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1. Introduction

When developing guidance and control solutions for missile and aircraft systems a central task
is evaluation of the solutions using high-fidelity simulation models. The evaluation can be
focused onvalidationof performance of the candidate solution but can also involveiterative
improvementand/orsimplificationof the solution as well as lead to requirements on further
development of the simulation model itself. Thus, use of high-fidelity simulation models
serves several purposes since they can provide insight not only in how a proposed control
solution works in a given scenario but also inspire new research and development in control,
physical modeling and software engineering.

This document describes a generic model, or model framework,TURBO SIMECS (The
Universal Rigid BOdy SImulation Model for Evaluation of Control Systems) for high-fidelity
simulation that was developed as part of themissile guidance project at FOI during 2005.
TURBO SIMECS is mainly aimed at providing models of a single aerial vehicle such as a
missile, an aircraft or an unmanned aerial vehicle (UAV), including sensors and actuators.
The part of the model that describes the external forces of acting on the body is however
sufficiently general to be adaptable to the case of underwater vehicles as well.TURBO
SIMECS is a work in progress and the present document describes the current version. As the
model is being updated, the documentation will be updated accordingly1 and new versions
of this document will be issued.

In the following sections we describe the background and motivation, the design spec-
ifications and the choices made when developingTURBO SIMECS, and in the following
chapters the details of the model framework are described.

1.1 Simulation of physical systems

1.1.1 Software The area of simulation of physical systems has by now reached some
level of maturity and there is a great number of software packages available for a very broad
range of applications. These software packages can be coarsely classified into two main
groups,general packagesapplicable to a wider range of applications andspecialized packages
aimed at one particular application or class of applications. In the former class are numerical
or combined symbolic/numerical processing packages with accompanying “toolboxes” or
“libraries,” such asMatlab, Maple, Mathematica, Scilab andOctave. All these packages
are very general and are able to model physical systems described by ordinary, or even partial,
differential equations (possibly with algebraic constraints) but the models will in general not
be in anobject orientedform.

An object oriented structure of the model is often desirable in simulation of physical
systems since it makes the modeling easier by providing a means of establishing a direct
correspondence between software objects and physical objects. Capabilities for object ori-
ented modeling can be added toMatlab andScilab in the form ofSimulink andScicos,
respectively, but there are also several other packages for general physical systems modeling
that are directly object oriented, such asDymola, MathModelica, Ptolemy II, AnyLogic,
20-sim, SimulationX, MSC.EASY5, EcosimPro, Saber andCHARON. Most of these
supporthybrid modelingi.e. mixing of continuous and discrete states/time.

1The documentation is part of theTURBO SIMECS model and is bundled with the code toTURBO SIMECS.
In fact, the documentation is automatically generated from the source code toTURBO SIMECS.

1
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Apart from the general packages there are also a number of more or less specialized (ob-
ject oriented) packages, aimed at one particular field of applications, such asgPROMS (gen-
eral process industry modeling),ProMot (chemical process industry modeling),SPARK/-
VisualSPARK (energy systems modeling) andE-Cell (biological cell systems).

1.1.2 Object oriented simulation There are basically two approaches to computation in
object oriented simulation: The first, and predominant, approach is to “flatten” the total model
before execution, i.e. to remove the object oriented and in general hierarchical structure within
the model and replace it with one large model for the entire system (where the object bound-
aries have been removed). When modeling physical systems described by differential alge-
braic equations (DAEs) this essentially amounts to representing the entire model as one large
DAE. The second approach is to keep the object oriented structure of the original model also
under the computations performed at runtime.

The first approach is simpler to implement, since (after initial preprocessing) standard
DAE solvers can be applied to the resulting (large) DAE system. However, a drawback is that
debugging at runtime can be considerably more difficult since the original object oriented
structure, resembling that of the physical system modeled, is destroyed when the model is
flattened. Moreover, there can be numerical stability issues involved with this approach.

The second approach, to keep the object oriented structure of the model at runtime, is
more complicated to implement since it requires a “synchronization layer” to act as mediator
between the objects at runtime. The requirements on the synchronization layer can be very
high, since objects will in general have a very complicated interconnection structure and
evolve on very different timescales. (More generally, they can involve completely different
models of computation, such as continuous time versus discrete event systems.)

As far as we are aware, the only simulation package of the above mentioned that uses this
latter approach to computation isPtolemy II.

1.1.3 Requirements on simulation software The task of selecting a simulation package
for implementation of models of physical systems is most often far from trivial. There are a
number of demands, which frequently are conflicting, and in general no package will meet
all the requirements. Hence, a compromise has to be made, and in order to reach this a
prioritization of requirements is necessary.

Basic requirements can include a clear and sufficiently powerful syntax for description of
objects and their interconnection structure in order to model physical systems, and easy mech-
anisms for simulating such models and saving traces of the execution. Moreover, there should
be a reasonable support for debugging. Once these requirements are met, the next level most
often includes easy scalability of models and good support for importing/exporting submod-
els and generation of supporting documentation. Portability is often also a key requirement,
in particular if models are to be shared between working groups which may have differing
platform support. On par with this requirement is the requirement to have interfaces to other
(general purpose) programming languages, such as C++ or Java, so that code written in these
languages can be accessed from within the model. Another requirement often encountered
is the possibility to provide compiled models to outside parties that can be executed “stand
alone,” without the need for installation of a simulation engine or source code of the model.
Finally, the availability of a good graphical front end or integrated development environment
is often a factor that increases productivity and therfore can be a requirement when selecting
simulation package.

