
 
Weapons and Protection 

SE - 147 25 Tumba 

FOI-R--1631--SE

April 2005

ISSN 1650-1942

Scientific report

Gunnar Wijk

Initially increasing penetration resistance, friction and 
target size effects in connection with rigid projectile 

penetration and perforation of steel and metallic targets

 





 

 
SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1631--SE 

April 2005 

ISSN 1650-1942 

Weapons and Protection 
SE-147 25 Tumba 

Scientific report 

Gunnar Wijk 

Initially increasing penetration resistance, friction and 
target size effects in connection with rigid projectile 

penetration and perforation of steel and metallic 
targets  



 
Issuing organization Report number, ISRN Report type 
FOI – Swedish Defence Research Agency FOI-R--1631--SE Scientific report 

Research area code 
5. Strike and protection 
Month year Project no. 
April 2005 E2007 
Customers code 
5. Commissioned Research 
Sub area code 

Weapons and Protection 
SE-147 25 Tumba 

51 Weapons and Protection 

Author/s (editor/s) Project manager 
Gunnar Wijk  Gunnar Wijk 
  Approved by 
   
  Sponsoring agency 
   
  Scientifically and technically responsible 
   
Report title 
Initially increasing penetration resistance, friction and target size effects in connection with rigid projectile penetration 
and perforation of steel and metallic targets 

Abstract (not more than 200 words) 
   A model for rigid projectile penetration and perforation of hard steel and metallic target plates 
is suggested. The intended application is in computer programs for assessment of effects and 
vulnerability.  
   The target material resistance to penetration is assumed to be the sum of nose resistance and 
friction along the part behind the nose. The nose resistance increases initially with the 
penetration depth to a constant value, which corresponds to lateral displacement of the material 
along the projectile trajectory. The friction also increases from the start and becomes constant 
when the rear end of the projectile passes the front face of the target. When the front end of the 
projectile is sufficiently close to the rear surface, then the remaining volume of target material in 
front of the projectile is crushed and forms fragments. At the penetration depth where this occurs 
the force required for crushing equals the force required for continued lateral displacement of the 
target material. The fragments are ejected with the same velocity as the projectile.  
 

Keywords 
penetration perforation friction rigid projectile model 

Further bibliographic information Language English 

 

ISSN 1650-1942 Pages 25p. 

 Price acc. to pricelist 



5 

 
Utgivare Rapportnummer, ISRN Klassificering 
Totalförsvarets Forskningsinstitut – FOI FOI-R--1631--SE Vetenskaplig rapport 

Forskningsområde 
5. Bekämpning och skydd 
Månad, år Projektnummer 
April 2005 E2007 
Verksamhetsgren 
5. Uppdragsfinansierad verksamhet 
Delområde 

Vapen och skydd 
147 25 Tumba 

51 VVS med styrda vapen 

Författare/redaktör Projektledare 
Gunnar Wijk  Gunnar Wijk
  Godkänd av 
  
  Uppdragsgivare/kundbeteckning 
  
  Tekniskt och/eller vetenskapligt ansvarig 
  
Rapportens titel (i översättning) 
Inverkan av initialt ökande inträngningsmotstånd, friktion samt målets storlek vid stela projektilers inträngning i och 
genomträngning av hårt stål och metalliska mål.  

Sammanfattning (högst 200 ord) 
 
   En modell för stela projektilers penetration och perforation av målplåtar av stål och metalliskt material 
föreslås. Modellen är avsedd att tillämpas i datorprogram för värdering av verkan och sårbarhet.. 
   Målmaterialets inträngningsmotstånd antas vara summan av motstånd vid nosen och friktion bakom 
nosen. Nosmotståndet ökar från starten med inträngningsdjupet till ett konstant värde, vilket motsvaras 
av att målmaterialet deplaceras väsentligen radiellt utåt för att ge plats för projektilen. Friktion ökar 
också från start och blir konstant när projektilens bakända passerar målets framsida. När projektilens 
främre ända är tillräckligt nära den bortre plåtytan, krossas det återstående materialet framför projektilen 
och bildar splitter. Vid det inträngningsdjup där detta inträffar är kraften som behövs för krossningen 
lika med kraften som skulle behövas för fortsatt sidledes förflyttning av materialet. Splittren kastas ut 
med samma hastighet som projektilen. 

Nyckelord 
Penetration perforation friktion stel projektil modell 

Övriga bibliografiska uppgifter Språk Engelska 

 

ISSN 1650-1942 Antal sidor: 25 s. 

Distribution enligt missiv Pris: Enligt prislista 



FOI-R--1631--SE 
 

6 

Contents 
 
Notation.........................................................................................................................7 
Introduction...................................................................................................................7 
Basic model..................................................................................................................8 
Friction ..........................................................................................................................9 
Initially increasing penetration resistance..............................................................11 
Initially increasing penetration resistance and friction .........................................13 
Nose shape dependence of penetration resistance coefficient .........................15 
Target size effect .......................................................................................................16 
Experimental results for penetration ......................................................................18 
Discussion ..................................................................................................................21 
Conclusion..................................................................................................................24 
References .................................................................................................................24 



FOI-R--1631--SE 

7 

Notation 
D target diameter      [m] 
dP projectile diameter      [m]  
ET elastic modulus for target material    [Pa] 
h target thickness      [m] 

*h  transition thickness between penetration and perforation   [m] 
( )*h  thickness of target material that forms secondary fragments   [m] 

