthful indication of the uncer-
tainty in the estimation of the variables of the
original model. The sampling distribution of
the DE search algorithm is unknown, and it
could deviate significantly from the PPD (bi-
ased sampling). The search algorithm could,
for example, favour a domain with low misfit
values too much and sample this domain un-
representatively much.

9.2.2 Neighbourhood
Approximation

The search ensemble could be used as a guide
for resampling the search domain. The idea
is to substitute the true PPD with an approx-
imate PPD, and resample the search domain
accordingly. The resampling generates a new
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Figure 9.1: Marginal distributions for the search ensemble from the least-squares minimisation
with DE. The following four model variables are displayed: (a) the factor for the distance between
cavities, (b) the rubber shear wave velocity, (c) the rubber shear wave damping and (d) the factor
for the cavity radius. The original parameters are indicated with vertical dotted lines.
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ensemble distributed according to the approx-
imate PPD.

The neighbourhood approximation to the
PPD is obtained by setting the model misfit
to a constant inside each Voronoi cell. It is
denoted Pya(m), and represents all the infor-
mation gained from the input search ensemble.
Pxa(m) is here chosen to guide the resampling.

A resampling algorithm exists, see section
for which the sampling distribution tends
to the target distribution, Pya(m), after many
iterations [26]. An advantage is that the for-
ward problem need not be solved again during
the resampling.

When an ensemble distributed according to
the approximate PPD has been obtained, the
moments of the distribution can be estimated
by simple averaging. Hence, from the resam-
pled ensemble, correlations and uncertainties
can be estimated, among other things.

9.2.3 Description of Neighbourhood
Algorithm — Bayes

The algorithm used to do this resampling
is called Neighbourhood Algorithm — Bayes
(NAB). A short description of the method and
the theory behind it is given here. For a more
thorough exposition, see Sambridge [26].

Since only an ensemble of models generated
during a search is needed, NAB can be used
for any search method which has been used to
solve the inverse problem.

In contrast to NA, the Voronoi cells are un-
changed during a calculation with NAB. The
new models created are only collected to shape
a distribution. Hence, the Voronoi cell struc-
ture is never changed.

NAB uses importance sampling, hence, it
does not waste time in domains with high mis-
fit. Instead, NAB concentrates the work to the
domains with low misfit. The importance sam-
pling of the approximate PPD is done with a
technique known as Gibbs sampler, which is

effective in the Voronoi cell context. The size
and structure of a Voronoi cell get more and
more complex with increasing dimensionality
of the problem. In higher dimensions, the size
and structure are extremely difficult to calcu-
late. The Gibbs sampler walks in only one vari-
able direction at the time. Along a line, the
intersections with the Voronoi cells are easy
to calculate. Hence, the dimensionality of the
problem causes no particular difficulties.

NAB performs a number of random walks in
the search domain. The initial cell for the first
random walk, for example cell 7, is determined
by a control parameter. In NAB, in contrast
to NA, each random walk steps outside the ini-
tial Voronoi cell in order to resample the en-
semble (see figure[0.2). Axes directions for the
random walk are cycled through until all axes
have been considered. The probability of step-
ping into a cell is determined by the product of
its PPD value and the width of its intersection
with the current axis. After each cycle of steps,
a new m is typically collected to the ensemble.
The cycles are done a number of times until
the prescribed number of steps in the random
walk have been done. The second walk starts
in cell 44 1, and so on until all random walks
have been made.

An alternative to NAB is the Metropolis Al-
gorithm (cf. Simulated Annealing at 7' = 1),
which solves the inverse problem with a vast
number of evaluations of g(m). A faster vari-
ant of the Metropolis Algorithm is Dosso’s Fast
Gibbs Sampler (FGS) [27] .

9.2.4 Control Parameters

The control parameters and some suggested
values are specified here. More information can
be found in [14].

e Number of random walks (100)

e Number of steps per random walk (1000)
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Figure 9.2: Two independent random walks
guided by the neighbourhood approximation of
the PPD. The Gibbs sampler is used. For the
first step (z-direction) of the walk starting at
cell B (shaded) the shape of the conditional,
Pua(z;|z_;), is shown above the figure. Af-
ter many steps, the density distribution of the
random walk will asymptotically tend to the
approximate PPD, Pya(x). (Picture and cap-
tion after [26].)

Starting Voronoi cell of first random walk
(1) (1=lowest misfit, 2=second lowest mis-

fit,...)

Number of direction axes cycles to make

before collecting a model to the new en-
semble (1)

Number of steps before refreshing internal
tables (avoids error build up) (2000)

Several options for numerical integration

9.2.5 Enhancement

When running the NAB program, it termi-
nated before it had completed all random walks
in some runs. This happened when the pro-
gram tried to randomly choose a value along an
axis according to a certain distribution. This
is done in NAB with a rejection method in
the subroutine NA_randev. A number is ran-
domly chosen (uniformly distributed) within
the search range of the variable in question.
The number is accepted at once if the corre-
sponding cell has the highest PPD value along
the axis. If this is not the case, the number is
accepted with a probability based on the PPD
value of the cell. If the number is rejected, the
method tries all over again.

The modification to the subroutine is called
NA_randev_alt [ and it is an additional part
of the subroutine NA_randev that is activated
in the case of too many rejections. It is a direct
distribution function method, which temporar-
ily rescales the lengths of the cells along the
axis. The length of a cell is, after the rescal-
ing, its width times its PPD value. A random
number is uniformly chosen. It is used to de-
termine the next model for the random walk,
along the axis.

