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Författare Projektledare

Godkänd av
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Övriga bibliografiska uppgifter
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I militära s̊aväl som industiella tillämpningar finns komplexa maskiner med en specifik uppgift. En förbättring av
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1 Introduction

1.1 The project

In 2002 a strategic competence project in the area of control systems was ini-
tiated at the Division of Systems Technology of the Swedish Defense Research
Agency (FOI). The project has been carried through at the department of Au-
tonomous Systems during two years. The purpose has been to strengthen the
competence within the department and to increase the knowledge of modern
techniques used for application of linear as well as nonlinear control theory and
systems analysis.

In this report the focus is to highlight a few modern methods for control
synthesis that are mature and have a potential for large scale industrial ap-
plication. Starting of with a glance at the history of the research area, a few
fundamental theories and their potential and limitations are discussed. In the
last chapter an example of application of a modern synthesis method for flight
control is given.

1.2 The research area

1.2.1 Origin

Extremely advanced control systems have been around since before mankind,
and still the state of the art of man made control systems utilizing the most
advanced technology is not even in the same ballpark as those produced through
evolution. Controlling a machine as complex as the human body with the
agility of an acrobat is a today only a dream of control engineers and scientists.

Early efforts in the field were motivated by practical problems requiring
skillful engineering solutions. Skipping through history until mathematics was
introduced as a tool for control system analysis and design, we end up in
the middle of the 19th century. Control theory is thus a fairly young field of
research focused on system analysis and modelling for the purpose of control
design. This admittedly narrow definition distinguishes the field from pure
mathematics through specification of an application, like any other area of
research in applied mathematics. A characteristic feature of control theory is
that it is by nature an interdisciplinary field where problems from e.g. biology,
chemistry, physics, economics and mechanics are formulated to fit in a standard
framework for which the tools of control theory are developed. The aim of this
section is to provide a very coarse grain overview of the research area. Note that
many active areas that have had significant impact on the evolution of the field
are not considered in this brief review e.g. digital control, system identification,
control of distributed and infinite dimensional systems and adaptive control to
name a few.

1
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1.2.2 The Classical era

Initially the focus of analysis of control systems was the stability of differential
equations. Through the work of Maxwell, utilizing linearized differential equa-
tions to find characteristic equations and analyzing the roots, control theory
is considered to be established as a discipline. Routh and Hurwitz developed
methods to determine the stability of linear systems. In Russia, Lyapunov an-
alyzed the stability of the nonlinear differential equations using methods that
are the foundation of many theories in practical use today.

The classical engineering tools of early control theory are basically graphi-
cal criteria for single-input single-output (SISO) systems in the frequency do-
main used to determine stability of a linear time invariant (LTI) system. The
mathematical tool of the classical methods is complex analysis. The methods
of Evans, Bode, Nyquist and Nichols are still widely used due to their sim-
plicity and have the advantage of providing low order stabilizing and robust
controllers. There are however some limitations of frequency domain methods
that make then unsuitable for multiple-input multiple-output (MIMO), time
varying and nonlinear systems. Another issue is the lack of systematic methods
for obtaining a specified system performance.

1.2.3 Linear state space methods

Modern (or state space based) control theory grew in popularity through suc-
cessful research in the early 1950’s. With these methods the focus shifted
towards designing for optimal performance of the controlled (hopefully stable)
system. The linear state space synthesis methods have capitalized on advances
in linear algebra as well as numerical methods for solving large scale matrix
equations. The state space methods allow control designs to achieve optimal
performance given a specified objective also for MIMO systems. Tools for
stability analysis are often derived from the stability theorems of Lyapunov.

One invention that has been very successful in applications is the Kalman
filter, which provide the optimal state estimate based on measurements of
the state, even when influenced by noise. One problem is however that the
controllers obtained from state space formulations are often of high order and
thus not as easily accommodated in applications as those designed using the
classical approach. This has motivated efforts in model and, more recently,
controller reduction which is the topic of a later section in this report.

A standard form for linear systems of equations has made it possible to
develop toolboxes to solve problems of system analysis and control synthesis.
The state space formulations enable the use of powerful analysis tools from
linear algebra e.g. for determining if it is possible to control/ stabilize or
observe/ detect a (linear) system given a set of inputs or outputs. In the last
decades researchers have explored linear fractional transformations (LFT) as a
standard form of the system equations to enable development of more advanced
algorithms and toolboxes for linear systems. Linear parameter varying (LPV)
system models are sometimes used to extend the region of validity of a linear
model while retaining the simple system description.

1.2.4 Modern robust control

The need for robustness in controlled systems inspired scientists to combine
the robustness properties of classical methods with the power of the state
space methods. Efforts on extending classical frequency domain methods to
MIMO systems was successful in the mid 70’s. One example of a theory in this

2
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branch is the Quantitative Feedback Theory (QFT) utilizing an extension of
the Nichols chart to achieve robust controllers for MIMO systems.

Parallel to the evolution of state space control theory, considerable theoret-
ical advances were made in the field of game theory. The solution of a game
is a set of strategies for each player such that no player can benefit from a
change in his own strategy. Game theory has found most of its successful ap-
plications in economics and bargaining problems, but a subset of the theories,
known as non-cooperative games, also apply to the field of robust control. The
celebrated H∞ theory is an example of such robust control synthesis where the
solution of an algebraic Riccati equation (ARE) gives the equilibrium strategies
for non-cooperating players.

Many tools for state space stability and robustness analysis have their ori-
gins in Lyapunov stability theory and the small gain theorem, both applicable
to linear as well as nonlinear systems. For linear systems the criteria for sta-
bility can be expressed in terms of eigenvalues, and the degree of robustness is
expressed through singular values. One analysis method using the structured
singular value of a system to quantify the degree of robustness is known as µ
analysis.

Recent research has resulted in a focus on solution of general linear ma-
trix inequalities (LMI). These arise from problem formulations using multiple
objectives (“pareto-optimal control”) or other measures of the objectives than
those in the traditional optimal or robust setting. This shift in focus is mainly
due to the advent of efficient methods for numerical solution of the convex
optimization problems, making general LMI problems tractable. With these
methods one can guarantee not only robustness properties of the stability of a
system but also statements regarding performance.

1.2.5 Nonlinear methods

Development and research on methods for control synthesis and analysis of
nonlinear systems is far from as mature as the tools developed in the linear
domain. A few techniques are however used in the industrial setting due to
their great advantages in enabling increased system performance.

Many of the aforementioned theories for stability analysis are not limited
to linear systems, or have a nonlinear counterpart or extension. The need for
nonlinear methods is natural since most physical systems are in fact nonlinear
even though many problems can be linearized and thus formulated and solved
in the linear setting with satisfactory results. Some isolated nonlinearities can
be handled with describing functions and analysis using the classical methods.
One early tool for stability analysis for nonlinear differential equations is the
circle criterion by Popov.

Methods for controlling nonlinear systems are often formulated in the terms
of an optimization problem, or dynamical program. Bellman formulated the
principle of dynamical programming using the Hamilton-Jacobi equations, and
this is the foundation of many optimization methods. The application of an-
alytical approaches are often limited to small systems, and for larger systems
one has to resort to numerical methods.

Differential geometric methods are playing an important role in much of
the present research on nonlinear control systems. In particular the use of Lie
groups is an active area of research. By Lie group methods, system symmetries
may be exploited.

Neural networks are popular in applications where the system dynamics
are not explicitly modelled due to the adaptive nature of the approach. Other
methods inspired by nature are the genetic algorithms who seek solutions to
optimization problems in a process of “natural” selection. Most theories of

3



FOI-R--1696--SE

adaptive control strategies suffer from lack of robustness properties, and reme-
dies to handle this problem is an active topic in the research community today.

Methods for nonlinear control is the topic of this report where a number of
constructive control synthesis methods for nonlinear systems are discussed in
chapters 3 and 4 and an example of application in 5.

1.2.6 The future

Many tools necessary for controlling complex systems are becoming mature
and thus applicable to real life problems. The main advantages of modern
methods for controlling nonlinear systems is that one can allow the system to
operate in a range closer to the physical limitations of the equipment. This
could mean sharper turns with a missile or allowing a wind turbine to operate
in strong gusty winds. This increase in performance can be of substantial
tactical and economical value. In order to exploit the possibilities of modern
control theory there is a need for integrated development teams when a new
system is designed. This allows for accurate modeling and rapid feedback on
design limitations from all perspectives. The system performance can often be
increased by minute modification of the design motivated by controllability and
robustness properties. Such a rapid prototyping approach can aid in avoiding
pitfalls and unnecessary costs for achieving desired performance objectives.
The advent on an integrated environment with tools to support system design
and modeling as well as control synthesis and robustness analysis would allow
optimization of performance objectives based on economical metrics for the
complex systems of the future.

1.3 This report

Later chapters in this report will cover the state of the art in model order reduc-
tion in chapter 2, modern techniques for stabilization and tracking including
exact linearisation or Nonlinear dynamic inversion (NDI) and in particular
backstepping in chapter 3. Optimization based methods such as robust model
predictive control and the connection to differential games is discussed in chap-
ter 4. An example of applying block/vector backstepping to a model of a small
fighter aircraft is presented in chapter 5.

4
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2 Model Order Reduction

2.1 Introduction

Consider the linear MIMO system

Σ :
{

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) (2.1)

with initial condition x(0) = x0, where x(t) is the state-space vector of dimen-
sion m, u(t) is the input and y(t) is the output.

The objective in reduced-order modelling is to construct a reduced order
model

Σ̃ :
{ ˙̃x(t) = Ãx̃(t) + B̃u(t)

y(t) = C̃x̃(t)
(2.2)

such that the state-space dimension of the reduced order model Σ̃ is much
smaller than the state-space dimension of the original model Σ, and in the same
time the input/output behaviour for the reduced order model Σ̃ approximates
the original model sufficiently well given that the input signal belongs to a
given class.

The main reason for constructing reduced order models is to obtain a model
that approximates the original model sufficiently well, and in the same time is
much more efficient than the original model with respect to computation and
memory requirements.

The two main applications of reduced order models are

• Replace the original model in large scale simulations in order to reduce
the simulation time.

• Used for constructing low dimensional controllers for real time applica-
tions.

Applications where reduced order models are used include circuit and mems
simulation, structural dynamics analysis and simulation of fluids.

We will review two different methods for linear systems, balanced truncation
and Krylov subspace methods. The advantage with balanced truncation is that
there exists global error bounds, the disadvantage is that the method is very
computationally demanding. The advantage with Krylov subspace methods is
that they are computationally efficient, the disadvantage is that there exists
no global error bounds. Both methods can be described by means of change of
variables and projection. Later on we will briefly describe their extensions to
nonlinear systems.

2.2 Projection framework for linear systems

Let V be a basis for a subspace S, and W be a basis for a subspace P, both of
dimension m̂, m̂ << m. Further we assume that the basis are biorthogonal,
i.e. W T V = I.

5
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The oblique projection onto S and orthogonal to P can be represented by

P = V W T (2.3)

Make a change of variable x = V x̂, and let the projection of the residual equals
to zero

P (V ˙̂x−AV x̂ + Bu(t)) = V W T (V ˙̂x−AV x̂−Bu(t))

= V (W T V ˙̂x−W T AV x̂−W T Bu(t))
(2.4)

From the a above we can conclude that

˙̂x = W T AV x̂ + W T Bu(t) (2.5)

which is the state space equation of the reduced order model.
Finally, the reduced order model can be defined as

Σ̃L :
{ ˙̃x(t) = Ãx̃(t) + B̃u(t)

y(t) = C̃x̃(t)
(2.6)

where
Ã = W T AV , B̃ = W T B, C̃ = CV (2.7)

Several method for reduced order modelling of linear systems can be seen
as change of variable and projection. They differ in the strategies how to
choose the subspaces, the construction of the basis, and the construction of the
projection.