LP projectile length      [m] 
mP  projectile mass     [kg] 
mT mass of secondary fragments from target rear surface   [kg] 
P projectile penetration depth     [m] 
RT axial target resistance     [Pa] 
u projectile penetration velocity                       [m/s] 
t time        [s] 
vP projectile impact velocity                        [m/s] 
vexit  projectile velocity after perforation                       [m/s] 
W projectile impact energy       [J] 
Wp  minimum target perforation energy      [J] 
YT  uniaxial yield strength of target material    [Pa] 
β  deep hole target penetration resistance parameter 
βi  initial target penetration resistance parameter 
Λ plastic deformation diameter       [m] 
γ  projectile sharpness parameter 
ρT  target density                     [kg/m3] 
θ half apex angle for a ogive-nose projectile 
τ fragment acceleration time       [s] 
ξ parameter describing initial penetration resistance  
ζ parameter describing initial penetration resistance 
µ friction coefficient 
λ lateral pressure coefficient 
νT Poisson ratio for target material  
 
Introduction 
   A model for rigid projectile penetration and perforation of hard steel and metallic 
materials was recently suggested [1]. The projectile is assumed to be retarded by a 
constant force RT=βYT, where YT  is the uniaxial yield strength of the target material 
and β=5 is the penetration coefficient. This is always a simplification of reality. Real 
penetration resistance RT should increase with the penetration depth P and smoothly 
reach the limit βYT at some depth ζdP. Here dP is the projectile diameter and ζ is a non-
dimensional parameter, which depends on the length and sharpness of the projectile 
nose. Furthermore real penetration resistance should be described with two additive 
components, one of which corresponds to the work that is required to displace the 
target material in front. This component should be proportional to the square of the 
diameter dP. The other component corresponds to friction between the projectile and 
the target material. If it is assumed that there is contact between the target and the 
projectile along the entire length LP of the latter, then the friction force should be 
proportional to the product dPLP. Thus rigid projectiles with the same mass mP, nose 
shape, diameter dP and impact velocity vP but with different length LP should 
penetrate to different depths P so that shorter projectiles reach larger depth.  
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   It is also reasonable to expect the penetration coefficient β to depend on the shape of 
the projectile nose, so that β is smaller for a sharper shape. This is based on the 
theoretical difference between the pressures that are required to expand cylindrical 
and spherical holes in elastic-plastic materials of infinite extent.  
   Below the basic model in [1] is first described. Thereupon it is modified to account 
for (non-viscous) friction only. Next initially increasing penetration resistance without 
friction is accounted for. Thereupon both effects are simultaneously considered. This 
is followed by suggestions for how β should vary with the half apex angle θ for 
conical-nose projectiles in semi-infinite targets and for how large targets must be in 
order to be considered as semi-infinite. Finally the model is compared with some 
experimental results. 
   Rigid projectiles are assumed to make holes with the same diameter dP. If the 
impact velocity is sufficiently high, then the projectile is eroding instead of rigid and 
makes a larger hole diameter. The corresponding penetration resistance is often 
assumed to be proportional to the product of the target density and the square of the 
penetration velocity. With such a penetration resistance model the effects of friction 
and initially increasing penetration resistance cannot be calculated analytically. 
Furthermore, the value for the penetration coefficient β would be unrealistically small.  
  
Basic model 
   With the basic model in [1] the penetration depth in a semi-infinite target is 
 

 
TP

PP

Yd
vmP
βπ 2

22
= .       (1) 

 
A target with the thickness h will be perforated if the impact energy  
 

 2

2
1

PP vmW =         (2) 

 
is greater than the minimum perforation energy Wp. For *hh<   
 

 ( ) TPPp YdhhdW γππ
+=

8
       (3) 

 
and for *hh>   
 

 ( ) **2

4 pTPp WYhhdW +−= βπ       (4) 

 
with 
 

 ( ) TPPp YdhhdW γππ
+= ***

8
.      (5) 

 
Here γ is a parameter that depends on the shape of the projectile nose. For a conical 
nose with the half apex angle θ=π/6 the value is γ≈1 and for a spherical nose it is γ≈2. 
The transition thickness  
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π
γβ

2
2* −

= Pdh        (6) 

 
is determined be requiring that hWp ∂∂ /  is continuous for *hh= . 
   When W>Wp the target mass mT in front of the projectile is fragmented  
 

 ( )
TPT hdm ρπ *2

4
=        (7) 

 
where ( )*h  is the smaller of h and *h . The fragments are assumed to emerge with the 
same velocity vexit as the projectile 
 

 
( )

TP

p
exit mm

WW
v

+

−
=

2
.       (8) 

 
If ppp WWWW <<− *  fragmentation is initiated but is halted when the projectile stops 

at some depth in the interval hPhh <<− * . 
 
Friction 
   Friction is accounted for via a lateral pressure on the projectile that is proportional 
to the target yield strength YT with a coefficient λ, and a friction coefficient µ. For 
simplicity only the case with a flat-nosed projectile is considered below. Then the 
friction length is equal to the projectile length LP. Friction retardation should then 
increase with the penetration depth until it is equal to the projectile length, whereupon 
it becomes constant, at least if the lateral pressure is assumed to be independent of the 
penetration depth. It is then easy to show that Eq. (1) is replaced by 
 

 
λµ

β
λµπλµ

β
44

22
P

TP

PPP d
Yd

vmdP −+







=       (9) 

 
for P<LP. Otherwise the projectile reaches the penetration depth P=LP with the 
velocity  
 

 ( )PP
P

TPP
PL Ld

m
YLd

vu
P

λµβ
π

2
2

2 +−=                         (10) 

 
and continues to the final depth 
 

 
TPPTP

LP
P YLdYd

um
LP P

λµπβπ 4
2

2

2

+
+= .    (11) 

 
Eqs. (10) and (11) yield 
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 ( )PTPP

TPPP

LPYLd
YPdvm

−
−

=
22

2 22

π
βπ

λµ .    (12) 

 
and 
 

 ( )PPTP

TPPPP

LdYd
YLdvmP

λµβπ
λµπ
4

22 22

+
+

=     (13) 