9.2.6 Results

Marginal distributions after the resampling are
shown in figure [9.3 The model variables are
the same as in section [0.1] The original model
variables are shown as vertical dotted lines here
as well.

Clearly, changes can be seen compared to
the marginal distributions from the original
DE least-squares minimisation (see figure .
For the factor for the distance between cavities
(panel (d)), a drastic change has appeared: the
distribution is uniform after the resampling,
although it looked quite different before the

(see [14] for more information)
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resampling. On the other hand, the rubber
shear wave damping (panel (c)) is correctly and
accurately determined, although another im-
pression was obtained from the initial search
ensemble. In the distribution for the rubber
shear wave velocity (panel (b)), an ambiguity
can be seen with essentially two possible val-
ues. For the factor for the distance between
cavities (panel (a)), NAB seems to have con-
centrated the distribution to the region which
looked most important before the resampling.

In figure two different two-dimensional
distributions are displayed. The original model
variables are shown with white circles. This
kind of plots can visualise correlations between
the variables. Indeed, a diagonal appearance
can be seen in both panels. The plots also in-
dicate uncertainties in the model variable esti-
mates, by the spread in the corresponding di-
rections.

9.2.7 Discussion

NAB has shown to be useful in connection with
inverse problems for evaluating the uncertain-

ties of the estimates of the model variables.
Starting from a search ensemble created by any
global optimisation method, NAB does not re-
quire any further evaluations of the forward
problem.

A drawback of NAB is that the regions with
low misfit in the search domain must be well
sampled. Otherwise, the neighbourhood ap-
proximation to the PPD will not be represen-
tative. This means that the ensembles from
certain algorithms (for example ECTS, which
is not always able to find good promising re-
gions) are not suitable.

The Fast Gibbs Sampler (FGS) algorithm
by Dosso [27] aims at sampling from the true
PPD, but a vast number of forward problem
solutions are needed.

The NAB computer program contains more

features than discussed in this chapter. For
example, the output files contain distribution

moments and there is an indicator variable
telling whether or not enough models have
been collected. The NAB program package is
well suited and prepared for parallel comput-
ing.
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(c)

Figure 9.3: Marginal distributions for the ensemble collected with NAB. The following four model
variables are displayed (the same as before the resampling): (a) the factor for the distance between
cavities, (b) the rubber shear wave velocity, (c) the rubber shear wave damping and (d) the factor
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for the cavity radius. The original model variables are indicated with vertical dotted lines.
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Figure 9.4: Two-dimensional distributions for the ensemble collected with NAB. The following
model variables are displayed: (a) the rubber shear wave velocity versus the factor for the distance
between cavities and (b) the rubber shear wave damping versus the factor for the distance between
cavities. The original model variables are indicated with white circles.
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Chapter 10

Conclusions

Hanna Gothall and Rune Westin

As discussed in the previous chapters, the
most reliable of the four optimisation algo-
rithms seem to be ASSA and DE.

10.1 ASSA

ASSA is a fast optimisation technique, which
is also reliable (particularly after the improve-
ments, see sections and . The basic
ideas are easy to understand. The test problem
Fallat-Dosso proved difficult, but in all other
cases ASSA provided good results quickly.

An advantage of ASSA is that it is a com-
bination of a global and a local optimisation
technique. It is a good global optimiser, and
when the temperature gets low, it is a good
local optimiser as well.

There are many control parameters, which
makes it a bit difficult to adjust the values.
Still, the suggested values have, in the tests
in this study, proved to be good (at least as
something to start from).

10.2 DE

DE has proved to be a very reliable technique
for a wide range of optimisation problems. A
few exceptional test problems have been found,
however, for which DE is comparatively slow.

The algorithm is easy to comprehend and
implement, and the control parameters are few.
DE is also well suited for parallel computing.

10.3 NA

NA is an algorithm which is very easy to under-
stand. The algorithm is not that easy to imple-
ment, but the NA program package is available
(see [I4]) and is well suited and prepared for
parallel computing. Another advantage is that
the number of control parameters is so small.

A drawback is that the algorithm is too
greedy: in the test examples, NA does not
reach a 100% success fraction as often as ASSA
and DE do. An idea for improvement could be
to allow a cell to be chosen for a random walk
with a certain probability, even though its ob-
jective function value is higher than the n, low-
est objective function values. This probability
should preferably decrease with time.

104 ECTS

ECTS appears to be a good local optimiser
with global abilities. However, even though
the local abilities of ECTS may be better than
for DE and NA, they are not as good as for
dedicated local algorithms. At the same time,
ECTS is outperformed in global optimisation
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by the other optimisation techniques in this
study.

The foremost advantage of ECTS is its
speed. In optimisation runs where it finds a
model close enough to the global optimum,
ECTS is fast compared to most other algo-
rithms.

In most problems, there are probably bet-
ter choices than ECTS. It could be preferable
to use a global algorithm, with better global
abilities than ECTS, with a dedicated local op-
timiser added as a final step in the optimisa-
tion. An interesting research problem would

be to try to improve the diversification stage
of ECTS.

10.5 NAB

NAB has proved to be useful in connection
with Bayesian inverse problems to assess un-
certainties in the model variable estimates.

Advantages of NAB are that it does not re-
quire any further evaluations of the forward
problem, and that it can be applied to an en-
semble generated by any global optimisation
technique.

The NAB program package is well suited and
prepared for parallel computing.

A drawback of NAB is that the regions with
low misfit in the search domain must have been
well sampled. Otherwise, the neighbourhood
approximation to the PPD will not be repre-
sentative.
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