

FOI-R--1698--SE
ISSN 1650-1942

Command and Control Systems
Methodology report

June 2005

Kennet Gustafsson, Joel
Hägerstrand

Development of a
neighbourhood graph for

trafficability analysis

FOI is an assignment-based authority under the Ministry of Defence. The core activities are research, method and technology development, as well as
studies for the use of defence and security. The organization employs around 1350 people of whom around 950 are researchers. This makes FOI the
largest research institute in Sweden. FOI provides its customers with leading expertise in a large number of fields such as security-policy studies and
analyses in defence and security, assessment of different types of threats, systems for control and management of crises, protection against and
management of hazardous substances, IT-security an the potential of new sensors.

FOI

Defence Research Agency Tel: www.foi.se

Command and Control Systems
P.O. Box 1165
SE-581 11 Linköping

Fax:

FOI-R--1698--SE
ISSN 1650-1942

Command and Control Systems
Methodology report

June 2005

Development of a neighbourhood graph for trafficability
analysis

 2

Issuing organization Report number, ISRN Report type

FOI – Swedish Defence Research Agency FOI-R--1698--SE Methodology report

Research area code

4. C4ISTAR
Month year Project no.

June 2005 E7089

Sub area code

42 Above water Surveillance, Target acquistion
and Reconnaissance
Sub area code 2

Command and Control Systems

P.O. Box 1165

SE-581 11 Linköping

Author/s (editor/s) Project manager
Kennet Gustafsson Erland Jungert

Joel Hägerstrand Approved by
 Johan Mårtensson

 Sponsoring agency
 Swedish Armed Forces
 Scientifically and technically responsible
 Erland Jungert and Fredrik Lantz

Report title

Development of a neighbourhood graph for trafficability analysis

Abstract (not more than 200 words)

Successful trafficability analysis requires usage of many data sources, e.g. elevation and land use
data, in high resolution. However, this requires a large storage capacity and may lead to unduly
long execution times when trying to find suitable paths. To allow for efficient representation and
search in an area of interest (AOI), a searchable graph is created where the best paths between
two arbitrary locations in the AOI can be found. Terrain features, identified from laser-radar
data, and land use data are fused to create a compound map of the AOI.

In order to create the graph, the map is partitioned into areas of homogeneous trafficability
characteristics. These areas are represented by the nodes in the graph and the edges in the graph
represent paths between neighbouring areas.

Different methods to partition the map is described and analysed. Dijkstra's algorithm are
combined with the A*-algorithm to find the best paths between two locations in the AOI.

Keywords

trafficability, driveability, neighbourhood graph, terrain model, GIS

Further bibliographic information Language English

ISSN 1650-1942 Pages 63 p.

 Price acc. to pricelist

 3

Utgivare Rapportnummer, ISRN Klassificering

FOI - Totalförsvarets Forskningsinstitut - FOI-R--1698--SE Metodrapport

Forskningsområde

4. Ledning, informationsteknik och sensorer
Månad, år Projektnummer

Juni 2005 E7089

Delområde

42 Spaningssensorer
Delområde 2

Ledningssystem

Box 1165

581 11 Linköping

Författare/redaktör Projektledare
Kennet Gustafsson Erland Jungert
Joel Hägerstrand Godkänd av
 Johan Mårtensson
 Uppdragsgivare/kundbeteckning
 Försvarsmakten
 Tekniskt och/eller vetenskapligt ansvarig
 Erland Jungert och Fredrik Lantz
Rapportens titel (i översättning)

Utveckling av en grannskapsgraf för framkomlighetsanalys

Sammanfattning (högst 200 ord)

Framgångsrik framkomlighetsanalys kräver användning av många datakällor, t.ex. elevation och
markanvändningsdata, i hög upplösning. Detta kräver, i sin tur, stor lagringskapacitet och kan
leda till olämpligt långa exekveringstider för att finna bra färdvägar. För att tillåta effektiv
representation och sökning i ett aktuellt område av intresse skapas därför en graf där de bästa
vägarna mellan två godtyckliga positioner i området kan identifieras. Terrängobjekt,
identifierade från laser-radar data, och markanvändningsdata fusioneras för att skapa en
sammansatt karta av det aktuella området.
För att skapa grafen måste kartan partitioneras i mindre områden som är homogena ur
framkomlighetssynvikel. Dessa mindre områden representeras av noder och vägar mellan
områden representeras av bågar i grafen.
Olika metoder för att partitionera kartan beskrivs och analyseras. Dijkstra's algoritm kombineras
med A*-algoritmen för att hitta de bästa vägarna mellan två positioner i det aktuella området.