2.3 Balanced Model Reduction

Consider a stable system of minimal realisation

Σ
{

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) (2.8)

with the corresponding controllability and observability Gramians P > 0 ,
Q > 0. The controllability and observability Gramians are the solution to the
Lyapunov equations

AP + PAT + BBT = 0 (2.9)

AT Q + QA + CT C = 0 (2.10)

Since we assume that the system is stable, all eigenvalues of A have negative
real part. Since we also assume that the system is a minimal realisation, the
gramians P and Q are positive definite.

The first step in balanced model order reduction is to construct a balanced
realisation, the balanced realisation is then truncated in order to construct a
reduced order model. A balanced realisation is a realisation where the control-
lability and observability gramians are equal and diagonal.

P = Q = Σ, Σ = diag(σ1, . . . , σn), σ1 ≥ σ2 ≥ σ3 · · · ≥ σn (2.11)

The values σ1, . . . , σn are called Hankel singular values. A balanced realisation
can be found by a appropriate coordinate transformation

x̂ = Tx (2.12)

By this coordinate transformation, the system turns into

Σ̂
{ ˙̂x(t) = Âx̂(t) + B̂u

y(t) = Ĉx̂(t)
(2.13)

6
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where
Â = TAT−1, B̂ = TB, Ĉ = CT−1 (2.14)

and the gramians in the new coordinates

P̂ = TPT T , Q̂ = (T−1)T QT−1 (2.15)

The goal is to choose T such that the gramians in the new coordinate are equal
and diagonal

P̂ = TPT T = Σ, Q̂ = (T−1)T QT−1 = Σ

Σ = diag(σ1, . . . , σn), σ1 ≥ σ2 ≥ σ3 · · · ≥ σn

(2.16)

Multiply P̂ and Q̂

P̂ Q̂ = TPQT−1 (2.17)

The eigenvalues of the product P̂ Q̂ are invariant under the transformation
x̂ = Tx, it is a similarity transformation. We want to choose T such that

TPQT−1 = Σ2 (2.18)

Factorise P by a cholesky factorisation

P = RT R, R− upper triangular (2.19)

(2.18) can be rewritten as

(RQRT )R−T T−1 = R−T T−1Σ2 (2.20)

Since P and Q are positive definite, RQRT will also be positive definite.
Compute the eigenvalues and eigenvectors to RQRT

(RQRT )U = UΛ, Λ = diag(λ1, . . . , λn), UT U = I (2.21)

The eigenvectors are normalized by (2.21). In order for (2.16) and (2.20) to be
fulfilled, choose

T−1 = RT UΣ− 1
2 (2.22)

and as a consequence
T = Σ

1
2 UT R−T (2.23)

Note that U is orthonormal, and thus U−1 = UT .
We are now ready to give an algorithm for computing a balanced realisation,

given an stable system of minimal realisation.

Balanced Realisation
1 Compute the controllability and observability Gramians P and Q
2 P = RT R Factorize P
3 M = RQRT Compute the product
4 MU = UΛ Compute the eigenvectors U and eigenvalues Λ of M

5 Σ := Λ
1
2 Set

6 T−1 := RT UΣ− 1
2 Set

7 Â := TAT−1, B̂ := TB, Ĉ := CT−1, D̂ := D Set

7
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The balanced realisation in state space is defined as

Σ̂L :
{ ˙̂x(t) = Âx̂(t) + B̂u(t)

y(t) = Ĉx̂(t)
(2.24)

A reduced order model of state-space dimension k based on balanced reali-
sation (2.24) is constructed by taking the part of the system corresponding to
the k largest Hankel singular values,

Finally, the reduced order model can be defined as

Σ̃L :
{ ˙̃x(t) = Ãx̃(t) + B̃u(t)

y(t) = C̃x̃(t)
(2.25)

where
Ã = Â1:k,1:k; B̃ = B̂1:k,: C̃ = Ĉ:,1:k, D̃ = D̂ (2.26)

Let G(s) = C(sI − A)−1B be the transfer matrix of the original linear
system (2.24), and let G̃(s) = C̃(sĨ − Ã)−1B̃ be the transfer matrix of the
reduced order linear system (2.25). A global error bound is given by

‖ G(s)− G̃(s) ‖∞≤ 2(σk+1 + σk+2 + . . . σn) (2.27)

See [43] for a exact statement of condition and proof.
In terms of the projection framework, the projection matrices V and W

are identified as

V = T−1(:, 1 : k)

W = T T (:, 1 : k)
(2.28)

Note that W T V = I.

2.4 Moment matching through Krylov subspaces

2.4.1 Moment matching

In this section, we will review how to construct reduced order models based
on implicit moment matching. The moments are implicitly matched by con-
structing Krylov subspaces as the projection subspaces.

Consider the SISO linear system

ΣL :
{

ẋ(t) = Ax(t) + bu(t)
y(t) = cx(t) (2.29)

make an Laplace transform

ΣL :
{

sx(s) = Ax(s) + bu(s)
y(s) = cx(s) (2.30)

and construct the transfer function

G(s) = c(sI −A)−1b (2.31)

Expand the transfer function G(s) around s = 0 in a series expansion

G(s) = (−1)
∞∑

l=1

sl−1cA−lb (2.32)

The coefficients m(l) = −cA−lb, l = 1, . . . ,∞ are the (low-frequency) mo-
ments. We want to construct a reduced order model in such a way that the

8
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first k moments are matched. This is done in an explicit way through the AWE
algorithm [29]. It turns out that explicit moment matching is a numerically
unstable process, it is much more numerically stable to construct the reduced
order model in such a way that the moments are matched implicitly through
constructing basis for Krylov subspaces and utilise projection [11]. We will
now describe such a procedure, this procedure is build on [26].

First we build up an orthonormal basis V for the right Krylov subspace

Kk(A−1,A−1b) = span{A−1b,A−2b, . . . ,A−kb} (2.33)

then the reduced order model is constructed through projection.
Let P be the orthogonal projection matrix onto the Krylov subspaceKk(A−1,A−1b),

and let V be an orthonormal basis for the same subspace. Then P can be rep-
resented by

P = V V T (2.34)

Make a change of variable x = V x̃, and let the projection of the residual be
equal to zero

0 = P (V ˙̃x−AV x̃− bu)

= V V T (V ˙̃x−AV x̃− bu)

= V ( ˙̃x− V T AV x̃− V T bu)

(2.35)

From the above one can identify a reduced order model

ΣL :
{ ˙̃x(t) = Ãx̃(t) + b̃u(t)

y(t) = c̃x̃(t)
(2.36)

where
Ã = V T AV , b̃ = V T b, c̃ = cV (2.37)

The first k moments of the reduced order model matches the first k moments
of the original model.

m̃(l) = c̃Ã−lb̃, l = 1, . . . , k

= cA−lb

= m(l)

(2.38)

for a proof see [26].

2.4.2 Construction of a basis for a Krylov subspace

In this section we will give an algorithm for computing an orthonormal basis
Vk for the Krylov subspace (2.33) used as the projection subspace, the Arnoldi
algorithm, here formulated with operations with the inverse of A.

Arnoldi algorithm
1 v1 = A−1b start vector
2 for j=1:k
3 r = A−1vj operate with A−1

4 fj = V T
j r

5 r = r − Vjfj

6 fj+1,j =‖ r ‖ if fj+1,j = 0 stop
7 vj+1 = r/fj+1,j

8 end

9
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• The operation with the inverse on line 3, for efficiency should be imple-
mented by using (sparse) matrix factorisation and solvers.

• Lines 4 − 7 are the orthogonalisation steps, the resulting basis Vk+1 is
orthonormal by construction.

• To ensure that the basis is orthonormal to working accuracy, the orthog-
onalisation steps should be implemented with reorthogonalisation, for
example, see the procedure gsreorthog on page 287 in [39].

• If fj+1,j = 0, then stop, the resulting basis Vj span an invariant subspace
under A−1.

2.4.3 System properties

Apart from the moment matching capabilities, in many cases it is important
that system property such as stability is preserved. For example, if A is nega-
tive definite, the system is stable. The congruence transformation

Ã = V T AV (2.39)

preserves the matrix property of negative definiteness, and thus the system
property stability is preserved.

2.4.4 Extensions and further readings

For an overview of Krylov subspace methods for linear systems, see [12, 18]
and the references therein. We will here discuss some important issues.

If in addition to basis for the right Krylov subspace (2.33), a basis W for
the left Krylov subspace is build up

span{W } = Kk(A−T ,A−T cT ) (2.40)

it is possible to match 2k moments. If the basis are constructed to be biorthog-
onal

W T V = I (2.41)

then a reduced order model(r.o.m.) is defined by (2.6).
The advantage with the two-sided version is that it matches 2k moments,

which is the double number of moments than for the one-sided version, the
Arnoldi algorithm. The disadvantage is that it is less stable. The biorthogo-
nalisation process can break down in a way that the orthogonalisation process
cannot do. It fails to construct a biorthogonal basis even though the left and
right Krylov subspaces are not exhausted. This can be remedied with “look
ahead”, see [14, 13, 41].

Both one-sided and two-sided methods can be extended to multiple input
and multiple output. The Krylov subspace corresponding to one starting vector
can be exhausted before the other, this lead to a breakdown that can be cured
by a deflation procedure, see [1].

The moment matching methods are local in nature. In frequency domain,
the reduced order model is well approximated close to the expansion point,
but less well approximated further away. A reduced order model that is well
approximated throughout a larger frequency range can be constructed by using
several expansion points s1, . . . , sl, and constructing a reduced order model
such that the moments are matched around each expansion point up to a given
order, see [18, 37, 16]

10
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2.5 Nonlinear model order reduction

2.5.1 Proper orthogonal decomposition

Consider the nonlinear system

Σ :
{

ẋ(t) = f(x(t)) + bu(t)
y(t) = cx(t) (2.42)

The basic idea in this subsection is to construct a basis for the projection
subspace based on simulation.

Let u(t) be a representative input signal for the simulation one wish to
perform. Sample the state vector at n different times

x(t1), . . . ,x(tn) (2.43)

Put the sampled state vectors together into a matrix X

X = [x(t1),x(t2), . . . ,x(tn)] (2.44)

and compute the singular value decomposition (SVD)

X = UΣV T (2.45)

where

U = [u1, . . . ,um] ∈ Rm,m, Σ = diag(σ1, . . . , σp) ∈ Rm,n, V = [v1, . . . ,vn] ∈ Rn,n

(2.46)
The matrices U and V are orthonormal and the matrix Σ is a diagonal matrix
with nonnegative values on the diagonal and zeros elsewhere. The values σ1 ≥
σ2 ≥ . . . ≥ σp, p = min{m,n} are called the singular values. The vectors ui

and vi are the ith left and right singular vectors respectively.
As a basis for a projection subspace we take the k left singular vectors Uk

that corresponds to the k largest singular values. The reduced order model is
defined as follows

Σ̂ :
{ ˙̂x(t) = f̂(x̂(t)) + b̂u(t)

y(t) = ĉx̂(t)
(2.47)

where

f̂(x̂) = UT
k f(Ukx̂), b̂ = UT

k b, ĉ = cUk (2.48)

One major drawback of P.O.D. is in the representation of the nonlinear
function f in the r.o.m. In order to evaluate the function f̂(x̂) one needs to
construct a vector

Ukx̂ (2.49)

of original dimension m, and then evaluate the original function f . The other
drawback is that P.O.D. relies on simulation (or measurement) in order to
construct a projection subspace. Despite the drawback of P.O.D. it plays an
important role in model order reduction of nonlinear systems. For further
discussion about P.O.D. see [20, 30].