Apart from these basic requirements there is one aspect of the modeling work that is
often overlooked when formulating requirements and that is the format of the (low level)
representation of models. If this format is sufficiently structured and flexible, such as an
XML based format, this opens up possibilities for batch processing (editing) of models and
automatic generation of manuals etc based on inline documentation (including information
in formats such as LATEX). This can significantly simplify the maintenance of models, extend
their lifetime and increase their return of investment. Akin to this aspect is the openness of the

2
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architecture of the simulation package, in particular if it is open source. If it is open source,
this greatly increases the chances of being able to find a workaround for bugs or problems
with the simulation engine or implementation of the simulation language.

1.2 Ptolemy II

Ptolemy II [1] is a general purpose framework for modeling and simulation of dynamical
systems in various forms developed at the Department of Electrical Engineering and Com-
puter Science, University of California, Berkeley. It is object oriented and support hierar-
chical modeling (“models within models”) using many differentmodels of computation,i.e.
laws governing the interaction between components in the system (e.g. dynamics), such as
continuous time (differential algebraic systems), discrete event systems, finite state machine,
dynamic dataflow, communication sequential processes, and several others.Ptolemy II is
specially well suited for modeling and simulation ofhybrid systemswhere mixes of these
models of computation occur and ofreactive systems, i.e. systems that interact with the
environment at the speed of the environment.Ptolemy II has been used for a number of
applications including wireless communications, signal processing, optical communication
systems, real-time systems, and hardware/software co-design.Ptolemy II is implemented in
Java, uses UML and modern software engineering theories and design practice. It is an open
source project.2

The first version ofPtolemy was developed in the early 1990’s and the development of
Ptolemy II started at the end of the 1990’s. Currently,Ptolemy II is at version 5.0.Ptolemy
II consists of a set of Java packages from which models can be built. There is a visual editor,
Virgil, for creation of models inPtolemy II and a specialized integrated development envi-
ronment target specifically for creation of hierarchical hybrid systems,HyVisual. Ptolemy
II supports “inline documentation” and the models are encoded in a variant (MoML) ofXML.
There are a number of different computing “domains” avaliable, where the different models
for computation apply. The ability to mix different models of computation is very conve-
nient, for instance in problems where the modelchanges structureat certain points in time,
such as an aircraft that touches ground and the motion of which becomes governed by an en-
tirely different set of equations than when airborne. A particular domain aimed at modeling
hard real-time systems,Giotto, is also available, and there are interfaces toMatlab (to use
Matlab’s engine from withinPtolemy II) and to incorporate Java and C++ code.

1.3 Design specifications for TURBO SIMECS

This document presents the requirements, design and implementation of TURBO SIMECS
version 0.5. In chapter 2 the requirements on the simulation model that were set out for the
development are listed and a compliance matrix for version 0.5 is given in section 2.5. The
software design is presented in chapter 3.

1.4 Future development

In the near future more aerodynamic datasets will be incorporated and a number of control
systems will be added for evaluation. Mechanisms for large scale computation and analysis
rely on batch execution of the model.

2It has a number of outside financial sponsors, such as Defense Advanced Research Projects Agency (DARPA),
the National Science Foundation, Chess (the Center for Hybrid and Embedded Software Systems), the State of
California MICRO program, and the following companies: Agilent, Atmel, Cadence, Hitachi, Honeywell, National
Semiconductor, Philips, and Wind River Systems.

3





FOI-R--1675--SE

2. Requirements and compliance

2.1 Compiled requirements for functionality and performance

Definitions Every requirement has a name, origin and a description.
Example:
Requirement name:Functionality and quality.
Origin: This is important for the results.
Description:The model must have a lot of functionality and be flawless.

2.1.1 Functional requirements

Generic requirements for models Requirements in this section apply to any model com-
position.

Requirement name:Time management.
Origin: Computational accuracy.
Description: It shall be possible to specify a tolerance for the accuracy of time integration of
the models. Interaction between models must be specified in such a way that all models can
fulfill this requirement. Simulation of a combination of models shall be possible in continu-
ous time independent of discretization or time step.

Requirement name:Deterministic simulation.
Origin: Reliability of computations.
Description: All models and combinations of models shall at each execution produce re-
producible and deterministic results independently of order of instantiation and size of the
external (global) time or time step.

Requirement name:Environmental data and global parameters.
Origin: Consistency in model composition.
Description:The model components shall make use of a common external model of the en-
vironment also known as the “synthetic natural environment” (SNE). A global database with
default values of model parameters shall be used if required by the runtime configuration.

Missile model performance Requirements in this section apply to a missile model compo-
sition.

Requirement name:Fidelity
Origin: The model must be a good representation of the physical system.
Description: The dynamical model shall use the complete force and moment equations to
compute the motion of a body with both positive and negative mass flux contributions and a
variable mass distribution, in six degrees of freedom. The model must be flexible and it must
be possible to include rotating masses (such as turbines), rocket engines with a moving center
of mass, air breathing engines etc. It shall be straightforward to incorporate restrictions such
as those caused by a landing gear touching the ground or a missile attached to a rail on a wing.