 
   For projectiles with spherical, conical or ogive nose shape the projectile length is 
still suggested to yield realistic results with Eqs. (9) – (13). The reason is that there is 
higher lateral pressure along the nose where the diameter is smaller than dP .   
    The perforation model in Eqs. (3) - (6) is assumed to remain valid even if there is 
friction retardation along the rear end of the projectile. For PLhh <−< *0  the 
minimum perforation energy is  
 

 ( ) ( ) *2*2*

24 pTPTPp WYhhdYdhhW +−+−= λµπβπ    (14) 

 
whereas PLhh >− *  corresponds to  
 

 ( ) **2*

24 pT
P

PPTPp WYLhhLdYdhhW +





 −−+−= λµπβπ .  (15) 

 
   The notation “minimum perforation energy” for Wp is strictly not adequate when 
there is friction since the projectile may become stuck in the hole if the impact energy 
is not sufficiently much higher than Wp, as shown below in connection with Eqs. (16) 
- (20). Nevertheless this notation is chosen and corresponds to the energy required to 
reach the penetration depth *hhP −=  at which fragmentation of the mass mT is 
assumed to occur instantaneously. Accordingly the projectile velocity immediately 
after fragmentation is  
 

 
P

p
P m

W
vu

22 −= .     (16) 

  
   When the fragments are produced it is reasonable to assume that the last part *h  of 
the hole has an at least slightly larger diameter than the projectile so that there is no 
friction force on the projectile in this region. For simplicity only the case with 

PLhh >− *  is considered. If the velocity u is sufficiently high and it is assumed that 
the projectile and all fragments have the same exit velocity, then the highest possible 
value for this velocity is given by energy conservation 
 

 
TP

TPPP
exit mm

YLdumv
+

−
=

λµπ 22

.                         (17) 
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   The time τ during which acceleration of the fragment mass occurs is estimated via 
momentum conservation and the average friction force on the projectile until it leaves 
the target  
 

 
( ){ }

TPP

exitTPP

YLd
vmmum

λµπ
τ

+−
=

2
    (18) 

 
With Eqs. (17) and (18) there is no loss of energy or momentum from the fragment 
mass mT via friction to the surrounding intact target material during the acceleration. 
Furthermore, once the fragments are produced, which required the energy *

pW , there 
is no further deformation of the fragments during the acceleration. 
   A possibility, which cannot be neglected, is that the projectile may be stopped in the 
hole, whereby the fragments will emerge with a smaller velocity vF than in Eq. (17). 
For simplicity only the case with PLhh >− *  and PLh <*  is considered below. At the 
penetration depth *hhP −=  the friction length is LP, the projectile velocity is u and 
the fragment acceleration starts. The velocity vF for the projectile and the fragments is 
reached when the penetration depth is PF in the interval PF LhhPhh +−<<− ** , 
whereby the rear end of the projectile, the length of which is *hhPL FP −+− , is still 
in frictional contact with target material. Energy conservation yields the relation 
 

( ) ( )( ) TFPFPFTPP YhhPLhhPdvmmum λµπ **22 2 −+−+−++= .    (19) 
 
In order to determine vF and PF momentum conservation must also be employed. The 
projectile moves the distance *hhPF +−  with the initial velocity u and the final 
velocity vF, so that the average velocity (u+vF)/2. The ratio between the distance and 
the average velocity yields a reasonable estimate of the corresponding time. If the 
average friction force is calculated from the initial and final values, then it is 

( ) 2/2 *
TFPP YhhPLd λµπ −+− . Strictly it is not correct to use these average values 

to calculate the momentum loss to the surrounding target material, but if this 
nevertheless is done then momentum conservation yields 
 

( ) ( )( )
F

TFFPP
FTFP vu

YhhPhhPLdvmvum
+

+−−+−
+=−

λµπ **2 .    (20) 

 
After numerical solution of Eqs. (19) - (20) energy conservation for subsequent 
retardation of the projectile, which is caused by friction along the rear end that has not 
yet reached the depth *hh− , will either yield an exit velocity that is smaller than vF or 
a final penetration depth P>PF, whereby the rearmost part of the projectile is stuck in 
the hole. It should be observed that it is possible to obtain P>h so that the front part of 
the projectile protrudes from the rear target surface.  
 
Initially increasing penetration resistance 
   In the basic model the penetration resistance is RT=βYT, where the coefficient β is 
assumed to be constant. For small penetration depths P this assumption is not 
realistic. For a flat-nosed projectile the initial penetration resistance should be βiYT 
with βi<β but not much smaller. Furthermore the resistance should reach the limit βYT 
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rather quickly and smoothly, namely at some depth ζdP. Accordingly it may be 
assumed that  
 

 ( ) T
P

iiT Y
d
PR

































−−−+=

ξ

ζ
βββ 11

    (21)

 

 
for P<ζdP and  
 

TT YR β=   (22) 
 
for P>ζdP.  Smooth connection for P=ζdP requires that ξ>1. The instantaneous 
penetration depth is given by 
 

TPP Rd
dt

Pdm 2
2

2

4
π

−= .  (23) 

 
 
Integration for P<ζdP yields 
 

( )
































−−

+
−−−=

+12
2 11

12

ξ

ζξ
ζ

βββ
π

P

P
i

P

TP
P d

PdP
m

Ydv
dt
dP .  (24) 

 
 
When the target is semi-infinite and the impact velocity is high enough, then Eq. (24) 
and P=ζdP yield  
 

( )
( ) ζξ

ββξζπ
u

m
Yd

vdtdP
P

TiP
P =

+
+

−=
12

/
3

2 , 
 

(25) 

 
 
whereupon the final penetration depth is obtained in analogy with Eq. (1) 
 

TP

P
P Yd

um
dP

βπ
ζ ζ

2

22
+= .  