2.5.2 Extension of Balanced truncation to nonlinear systems

Balanced truncation has been extended to nonlinear systems [34].

11
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2.5.3 Extension of Krylov subspace methods to nonlinear systems

Krylov subspace methods for linear systems have been extended to nonlinear
systems in several different ways [8, 31, 27, 28, 24, 6, 7, 4, 5]. Here we will
discuss approaches based on multimoment matching and projection of bilinear
systems [6, 7, 4, 5], they are inspired by [27, 28]. For the one-sided method,
the subspaces build up are similar but the projection framework is different.
The two-sided method, which is briefly discussed in [4] ,[5] and more throughly
discussed in [7], is much more efficient in terms of multimoment matching than
the one-sided method. Differently from P.O.D, these methods construct “true”
reduced order models, and the basis for the projection subspace is constructed
to incorporate nonlinear terms through moment matching.

A bilinear system is linear in state and linear in input, but not jointly linear
in state and input. Consider the single input single output bilinear systems.

Σ :
{

ẋ(t) = Ax(t) + Nx(t)u(t) + Bu(t)
y(t) = cT x(t) (2.50)

Bilinear systems arise as natural models for many different physical and biomed-
ical processes [25]. They can also be used to approximate more general nonlin-
ear systems, for example through the Carleman bilinearisation [33].

The Volterra-Wiener representation of the bilinear system is given by

y(t) =
∞∑

k=1

yk(t), (2.51)

where yk(t) is the degree-k subsystem of the form

yk(t) =

t∫
0

hreg(t1, t2, . . . , tk)u(t−t1−· · ·−tk)u(t−t2−· · ·−tk) · · ·u(t−tk)dt1 · · · dtk

(2.52)
with the associated k-th degree regular kernel

hreg(t1, t2, . . . , tk) = cT eAtkN · · ·NeAt2NeAt1b. (2.53)

For further details of the Volterra-Wiener representation of bilinear systems, see
[33]. The multi-dimensional Laplace transform of the regular kernel hreg(t1, . . . , tk)
yields the transfer function

Hk(s1, s2, . . . , sk) = cT (skI −A)−1N · · ·N(s2I −A)−1N(s1I −A)−1b.
(2.54)

By the power series expansion of (sjI − A)−1, the transfer function can be
expanded in a multivariable series expansion

Hk(s1, s2, . . . , sk) =
∞∑

lk=1

· · ·
∞∑

l1=1

m(l1, l2, . . . , lk)sl1−1
1 sl2−1

2 · · · slk−1
k , (2.55)

where
m(l1, l2, . . . , lk) = (−1)kcT A−lkN . . .NA−l2NA−l1b, (2.56)

are called the multimoments of the degree-k kernel.
Our approach for model order reduction for bilinear systems is to match

the multimoments for the first few kernels of the original bilinear system up to
a given order. This is done through a projection framework.

A basis V for a right projection subspace is built up in the following way.
First a basis V (1) for a Krylov subspace is constructed by starting with A−1b
and operating with A−1

span{V (1)} = Kq1(A
−1,A−1b) (2.57)

12



FOI-R--1696--SE

the each basis V (k) span a block Krylov subspace by starting on A−1N times
the first pk basis vectors of the previous basis V (k−1) and operating with A−1

span{V (k)} = Kqk
(A−1,A−1NV

(k−1)
[pk] ), (2.58)

An orthonormal basis V of the projection subspace is chosen as a union of the
subspaces span{V (k)}:

span{V } =
r⋃

k=1

span{V (k)}. (2.59)

an orthogonal projection approximation, it yields a reduced bilinear system
of ΣB:

Σ̂B1 :
{ ˙̂z(t) = Âẑ(t) + N̂ ẑ(t) u(t) + b̂u(t),

y(t) = ĉT ẑ(t),
(2.60)

where

Â−1 = V T A−1V , N̂ = ÂV T A−1NV , b̂ = AV T A−1b, ĉ = V T c. (2.61)

It can be shown that the reduced bilinear system Σ̂B1 matches the same number
of multimoments as the number of basis vectors. For a precise statement and
proof of multimoment-matching, see [6].

A basis W for the left subspace is built up in the following way. First a basis
W (1) for a Krylov subspace is constructed by starting with c and operating
with A−T

span{W (1)} = Kq1(A
−T , c). (2.62)

then each basis W (k) span a block Krylov subspace by starting on NT A−T

times the first pk basis vectors of the previous basis W (k−1) and operating with
A−T

span{W (j)} = Kqk
(A−T ,NT A−T W

(k−1)
[pk] ), (2.63)

The basis W for the left projection subspace is then taken as a union of these
Krylov subspaces span{W (k)}

span{W } =
r⋃

k=1

span{W (k)} (2.64)

Furthermore, the bases V and W are constructed to be biorthogonal. By the
principle of an oblique projection approximation, it yields a reduced bilinear
system of ΣB:

Σ̂B2 :
{ ˙̂z(t) = Âẑ(t) + N̂ ẑ(t) u(t) + b̂u(t),

ŷ(t) = ĉT ẑ(t),
(2.65)

where

Â−1 = W T A−1V , N̂ = ÂW T A−1NV , b̂ = ÂW T A−1b, ĉ = V T c.
(2.66)

It can be shown that the reduced bilinear system Σ̂B2 matches all multimoments
that can be represented through the inner product

sT r = (−1)kcT A−lkN . . .NA−l2NA−l1b, (2.67)

where
r ∈ span{V }, s ∈ span{W } (2.68)

For a precise statement and proof of multimoment-matching, see [7].
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Figure 2.1: The frequency response of the reduced order models constructed by the
Arnoldi method (left) and the method of balanced truncation (right) are plotted together
with the error. The dimension of the reduced order model is 18.

2.6 Numerical tests

Example 1

Here, the Arnoldi method and the method of balanced truncation for a linear
systems are compared. The linear systems used as a test example originate
from the the description of the dynamics between the lens actuator and the
radial arm position of a portable disc player [18]. The state space dimension is
120. Reduced order models are constructed by the Arnoldi method and method
of balanced truncation. Both reduced order models are of dimension 18. The
frequency response of the reduced order models together with the error are
plotted in figure (2.1). The reduced order model constructed by the Arnoldi
method approximate the original model well close to the expansion point s = 0,
and less well further away. The reduced order model of balanced truncation
approximate the original model rather well throughout the frequency range.
These results are predicted by the theory.

Example 2

Consider a SISO quadratic system

Σ :
{

ẋ = A1x + A2(x⊗ x) + bu(t)
y = cT x

(2.69)

where A1 and A2 are constant matrices of size Rn×n and Rn×n2
, and b, c

are constant vectors. The quadratic system originate from a nonlinear circuit.
Two different bilinear systems that approximate the quadratic system are con-
structed, through Carleman bilinearisation, and an improved bilinear approx-
imation. We will refer to these systems as Quadratic, Bilinear and Improved
Bilinear respectively. The improved bilinear approximation is introduced in
[5]. For the structure of the system matrices A and N of the bilinear systems,
see [5]. The dimension of the quadratic system is 100, and the dimension of
the bilinear systems is n+n2 = 10100. In figure 2.2 (left) we plot the response
of the Quadratic, Bilinear and Improved Bilinear systems for the input signal
u(t) = 1

2 (1− 1
5 cos(2t)− 2

5 cos(3t)). The Improved Bilinear system approximates
the quadratic system much better than the Bilinear system.

In order for the reduced order model constructed by the two-sided projection
method (2.65) to approximate the Improved Bilinear system sufficiently well,
the dimension need to be n = 11. On the other hand, the dimension of the

14
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Figure 2.2: The response of the systems Quadratic, Bilinear and Improved Bilinear systems
for the input signal u(t) = 1

2
(1− 1

5
cos(2t)− 2

5
cos(3t)) are plotted (left). The response

of the reduced order models for the input signal u(t) are plotted (right)

reduced order model constructed by the one-sided method (2.60) need to be
n = 62. The response of the reduced order models for the input signal u(t) is
plotted in figure 2.2 (right). For further discussion of this test example, see [5].
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3 Backstepping Techniques for Stabilization and

Tracking

This chapter gives the ideas behind backstepping up to the point of recent
results on tracking properties. As general references for backstepping, see [23]
and [35]. For background on the passive normal form, see [40] and [19]. The
tracking results are new.

3.1 Introduction and toy example

Backstepping is a general constructive method for control design for nonlinear
systems. It was developed from two predecessors, feedback linearization and
the method of sliding modes, and shares many features with these. In a sense,
backstepping is a generalization covering its parent methods as special cases.

The general idea is as in the following example. Consider the dynamical
system {

ẋ = x2 + y
ẏ = x + u

where x and y are state variables and u is the control variable. The origin is
an unstable equilibrium point, and we want to find a controller u (x, y) such
that the origin becomes asymptotically stable.

The first equation does not contain u, and may temporarily be considered
as a control system in its own right, with x as the state variable and y as the
(”virtual”) control. This is a problem of the same kind as the original one, but
simpler since it is one-dimensional. We easily obtain a stabilizing controller to
this system

y = ydes(x) = −x2 − x

This is the desired value of the virtual control variable y. Introducing a
new variable

z = y − ydes(x) = y + x2 + x

the full dynamics reads {
ẋ = −x + z

ż = x + 2x(z − x) + u

In the second equation we may use the actual control variable u to cancel the
terms x + 2x(z − x) and replace them with whatever we want, say −z. So by
choosing

u = −x− 2x(z − x)− z

the closed loop dynamics becomes

ẋ = −x + z

ż = −z

17
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which is obviously asymptotically stable. In fact, V = 1
2x2 + 1

2z2 is a Lyapunov
function, since

V̇ = −x2 − z2 + xz ≤ −V

We have in fact stabilized the system by means of a feedback linearization.
The explicit use of a state variable y as a temporary control variable is common
to backstepping and the sliding modes method. The ”recursive” form (as a
sum 1

2x2 + 1
2z2) of the Lyapunov function is the hallmark of the backstepping

method.

3.2 Sliding Modes and Nonlinear Dynamic Inversion

3.2.1 Sliding Modes

Consider a dynamical system of the form{
ẋ = f (x, y)

ẏ = g (x, y, u)

where x and y are state variables and u is the control variable. Suppose that
f (0, 0) = 0 and that we want to construct a controller u (x, y) such that the
origin becomes an asymptotically stable equilibrium point of the closed system.

The first equation does not contain u, and may temporarily be considered
as a control system in its own right, with x as the state variable and y as the
control. This is problem of the same kind as the original one, but in general
simpler due to lower state dimension. Assume that we do obtain a stabilizing
controller to this system

y = ydes(x)

Introducing a new variable

z = y − ydes(x)

the original system may be written thus{
ẋ = f1 (x, z)

ż = g1 (x, z, u)

where

f1 (x, z) = f (x, ydes(x) + z)
g1 (x, z, u) = g (x, ydes(x) + z, u)− y′des(x)f (x, ydes(x) + z)

It now seems plausible that, under suitable conditions, if the control u (x, y)
is chosen so that z → 0, by means of the second equation, the first equation will
approach ẋ = f1 (x, 0), which is stable by construction, and (one may hope),
x → 0.