5
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Requirement name:Aerodynamics
Origin: Ability to exchange aerodynamics model.
Description:The aerodynamics model shall use given states to evaluate forces and moments
acting on a body. The body’s center of mass cannot be assumed to coincide with the aerody-
namic center of pressure. The components of forces (drag, lift, sideforce) and the correspond-
ing dimensionless coefficients shall be used. For moments the components (rolling, pitching,
yawing) and the corresponding dimensionless coefficients shall be used. The parameters that
are used for nondimensionalisation such as dynamic pressure, reference area, span, mean ge-
ometric chord, mean aerodynamic chord etc. shall all be both individually assignable and
possible to assign through global parameters or be computed by the SNE model.

Requirement name:Coordinate systems.
Origin: Well defined coordinates and transforms.
Description: For interfaces the allowed coordinate systems are: Body fixed - centered at a
given point on the body, Wind oriented with the x-axis in the direction of the velocity vector
relative to the wind, Earth fixed global coordinate system, The models are responsible for
transformations to and from different coordinate systems.

Requirement name:Orientation
Origin: Reliability and operational envelope.
Description:Time integration of the attitude or orientation of a coordinate system cannot use
a representation with singularities (Euler angles). A quaternion representation is suggested.

Requirement name:Interface to guidance.
Origin: Ability to use external module for guidance.
Description:The model shall be possible to command to steer towards a given moving point
in space.

Requirement name:Control system model.
Origin: Usefulness for control design.
Description: There shall be no unmotivated limitations on the possibilities of control sys-
tem design. Allowed configurations include feedback, feed-forward, autonomous, off-line or
adaptive. Input to the control system is give through sensors connected to the SNE and the
dynamical model and output is delivered via actuators connected to the aerodynamics and the
engine.

Requirement name:Trimming
Origin: Usefulness for control design and analysis.
Description: A trimmed (=steady) state shall be available upon request with the ability to
specify any number of states that still allow a solution to be found.

Requirement name:Linearization
Origin: Usefulness for control design and analysis.
Description: A linear representation on the form of the matricesA,B and C from ẋ =
Ax + Bu, y = Cx whereu represents the control inputy the sensor output andx is a change
of the state.

2.2 Compiled requirements for external interfaces

2.2.1 External interfaces

Model interface The model interface is the interface exposed to an application programmer
or other models.

6
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Requirement name:Runtime configuration.
Origin: Easy to use in applicaiton.
Description:All components in a model composition shall be replaceable through the inter-
face.

Requirement name:States in runtime.
Origin: To enable sensitivity analysis.
Description:All states in the model shall be available for logging and modifications.

Parameter settings Parameters are static data for the model.

Requirement name:Parameter exposure.
Origin: Full transparency in model data.
Description:All models shall have their own interface for setting and accessing parameter.

Requirement name:Parameter independence.
Origin: Flexibility in application.
Description:It shall be possible to independently assign parameters for each model instance.

Requirement name:Parameters in runtime.
Origin: To enable sensitivity analysis.
Description:All parameters of the model shall be available for logging and modifications.

Databases Models who make use of databases, e.g. from file shall expose these data
through their interface.

Requirement name:Variation of database data.
Origin: To enable sensitivity analysis.
Description:All database data used by the model shall be available for logging and modifica-
tions.

2.2.2 Internal interfaces Internal interfaces are interfaces within packages.

Requirement name:Motivation and documentation of internal interfaces.
Origin: Reuseablity of implementation.
Description:Interfaces for interactions between components within a package shall be docu-
mented.

2.3 Compiled requirements for design

2.3.1 Software design

Component structure This subsection contains requirements on the component structure
of the model.

Requirement name:In-data management.
Origin: Reliability of model.
Description: The model implementation shall make proper use of all data that is assigned
through the implemented interfaces.

7
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Requirement name:Interaction with the SNE.
Origin: Consistency in simulations.
Description:Models shall only use environmental data that is available through the common
SNE available to all models.

Requirement name:Modularity
Origin: Flexibility in applications.
Description: All models shall be designed in such a way that they can be independently re-
placed by another model fulfilling the corresponding requirements. Individual components
(sub models) shall be as independent as possible with well defined external interfaces such
that they are easily replace by newer upgraded implementations.

Requirement name:Minimal component structure.
Origin: Usefulness
Description: The missile model shall have at least the following exchangeable modules:
Aerodynamics and mass distribution, engine, guidance and control system, sensor and actua-
tor dynamics.

Requirement name:Minimal flexibility.
Origin: Usefulness
Description: The missile model should not more that necessary limit the configuration re-
garding mass distributions, engines, sensors and actuators.

Development This section contains requirements regarding further development of the model.

Requirement name:Reuseability
Origin: Reuseability of implementation.
Description:Model components shall allow further development and reuse of all or parts of
their implementation.

Requirement name:Preservation of experience.
Origin: Maintanance of model.
Description:Architecture and design shall be documented in such a way that the motivation
for a specific design choice is clear and traceable to the requirements.

2.4 Compiled requirements for documentation

2.4.1 General documentation requirements

Document types Requirements on what kind of documentation should be produced.

Requirement name:Technical document.
Origin: Future development of model.
Description: The technical documentation shall describe the implementation in such a way
that enablesrefinements and further development.

Language Requirements on which language to use in documents, code comments etc.

Requirement name:Documents in English.
Origin: Possibility to share model with others.

8
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Description:All documents shall be written in English.