 
(26) 
 

 
Otherwise Eq. (24) and dP/dt=0 yield a final penetration depth P that is smaller than 
ζdP. 
   When the target is semi-infinite and the impact velocity is high enough so that 
P>ζdP and the penetration resistance is given by Eqs. (21) and (22) with βi=0, then 
Eqs. (25) and (26) yield 
 

1
2

2

2

+
+=
ξ
ζ

βπ
P

TP

PP d
Yd

vmP
 

(27) 
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Comparison between Eqs. (1) and (27) quantifies the error corresponding to use of Eq. 
(22) for all penetration depths.  
   If the target thickness is so large that Pdhh ζ>− * , then modification of the basic 
model to account for initially increasing penetration resistance is trivial. Otherwise it 
is suggested that the minimum perforation energy is estimated by assuming that the 
fragmentation energy and transition thickness still are given by Eqs. (5) and (6). 
Accordingly it is also assumed that the projectile reaches the penetration depth 

*hhP −=  with the velocity *u  obtained from Eq. (24) 
 

 ( ) ( )































 −
−−

+
−−−−=

+1*
*

2
2* 11

12

ξ

ζξ
ζ

βββ
π

P

P
i

P

TP
P d

hhdhh
m

Ydvu . (28) 

 
The corresponding minimum perforation energy is 
 

 ( ) *2*2

2
1

pPPp WuvmW +−= .     (29) 

 
Thus hWp ∂∂ /  is not a continuous function for *hh=  when Pdhh ζ<− * , contrary to 

the basic model and for Pdhh ζ>− *  with initially increasing penetration resistance. 
Nevertheless it is suggested that Eqs. (28) and (29), as well as the corresponding 
results below, represent realistic ways to extend the basic model in [1] to account for 
friction or initially increasing penetration resistance or for both these effects.  
 
Initially increasing penetration resistance and friction 
   When both initially increasing penetration resistance and friction is accounted for 
then the projectile velocity u first decreases with increasing penetration depth P in a 
semi-infinite target as given by 
 

( )
P

TP

P

P
i

P

TP
P m

YPd
d
Pd

P
m

Yd
vu

212
2 11

12
λµπ

ζξ
ζ

βββ
π

ξ

−
































−−

+
−−−=

+

.         (30) 

 
Subsequently different cases must be considered. If ζdP>LP then the penetration depth 
P=LP is reached with the velocity  
 

( )
P

TPP

P

PP
iP

P

TP
PL m

YLd
d

LdL
m

Ydvu
P
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2 11
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ζξ
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


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+
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This requires that 
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Otherwise Eq. (20) and u=0 yields the final penetration depth P.  
   If the penetration depth P=ζdP>LP is reached then the velocity is  
 

( )
( )

( )
P

TPPPP

P

TPi
Pd m

YLdLd
m

Yd
vu

P

−
−

+
+

−=
ζλµπ

ξ
ββξζπ

ζ
2

12

3
2 .        (33) 

 
This requires that 
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P

TPPPP

P

TPi
P m

YLdLd
m

Yd
v

−
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+
+

>
ζλµπ

ξ
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3

  (34) 

 
and then the final penetration depth is  
 

 ( )PPTP

dP
P LdYd
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dP P
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ζ ζ

+
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Otherwise the final penetration depth P is obtained from 
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+
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ζξ
ζ

βββ
π

ξ

.   (36) 

 
   When ζdP<LP the penetration depth P=ζdP is reached with the velocity  
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( ) P

TPP

P
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Pd m
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Yd
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P
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+

+
−= .          (37) 

 
This requires that 
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TPP
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TPi
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m

Yd
v
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12
ζλµπ

ξ
ββξζπ

+
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+
> .   (38) 

 
Otherwise Eq. (30) and u=0 yields the final penetration depth P.  
   If the penetration depth P=LP>ζdP is reached then the velocity is  
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P

TPP
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TPPP
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This requires that 
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and then the final penetration depth is   
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 ( )PPTP

LP
P LdYd

um
LP P

λµβπ +
+=

22
.    (41) 

 
Otherwise Eq. (39) with 0=

PLu  and P instead of LP yields the final penetration depth. 

   If the target thickness is so big that *hh−  is larger than the largest of ζdP and LP, 
then modification of the basic model to account for initially increasing penetration 
resistance is trivial. Otherwise the velocity *u  and the minimum perforation energy 
Wp are determined in analogy with Eqs. (28) and (29). 
 
Nose shape dependence of penetration resistance coefficient 
   Sharp-nosed projectiles should experience smaller penetration resistance than blunt-
nosed projectiles, which means that β should increase with the apex angle 2θ for 
conical-nosed projectiles. The physical reason to expect this is that displacement of 
target material in front of a penetrating projectile should follow shorter and less 
curved trajectories with a sharp conical nose than with a blunt nose. In this connection 
it should be mentioned that the pressure 
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is required for expansion of a spherical hole [2, chapter V.1], whereas a somewhat 
smaller pressure  
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is required for expansion of a cylindrical hole [2, chapter V.4]. In these relations ET 
and νT are the elastic modulus and Poisson ratio for the target material, respectively. 
In both cases the displaced material follows straight lines but there is more work done 
for a certain increase of the hole radius in the spherical case.  
   It is reasonable to assume that β increases linearly with θ for θ<<π/2 and that it 
levels off when θ=π/2 is approached. A simple mathematical relation with such 
behaviour is  
 

( ){ }θαββ sin10 += .     (44) 
 