Roughly speaking, the method of sliding modes achieves this by making the
z → 0 dynamics fast enough compared to the slower (”sliding”) ẋ = f1 (x, 0)
dynamics. That this actually works is proven by appealing to singular pertur-
bation theory.

In practice though, the fast dynamics seldom has to be any faster than
the sliding mode dynamics. The attempts to prove convergence by Lyapunov
theory (and without recourse to singular perturbation theory) was historically
one of the roads to backstepping.

The sliding mode idea to ”separate the timescales” of convergence för dif-
ferent state variables can be combined with Lyapunov techniques to form a
variant of backstepping, which we will however not discuss in this report.

18
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3.2.2 Nonlinear Dynamic Inversion

Consider the following dynamical system

ẋ1 = v1

ẋ2 = v2

v̇1 =
2∑

j,k=1

−Γ1
jk (x1, x2) vjvk + F1 (x1, x2) + u1

v̇2 =
2∑

j,k=1

−Γ2
jk (x1, x2) vjvk + F2 (x1, x2) + u2

which might represent a fully actuated two dimensional mechanical system,
such as a robot arm with two motorized joints. It is straight forward to apply
the idea above of cancelling the nonlinear terms (and replacing them with any
desired other expression) by the insignals u1 and u2. This method has been
used routinely in robotics since the beginning eighties under the name nonlin-
ear dynamic inversion, and may be applied whenever there is an independent
control variable for each nonlinear equation.

3.3 Feedback Linearization

Feedback linearization may be described as the systematic procedure of first
transforming the system equations into a form where nonlinear dynamic in-
version may be applied and then applying nonlinear dynamic inversion. In
the introductory toy example, the transformation from (x, y) to (x, z) achieved
precisely this.

The systematic procedure is as follows. Consider a dynamical system of the
form

ẋi = fi (x) + gi (x) u

(i = 1..n)

where (x1, .., xn) are the state variables and u is a scalar control variable. It is
convenient to think of the equation coefficients fi (x) and gi (x) as coefficient
of first order homogeneous partial differential operators

Lf =
n∑

i=1

fi (x)
∂

∂xi

Lg =
n∑

i=1

gi (x)
∂

∂xi

In differential geometric jargon, Lf and Lg are vector fields. The i:th com-
ponent fi (x) may be retrieved from the vector field Lf by letting it act as
a differential operator on the i:th coordinate function xi. The commutator
[Lf , Lg] = Lf Lg − Lg Lf is also a vector field, since all second order terms
cancel. The i:th components of [Lf , Lg] are given by

n∑
j=1

(
fj (x)

∂gi

∂xj
− gj (x)

∂fi

∂xj

)
The usefulness of this operator representation is that it is coordinate inde-

pendent, so if for a certain system it holds that e.g. [Lf , Lg] = 3Lg, then this
relation holds in any coordinate representation, and thereby reveals an intrinsic
property of the dynamical system which cannot be changed by any change of
coordinates.
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3.3.1 Example:

As an example of how simple things become when the coordinate crutches are
thrown away, consider the following normal form problem. Find, if possible, a
change of coordinates

ξ = ξ (x, y)
η = η (x, y)

which turns our toy example {
ẋ = x2 + y
ẏ = x + u

into linear form
Ξ̇ = AΞ + Bu

where Ξ =
(

ξ η
)T .

It is clear that such a linear system would satisfy an identity of the type
[Lf , [Lf , Lg]] = k1Lg +k2 [Lf , Lg], for some constants k1 and k2 (this is simply
the fact that A2B lies in the span of B and AB, which holds for any two
dimensional linear system). But for the toy system

Lf =
(
x2 + y

) ∂

∂x
+ x

∂

∂y

Lg =
∂

∂y

[Lf , Lg] = − ∂

∂x

[Lf , [Lf , Lg]] = 2x
∂

∂x
+

∂

∂y

so one of the coefficients is not constant. Hence no change of coordinates turns
the toy system into a linear system.

For notational convenience, we write [Lf , Lg] as adfg and [Lf , [Lf , Lg]] =
ad2

fg and so on.
Now that we have seen how the vector field point of view helps us in showing

that a certain system is not linearizable by a change of coordinates only, we
turn to the problem of showing necessary (and as we shall see also sufficient)
conditions for a system to be linearizable by a change of coordinates together
with a feedback transformation.

The system has the form

ẋi = fi (x) + gi (x) u

(i = 1..n)

A feedback transformation is a control law of the type

u = U(x) + K(x)v

with a nowhere vanishing K(x). The resulting dynamics reads

ẋi = f̂i (x) + ĝi (x) v

where

f̂i (x) = fi (x) + U(x)gi (x)
ĝi (x) = K(x)gi (x)
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For the origin to be a possible closed loop equilibrium point, it is necessary
that fi (0) = gi (0)u0 for some u0, so we assume that this is the case. An
initial feedback transformation u = −u0 + v transforms the problem into a
similar problem but one for which (the new) fi (x) vanishes at the origin. So
by no loss of generality we may assume that this has already been done and
that fi (0) = 0. We also assume a controllability property of the system:
it is assumed that the linear approximation of the system at the origin is
controllable. It is then clear that this will hold also for the system itself,
provided that there exists a feedback linearization transformation. Hence, if
there is a feedback linearization transformation of the system, the closed loop
form of the system may be put (in suitable linear coordinates and possibly
after an auxiliary linear feedback transformation) in the controllable standard
(Brunovsky) form

ẏ1 = y2

ẏ2 = y3

..

ẏn = v

where v is the residual control variable. This means that in those coordinates,

Lg = gy (y)
∂

∂yn

for some function gy (y) since a feedback transformation leaves the control
vector field Lg invariant except for a rescaling by K(x). Likewise, the (original)
drift vector field Lf must be of the form

Lf = y2
∂

∂y1
+ y3

∂

∂y2
+ .. + fy (y)

∂

∂yn

for some function fy (y) since the feedback transformation only affects Lf in
the Lg direction.

We may collect our findings as statements about the function h (x) = y1

and the vector fields Lf and Lg:

• There is a function h (x) (nonstationary at 0) such that the functions
Lk

fh, (k = 0, ..n− 1) are functionally independent and such that

• Ladk
f gh = 0, (k = 0, ..n − 2) and Ladn−1

f gh is nonvanishing at the origin.
(It equals gy(y).)

Conversely, it is also clear that if these conditions are fulfilled, then a change
of coordinates to yk = Lk−1

f h, (k = 1, ..n) brings the system to the normal form

Lf = y2
∂

∂y1
+ y3

∂

∂y2
+ .. + fy (y)

∂

∂yn

Lg = gy (y)
∂

∂yn

which allows for nonlinear dynamic inversion by means of the control law

u =
−fy (y) + v

gy (y)

Now, f and g were given, but the function h (x) has to be found – if it exists.
The condition that Ladk

f gh = 0 , (k = 0, ..n− 2) determines the differential dh

up to a scalar factor:
dh = λθ
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where θ is any differential 1-form representing the common (algebraic) nullspace
of the adk

fg. (Such a θ may be found by linear algebra alone.) The question
remains whether or not this 1-form has an integrating factor λ, thereby allowing
for a function h. The necessary and sufficient condition for this is that the
differential 3-form θ ∧ dθ identically vanishes. (This condition, Frobenius
theorem, may also be expressed in terms of vector field commutators. The
present formulation (by Cartan) is often computationally advantageous.) In
components, this condition reads

θi

(
∂θj

∂xk
− ∂θk

∂xj

)
+ θj

(
∂θk

∂xi
− ∂θi

∂xk

)
+ θk

(
∂θi

∂xj
− ∂θj

∂xi

)
= 0

For two-dimensional systems, the Frobenius condition is automatically sat-
isfied, so generically (namely: assuming controllability and functional indepen-
dence of the Lk

fh) such systems may be feedback transformed to linear form,
like our toy example.

In dimensions ≥ 3 the Frobenius condition severely restricts the class that
may be fully feedback linearized. In such cases the possibility remains of partial
feedback linearization.

Let h(x) be a state space function that we want to control. Assume that
Ladk

f gh = 0 for k = 0, .., r − 2 but Ladr−1
f gh 6= 0 for some integer r, known as

the relative degree of the system. It is possible to change to coordinates yk

such that yk = Lk−1
f h when 1 ≤ k ≤ r. In such coordinates

ẏ1 = y2

...

ẏr−1 = yr

ẏr = fr (y) + gr (y) u

ẏr+1 = fr+1 (y) + gr+1 (y) u

..

ẏn = fn (y) + gn (y) u

and by a suitable choice of the functions yk (r +1 ≤ k ≤ n), it can be arranged
that gr+1 (y) = .. = gn (y) = 0. The coordinates so obtained put the system
into the so-called normal form. We assume that this has been done, and apply
the nonlinear dynamic inversion feedback transformation

u =
−fr (y) + v

gr (y)

The resulting dynamics is given by

ẏ1 = y2

...

ẏr−1 = yr

ẏr = v

ẏr+1 = fr+1 (y)
..

ẏn = fn (y)

which means that the variables (y1, .., yr) serve as state variables of a lin-
ear system (an integrator chain) independent of the remaining state variables
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yr+1..yn, which are related to the so-called the zero-dynamics of the system,
i.e. the remaining dynamics when y1 = .. = yr = 0 identically in time,

ẏr+1 = fr+1 (0, .., 0, yr+1, .., yn)
..

ẏn = fn (0, .., 0, yr+1, .., yn)

The zero-dynamics is clearly unaffected by feedback transformations and is
an intrinsic property of the original system and the function h (x).

If the system is controlled in such a way that y1 = .. = yr = 0 becomes an
invariant submanifold, (i.e. the linear (y1, .., yr) system is stabilized as such),
it is clear that the closed loop system cannot be stable if the zero-dynamics is
unstable, but it is in fact also true that stability of the linear system and of
the zero-dynamics is sufficient for stability.

It is however possible that the remaining variables (yr+1, .., yn) may be
stabilized by feedback, even if the zero dynamics is unstable, namely by a
feedback law for which y1 = .. = yr = 0 is not invariant.

3.4 Backstepping

Feedback linearization above was done in two steps: first find the normal form,
then perform a nonlinear dynamic inversion cancelling the nonlinearities. The
second step may be harmful to the robustness of the system, since it may
include the cancellation of stabilizing nonlinearities. It it often wise to sacrifice
linearity for robustness in the procedure.

Consider a system in the ”triangular form”

ẋ1 = f1(x1, x2)
ẋ2 = f2(x1, x2, x3)

...

ẋn = fn(x1, x2, .., xn) +
gn(x1, x2, .., xn)u

The algorithms of backstepping may be applied directly to a system of this
form, and this is a useful feature in practice. In the first equation, x1 ≡ y1 is
the state variable and x2 is considered as a virtual control, a Lyapunov function
V1 (y1) is chosen and a corresponding ”desired” stabilizing control law xdes

2 (y1)
is found by inspection. A new coordinate y2 = x2 − xdes

2 (x1) and a new term
V2 (y1) in the Lyapunov function is chosen, xdes

3 (y1, y2) is found, and so on.
The existence of coordinates so that the system is triangular are equivalent

to the conditions for full feedback linearizability, so any such system may be
transformed into

ẋ1 = x2

ẋ2 = x3

...