Nyckelord

framkomlighet, grannskapsgraf, terrängmodell, GIS

Övriga bibliografiska uppgifter Språk Engelska

ISSN 1650-1942 Antal sidor: 63 s.

Distribution enligt missiv Pris: Enligt prislista

F
O

I
20

05

U
tg

åv
a

12

 4

 5

Acknowledgements
We want to thank Erland Jungert and Fredrik Lantz for presenting the problem to us and for our open-
minded discussions throughout this thesis. The work has been both challenging and interesting.
Also, Thomas Johansson and Åsa Swahn have been helpful with proofreading and corrections during the
production of this thesis, thank you.
We also want to thank Jiri Trnka for advice and technical support.
This report has also been published at Linköping University, Department of Computer Science, LITH-IDA-
EX--05/047--SE.

FOI-R--1698--SE

9

Contents

1 Introduction ...11
1.1 Problem description...11
1.2 Delimitations ...11
1.3 Method...11

2 Theoretical basis..13
2.1 Development environment ..13

2.1.1 API - MapObjects ..13
2.2 Data structures ...13

2.2.1 Feature..13
2.2.2 FeatureClass...13
2.2.3 Point ...14
2.2.4 Polyline ..14
2.2.5 Polygon ..14
2.2.6 Shapefile format ...15

2.3 Graph theory..15

3 Related work..17

4 Process overview ...19
4.1 Data pre-processing ...20
4.2 Map data merging..20
4.3 Map data partitioning ..20
4.4 Graph creation...21
4.5 Graph search..21

5 Data pre-processing ..23
5.1 Data requirements..23
5.2 Data structure...24
5.3 Polygon generation..24

5.3.1 Centre line adjustment ...25
5.3.2 Centre line validation...25

5.4 Overlap removal..25
5.4.1 Process description...26
5.4.2 Sliver polygons ..27

5.5 Creating attributes ...28

6 Map data merging ...29
6.1 Land use map...29
6.2 Overlay creation30 ..30
 6.2.1 Process description...30

FOI-R--1698--SE

10

7 Map data partitioning ...33
7.1 The partitioning mechanism..34

7.1.1 The cut lines mechanism..34
7.2 The partitioning strategy..36
7.3 The split point strategy ..36

7.3.1 The binary variant ..36
7.3.2 The N-ary variant ...37

7.4 Results ...39

8 The neighbourhood graph..41
8.1 Graph generation...41

8.1.1 Node generation...41
8.1.2 Edge generation..42
8.1.3 Cost function..43
8.1.4 Results ..43

8.2 Graph search..43
8.2.1 Results ..46

9 Discussion...47
9.1 Conclusions ...47
9.2 Future research ..47
9.2.1 Polygon generation..47

9.2.2 Partitioning and graph-forming..47
9.2.3 Robustness ...48

9.3 Closing words ..47

References...49

Thesis specification (Swedish)...53

MapDataManager..54
Architecture...54
Portability..54
Installation...55
User interface ..56
Menus..56
Normal usage ..59

Grapher...60
User interface ..60
Partitioning..61
Graph creation...61
Graph search ...62

FOI-R--1698--SE

 11

Introduction
Trafficability analysis, also called driveability analysis, in off-road terrain is an
important decision support for all activities concerning movement in terrain. This
kind of analysis, seen from a military perspective, is needed both to get an opinion
of others’ ability of movement and for planning your own off- road routes.
At the Swedish Defence Research Agency (FOI) in Linköping, a method for
analysis of driveability [2] in different parts of terrain has previously been
developed. The method involves the creation of a driveability map, a coloured
map that tells where certain vehicles can or cannot drive.
Within FOI projects Information system for target recognition (ISM) [1] and its
successor Information system for ground surveillance (IS-MS), a decision support
system is being developed to treat, among other things, trafficability analyses.

1.1 Problem description
The task is to develop a software prototype that can determine the best paths
between two delimited areas in arbitrary terrain. The software should use a
network-based model to represent the different areas and how they are connected.
This can be done with a graph, where nodes represent areas, and edges represent
adjacency relations. This kind of graph will be referred to as a neighbourhood
graph.
Terrain features, such as ditches and hills, have been identified using a high-
resolution terrain elevation model with an existing identification tool [3]. Other
geographical data, such as land use data, is taken from existing digital maps [14].
These data sources are used when creating the neighbourhood graph.
An initial task is to create a procedure that can extract data from the terrain feature
identification tool [3], and convert them into a manageable format.
The resulting analysis should be visualized on a map, where the best paths
between two given delimited areas are highlighted.