The parameters β0 and α must be determined from experimental results. However, the 
hole expansion resistance in Eqs. (42) and (43) provides an idea about the magnitude 
of these parameters. If a hole is produced with a vanishingly small apex angle it seems 
reasonable to assume that the penetration coefficient should be somewhat higher than 
the ratio pcyl/YT in Eq. (43) so that 
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where κ is larger but not much larger than unity. If a hole is produced with a flat-
ended projectile it seems reasonable to assume that the penetration coefficient should 
be higher than psph/YT in Eq. (42). A rather arbitrary assumption is then that the 
penetration resistance with the half apex angle θ=π/6 should be higher than with a 
vanishingly small apex angle with the factor to psph/pcyl obtained from Eqs. (42) and 
(43). Accordingly α  is obtained from 
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   In reality the nose of a projectile is never flat but ogival, which should correspond to 
an only slightly smaller penetration coefficient then for a conical nose with the same 
apex angle. Normally apex angles are in the interval 35o<2θ<55o. Then the model 
yields little relative variation of the penetration coefficient with the projectile nose 
shape. Furthermore there is little difference in the penetration coefficients for a 
material in ductile and hardened states. Accordingly the suggestion in [1] that the 
penetration coefficient β=5 can be used, at least in general applications, is justified.  
   The penetration coefficient for a projectile with a hemispherical nose must be 
smaller than for a flat-nosed projectile. Hence it should be equal to a conical-nosed 
projectile for some intermediary apex angle, presumably in the interval 90o<2θ<120o.     
 
Target size effect 
   Expansion of spherical and cylindrical holes to the diameter d requires the pressures 
in Eqs. (42) and (43). Thereby the boundary between elastic-plastic and only-elastic 
deformation is at the diameter  
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respectively [2]. It should be emphasised that the pressures in Eqs. (42) and (43) are 
constant. With this pressure a hole with the diameter d will expand slightly so that the 
pressure drops. Consequently expansion stops unless the pressure medium in the hole 
is connected to a source that restores the pressure. Thus the rate at which the hole is 
expanded depends on the power supply from the pressure source. 
   For a spherical hole at the centre of a sphere with the external diameter D the 
pressure needed to produce plastic flow to the smaller diameter Λsph is given by [2] 
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The corresponding result for cylindrical holes is 
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A rough way to estimate the relative decrease of the penetration coefficient with the 
target diameter might be to use the ratio between the pressures in Eqs. (50) and Eq. 
(43) 
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For hard steel Λcyl/d=10 is a representative value. Then Eq. (51) with D/Λcyl=1, 2 and 
3 yields β(D)/β(∞)≈0.82, 0.96 and 0.98, respectively.  
   Penetration of ductile material should be described in the same way as for hard 
material, but the perforation phase involves collaring around sharp-nose projectiles 
and plugging in front of blunt-nose projectiles instead of fragmentation. The elastic 
parameters ET and νT are the same for hard and ductile versions of steel but the yield 
strength YT is smaller for the latter. For ductile steel with Λcyl/d=14 the corresponding 
results are β(D)/β(∞)≈0.87, 0.97 and 0.98, respectively. 
   For steel the Poisson ratio is νT≈0.3. When there is large plastic deformation it is 
usual to neglect compressibility, whereby νT=0.5 is assumed instead of the real value. 
Then the values Λcyl/d=10 and 14 above are changed to Λcyl/d≈11.3 and 15.8, 
whereby Eq. (51) with D/Λcyl=1 yields an only slightly higher result, namely 
β(D)/β(∞)≈0.83. 
   Eqs. (42) and (49) can be used in the same manner to estimate the smallest distance  
from the hole bottom to the back side of the target that should be allowed. However, 
since the major target deformation occurs in the vicinity of the nose of the projectile a 
better estimate than Eq. (51) for how the penetration coefficient should depend on the 
target size might be  
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For hard steel Eq. (52) with D/Λsph=1, 2 and 3 yields β(D)/β(∞)≈0.80, 0.98 and 0.99, 
respectively. The differences to the results with Eq. (51) are hardly experimentally 
observable, especially since effects of friction and initially increasing penetration 
resistance are neglected in this connection. 
   When the target diameter is so small that Eqs. (47) and (48) yield Λ>D , then Eqs. 
(50) and (51) are replaced by 
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whereby it is assumed, for simplicity, that target deformation is incompressible. Thus 
Eq. (51) is changed to 
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where Λcyl is obtained from Eq. (48) with νT=0.5.   
 
Experimental results for penetration 
   Two conical-nose projectiles of tungsten carbide have been used against targets of 
two steel qualities, namely SIS 1312 with the Vickers Hardness HV 1.36±0.05 GPa 
and SIS 2541-3 with HV 3.19±0.09 GPa. The corresponding yield strengths 
YT=HV/3.2≈0.43 and 1.00 GPa are obtained as in [3, chapter 13.4]. Projectile data are 
given in Table 1. 
 
mP, g dP, mm LP, mm θ vP, km/s 
3.4 4.8 ≈ 19 ≈18o 1.28 
6.0 5.6 ≈ 23 ≈28o 0.98 
Table 1. Projectile data 
 
   The experimental penetration depths are shown in Table 2 as the average plus/minus 
the maximum deviation. Every case was tested five times but sometimes the holes 
were not straight enough for reliable evaluation. 
 
Target       small projectile      large projectile 

P, mm    D/Λcyl P, mm    D/Λcyl 
SIS 1312  
D=40 mm  53.7±0.9 (2)    0.52 37.8±2.6 (5)    0.45 
D=100 mm  48.2±0.9 (4)    1.30 35.5±0.3 (5)    1.12 
SIS 2541-3  
D=41 mm  32.6±1.6 (5)    0.81 24.7±0.9 (5)    0.70 
D=102 mm  30.8±1.8 (5)    2.02 23.0±0.1 (5)    1.73 
Table 2. Experimental results for penetration depth with tungsten carbide projectiles 
in steel targets. Numbers of tests are given in parenthesis. 
 