ẋn−1 = xn

ẋn = fn(x1, x2, .., xn) +
gn(x1, x2, .., xn)u
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before the backstepping procedure begins. Since the first n− 1 equations look
the same for all systems, one does not have to go through the recursive con-
structions of Lyapunov terms and controls each time. A systematic procedure
is provided by the passive normal form.

First, a linear transformation (see [40])

y1 = x1

y2 = x1 + x2

y1 = 2x1 + 2x2 + x3

...

turns the dynamics into

ẏ1 = −y1 + y2

ẏ2 = −y2 − y1 + y3

...

ẏn−1 = −yn−1 − yn−2 + yn

ẏn = −yn − yn−1 +
f̃(y1, y2, .., yn) +
g̃(y1, y2, .., yn)u

In this ”passive normal form”, the system may be considered as the passive
interconnection of n passive subsystems, each enjoying an excess passivity mar-
gin (a so-called OFP (1) property). This margin is the key to several desirable
properties such as robustness and good tracking properties. The robustness
properties induced by a passive normal form based design are shown in [40].
The tracking properties will be discussed below.

First, let us give a standard controller design for systems in passive normal
form. The function

V =
1
2

(
y2
1 + y2

2 + .. + y2
n

)
satisfies

V̇ = −2V + ynf̃ + yng̃u

Now choose u according to Sontag’s formula

u =
−1
g̃

(
f̃ + sgn(yn)

√
f̃2 + y2

ng̃4

)
whenever yng̃ 6= 0 and u = 0 otherwise.

It then holds that

V̇ = −2V −
√

y2
nf̃2 + y4

ng̃4 ≤ −2V

which implies exponentially asymptotic stability.
Returning to our toy example{

ẋ = −x + z
ż = x + 2x(z − x) + u

we may consider this as the passive normal form if we identify f̃ with 2x + z +
2x(z − x) and g̃ with 1.
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A passive normal form based design then becomes

u = −2x− z − 2x(z − x)− sgn(z)
√

z2 + (−2x2 + z + 2x(z − x))2

The dynamics of the Lyapunov function V = 1
2x2 + 1

2z2 is improved and
becomes

V̇ ≤ −2V

3.5 Tracking Properties

As a first step towards tracking, we construct a set-point controller. Consider
again a system in normal form

ẋ1 = x2

ẋ2 = x3

...

ẋn−1 = xn

ẋn = f + g u

Suppose that we want to stabilize the point x1 − p = x2 = x3 = .. = xn = 0,
where p is a constant set-point value.

We introduce the passive normal form

y1 = x1 − p

y2 = x1 + x2 − p

y3 = 2x1 + 2x2 + x3 − 2p

...

yk = Bk,1(x1 − p) + Bk,2x2 + .. + Bk,kxk

...

yn = Bn,1(x1 − p) + Bn,2x2 + .. + Bn,nxn

where the coefficients Bi,j are obtained recursively by the formula

Bi,j = Bi−1,j + Bi−2,j + Bi−1,j−1

Thereby the system is transformed into the form

ẏ1 = −y1 + y2

ẏ2 = −y2 − y1 + y3

...

ẏn−1 = −yn−1 − yn−2 + yn

ẏn = −yn − yn−1 + f̃ + g̃ u

where

f̃ = Bn+1,1(x1 − p) +
n∑

j=2

Bn+1,jxj + f

g̃ = g
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Finally, the control u is chosen by means of Sontag’s formula, as in the
above example. This provides us with a set-point controller with good passivity
properties for any fixed p.

This formula may also be used as a tracking problem control law. The
”parameter” p in now allowed to vary in time. It turns out that the tracking
system satisfies a useful differential inequality for the Lyapunov function V .
As each variable yk satisfies

ẏk = Yk (y)−Bk,1ṗ

where Yk (y) is the expression from the set-point point dynamics (for 2 ≤ k ≤
n− 1, it is −yk − yk−1 + yk+1) Hence

V̇ =
n∑

j=1

ykYk (y)− ṗ

n∑
j=1

ykBk,1 ≤ −2V + |ṗ| bn

√
V

where

bn =

√√√√2
n∑

k=1

(Bk,1)
2

In terms of U =
√

V , this may also be written as

U̇ ≤ −U + |ṗ| bn/2

from which integral estimates easily follow by Grönwall’s lemma. If the refer-
ence signal p (t) is Lipschitz bounded by a constant K, it holds that U (and
hence V ) must decrease whenever U > bnK/2 and approach the set U ≤ bnK.
So by using the passive normal form, backstepping and the above set-point
regulator design, a tracking controller with known performance properties is
obtained.

3.6 Tracking and Zero Dynamics

Consider a system in normal form

ẋ1 = x2

...

ẋr−1 = xr

ẋr = fr (x, ξ) + gr (x, ξ) u

ξ̇r+1 = ϕr+1 (x, ξ)
..

ξ̇n = ϕn (x, ξ)

where we have split the coordinates into two groups, xi (i = 1, , r) and ξα

(α = r + 1, , n). The tracking controller described above may be constructed
for the xi -system. Denote by xeq (p) the point x1 − p = x2 = .. = xr = 0.
Assume that the ”zero dynamics”

ξ̇ = ϕ (xeq (p) , ξ)

has a stable equilibrium ξeq (p) for every value p, and that W (p, ξ) is a Lya-
punov function for this zero dynamics. It then holds that
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Ẇ =
∂W

∂p
ṗ +

∂W

∂ξ
ϕ (x, ξ)

In this equation each component ϕα (x, ξ) may be expressed by the mean value
theorem

ϕα (x, ξ) = ϕα (xeq, ξ) +
n∑

α=r+1

r∑
i=1

∂W

∂ξα

∂ϕα

∂xi

(
x(α), ξ

)
(x− xeq)

where for each p and α, there is a θ such that 0 < θ < 1 and x(α) = (1−θ)xeq +
θx.

Under the assumptions that Ẇ ≤ 2γW for the zero dynamics, and that∥∥∥∥∂W

∂ξ

∥∥∥∥ ≤ k1

√
2W∥∥∥∥∂ϕ

∂x

∥∥∥∥ ≤ k2∥∥∥∥∂W

∂p

∥∥∥∥ ≤ 2k3

√
W

the following system of differential inequalities is obtained in terms of U and
Υ =

√
W

U̇ ≤ −U + |ṗ| bn/2
Υ̇ ≤ −γΥ + k1k2U + k3 |ṗ|

which gives control of the zero dynamics behavior in the tracking problem. If
|ṗ| ≤ 2K, the system will end up in the time dependent set where

U ≤ bnK

Υ ≤ K

γ
(k3 + k1k2bn)
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4 Optimization based control of nonlinear systems

The aim of the presentation in this chapter is to provide a short introduction
to optimization based control synthesis methods. In particular for application
to nonlinear systems.

4.1 Gradient based optimization for open-loop robust control

An efficient method for solving an optimization problem of high dimension,
where there are many degrees of freedom of the control is to utilize gradient
information of the objective functional. Many standard tools exist for ex-
ploiting gradient information in order to find an optima through an iterative
procedure, but the computation of the gradient itself can be very computation-
ally demanding in some applications. A popular method in e.g. aerodynamic
shape and structure optimization is to use an adjoint equation, defined by an
inner product similar to the objective functional, in order to compute gradient
information. Consider the nonlinear system,

N ẋ = A(x, f , u, w) on 0 < t < T

x = x0 at t = 0,
(4.1)

where N is a matrix that can be a singular, x is the state, f is some known
external force and u, w represent controls and unknown disturbances respec-
tively.

The goal is then to compute a control signal u that achieves a desired
objective for the worst case disturbance w, as measured by the cost function,

J =
1
2

T∫
0

(x∗Qx + `2u∗u− γ2w∗w)dt. (4.2)

4.1.1 Computing the gradient

If A and N are such that small perturbations δu to the control u and δw to
the disturbance w result in small perturbation δx of the state x a linearized
perturbation equation can be formulated as,

Lδx = Buδu + Bwδw on 0 < t < T

δx = 0 at t = 0,
(4.3)

where L = (Nd/dt− A), Bu and Bw are found through linearization of (4.1).
Similarly the cost function perturbation resulting from δu and δw can be com-
puted by

δJ =

T∫
0

(x∗Qδx + `2u∗δu− γ2w∗δw)dt =

T∫
0

(
(∇uJ )∗δu + (∇wJ )∗δw

)
dt.

(4.4)
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By introducing the inner product,

〈a,b〉 =

T∫
0

a∗bdt,

we can formulate the relation,

〈p,Lδx〉 = 〈L∗p, δx〉+ h,

where L∗p =
(
−Nd/dt−A∗

)
p and h = p∗N δx|t=T −p∗N δx|t=0. If we then

introduce the adjoint equation,

L∗p = Qx ⇒ −N ∗ṗ = A∗p + Qx on 0 < t < T

p = 0 at t = T,
(4.5)

that is to be solved “backwards” in time, we can combine the equations to
identify the gradients. Utilizing the relation obtained from (4.3) and (4.5),

〈p, Buδu + Bwδw〉 = 〈Qx, δx〉,

we can write (4.4) as

δJ =

T∫
0

(
(B∗

up + `2u)∗δu + (B∗
wp− γ2w)∗δw

)
dt.

from which we can identify the gradient expressions,

∇uJ = B∗
up + `2u and ∇wJ = B∗

wp− γ2w.

These gradient expressions can be evaluated by first solving (4.1) and then
(4.5). This is then repeated in an iterative algorithm to find the solution
to the min max problem. In the linear setting one can identify the optimal
solution directly by setting the gradients to zero and substituting the resulting
expressions into equations (4.1) and (4.5). Combining these two expression,
assuming there is a linear map from δx to p results in a matrix differential
equation, or Riccati equation, that may be solved using standard techniques.

4.2 Dynamic games

In the literature the term “game theory” is used in a number of different mean-
ings encapsulation static, dynamic and differential games. The definition of a
dynamic game used here is adopted from [3]:

... if the order in which decisions are made is important, ...

or alternatively,

... at least one player is allowed to use a strategy that depends on
previous actions.

Also adopted from the same source is definition of a non-cooperative game:

... if each person involved pursues his or her own interests which
are partly conflicting with others.
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In typical duel situations there are two players with conflicting interests and
with the ability to react to each others actions. One crucial issue is the avail-
ability and accuracy of the information regarding the opponent and his actions.
A strategy for a player can therefore involve minimizing the information avail-
able to the opponent in order to gain a favorable position.

In a zero-sum formulation of a dynamic game the players aim to maximize
respectively minimize the same objective or cost. Examples of objectives for a
missile-target duel are miss-distance and time-to-intercept. A zero-sum formu-
lation is preferred since it can be formulated as a min-max problem, though it
is not unreasonable that the players objectives are different and even dynamic.
It is also questionable if the assumption that each player is aware of the other
players objectives, and thereby also their optimal strategy, is valid.