2.5 Compliance matrices

Generic requirements for models
Requirement Fulfilled Comment
Time man-
agement

✔

Deterministic
simulation

✔

Environmental
data and
global param-
eters

✔

Table 2.1: Generic requirements for models and their status.

Missile model performance requirements
Requirement Fulfilled Comment
Fidelity partially Mass flow effects not implemented.
Aerodynamics ✔

Coordinate
systems

✔

Orientation ✔

Interface to
guidance

not Minor implementation necessary.

Control
system model

✔

Trimming ✔

Linearization not Not yet implemented.

Table 2.2: Missile model requirements and their status.

External interfaces requirements
Requirement Fulfilled Comment
Runtime con-
figuration

✔

States in run-
time

✔

Table 2.3: External interfaces requirements and their status.

Parameter settings requirements
Requirement Fulfilled Comment
Parameter ex-
posure

✔

Parameter in-
dependence

✔

Parameters in
runtime

✔

continued on next page
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continued from previous page

Table 2.4: Parameter settings requirements and their status.

Databases requirements
Requirement Fulfilled Comment
Variation of
database data

✔

Table 2.5: Databases requirements and their status.

Internal interfaces requirements
Requirement Fulfilled Comment
Motivation
and docu-
mentation
of internal
interfaces

✔

Table 2.6: Internal interfaces requirements and their status.

Component structure requirements
Requirement Fulfilled Comment
In-data man-
agement

✔

Interaction
with the SNE

partially Not in trimming module.

Modularity ✔

Minimal com-
ponent struc-
ture

partially Sensor and actuator dynamics not
implemented. Guidance and con-
trol system missing.

Minimal flex-
ibility

✔

Table 2.7: Component structure requirements and their status.

Development requirements
Requirement Fulfilled Comment
Reuseability ✔

Preservation
of experience

partially Some design choices are motivated
by experience and not fully docu-
mented.

Table 2.8: Development requirements and their status.

Document types requirements
Requirement Fulfilled Comment
Technical
document

✔

Table 2.9: Document types requirements and their status.

10



FOI-R--1675--SE

Language requirements
Requirement Fulfilled Comment
Documents in
English

✔

Table 2.10: Language requirements and their status.

2.6 Comments on model status

The implementation fulfills all the basic requirements, in particular the basic structural prop-
erties and interface specifications. Missing modules and functionality are not critical for the
intended use of the model in the near future. Some further development is expected based on
user feedback in an iterative process.
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3. Design

Figure 3.1: The main packages of the model design

The main packages identified in the design process are Dynamics, ControlSystem, Wrenches,
Environment and MassContainers as illustrated in figure 3.1. Each package can contain sub
packages, classes and interfaces. All communication between packages must pass through
these interfaces in order to achieve exchangeable components. Note that the specification
of details of the interfaces defined in the design are left to the implementation. This allows
some flexibility to adapt to, or reuse, existing interfaces from the modeling framework. In the
design, interfaces are used to emphasize modularity and independence between packages.

3.1 ControlSystem

TheControlSystemPackagecontains the sub packagesSensorsandActuatorsand the classes
SystemModel, Controller andINS. The control system communicates with the other pack-
ages through sensors and actuators. The main class of the package,Controller in 3.2 obtains
inputs from sensor implementations from theSensorspackage through the interfaceISen-
sor and commands actuators implemented in theActuatorspackage through theIActuator
interface. Depending on the specific control strategy employed, the controller might need a
SystemModelor an inertial navigation systemINS of its own for prediction or estimation.
The design allows the controller to be implemented as a completely separate sub model since
all interaction with the other parts of the model is achieved through theISensorandIActuator
interfaces.
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Figure 3.2: The packages and classes of theControlSystempackage

3.2 Dynamics

TheDynamics Blockpackage contains the classDynamicswhich implements the dynamics
for a rigid body with six degrees of freedom. This is the central package of the model and it
requires information from the other packages regarding masses, gravity, inertia tensors, forces
and moments. Since it is such a central part of the simulation model, it is most likley one of
the components of the implementation that will be reused rather than replaced in the event of
a reconfiguration.

3.3 Environment

TheEnvironmentpackage contains theSNE class which represents the synthetic natural en-
vironment of the simulation model. This includes gravity, atmosphere data, speed of sound
etc. If simulation is to be performed on a flat or round model of the earth is determined by the
environment implementation. Some sensors will also need data from the environment, e.g.
for measuring air speed, altitude etc. Future development of the environment package could
include winds, electromagnetics and material properties.

3.4 MassContainers

TheMassContainerspackage contains the classMassDistribution which is used to represent
the mass of the model. It can change dynamically or abruptly during the simulation. The
design is not fully adapted for handeling flexible structures, but such an extension should be
straightforward.

3.5 Wrenches

TheWrenchespackage illustrated in figure 3.3 contains the sub packagesAerodynamicsand
Engineand the classTransformer . The IWrenchinterface is used to represent models that
generate forces and moments acting on the system. The contract for theIWrenchinterface
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Figure 3.3: The packages, classes and interface of theWrenchespackage

is such that the reference point for forces and moments should be the orgin of the body
coordinate system. TheTransformer class is needed in order to simplify any necessary
tranformations between coordinate systems.