1.1. Delimitations

When searching for the best paths, it is desirable to find the most distinctly
different paths. Distinctly different paths are paths that, for instance, take another
route around a hill or lake. In a graph, two paths might differ from each other in
only one node. This difference does not guarantee that the paths are distinctly
different. This problem is not addressed in this work; different paths may differ in
only one node.
In this work, movement within different areas is associated with a cost that is
dependent on a vehicle. The associated costs will be calculated for a single type of
example-vehicle only.

1.3 Method

The procedure in this Master’s thesis has been first to study related work in the
area of off-road trafficability. Secondly, to study different strategies for
partitioning spatial data. Finally, the implementation of a tool to partition spatial
data and create a graph from the partitioned spatial data is achieved. In parallel to
creating this tool, another tool was created that can extract data from the
driveability analysis [2], manipulate and merge map data with different contents.

FOI-R--1698--SE

 12

Both [2] and [3] are developed with MapObjects for Java, see chapter 0, so
consequently, MapObjects was used here as well.

FOI-R--1698--SE

 13

2 Theoretical basis
This chapter gives the reader the theoretical basis needed to understand topics
discussed in coming chapters.

1.2 Development environment

2.1.1 API - MapObjects

MapObjects - Java Edition is a powerful collection of client- and serverside
components used to build custom, cross-platform mapping and geographic
information system (GIS) applications [10]. MapObjects is developed by ESRI,
see [10].
It has a large collection of Java beans, which can be used for building user
interfaces. These beans offer basic map handling functionality such as map
viewing, layer management and toolbars.
MapObjects offers support for standardized file formats, e.g. shapefile.
It supports vector data analysis and manipulation, such as spatial queries and set
operations, e.g. union and intersection of polygons.

2.2 Data structures

The definitions and descriptions of data structures and primitives are given in a
GIS/ESRI/MapObjects related context and may differ from the general view.

2.2.1 Feature

Feature is a collective term used to refer to points, lines and polygons [5].
Conceptually, a feature corresponds to an individual row in a shapefile or
FeatureClass table containing spatial geometries, e.g. polygons, and related
attribute data, ordered in fields, see Figure 1 and chapter 0. Three types of fields
are mandatory; an ID field, a SHAPE field and a data field with arbitrary name
and of arbitrary type, e.g. String.

2.2.2 FeatureClass

A FeatureClass is a set of features, where each feature conforms to the same field
definition. The type of geometrical shape should also match, e.g. each feature
must refer to a polygon. For more details see [5].

Figure 1: A FeatureClass illustrated as a table. With two Feature entries (rows) and one data
attribute, LANDUSE. A field collection defines the header row.

ID SHAPE LANDUSE
3 WATER
43 FOREST

FOI-R--1698--SE

 14

2.2.3 Point

A point consists of a pair of double-precision coordina tes in the order X, Y [6].
Points are, for instance, used to represent stones.

2.2.4 Polyline

A polyline is an ordered set of vertices and consists of at least one part [6]. A part
is a sequence of at least two vertices (connected with line segments), see Figure 2.
Parts may or may not be connected to one another. Parts may or may not intersect
each other. Polylines are, for instance, used to represent roads.

Figure 2: A single two-part polyline.

2.2.5 Polygon

Polygons are used to represent surface areas of various shapes, such as lakes. A
polygon consists of at least one ring [6]. A ring is a connected sequence of at least
four vertices, which form a closed, non-self- intersecting loop. Note that the first
and last vertex of a ring have the same geometrical position, see Figure 3. This
means that a ring has three or more connected line segments. A polygon may
consist of multiple exterior and interior rings. Interior rings are also known as
holes. Interior rings must be located on polygon surfaces.

Figure 3: Ring with four vertices and three line segments. The filled point shows the
coinciding first and last vertex of the ring.

An exterior ring defines a polygon surface; an interior ring defines a hole in such
a surface, see Figure 4. Polygons consisting of one exterior ring are referred to as
simple; polygons with more than one ring are referred to as complex.

FOI-R--1698--SE

 15

Figure 4: A single complex polygon with multiple interior and exterior rings.

A convex polygon is a polygon in which no line segment connecting two vertices
is outside the polygon, see Figure 5. A polygon with holes is never convex. If a
simple polygon is not convex it is concave.