   The penetration depths in the smaller targets are deeper than in the larger targets as 
expected. For the small projectile in the hard target Eqs. (48), (51) and (55) with 
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ET/YT=210 and νT=0.5 yield β(0.8Λ)/β(2.0Λ)≈0.80, which is significantly smaller than 
the average penetration ratio 30.8/32.6≈0.94 for practically the same values of D/Λcyl. 
However, the experimental deviations are considerable in comparison with the 
difference between the average values. If half the deviation is added to the higher 
value and subtracted from the smaller, then the experimental ratio is 29.9/33.4≈0.90. 
Furthermore, friction and initially increasing penetration resistance must be accounted 
for. For instance, if β is determined from Eq. (27) with ζ=10 and ξ=4 the last result is 
changed to β(D=102 mm)/β(D=41 mm)=(29.9-9.6)/(33.4-9.6)≈0.85. With friction 
there is further reduction so that the model represented by Eqs. (51) and (55) seems 
rather realistic.  
   Below the penetration coefficient β is evaluated for the larger targets, even though 
the values D/Λcyl seem to be too small to be representative for semi-infinite targets. 
First the case without friction, namely Eq. (1), is considered. With the heavier 
projectile β≈7.8 is obtained, whereas the result for the lighter projectile is β≈7.5.  
   It is very likely that friction is important for the results of the penetration 
experiments mentioned above. If it is assumed that β=5 corresponds to the real 
penetration resistance, and that the lateral pressure is equal to the uniaxial yield 
strength so that λ=1, then the result for the projectile with the mass mP=6.0 g and Eq. 
(12) yield the friction coefficient is µ≈0.24. In this case 65% of the impact energy is 
used for penetration and the remaining 35% to overcome friction. Similar evaluation 
of the result for the projectile with mass mP=3.4 g yields µ≈0.19 and that 67% of the 
impact energy is used for penetration.  
   For SIS 1312 Eqs. (45) and (46) yield β0≈3.0κ and α≈0.80. For the large projectile 
Eq. (44) and β=5 then yields κ≈1.2. With these values Eq.(44) yields β≈4.4 for the 
small projectile. Then evaluation of the friction coefficient from the result for this 
projectile yields the same result µ≈0.24 as for the other projectile. Consequently the 
shape of the projectile nose should not be neglected if very accurate results are 
required.  
   The yield strength ratio for the two target materials in Table 2 is about 2.3, whereas 
the corresponding ratio between the penetration depths is about P1312/P2341≈1.55 for 
both projectiles in the larger targets. For the smaller projectile Eq. (13) with β≈4.4  
and µλ≈0.24 yields the penetration depth ratio P1312/P2341≈1.76. Consequently initially 
increasing penetration resistance must also be accounted for if very accurate results 
are required. Penetration depths for at least four different impact velocities are needed 
to determine the four quantities β, µλ, ζ and ξ.  
    Spherical-nose steel projectiles with mP=22.8 g, dP=7.11 mm and LP=71.1 mm have 
been used against aluminium targets with the yield strength YT=276 MPa to obtain the 
results in Table 3 [4]. The projectiles are obviously not perfectly rigid. Nevertheless 
all these results follow a graph corresponding to Eq. (1) or Eqs. (9) – (11)  reasonably 
close in [4, Figures 5 and 6]. For these cases the projectile length reduction is 
relatively small and the hole diameter is practically equal to dP.  
 
vP, m/s Pexp, mm projectile projectile  
  hardness, shortening, 
  Rc mm 
496 37.6 39.5 0.8 
572 48.1 39.5 1.2 
720 67.8 36.6 3.3 
781 72.7 39.5 4.6 
806 74.7 36.6 6.6 
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821 84.3 39.5 4.0 
841 91.4 39.5 2.5 
892 84.1 36.6 9.4 
932 96.5 39.5 6.6 
909 109.6 46.2 0.5 
1086 126.3 46.2 6.4 
Table 3. Experimental results from [4] for three different values of the projectile 
hardness. For higher velocities than the underlined cases there is an almost stepwise 
reduction of penetration depth to about half of the previous value, accompanied by 
severe breaking or erosion of the projectile and hole diameter that is considerably 
greater than the projectile diameter.  
 
   Three representative cases in Table 3 are used in Table 4 for comparison with the 
model above, despite the fact that the projectiles are not perfectly rigid. If friction is 
neglected, µλ=0, then. Eq. (1) and the result for the highest impact velocity yields 
β≈10, which is unrealistically high. With friction Eq. (12) and the results for the two 
smaller velocities yield two equations, from which β≈5.94 and µλ≈0.134 are obtained. 
Thereupon Eq. (13) and the impact velocity for the third case yields P=126 mm in 
agreement with the experimental result. These calculated values are shown in the 
fourth column in Table 4, where the fifth column shows the corresponding ratios 
between friction energy and impact energy. 
 
vP, m/s Pexp, mm Pcal, mm Pcal, mm friction vs projectile 
  β=9.74 β=5.94 impact hardness, 

µλ=0 µλ=0.134 energy Rc 
780 73 65 (73) 32% 39.5 
932 97 93 (97) 36% 39.5 
1086 126 (126) 126 39% 46.2 
Table 4. Experimental and calculated results for penetration depth with spherical-
nose projectiles as function of impact velocity. Values in parenthesis are used to 
determine the corresponding quantities β in the third column, and β and µλ in the 
fourth.  
 