In theAerodynamicspackage the classAeroData represent an implementation of a database
interpolation or functional representation of aerodynamic forces. TheRocketEngineclass in
the Enginepackage represent an implementaiton of some kind of propulsion system. Both
these packages will be filled with various implementations of models of engines and aerody-
namics eventually.
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4. Implementation

The simulation model is implemented using thePtolemy II framework described in Sect. 1.2.
Two central concepts ofPtolemy II areActorsandDirectors. The actors have a dedicated

task to perform, producing and/or consuming data according to their “script”. The directors
are the keepers of time and organizes the order of execution of the actors. This allows specific
tolerances to be specified regarding the accuracy of the time evolution of the composite model.

4.1 Model composition

Using the graphical user interface (GUI)Vergil, models can be composed through a drag and
drop procedure. There is an extensive library of useful components available divided into

Figure 4.1: The Ptolemy II library structure.

the categories, Utilities, Directors, Actors and More Libraries. The Utilities library contain
components for decoration,documentation, annotation and parameters. The Directors library
basically contains one director for each domain (see 4.2). The Actors library is the most
extensive one with various types of components. There are sources, producing data, and sinks
consuming data. An example of a typical source is a constant or a ramp and typical sinks are
plots and recorders. Other actors are classified as converters, IO, logic and math etc. There
are also higher order actors such as theModalModel which is used in the implementation
of trimming functionality inTURBO SIMECS. Under the MoreLibraries tab one can find a
large number of components with various functionality. For example there is aMatlab actor
that allows all the functionality of theMatlab engine to be used. This actor has been used
for rapid prototyping during the development of the model and is still used for the trimming
functionality.

4.2 Domains

The various domains used determine what model of computation is used for different parts
of the model. Examples arecontinuous time(CT), where the model of computation is com-
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binations of differential and algebraic equations,discrete event(DE), where occurrence of
events define the evolution of the system,finite state machine(FSM), where the state space is
discrete (such as in logic circuits) andGiotto, which describe periodic time triggered systems
where hard real-time constraints are imposed on the execution times. There is comprehensive
documentation of the domains in [4], and an overview can be found in section 1.3 of [2].

4.3 Directors

Directors define and coordinate the information flow between actors (see below) according to
which model of computation is selected. There is one director for continuous time, one for
synchronous data flow etc.

4.4 Actors

Actors can be either single or multidomain and is an object with methods from one or several
domains. An example of a single domain actor is a model of a mechanical system or a digital
filter and an example of of a multidomain actor is a mechanical system that exhibits structure
change at certain instants, such as two bodies that move independently before impact but
are joined together after impact. Such a system could be modeled using the CT and FSM
domains. The different types of Actors and their designs are explained in detail in chapters 4
and 5 of [2]. The details of the software architecture regarding actors is found in chapter 2 of
[3]

4.5 FOI Library

In the UserLibrary it is possible to add personalized or private components. These can then be
used in the same way as any other component through drag and drop in the graph editor. There
are different ways of producing new actors, either by tailoring an XML-file for configuration
of a composition of existing actors or by implementing a new one in Java. The XML schema
used inPtolemy II is calledMoML and is described in chapter 7 of [2].

4.5.1 VecUtilities In this library many utility operations for vectors and quaternions are
made available. This functionality is not provided by thePtolemy II distribution, and has
therefore been developed specifically for use inTURBO SIMECS.

4.5.2 FOISources The actors found under FOISources are those with a specialized Java
implementation developed for the current project. TheAeroDataInterpolator can
read aero data tables from the PUH file format described in Appendix B. Once the file has
been read, the user can select from which table data should be produced through linear in-
terpolation. TheAtmosphere actor is a Java implementation of the International Standard
Atmosphere (ISA). More actors will eventually be added to this library in order to replace the
Matlab actors since these require a license to be used.

4.6 Model implementation

In the Appendix 5.4 details of the implementation are provided based on information ex-
tracted by an XSLT script on the model XML file. It is fairly obvious how the implemen-
tation compares to the design when figures A.2 and 3.1 are compared. The implementation
differs from the design in some aspects, but once the control systems, actuators and sensors
are added the difference will be negligible.

18
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5. Simulations

5.1 Installing Ptolemy II

The TURBO SIMECS model was developed on version 4.0.1 ofPtolemy II. The software
packagePtolemy II can be downloaded free of charge from the project’s homepage [1]. The
homepage also offer detailed description on how to install the software on various platforms.

5.1.1 Matlab There is an interface to Matlab underPtolemy II which is very convenient
when developing models. TheMatlab interface works underWindows andLinux and re-
quiresMatlab to be installed.Matlab functions can easily be accessed as well as tools for
plotting. Using theMatlab interface, however, tends to slow the model execution down con-
siderably.

5.2 Starting vergil

Vergil is a graphical user interface forProlemy II in which models can be graphically con-
structed. Enter$PTII/bin/vergil to startVergil, $PTII being the Ptolemy root direc-
tory. An initial welcome window as in Figure 5.1 will appear. TheQuick tour link opens
a window with numerous links to demo models. The TURBO SIMECS model is opened ei-
ther viaOpen File in theFile menu in the welcome window (or any other Vergil window
that might be open), or by passing the XML model file name as an argument when starting
Vergil. That is, when being in the directory where your XML model file is located, enter
$PTII/bin/vergil trimRobot.xml and a window with the model (Figure 5.2) will
appear instead of the welcome window.