Making the assumption that there is no way of planning ahead for all pos-
sible events in a game it is reasonable to have some dynamics in the strategy of
play. Say that given the currently available information it is possible to device
a strategy for the remainder of the game. Then if there is new information
available at some future time, it should be incorporated and the strategy mod-
ified accordingly. Take as an example the game of chess where a player has the
opportunity to change his strategy based on the information obtained every
time the opponent has made a move. If the move is unexpected a reexami-
nation of the strategy is possible before the next step. This kind of discrete
points of decision making is not always present in a game but in a situation
where events take place at unknown times it is certainly applicable. Utilizing
controllers based on the described framework is referred to as receding hori-
zon control or sometimes model predictive control (MPC) or nonlinear model
predictive control (NMPC).

Historically game theory has had most success through applications in eco-
nomics. As a method to develop control strategies it is today most widely used
in academical applications due to the need for computational resources. If the
processors become increasingly efficient and modern methods for model order
reduction, as described in chapter 2, are employed to get simplified models
of nonlinear systems they can become very beneficial for controlling complex
systems also in practice.

Characteristic features of (N)MPC are that it allows a nonlinear model to
be used for prediction, explicit consideration of constraints, optimization of
performance criteria id performed online. Drawbacks are that an open-loop
optimal control problem must be solved online and that system states must be
measured or estimated.

4.2.1 Missile target duel example

As an illustrative scenario we consider a missile-target duel example one can
imagine that the target suddenly changes his strategy. Say that the target
suddenly drops his payload and increases performance. The missile can thus,
once aware of the event, change its strategy to adapt the the new behavior of
the target. This example admittedly requires a very advanced missile logic but
is still not unrealistic in systems with high performance target estimators. An
alternative to this event-driven strategy change is to incorporate all possible
events into a robust or perhaps adaptive guidance law design. This would result
in a guidance law that could handle all such events, but that would perform
far from optimal in most situations since it will have to be conservative.

If we at a given time t (see Figure 4.1) can assume that we have a reliable
model of both missile and target dynamics as well as a qualified guess of the
current objective we can compute the optimal missile trajectory, given a suit-
able formulation of the objective, for the worst case target maneuver until the
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t

past future

t + δt

t + T
Figure 4.1: Description of receding horizon idea.

time t + T . We then let the missile follow this trajectory for a period of time
δt while gathering more information about the target. Then at a new point in
time t+δt we repeat the procedure given the current situation. In doing so the
missile will periodically adapt its strategy to the actual target maneuvers and
thus there will be some adaptation due to unexpected/unpredictable events
given that these are captured by the missile sensors and logic. The procedure
described can at each instant be formulated as a (nonlinear) robust control
problem.

One difficult issue is the formulation of a suitable objective that will actually
result in a good trajectory as well as a solvable saddle point optimization
problem. To be able to prove stability of a receding horizon controller in
closed-loop, a penalty on the terminal state (at the end of the optimization
horizon) is often required as a part of the objective.

4.2.2 Mathematical formulation

The formulation of the general problem can be described as follows. Consider-
ing a class of systems described by

ẋ = f(x(t),u(t)), x(0) = x0

where,
u(t) ∈ U ,∀t > 0 x(t) ∈ X ,∀t > 0,

with X ⊆ Rn and U ⊆ Rm. Under the assumptions that U ⊂ Rp is compact,
X is connected and (0, 0) ∈ X × U with continuity of the vector field f , which
is locally Lipschitz continuous in x, and finally that u is piecewise continuous,
the problem is to find

min
ū( · )

J(x(t), ū( · );Tc, T ) with the control horizon Tc ≤ T,

where,

J(x(t), ū( · );Tc, T ) =

t+T∫
t

F (x̄(s), ū(s)) ds

subject to,
˙̄x(s) = f(x̄(s), ū(s)), x̄(t) = x(t)
ū(s) ∈ U , ∀s ∈ [t, t + T ]
ū(s) = ū(s + Tc), ∀s ∈ [t + Tc, t + T ]
x̄(s) ∈ X , ∀s ∈ [t, t + T ].

This is a classical optimization problem for which many efficient solution meth-
ods exist, and in the linear setting using a quadratic objective function J , the
solution can be found by solving a matrix Riccati equation.
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In the case of a problem formulated as a non-cooperative dynamic game the
problem is to find a saddle point rather than a minima for a class of systems
described by

ẋ = f(x(t),u(t),w(t)), x(0) = x0

where,
u(t) ∈ U ,∀t > 0 w(t) ∈ W,∀t > 0 x(t) ∈ X ,∀t > 0,

with X ⊆ Rn, U ⊆ Rm and W ⊆ Rp. The problem is then to find

max
w̄( · )

min
ū( · )

J(x(t), ū( · ), w̄( · );Tc, T ) with the control horizon Tc ≤ T.

The problem of finding a saddle point is generally more difficult that finding
an optima, but in the linear setting there are well established methods based
on the solution of Riccati equations within the framework of H∞ control.
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5 Applications of nonlinear control theory

5.1 Design of a Nonlinear Autopilot for Velocity and Attitude
Control Using Block Backstepping

Using the powerful ideas from multi-input, or block (or vector), backstepping
we construct a controller for simultaneous control of attitude and velocity in
three dimensions for an aircraft described by the full nonlinear six degrees-of-
freedom equations for rigid body motion. The proposed controller has a very
simple structure and has global stabilizing properties in attitude and local sta-
bilizing properties in velocity [32]. A key (and novel) element of the controller
is the use of a spherical linear interpolation (slerp) to determine a geodesic on
the manifold of unit norm quaternions, which represents the minimal rotation
required to control the attitude. The attitude control is combined with a ve-
locity control employing rotation of the airspeed vector and thrust magnitude
control to stabilize angle of attack, the sideslip angle and the absolute velocity
to desired values. Only weak assumptions about the aerodynamic forces (i.e.
the aerodynamic configuration of the aircraft) are necessary for application of
the controller. We illustrate the behavior of the controller with simulations us-
ing a implementation in the Modelica language of the ADMIRE model which
represents a small single engine fighter aircraft (similar to the JAS39).

Introduction

The motivation for the work reported here is twofold: First, the backstepping
design methodology has recently emerged as a powerful alternative to exist-
ing nonlinear design methods and has shown great promise in various vehicle
control problems [10],[22],[9]. A natural design challenge in aircraft control is
therefore to apply backstepping to the design of a full three-dimensional au-
topilot for an aircraft described by a realistic model. This is a key problem in
the control of Unmanned Aerial Vehicles (UAVs). Second, the choices in soft-
ware tools for a modeler/designer/analyst in control is by now quite large and
it is possible to perform the whole chain (or rather, iterative loop) of model-
ing, analysis/design, simulation and code generation for e.g a target embedded
system using a single tool, or a small number of tools, running on a personal
computer. In particular, the emergence of integrated development environ-
ments for object oriented high level modeling/simulation languages have made
it possible to very quickly design, analyze and evaluate (nonlinear) controllers
for various aerospace applications with subsequent code generation for tests
in e.g. a flight simulator. One such environment is Dymola of Dynasim AB
featuring the modeling language Modelica [15],[42] which has been evaluated
in this study and in which our aircraft model, trimming routine and controller
have been implemented.

The problem of stabilizing the motion of a rigid body is central to the
aerospace control literature but the vast majority of the works on the subject
treat the linearized case [38]. Solutions to the nonlinear problem have been
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given in various settings in the control theory literature, see e.g. [2] and the
references therein, but they focus mostly on the particular case encountered in
satelite control where usually no external forces are present except gravity and
the possibility for control action may be limited (e.g. due to malfunctioning
actuators). Recently, however, Glad and Härkeg̊ard [17] have given a solution
for a variant of the velocity and angular velocity control problem for a rigid
body in the aircraft control setting using multi-input, or block, backstepping.
They assume, however, that the thrust force of the engine is always aligned
along the velocity vector and this is clearly not the case in general (unless thrust
vectoring is employed). We present a new solution to the simultaneous attitude
and velocity control problem that employs a velocity control similar to that of
Glad and Härkeg̊ard but which is capable of handling a thrust vector that is not
necessarily aligned with the velocity vector and which is complemented by a
quaternion based attitude control. The attitude control utilizes spherical linear
interpolation (slerp) on the sphere S3 ⊆ R4 to compute a geodesic representing
the minimal rotation of the body needed to control the attitude to the desired
value. The velocity control employs rotation of the airspeed vector and thrust
control to stabilize angle of attack, the sideslip angle and the absolute velocity.

Our presentation is organized as follows. In the next section we introduce
the equations that we are going to use to describe the motion of an aircraft
around a reference flight condition, such as a straight flight path in some di-
rection in space or a constant angular velocity turn. After this we introduce in
Section 5.1.2 the mathematical formulation of the nonlinear control problem
and we present our solution. This is done in a series of steps, beginning with a
short review of the necessary tools from backstepping theory, proceeding with
a description on how the autopilot control problem can be cast in the standard
form for integrator backstepping, and ending with a presentation of the con-
troller. (A proof of stability of the controller can be found in the paper [32].)
Finally, in Section 5.1.3 we give a short introduction to the Modelica implemen-
tation of the aircraft model and we show some simulation results illustrating
the behavior of the controller.

5.1.1 Equations of Motion

In the equations of motion for the aircraft two reference frames are present, one
frame Fe fixed in the earth which we assume to be an inertial frame, and one
frame fb fixed in the center of gravity 1 (CoG) of the aircraft. The translational
and rotational velocities for the aircraft expressed in Fe and fb are related by

V = Rv,
Ω = Rω,

where V,Ω are the translational and angular velocities, respectively, in Fe and
v,ω are their counterparts in fb. The matrix R is the rotation matrix involved
in the transformation and Q is the corresponding quaternion.

Kinematics and Dynamics

The equations of motion for the aircraft in Fe and fb are given by the Newton
and Euler equations for rigid body motion, formulated around the center of
gravity, and combined with the standard quaternion differential equation for

1We assume standard vehicle axis configuration [38] and that the CoG is not moving
relative to the aircraft body.
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orientation [38], viz.

V = Rv, (5.1)

Q̇ =
1
2
Q ◦ ω̃, (5.2)

f + t = m(v̇ + ω × v − g), (5.3)
m = jω̇ + ω × jω, (5.4)

where ω̃ = (0,ω) denotes the pure quaternion formed from the angular velocity
vector ω in fb and ◦ denotes quaternion multiplication. The aerodynamic force
f = [f1, f2, f3]T and moment vectors 2 m = [m1,m2,m3]T in fb are defined in
terms of standard aerodynamic coefficients Cx, Cy, Cz, Cl, Cm, Cn as

f = qSref [Cx, Cy, Cz]T , m = qSref [brefCl, crefCm, brefCn]T ,

where q is the dynamic pressure and bref , cref , bref , Sref are the standard
reference lengths and areas occurring in the formulation of the aerodynamic
coefficients [38]. The total mass of the aircraft is m, the moment of inertia
matrix in fb is denoted j and g is the gravitational acceleration vector in fb.

The engine dynamics are modeled using a simple first order linear system
as

τ̇ = b(τ − uτ ), (5.5)

where τ is the thrust force 3 along the x-axis in fb, the thrust command is uτ

and b is the value of the time constant (which is set to 0.5 in the simulations
below).