Figure 5: a) A convex polygon.
b) A simple concave polygon. The dotted line segment, connecting two vertices, is
outside the polygon surface, which contradicts its convexity.

2.2.6 Shapefile format

There are a number of different file formats for storing map data. One is the
shapefile format, see [6]. MapObjects has extensive support for this format.
Shapefiles are used to store geometry and attribute information. The shapefile
format consists of three mandatory files with the following suffixes: .shp, .dbf and
.shx. The .shp file contains records of vector data (geometries). One of these
records can, for instance, represent a polygon or a polyline. The .dbf file contains
attribute tables for the geometries in the .shp file. The .shx file contains an index
table of the records in the .shp file.

2.3 Graph theory

A graph consists of a non-empty set of nodes and a set of edges. Graphs can be
used to represent objects and relations (connections) between these objects, where
nodes represent objects and edges relations. For instance, cities can be seen as
nodes and connecting roads as edges. Different attributes, such as costs, are
usually assigned to both nodes and edges. The cost of an edge can, for instance,
represent the distance between two cities that the edge connects. In this work
graphs are used to represent a network of areas, where areas are represented by
nodes, and border relations by edges. The border relation holds if two areas share
a common border. This is further described in chapter 8. For more information
about graph theory, see [16].

Interior rings

Exterior rings

a) b)

FOI-R--1698--SE

 16

Figure 6: Graphical representation of a graph; circles are nodes, lines are edges.

Graphs can be directed or undirected. A directed graph has directed edges, which
means that edges are valid in one direction only. An undirected graph has
undirected edges, which are valid in both directions.
A multigraph is a special kind of graph, where more than one edge is allowed
between two nodes. In case of a directed graph, there may be more than one edge
with the same direction.
A path is a sequence of connected edges between two nodes in a graph. The cost
of a path is the sum of all individual costs of nodes and edges used in the path.
A least cost path, between two given nodes, is a path whose cost is lower than the
cost of all other paths between these nodes.
A planar graph is a graph which can be drawn in the plane in such a way that no
edges cross each other. In such a graph, if it is undirected and loop-
free, 63 −≤ ve , where e is the number of edges and v is the number of vertices.
Dijkstra's algorithm, see [16], finds the least cost path between one node and all
other nodes in a graph. The different paths can be stored efficiently with back
edges for each node, i.e. each node stores a reference to the preceding edge in the
least cost path.
A* (pronounced A-star), see [17], can be used for finding the K least cost paths
between two nodes in a graph. A* uses a heuristic function to guide its search, and
its efficiency is highly dependent on this function. The heuristic function should
give an optimistic approximation of the cost to reach the destination from a given
node, and 0 if the given node is the destination node. If so, the function is called
admissible, and results in an optimal path instead of an approximately optimal
path. When dealing with networks with geometrical interpretation, a heuristic
function based on the geometrical distance between a given node and the
destination is often used. This is straightforward if the edge cost is closely related
to the length of the edges, if it is not; such a heuristic function becomes less
useful.

FOI-R--1698--SE

 17

3 Related work
Off-road trafficability has been treated in many different applications. The
following ones have been our main source of inspiration. Similarities and
differences between these and this work are discussed here. Besides trafficability,
some of them also treat partitioning and graph search.
Donlon and Forbus [8] have shown how to use a GIS for reasoning about
trafficability. They define trafficability as “a measure of the capability for
vehicular movement through some region”. Since a vehicle is involved,
trafficability is a relationship between the vehicle and the area through which it
moves. They define many factors that trafficability relys on, such as slope, soil
factors and vegetation. Donlon and Forbus partition space according to these
factors and create an overlaya to identify areas with homogenous characteristics.
Donlon and Forbus work is similar to this work in the sense that both treat off-
road trafficability. However, in this work a network describing the terrain is
created, a network that can be used to calculate different paths. Their result is a
generated overlay, which can be seen as a map with trafficable areas for a given
vehicle.
Glinton et. al. [9], [13] considers the Intelligence Preparation of the Battlefield
(IPB). IPB is a pre-process to military operations that involves gathering, analysis
and organisation of intelligence. A number of overlays, each of which describes
untrafficable terrain are combined to show all obstacles. This combined obstacle
overlay (COO) tells at a glance the ease of movement for a given vehicle.
Military vehicles often move in groups (formations). Finding suitable paths
through terrain for such units is similar to a max-flow problem. Glinton et. al.
partition space using Voronoi diagramsb, which gives a network- like appearance
of the free space. This network represents corridors that are possible to traffic and
can be compared to an electric circuit with a resistor for each corridor. A narrow
corridor can be compared to a resistor with high resistance.
The work of Glinton et. al. is relevant to this problem since it partitions space and
creates a network. Their network is used to find suitable corridors for multiple
vehicles that often travel in a formation. In this work, a network for finding the
best path for a single vehicle is created. Glinton et. al. can probably find the best
path for one unit (a vehicle) with their network. They base their network on
obstacles and free space in contrast to the approach of this work which is based on
terrain features such as ditches. This will lead to a network that can be used for
calculating any vehicles’ trafficability. Trafficability depends on many different
factors such as soil type and vegetation. Calculation in this work will have the
possibility of considering such facts instead of treating all obstacle-free areas
uniformly.
Holmes and Jungert [7] have developed two different methods for route planning
within digitized maps. Both methods employ A* search in a graph, a graph which
represent how tiles of free space are connected in the original map information.
Their work is restricted to 2-D binary maps. Binary maps have a representation of