5.3 Adjusting parameters

There are a number of parameters in the model that can can be adjusted. First take a look
at the director that defines the model of computation for the simulation. In this case we
have a continuous time director,CT Director , determining that the block diagrams has

Figure 5.1: Vergil welcome window.
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Figure 5.2: The top level of the trimRobot model.

Figure 5.3: parameters of theCT Director .

continuous time semantics. The parameters for the director is accessed by double clicking on
it, opening the window in Figure 5.3. Apart from the start and stop time for the simulation,
one can specify constraints on step sizes, tolerances, resolutions, number of iterations and
what ordinary differential equation (ODE) solver to be used.

For model specific parameters, you can enter the ModalModel block by right clicking on it
and selectLook Inside , as seen in Figure 5.4. The finite state machine in Figure 5.5 opens
showing one state namedtrim for the trimming of the model and one state namedmodel for
the simulation. The arrow between represent the state switch that occur when the trimming is
performed, and trimmed values on different quantities are passed to themodel state. Right
click on the trim state and selectLook Inside . The altitude and the components in
the velocity and angular velocity vectors are determined by parameters marked by blue dots
located at the top of the Figure. A specific parameter can be altered by double clicking on it
and modifying the value in the window that appears.

Other parameters are found by opening themodel state in the finite state machine. These,
however, should no be altered since the values are obtained from the trimming routine. In-
stead, in theTURBO SIMECSblock are parameters specific for the missile or aircraft that is
currently investigated. Those parameters contain values for reference lengths and areas and
positions for the mass center and the reference point for the aerodynamics.
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Figure 5.4: Look inside the modal model.

Figure 5.5: The finite state machine switching from the model trimming to the model simu-
lation.

Figure 5.6: The trimming function of the model (presently a Matlab function).
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5.3.1 Trimming the model At the moment the trim function is aMatlab function con-
taining a Newton based trimming routine. As input it takes the earth frame velocity vector,
angular velocity vector, gravitational acceleration vector and the altitude. Further an initial
guess for the Newton iteration is provided to the function. Trimmed values of the output
quantities (to the right in Figure 5.6) are passed through the finite state machine, Figure 5.5,
to the simulation in themodel state. Some further information on the trimming routine
algorithm is found in Appendix 5.4.

5.4 Running a simulation

There are many ways of executing the model. In the graph editor window there is a “play”
button that can be used to start execution. An alternative is to open the “run window” which
can be found under the View menu in Vergil. The window that opens presents all settable
parameters as well as buttons for execution control and the current configuration of plots in
the model.

Figure 5.7: Running the model using the run window.
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A. Extracted documentation for trimRobot

A.1 trimRobot in

TURBOSIMECS - The Universal Rigid BOdy Simulation Model for Evaluation of Control
Systems

TURBOSIMECS is a nonlinear six degrees of freedom generic simulation model. The
mmodel is built in the Ptolemy II fremawork, which is a free of charge Java-based modeling
toolkit developed at Berkley. TURBOSIMECS is foremost intended as a base for testing and
evaluation control systems for missiles and aircraft.

Constants:
Parameters:
Interface of trimRobot

Inputs:
Outputs:

A.2 _Controller in ModalModel

The Finite State Machine domain is used to switch between the trimming of the model and
the simulation. Trimmed values of the body frame velocity vector, quaternion, control surface
angles and the corresponding altitude is passed to the simulation model.

Constants:
Parameters:
Interface of _Controller
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Inputs:
Altitude [ meter ]
vx [ meter second^-1 ]
vy [ meter second^-1 ]
vz [ meter second^-1 ]
q0 [ ]
q1 [ ]
q2 [ ]
q3 [ ]
de [ ]
da [ ]
phi [ ]
res [ ]

Outputs:
Altitude [ meter ]
vx [ meter second^-1 ]
vy [ meter second^-1 ]
vz [ meter second^-1 ]
q0 [ ]
q1 [ ]
q2 [ ]
q3 [ ]
de [ ]
da [ ]
phi [ ]
res [ ]

A.3 trim in ModalModel

Trimming the model

Given the velocity vector, angular velocity vector and gravitational acceleration vector in
the earth frame of reference and altitude the model is trimmed. The provided trimmed states
are the body fixed velocity components, the quaternion components defining the orientation of
the body fixed frame and elevator and aileron deflections. An additional quantity of interest
is the rudder deflection if the model has such a control surface. If not, as in this case, the
model can be compleatly trimmed using the roll angle instead. The trimmed state may be at
any wings level or steady turning flight condition.

The trimming algorithm is based on Newton’s method,

xn+1 = xn − J−1F, (A.1)

wherex contains the quanities needed for trimming, i.e. angles of attack and sideslip sideslip,
control surface deflections and roll angle,F contains the body fixed forces in they- andz-
directions andJ is the Jacobian ofF with respect tox. Note that the force in bodyx-direction
is not relevant since we can not influence the drag.

The trimming algorithm requires mass and inertia information of the model and the ability
to call for aerodynamic forces and moments.