Deviations from an equilibrium

In order for (5.2)–(5.4) and (5.5) to be useful for our further developments
we must make a change of variables and rewrite these equations in terms of
deviations from a reference point. Let

[v0,Q0,ω0, τ0]T (5.6)

be a vector of reference values for the state variables in (5.2)–(5.4) and (5.5),
and let

[v,Q,ω, τ ]T , (5.7)

be the vector of deviations from these reference values. We shall consider two
types of reference vectors (5.6). The first type is a reference vector correspond-
ing to an equilibrium to the state vector in (5.2)–(5.4) and (5.5). In this case we
must necessarily have ω0 = 0, which corresponds to straight path flight. The
second type of reference vector is the one obtained when we have an equilib-
rium only for the states in (5.3)–(5.4) and (5.5) (i.e. [v0,ω0, τ0]T is constant),
and ω0 is constant nonzero (so that Q0 is time varying 4 ). This corresponds
to a constant-g turn. In this case we shall assume that the reference trajectory
Q0 is the solution to (5.2) corresponding to ω0, i.e.

Q̇0 =
1
2
Q0 ◦ ω̃0. (5.8)

2We assume that the engine is aligned so that the thrust does not contribute to the
torque around the CoG and we neglect the gyroscopic effects of the engine rotational inertia.

3We assume, without loss of generality, that the thrust force acts in the x-axis in fb only.
4The proof of stability in [32] of our controller is applicable, as it stands, only to the case

of a constant Q0. However, as is evident from the simulations, it is also applicable to the
case of a slowly time varying Q0, and it is moreover not hard to extend the proof to the time
varying case, with a slight modification of the resulting control law.
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Now, a change of variables
v
Q
ω
τ

 →


v + v0

Q + Q0

ω + ω0

τ + τ0


brings the system (5.2)–(5.4) and (5.5) onto the form

v̇ =
1
m

f (a) +
1
m

t + g + (v + v0)× (ω + ω0), (5.9)

Q̇ + Q̇0 =
1
2
(Q + Q0) ◦ (ω̃ + ω̃0), (5.10)

ω̇ = j−1(m− (ω + ω0)× j(ω + ω0)), (5.11)
τ̇ = b(τ + τ0 − uτ ), (5.12)

where we have written out the derivative Q̇0 since it may not be zero. In
(5.9)–(5.12) and henceforth the variables v,Q,ω, τ thus represent deviations
from the reference values in (5.6).

We assume that the aerodynamic forces f are mainly dependent on v +v0,
the aerodynamic moments m are mainly dependent on v+v0,ω +ω0, and the
thrust t acts only along the aircraft x-axis (i.e. the x-axis in fb). We can make
this dependence explicit by writing

f = f(v + v0), m = m(v + v0,ω + ω0), t = (τ + τ0)ex.

Likewise, the gravity vector g is only dependent on Q + Q0 and therefore we
can write

g = g(Q + Q0).

It will be convenient to introduce the functions f̃(v,v0), m̃(v,v0,ω,ω0), and
g̃(Q,Q0) by

f̃(v,v0) = f(v + v0)− f(v0), (5.13)
m̃(v,v0,ω,ω0) = m(v + v0,ω + ω0)−m(v0,ω0), (5.14)

g̃(Q,Q0) = g(Q + Q0)− g(Q0), (5.15)

and the matrix function C taking values in R3×3 representing the cross product,
so that e.g.

C(v)ω =

 0 −v3 v2

v3 0 −v1

−v2 v1 0

 ω1

ω1

ω3

 = v × ω. (5.16)

Moreover, it will be convenient to introduce also a matrix-vector representation
for the product of two quaternions. Let Q1 = (a1,b1), Q2 = (a2,b2) be
two quaternions with real parts a1, a2 ∈ R and imaginary parts b1,b2 ∈ R3,
respectively. Then the quaternion product Q1 ◦ Q2 can be written in terms of
an ordinary matrix-vector product as

Q1 ◦ Q2 = T(Q1)Q2,

where the matrix T(Q1) is given by

T(Q1) =
[

a1 −bT
1

b1 C(b1) + a1I3×3

]
, (5.17)
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and C is the skew-symmetric matrix in (5.16) giving the vector product. From
T(Q1) we can define a related matrix function B(Q1) as

B(Q1) =
[

−bT
1

C(b1) + a1I3×3

]
(5.18)

Using (5.13)–(5.15), (5.16) and (5.18) we can rewrite the state equations (5.9)–
(5.12) equivalently as

v̇ =
1
m

f̃(v,v0) + g̃(Q,Q0) + v × ω0 + C(v + v0)ω +
1
m

τex, (5.19)

Q̇ =
1
2
B(Q)ω0 +

1
2
B(Q + Q0)ω, (5.20)

ω̇ = j−1(jω × (ω + ω0) + jω0 × ω) + j−1m̃(v,v0,ω,ω0), (5.21)
τ̇ = bτ − bũτ , (5.22)

where we have used the fact that many terms cancel or vanish at the equilibrium
or reference point (in particular we have (5.8)) and also introduced ũτ as

ũτ = uτ − τ0.

(Note that there is no linearization involved in (5.19)–(5.22), it is still the
full nonlinear equations but rewritten omitting terms that sum to zero.) We
are going to assume that we can control the three moment vector components
m1,m3,m3 directly and that it is the responsibility of the controller to perform
the “inversion” from moments to control surface commands. Furthermore, we
are going to neglect actuator dynamics and assume that all states in the state
vector (5.7) are measurable so that we can employ state feedback control on
(5.19)–(5.22).

5.1.2 A Nonlinear Autopilot

The three-dimensional attitude-velocity control problem can be cast as the
problem of controlling all three components of the aircraft velocity vector V
in the frame Fe. If this is done with regard only to the relations between the
velocity vector components V1, V2, V3 we obtain a natural three-dimensional
generalization of the standard flight path angle control problem. However, we
are here going to also consider simultaneous control of the magnitude ‖V‖ of
the velocity vector in Fe. If we recall the relation (5.1) between the velocity
in the frames Fe and fb, respectively, it is clear that the attitude-velocity
control problem can (neglecting wind) be split into two separate problems; (i)
the problem of controlling the body components (i.e. in fb) of the airspeed
vector v and (ii) simultaneously controlling the orientation in terms of R of
the aircraft (in Fe). Since we only have to our disposal as control inputs the
three moment vector components m1,m2,m3 and the thrust command τ it is
clear that this is an underactuated control problem. 5

Integrator Block Backstepping

The simplest form of multi-input, or block, backstepping deals with controlled
dynamical systems of the generic affine form

ẋ(t) = f(x(t)) + g(x(t))u(t), (5.23)

where f : Rn → Rn and g : Rn → Rn × Rm are Lipschitz continuous and u(t)
is a vector in Rm of continuous control functions. To make things simple we

5Controllability is however, as shown by extensive human experience, not a problem.
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are going to assume that both f, g are smooth. The object is then to find a
smooth ` : Rn → Rm such that if u in (5.23) is given by

u = `(x) (5.24)

the resulting system

ẋ(t) = f(x(t)) + g(x(t))`(x(t)) (5.25)

is stable, in some suitable sense. In integrator backstepping this is accomplished
by first augmenting the system with integrators on the inputs so that the system
(5.23) transforms into

ẋ(t) = f(x(t)) + g(x(t))ξ(t), (5.26)
ξ̇(t) = u(t). (5.27)

The following step can intuitively be described as finding a control function u
to the augmented system (5.26),(5.27) such that when it is applied the state
ξ behaves as “if it were” a suitable feedback function ` as in (5.24). This
desired behavior is called a virtual control and closely associated to it is the
concept of control Lyapunov function. A smooth positive definite function
V : Rn → [0,∞) is called a control Lyapunov function (CLF) for the system
(5.23) if it holds that

inf
u∈Rm

∂V
∂x

(x)
(
f(x) + g(x)u

)
< 0, ∀x 6= 0.

The basic assumption about the system (5.27) that we need in order to actually
apply integrator backstepping is one about stabilizability.

Assumption 5.1.1. Consider the system in (5.23) and assume that there exist
a smooth feedback law ` as in (5.24) and a smooth, positive definite function
V : Rn → [0,∞) such that

∂V
∂x

(x)
(
f(x) + g(x)`(x)

)
≤ −W (x) ≤ 0, ∀x ∈ Rn, (5.28)

for some continuous W : Rn → R which is positive definite.

Under this assumption one can formulate the basic result for integrator
backstepping as follows.

Theorem 5.1.2. Consider the system (5.26), (5.27) and suppose that (5.26)
satisfies Assumption 5.1.1 with ξ replaced by the control u in (5.24). If the
function W is positive definite, then

Va(x, ξ) = V(x) +
1
2
‖ξ − `(x)‖2 (5.29)

is a CLF for the full system (5.26), (5.27) (i.e. ξ plays the role of a control in
(5.29)) and there exists a feedback law u = `a(x, ξ) that makes the full system
(5.26), (5.27) asymptotically stable around x = 0, ξ = 0. One such control law
is

u = −c(ξ − `(x)) +
∂`(x)
∂x

(
f(x) + g(x)ξ

)
−

(∂V
∂x

(x)g(x)
)T

, c > 0. (5.30)
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A proof of this theorem can be found in e.g. [21]. In what follows we are
going to apply the method of backstepping as outlined in Thm. 5.1.2 to a
slightly augmented version of the system (5.26),(5.27) namely

ẋ(t) = f(x(t)) + g(x(t))ξ(t), (5.31)
ξ̇(t) = h(ξ(t)) + ku(t), (5.32)

where ξ takes values in Rm, the function h : Rm → Rm is smooth and k is a
constant invertible matrix in Rm×m. Since k in (5.32) is nonsingular, and we
can choose the control u freely, the system in (5.31), (5.32) can via a simple
change of variables be brought to the form (5.26),(5.27) and the backstepping
control problem for the two systems is one and the same.

Standard Form of the Equations of Motion

To be able to apply the theory for integrator block backstepping as it stands the
system in question has to be on the standard from (5.26),(5.27) or (5.31),(5.32).
However, a glance at (5.19)–(5.22) reveals that this system is already on the
required standard form. Indeed, if we make the following associations (here ∼
means “corresponds to”)

x ∼
[

v
Q

]
, ξ ∼

[
ω
τ

]
, u ∼

[
m̃(v,v0,ω,ω0)

ũτ

]
(5.33)

and

f ∼
[

1
m f̃(v,v0) + g̃(Q,Q0) + v × ω0

1
2B(Q)ω0

]
, (5.34)

g ∼
[

C(v + v0) 1
mex

1
2B(Q + Q0) 04×1

]
, h ∼

[
j−1(jω × (ω + ω0) + jω0 × ω)

bτ

]
,

(5.35)

k ∼
[

j−1 03×1

01×3 −b

]
(5.36)

we see that (5.19)–(5.22) is on standard form for integrator block backstepping.

The Proposed Controller

The first task when developing a backstepping controller for the system on
standard form is to find a suitable Lyapunov function V as in Thm. 5.1.2 and an
accompanying feedback law ` such that the feedback connected first part of the
system, as in (5.25), is stable with suitable dynamics. When determining what
is “suitable” dynamics for the system (5.19), (5.20) we must take into account
at least two obvious requirements; (i) the need to aerodynamically stabilize the
aircraft and (ii) the desire to solve the attitude and velocity control problem
outlined in the beginning of Sec. 5.1.2. It is intuitively clear that these two
requirements can not be dealt with independently since rotating the aircraft
body so that the body velocity error vector v becomes zero does not necessarily
mean that the aircraft has desired orientation Q0. We are going to solve this
problem by combining two controllers, one for the velocity error and one for
the orientation error.

Controlling the velocity.