   Penetration depth in the same target material for five impact velocities for ogive-
nose projectiles with the same diameter and length but slightly smaller mass mP=20.4 
g is shown in the two columns to the left in Table 5 [5]. For these experiments there is 
no reported projectile length reduction before “breaking or erosion” occurs. Also 
these results closely follow graphs corresponding to Eq. (1) or Eqs. (9) – (11) in [5, 
Figures 5 and 6]. 
 
vP, m/s Pexp, mm projectile  
  hardness, Rc 
569 58 38.2 
570 55 38.1 
679 72 38.1 
794 103 52.9 
821 102 38.9 
966 140 38.0 
1076 160 53.1 
1147 190 38.3 
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1237 224 38.0 
1255 229 53.1 
1348 254 53.2 
1365 249(252) 39.2 
1396 249(267) 38.0 
1493 277(303) 38.0 
1538 332 53.8 
1654 389 53.4 
1786 452 53.0 
1817 462 53.3 
Table 5. Experimental results from [5] for two different values of the projectile 
hardness. Values in parenthesis are measured along curved trajectories. For highter 
velocities than the underlined cases there is an almost stepwise reduction of 
penetration depth to about half of the previous value, accompanied by severe 
breaking or erosion of the projectile and hole diameter that is considerably larger 
than the projectile diameter.  
 
   Five representative cases in Table 5 are used in Table 6 for comparison with the 
model above, The calculated results for β=5.00 and µλ=0.043 agree very well with the 
experiments.  
 
vP, m/s Pexp, mm Pcal, mm Pcal, mm Pcal, mm projectile 
  β=6.57 β=5.00 β=1.84 hardness, 
  µλ=0 µλ=0.043 µλ=0.134 Rc 
679 72 65 73 87 38 
966 140 132 (140) 146 38 
1237 224 217 221 (224) 38 
1538 332 335 337 332 52 
1786 452 (452) (452) 438 52 
Table 6. Comparison between experimental and calculated results for penetration 
depth with ogive-nose projectiles as function of impact velocity.  
 