Constants:, VE, alt , wE, g, guess
Parameters:, Altitude , VEx, VEy, VEz, wEx, wEz, wEy

Interface of trim
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Inputs:
Outputs:

Altitude [ meter ]
vx [ meter second^-1 ]
vy [ meter second^-1 ]
vz [ meter second^-1 ]
q0 [ ]
q1 [ ]
q2 [ ]
q3 [ ]
de [ ]
da [ ]
phi [ ]
res [ ]

A.4 model in ModalModel

The trimmed values are stored in parameters defining the initial conditions for the simulation.
Constants:
Parameters:, alphatrim , initAlt , initPos , initvx , initvy , initvz , initq0 ,

initq2 , initq1 , initq3 , initwx , initwz , initwy

Interface of model
Inputs:
Outputs:

Altitude [ meter ]
vx [ meter second^-1 ]
vy [ meter second^-1 ]
vz [ meter second^-1 ]
q0 [ ]
q1 [ ]
q2 [ ]
q3 [ ]
de [ ]
da [ ]
phi [ ]
res [ ]

A.5 TURBO SIMECS in model

This is the highest level of the model that is actually simulated. At this point it contains a six
degrees of freedom dynamics block, an atmosphere block that also provides the gravitational
acceleration and a block computing the aerodynamic forces and moments. There is also a
very simple controller that stabilize the unstable yaw motion on this particular model.

On this level of the model, other blocks will be included to complement the model.
A block containing information on the mass distribution and inertia will be needed. It

will allow for varying mass, mass center position and inertia and perhaps also model specific
parameters such as reference lengths and areas.

Engine dynamics would be useful. For engines containing rotating parts, a term for the
angular momentumIeωe should be present and fed to the dynamics block, taking care of the
gyroscopic effects.

The ability to design and include both simple and advanced controllers is expected to be
good. Quantities such as states, state derivatives and many others are available for control
inputs.
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Figure A.1: Ptolemy block diagram of TURBO SIMECS.

Figure A.2: Ptolemy block diagram of TURBO SIMECS.

26



FOI-R--1675--SE

Figure A.3: Ptolemy block diagram of TURBO SIMECS dynamics block.

An on-line trimming and linearization block will also be incorporated and useful for con-
trollers.

Further, blocks for sensor and actuator dynamics will be added.
Constants:, I , mass, da , de , Const , Const2 , dr
Parameters:, g, b_ref , c_ref , s_ref , radtodeg , degtorad , cg , cg_ref

Interface of TURBO SIMECS
Inputs:
Outputs:

A.6 Dynamics Block in TURBO SIMECS

The six degrees of freedom dynamics block takes the total external forces, moments and
earth gravity as inputs, and with the model mass and inertia the states are updated. The states
contain the body frame velocity and angular velocity vector, the quaternion defining the body
orientation, and the earth frame position. The time derivatives of the body frame velocity
vector and angular velocity vector are provided as well.

Constants:
Parameters:
Interface of Dynamics Block

Inputs:
Force [ newton ]
Moment [ newton meter ]
mass [ kilogram ]
Inertia [ kilogram meter^2 ]
Earth gravity [ meter second^-2 ]

Outputs:
Velocity [ meter second^-1 ]
Velocity derivative [ meter second^-2 ]
Angular velocity [ Identity second^-1 ]
Angular velocity derivative [ Identity second^-2 ]
Position [ meter ]
Quaternion [ ]

A.7 State update in Dynamics Block

The velocity and angular velocity states are updated given the state derivatives computed in
sub-blocks.

Constants:
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Figure A.4: Ptolemy block diagram of the state update block for the velocity and angular
velocity states.

Parameters:
Interface of State update

Inputs:
F [ newton ]
M [ newton meter ]
mass [ kilogram ]
I [ kilogram meter^2 ]
g [ meter second^-2 ]

Outputs:
v [ meter second^-1 ]
vdot [ meter second^-2 ]
w [ Identity second^-1 ]
wdot [ Identity second^-2 ]

A.8 Velocity derivative in State update

The body frame velocity state derivative is computed. From

F = m(v̇ + ω × v − g), (A.2)

the velocity derivative is found as

v̇ =
F
m
− ω × v + g. (A.3)

Constants:
Parameters:
Interface of Velocity derivative
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Figure A.5: Ptolemy block diagram of the velocity derivative computation.

Figure A.6: Java code of the MultiplyDivide actor in Ptolemy.
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Inputs:
F [ newton ]
v [ meter second^-1 ]
w [ Identity second^-1 ]
m [ kilogram ]
g [ meter second^-2 ]

Outputs:
vdot [ meter second^-2 ]

A.9 Angular velocity derivative in State update

The body frame angular velocity state derivative is computed. From

M = Iω̇ + ω × Iω (A.4)

the angular velocity derivative is

ω̇ = I−1(M− ω × Iω) (A.5)

Constants:
Parameters:
Interface of Angular velocity derivative

Inputs:
M [ newton meter ]
w [ Identity second^-1 ]
I [ kilogram meter^2 ]

Outputs:
wdot [ Identity second^-2 ]

A.10 Atmosphere in TURBO SIMECS

This model of the International Standard Atmosphere (ISA) is valid up to the tropopause at
25000 meters. The quantities computed are pressurep, temperatureT , densityρ and sonic
speeda given the altitudeh. The atmospheric state at sea level is the standardT0 = 15◦C,
p0 = 101325 Pa andρ0 = 1.225 kg/m3. Further quantities required are the air specific gas
constantR = 287.05287 W kg−1 K−1, the quotient between the specific heatsγ = 1.4, the
temperature lapse rate∆T = 0.0065 K/m and the acceleration of gravityg = 9.80665 m/s.
Figure A.7 shows a block diagram in Ptolemy II of the ISA model.