The problem of aerodynamically stabilizing the aircraft, without regard to
its orientation, is not too hard once the system has been brought onto the
form (5.19)–(5.22). For instance, one can control m(v,v0,ω,ω0) such that
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the velocity vector v + v0 is rotated into a position aligned with v0, while
simultaneously controlling the thrust setting ũτ so that the magnitude becomes
right.

A simple way of achieving a rotation of the velocity vector v + v0 in the
right direction is to use a (virtual) control of the form

ωdes
v (v,v0) = − cv

‖v0‖2
v × v0, (5.37)

where cv is some positive constant. To give some motivation at this point for
the choice (5.37) of a (virtual) control ωdes

v (v,v0) one can note that

− (v + v0)×
1

‖v0‖2
(v × v0) =

− v × 1
‖v0‖2

(v × v0)− v0 ×
1

‖v0‖2
(v × v0)

= −v × 1
‖v0‖2

(v × v0)− P[v0]⊥(v), (5.38)

where the first term on the right is perpendicular to v and P[v0]⊥(v) is the
projection of v onto the subspace of vectors in R3 that are orthogonal to v0.
The first term is in general much smaller in magnitude than the second and
therefore, when inserted instead of ω in (5.19), the (virtual) control ωdes

v (v,v0)
in (5.37) can act to reduce the error v. However, since the main reduction of
the velocity error v is in the component of it that is orthogonal to v0 there is
a need to complement the control with some action also in the direction of v0.

The direction of v0 is normally almost the same as the direction in which
the thrust acts (here, in the body x-direction) and therefore it is natural to
try to achieve control action in the v0 direction by (virtual) thrust control. A
simple way to achieve this is to employ a negative velocity feedback along the
direction of v0, for example using the (virtual) thrust control τdes(v,v0,Q,Q0)
as

τdes(v,v0,Q,Q0) = − cτmv1

c` + v2
1

(vT v0

‖v0‖
)2 = − cτmv1

c` + v2
1

∥∥P[v0](v)
∥∥2

, (5.39)

where cτ , c` are positive constants and P[v0](v) is the projection of v onto the
one-dimensional subspace spanned by v0. This type of virtual thrust control
would, if v is large and mostly aligned with v0, approximately give a stable
linear first order contribution to the dynamics in the x-axis component of the
force equation (5.19). (For small v this control would under the same conditions
do essentially nothing.) Therefore, when cτ is close to cv it is clear from (5.37)
and (5.38) that the combined effect of the virtual controls ωdes

v (v,v0) and
τdes(v,v0,Q,Q0) for large v is to give the overall system roughly first order
stable (virtual) dynamics for the error v.

Controlling the attitude.

We now turn to the problem of controlling the attitude of the aircraft. When
conceiving a solution to this problem we will, in analogy with the approach
above, neglect the other part of the control problem, viz. the problem of aero-
dynamically stabilizing the aircraft. The attitude control can be archived by
rotating the body along the shortest path from the current orientation to the
desired orientation on the set of unit norm quaternions, which we here identify
with (one “half” of) S3, the unit sphere in ordinary four dimensional space.
Such a shortest path is the same as a geodesic (in the ordinary Euclidean
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metric on the tangent space of S3). A simple parameterization for this type
of geodesic called slerp (for Spherical Linear Interpolation) was introduced in
1985 by Shoemake [36].

The slerp Q that describes the path from unit norm quaternion Q1 to unit
norm quaternion Q0 is given by

Q(t) =
sin((1− t)θ)Q0

sin(θ)
+

sin(tθ)Q1

sin(θ)
, t ∈ [0, 1], (5.40)

where θ is defined by
cos(θ) = QT

0Q1

and the inner product on the right hand side is calculated as for ordinary
vectors in four-space. The time-derivative of the slerp Q is easily calculated as

Q̇(t) =
θ

sin(θ)
(cos(tθ)Q1 − cos((1− t)θ)Q0), t ∈ [0, 1], (5.41)

and this shows that the motion along the slerp path takes place at constant
speed i.e. ‖Q̇(t)‖ ≡ const.

In our application, where we want to design a feedback law based on the
slerp formula (5.40), the start quaternion Q1 will be constantly changing and
so we really only use the expression (5.41) for the slerp velocity vector, and
evaluate it at the (changing) starting point. Indeed, at least in the case that
Q0 is constant (i.e. ω0 = 0) it is clear that what we want to achieve with the
(virtual) attitude control is

Q̇ = cQQ̇(0), (5.42)

where Q is the state quaternion in (5.20) and Q + Q0,Q0 in (5.20) are used
instead ofQ0,Q1 in (5.41), for some positive constant cQ. This gives a condition
for the sought virtual angular velocity ωdes

Q (Q,Q0) for attitude control as

1
2
B(Q + Q0)ωdes

Q (Q,Q0) = cQ
θ

sin(θ)
(
Q0 − cos(θ)(Q + Q0)

)
, (5.43)

where now θ is given by

cos(θ) = (Q + Q0)T Q0. (5.44)

From (5.43) it might appear impossible to solve (uniquely) for ωdes
Q (Q,Q0) in

(5.43) since the matrix B is not square, but if we remember that the left hand
side of (5.43) is really just another way of writing the product of two quater-
nions, one unit norm and one pure, we can determine ωdes

Q (Q,Q0) explicitly.
Working through the algebra we get

ωdes
Q (Q,Q0) = cQ

2θ

sin(θ)
=(Qc ◦Q0) (5.45)

(with θ as in (5.44)) where =( · ) denotes quaternion imaginary part and ( · )c de-
notes quaternion conjugation. In case ω0 is constant but nonzero it is clear, af-
ter a moments contemplation, that the same principle for selecting ωdes

Q (Q,Q0)
ought to apply, and that the resulting dynamics in this “moving” scenario on
S3 then becomes the same as in (5.20), if we replace ω there by ωdes

Q (Q,Q0).
We then have

d

dt
(Q + Q0) = Q̇ + Q̇0 =

1
2
B(Q + Q0)(ωdes

Q (Q,Q0) + ω0), (5.46)

with Q̇ as in (5.42) and ωdes
Q (Q,Q0) as in (5.45).
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Total controller.

The complete (virtual) controller corresponding to ` in Thm. 5.1.2 is now given
by the vector(

ωdes(v,v0,Q,Q0)
τdes(v,v0,Q,Q0)

)
=

(
ωdes

v (v,v0) + ωdes
Q (Q,Q0)

τdes(v,v0,Q,Q0),

)
, (5.47)

with the components on the right hand side given by (5.37),(5.45) and (5.39).
As a candidate for the “inner” Lyapunov function V as in Thm. 5.1.2 we shall
take

V(v,Q) =
γv

2
‖v‖2 +

γQ

2
‖Q‖2, (5.48)

where γv, γQ are two positive constants 6 (to be determined later) and the
norms are ordinary 2-norms in R3 and R4, respectively.

A proof of stability for this type of controller is given in [32] for suitable
choices of the constants γv,γQ, cv and cQ, using only weak assumptions 7

about the aerodynamic configuration of the aircraft. It should be pointed out,
however, that many other controller solutions are possible. Once the model
has been put on the standard form as in (5.19)–(5.22) there are many ways of
constructing stabilizing controllers using backstepping.

5.1.3 Simulations

The ADMIRE model is a full nonlinear six-degree-of-freedom model of a small
single engine fighter aircraft with delta canard configuration (similar to the
JAS39 Gripen). It is implemented in Simulink and is freely available on the
Internet at http://www.foi.se/admire. It has been used as classroom model
at universities and as benchmark model in research collaboration projects be-
tween industry and universities. A simplified version of the model has also
been implemented in Modelica, and this version is the one used in the present
work. A block diagram overview of the Modelica version of the model with con-
troller is shown in Figure 5.1. The simulations have been carried out using the
Dymola integrated development environment on a personal computer running
GNU/Linux. A flight trajectory lasting for 200 seconds was programmed which
included maneuvering as well as straight path flight. The various constants
(e.g. the “feedback gains”) occurring in the controller description were chosen
to give a reasonable fast system with good performance. 8

The chosen flight trajectory is shown in Figure 5.2 and starts at wings level
flight at an altitude of 3000 meters. The following right and left turns require
bank angles of about 30

◦
. As the left turn is completed, the aircraft begins an

11
◦
-12

◦
climb. During this climb, the Mach number is gradually increased from

0.6 to 0.7 shown in Figure 5.3(a). The trajectory ends at an altitude of about
8000 meters. It should be noted that the programmed trajectory contains short
segments where the reference values in (5.6) for [v0,Q0,ω0, τ0]T are obtained
by linear interpolation and therefore do not satisfy the requirements imposed
by the theory.

6The reason we introduce two independent weighting constants here is that we want to
be able to control the relative magnitude of all three terms of the resulting total control law
in (5.30).

7A local force stability around a trimmed flight condition is assumed [32]. This is often
satisfied for all but very low airspeeds.

8The feedback gains are outside the somewhat conservative region of values given by the
sufficient condition for stability in [32]. The main difference between the performance here
and in [32], where the constants are in the guaranteed stability region, is a slower velocity
error convergence in [32].
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Figure 5.1: Block diagram representation of the Modelica version of the ADMIRE model
with trimming routine and controller.

The velocity tracking yields quite small velocity deviations from the trimmed
values, as seen in Figure 5.3(b). There seem to be a steady state velocity error
in the last part of the trajectory. The reason is that we require a constant
Mach number during the climb, but the controller tracks the velocity. Since
the velocity of sound decreases with altitude, the velocity of the aircraft will
be decreased as well. Hence the velocity deviation.

Figure 5.4(a) shows the actual angle of attack as well as the trimmed angle of
attack at each time instant. The discrepancies in these values seen between 75
seconds and 120 seconds can be explained by the pull-up maneuver for the climb
and by the increase in velocity. The increasing angle of attack after 120 seconds
is due to the climb since the air gets thinner. The small mismatch during the
climb originates from the velocity deviation discussed above. As desired, the
sideslip angle is small during the whole simulation, see Figure 5.4(b).

The orientation of the aircraft stays very close to the trimmed orientation,
shown in Figure 5.5. The somewhat larger discrepancy in these values occurring
between 75 and 100 seconds comes from the maneuver when the aircraft finishes
the turn, by banking to wings level flight, and simultaneously pulls up for the
climb. In the last half of the simulation, the slowly increasing angle of attack
can be noted in the aircraft orientation.

Finally, in Figure 5.6, the value of the time derivative of the Lyapunov
function V in (5.48) along the solutions to the feedback connected system (cor-
responding to (5.25)) is displayed. It can be seen from Fig. 5.6(a) that the
overall behavior of the time derivative is as expected with the most nega-
tive values occurring shortly after the start when the system moves towards
an equilibrium corresponding to straight path flight. The derivative becomes
(slightly) positive on a few occasions when the set point values change linearly
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Figure 5.2: Flight trajectory.
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Figure 5.3: Mach number and velocity deviation.

between trimmed values by interpolation, a situation which is not covered by
the stability result in [32]. 9

9These periods of time moreover correspond to the most significant changes in reference
angular velocity ω0, as can be inferred from e.g. the trimmed roll angle, cf. Fig. 5.5(b).
The theory in [32] guarantees negativity of the Lyapunov function time derivative in the
periods between the changes, if the changes are step-wise changes between straight path
flight segments, provided the various constants used in the controller are within the region
prescribed by the stability result in [32].
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Figure 5.4: Angle of attack and sideslip angle.
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Figure 5.5: Components of the quaternion and corresponding Euler angles.
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