 
Discussion 
   Comparison with experimental results for the penetration depth with appropriate 
variation of the projectile mass, length, diameter and velocity should yield the model 
penetration coefficient β and the product µλ. Expansion of a cylindrical hole in an 
infinite target requires a pressure of about 3YT. Such lateral pressure is certainly 
representative for the real pressure around the projectile nose, but along the rear end 
of the projectile the pressure should mainly be determined by the elastic reaction that 
follows the elastic-plastic expansion by the nose. Accordingly the lateral pressure 
coefficient λ should probably be considerable smaller than 3. A reasonable guess may 
be λ≈1. Direct experimental measurement of λ seems to be quite difficult. 
Furthermore, a reasonable guess for the friction coefficient should probably be in the 
interval 0.1<µ<0.3.  
   The assumptions above about λ and µ are in reasonable agreement with 
experimental results in both steel and aluminium. The penetration depths decrease 
with increasing hardness of the steel in Table 2. For instance, the penetration depth for 
the smaller projectile is reduced with the factor 30.8/48.2≈0.64 when the hardness is 
increased with the factor 3.19/1.36≈2.35. Since the inverse 2.35-1≈0.42 of the latter is 
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significantly smaller than the former it is concluded that both friction and initially 
increasing penetration resistance must be accounted for in order to obtain calculated 
results in close agreement with experiments. Thereby the experiments must be carried 
out with targets of sufficiently large dimensions so that the influence of free surfaces 
can be neglected. The lateral distance from the hole to the closest surface should be at 
least about 2Λcyl from Eq. (48). Similarly the distance from the hole bottom to the 
back side of the target should be at least 2Λsph from Eq. (47). 
   It should be mentioned that the tungsten carbide projectiles always are stuck in the 
holes in SIS 1312, but sometimes have bounced slightly away from the hole bottom, 
whereas they bounce out of the holes in about a third of the cases with SIS 2541-3 
(the firing direction is horizontal). If the projectile can bounce out there should be 
negligible friction when this occurs. This indicates that hole expansion at a certain 
depth is not finalized when the nose has just passed but continues via elastic-plastic 
waves in the target material. Consequently it is understandable that there can be 
friction during penetration but that friction is almost negligible afterwards, at least in 
the harder target material. 
   It might be argued that the friction causes melting of the contact area of either the 
target or the projectile or both. In any case there will then be a thin liquid layer 
between the rapidly moving projectile material and the stationary target material. The 
liquid is characterized by an unknown (but certainly non-vanishing) viscosity. Since 
the liquid layer thickness is unknown the velocity gradient is also unknown. Thus a 
retarding viscous force on the projectile cannot be estimated. Accordingly it appears 
better to account for friction retardation as suggested above. However, with very 
carefully designed and evaluated experiments it might be possible to distinguish 
between velocity-and-length dependent (viscous) retardation on one hand and only-
length dependent retardation (as above) on the other.    
   It is reasonable to expect a somewhat smaller value for the penetration coefficient β 
for the ogive-nose projectiles in Table 6 than for the spherical-nose projectiles in 
Table 4. However, it is also reasonable to expect the friction coefficients to be about 
equal. Accordingly the two cases β=5.94, µλ=0.134 for spherical-nose projectiles and 
β=5.00, µλ=0.043 for ogive-nose projectiles appear to show that the lateral pressure 
coefficient λ is about three times higher with a spherical nose than with the actual 
ogive-nose projectile. It seems reasonable to expect such difference since the latter 
expands the hole over a longer distance and with a slower rate, which very well can 
correspond to a smaller elastic reaction than for the former.  
   Numerical simulation of rigid projectile penetration is reported in [6], whereby 
friction is not accounted for. In [6, Figure 5] there is separation between the projectile 
and target material at a distance about 2dP from the front end of the projectile with the 
length LP=5dP. This result provides a reason to neglect friction, as suggested for the 
basic model. On the other hand it happens that real projectiles can be very firmly 
stuck in a target with the front end protruding from the rear surface. This indicates 
that there is significant friction.  
   The assumption that the projectile and all fragments have the same exit velocity, as 
in Eq. (8), is too simple. Some fragments may have velocities that are close to the 
velocity u in Eq. (16), since this is the initial projectile velocity when acceleration of 
the fragments starts.  
   For the projectile in [6], with the shape of an ovoid of Rankine, the numerically 
calculated initial penetration resistance is reasonably well approximated by Eq. (21) 
with 0=iβ , 8≈ζ  and 4≈ξ . This nose shape is similar to but somewhat “sharper” 
than a spherical nose. Thus the initial penetration resistance for a projectile with a 
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spherical nose should also be well described by Eq. (21) but with somewhat different 
parameter values, particularly a slightly smaller value of ζ . 
   For projectiles with spherical or conical or ogive nose shape the initial penetration 
coefficient βi should vanish. Furthermore the values of the penetration parameters ζ 
and ξ should be different. However, the coefficient β must also be allowed to vary 
somewhat with the nose shape, presumably so that βflat>βblunt cone>βsphere>βsharp cone, 
where the spherical nose might be assumed to be equivalent to a cone with a half apex 
angle somewhere in the interval π/4<θ<π/3. Similarly the penetration coefficient for 
an ogival nose shape should be expected to be somewhat smaller than for a conical 
shape with the same apex angle. At the present stage it is assumed that the effect of 
the nose shape can be reasonably well described via appropriate variation of the 
coefficient β so that the values 0=iβ , 8≈ζ  and 4≈ξ  above can be used for all nose 
shapes. 
   It is desirable to carry out additional experiments, in which the nose resistance and 
friction components of the projectile retardation can be studied in more detail. For 
instance, spherical projectile penetration should yield results whereby friction can be 
neglected. If these spherical projectiles are made of tungsten carbide, then they can 
have the same mass and diameter as spherical-nose projectiles of steel with cylindrical 
rear parts along which friction should occur. If the rear end of a spherical-nose 
projectile is hollow instead of solid, then the length of the rear end is greater without 
change of the projectile mass. Furthermore, spherical and spherical-nose projectiles of 
titanium, with and without hollow ends, can be used so that the mass is smaller 
without change of diameter.          
   When the instantaneous projectile velocity is sufficiently high, then projectiles 
either break or erode whereby the hole diameter in the target necessarily must be 
larger than the projectile diameter in order to make room for the projectile material. 
This effect is clearly demonstrated by the experiments in [4, 5] for higher impact 
velocities than the underlined cases in Tables 3 and 5. Making larger hole diameter 
requires more energy, which means that the penetration depth must be smaller than 
when the projectile is rigid. The penetration depth is also reduced since some of the 
projectile’s kinetic energy is used for the breaking erosion of the projectile itself. The 
traditional way to account for this effect is to include an additional retardation force to 
the right in Eq. (23). This additional force is normally assumed to be proportional to 
ρT(dP/dt)2, for instance in the well-known model of Tate-and Alekseevskii [7, Chapter 
5.1.5]. A disturbing feature with this and similar models is that they do not account 
for conservation of either target-and-projectile mass or energy. Furthermore, if the 
rigid part of the model of Tate and Alekseevskii, namely 
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is used to determine the penetration coefficient β for the highest impact velocity 
vP=1817 m/s in Table 5, then the result is β≈1.6. This is an unrealistically small value 
since representative values from Eqs. (42) and (43) are psph/YT≈4 and pcyl/YT≈3, 
respectively. Moreover, for say vP=966 m/s the calculated penetration depth is P≈26 
cm or almost twice the experimental penetration depth in Table 5. 
   Accordingly the author has suggested an alternative model for eroding projectile 
penetration [8]. In this model the specific energy for hole production is constant and, 
in principle, given by that required for quasi-static hole expansion [2]. Furthermore, 
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the hole diameter is proportional to the instantaneous projectile velocity dP/dt as long 
as this is higher than a critical velocity that depends on relevant material parameters 
for both the projectile and the target. With this dependence the projectile retardation 
force is proportional to (dP/dt)2, as it must be in order to yield realistic results. 
   The model suggested in [8] satisfies target-and-projectile mass conservation, energy 
conservation and momentum conservation for the instantaneous projectile. Moreover, 
it yields a natural criterion for the maximum impact velocity that a projectile can have 
if it shall penetrate as a rigid body. This theoretical limit velocity is in reasonable 
quantitative agreement with the experimental results in [4, 5]. 
   There is no experimental evidence, at least to the knowledge of the author, that rigid 
projectiles can produce holes in hard (or ductile) steel and metallic targets with 
(significantly) larger diameter than the projectile diameter. Nevertheless, if ogive-nose 
projectiles could stay rigid for significantly higher impact velocities against the actual 
target material than the maximum value 1.8 km/s in Table 5, then it is possible that 
the retardation force may have to include a “traditional” dynamic component, as in the 
models of Tate and Alekseevskii and others, in order to describe experimental results. 
However, presently there is no reason to introduce such velocity dependent 
retardation forces on projectiles that are strong enough to penetrate a target as rigid 
bodies, at least not when simpler models such as that in [1], and the extension thereof 
above, yield results that are sufficiently accurate for the intended applications. 
      
Conclusion 
   The suggested basic model for rigid projectile penetration into and perforation of 
steel and metallic targets seems to be reasonably realistic for the intended applications 
of the model. If very accurate results are required then initially increasing penetration 
resistance and friction due to lateral pressure from the target material behind the 
projectile nose must be accounted for. Such lateral pressure depends on the nose 
shape of the projectile. 
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