For troposphere altitudes, i.e., below 11000 meters, the temperature is simply

T = T0 −∆T h, (A.6)

and the pressure is

p = p0

(
T

T0

) g
∆T R

. (A.7)

For altitudes above the tropopause at 11000 meters the temperature remain constant. The
pressure here is calculated as

p = ptpe
g(htp−h)

RTtp (A.8)

whereptp andTtp are the pressure and the temperature, respectively, at tropopause altitude
htp. Regardless of altitude, the density is computed as

ρ =
p

RT
, (A.9)
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Figure A.7: Block diagram of the International Standard Atmosphere.

and finally, the sonic speed as

a =
√

γRT (A.10)

Constants:, h_tp , h_tp , g
Parameters:, R, gamma, T0, p0 , h_tp , g_e , maxalt , dTdh

Interface of Atmosphere
Inputs:

hme [ ]
Outputs:

p [ ]
rho [ ]
a [ ]
T [ ]
g [ ]

A.11 TTPAerodynamics in TURBO SIMECS

The aerodynamics model provides the aerodynamic forces and moments. Depending on the
properties of the aerodynamic data this block has to be modified somewhat according to what
quantities the aerodynamics is dependent on. In this case, the angles of attack and side slip
is computed from the body frame velocity vector. Further, from the atmospheric properties,
the dynamic pressure and the Mach number are calculated. The aerodynamics account for
varying distances between the mass center and the reference point defined for the aero data
by modifying the moment around the mass center.

In addition, a simple engine model is included in the aerodynamics block.

Figure A.8 show the aerodynamics block diagram.
Constants:
Parameters:
Interface of TTPAerodynamics
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Figure A.8: The aerodynamics block.

Inputs:
angular velocity [rad/s] [ ]
dr[rad] [ ]
da[rad] [ ]
de[rad] [ ]
Vb [ ]
a [ ]
rho [ ]

Outputs:
Moments [ ]
Forces [ ]
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B. The PUH-Format

Plaid Aerodata File Format: The PUH-format

The PUH file format contain plaid aerodata tables of arbitrary dimension. Each aerodata
table with additional metadata form a data block with a specific pattern. Comments can be
included where appropriate and must always be preceded with the character#. Each data
block is separated with a blank line.

The first line in a data block must be a comment, and the first word in that comment is
the name of the data table. Then follows any number of comment lines, one row with a single
integer determining the dimension of the data table and then additional comment lines. The
last line of comments must be the name of the first variable. The line that follows is a row
vector of the lattice values of the first variable. The next few lines, if the data has more than
one dimension, has the same pattern. That is, a comment line with the variable name and a
line containing a vector with the values of the variable.

When all variables and their values are presented, there is a possibility for additional
comments before the function values is presented. This line can for instance contain infor-
mation about the values of the third and fourth variables if they exist. The function values are
presented as a row vector (for 1-D) a matrix (for 2-D) and several matrices (for N-D).

# CD0_MACH We start with a simple
# one-dimensional data block.
# Some description
# that stretch over
# any number of lines.
1
# The above integer specify the table dimension.
# The next line contain the name of the first variable.
# MACH
0.200 0.600 0.800 0.850 0.900 0.950 1.000 1.050 1.100 1.200 # Lattice values
0.451 0.0438 0.0271 0.312 0.0128 0.383 0.683 0.0928 0.0353 0.612 # Function values

# CL_MACH_ALPHA_DE The second data block.
# Three-dimensional data table.
# The figures in the data table below are random numbers.
# Some description...
3
# The above integer specify the table dimension.
# The next line contain the name of the first variable.
# MACH
0.2000 0.5000 0.900 1.000 1.100 # Five Mach numbers
# ALPHA
-10.000 0.000 10.000 20.000 25.000 30.000 # Six alpha numbers
# DE
-20.000 0.000 20.000 # Three elevator angles
# DE = -20.0

-0.0068951 -0.31606 0.67699 0.38913 -0.65409 # ALPHA = -10.0
0.79954 -0.42055 0.13614 0.24262 0.95949 # ALPHA = 0.0
0.64326 -0.31761 -0.25917 0.58964 -0.45711 # ALPHA = 10.0
0.28982 0.068158 0.40548 0.91369 -0.49534 # ALPHA = 20.0
0.63595 0.45423 0.093142 0.045181 0.75148 # ALPHA = 25.0
0.32046 -0.38142 -0.11024 0.76028 0.47461 # ALPHA = 30.0

# DE = 0.0
-0.72696 -0.43118 0.031024 0.059646 -0.07781
-0.97649 -0.061551 -0.3321 0.28105 0.13566

0.7878 -0.87044 -0.13419 -0.58186 0.58842
-0.60172 0.97667 -0.5481 -0.24036 -0.88163
-0.40255 0.16558 0.15961 0.56666 0.20574

0.32289 -0.15301 0.52073 0.36169 -0.89946
# DE = 20.0

-0.16925 0.98017 -0.35993 -0.12015 -0.73245
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-0.39 0.57772 0.9202 0.86676 -0.58573
0.74873 -0.12268 0.45326 0.36666 0.2144

-0.96998 -0.0033774 -0.17609 -0.57488 0.25978
0.5359 -0.57207 0.48913 0.67848 -0.25905

0.94169 0.28698 -0.46411 0.25757 0.1503
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