a An overlay is in this military sense a transparent sheet where relevant characteristics are
registered from the underlying map [8].

bA Voronoi diagram of a collection of geometric objects is a partition of space into cells, each of
which consist of the points closer to one particular object than to any other [11], [12].

FOI-R--1698--SE

 18

only two types of space, which either are free or occupied (obstacles). Because of
this restriction, there are only two costs associated with movement within these
regions. Movement within free space is of uniform cost. Movement within
obstacles is not possible, why such regions impose an infinite cost. As an
example, consider route planning at sea with islands representing occupied space
and sea representing free space.
In [7] a simplified nautical map containing only water and land is used. To create
a searchable graph, a partitioning of free space (water) into smaller parts called
tiles is performed. The partitioning is done in such a way that distinct paths are
created around islands. Movement through a number of tiles will represent a
rough route. A tile graph is created with nodes representing each tile. Two
different methods were also implemented, where both find the shortest path from
one point to another.
In contrast to this work, [7] and all the other works presented above treat the
information in a binary manner with free space and obstacles. Most interesting is
how Holmes and Jungert partition data using horizontal lines. Their partitioning
strategy is similar to the one used in this work.

FOI-R--1698--SE

 19

4 Process overview
This chapter gives an overview of this work, and in that way also describes the
solution to the problem. The chapter briefly describes the purpose of each step
which is then further described in subsequent chapters.

Figure 7: The work can be seen as a number of steps (centre column). Each step results in
different output that serves as input to the next step.

The problem is to, from identified objects, create a network represented as a
graph. Nodes in the graph represent identified objects and edges represent
possible pathways between objects. A search algorithm should be used to find the
best routes between two nodes in the graph.
The solution is a system containing a number of steps where each step depends on
the preceding steps. The different steps can be seen in Figure 7.

Data
pre-processing

Map data
merging

Map data
partitioning

Graph
creation

Graph
search

FOI-R--1698--SE

 20

4.1 Data pre-processing

Available from [2] are two kinds of identified objects, ditches and slopes. These
objects are represented by a set of 2×2m squares that have been grouped together.
The objects are extracted from a Java program developed in [2], to obtain better
performance in calculation and visualization, see chapter 0. These objects are
given a new representation in this step.
The expected outcome of this data pre-processing step is map data that represent
the objects by means of polygons.
Every polygon will represent an area with uniform properties. Depending on those
properties, the cost of driving through different areas with a vehicle can be
calculated by a cost function.

4.2 Map data merging

Data from the pre-processing step needs to be complemented with additional
information, partly to replace possible non- identified areas (holes), and partly to
add more attributes to the identified objects. The additional information, which is
merged with the data from the previous step, comes from a land use map, see
chapter 0.
The output of this step will, in contrast to the input, have full coverage of the
surface (no gaps).

4.3 Map data partitioning

The concept of having polygons representing areas with uniform properties, can
result in map data with detached areas such as a set of islands, see Figure 8a. Such
data must be partitioned as described in chapter 7 before proceeding to the next
step of this process, building a graph.

Figure 8: a) Map data containing three elements; two islands and one surrounding area.
b) A graph representing the underlying areas.

The graph consists of nodes that correspond to areas, and edges that represent
paths between these areas. Such a graph, representing the areas in Figure 8a,
would only have three nodes, see Figure 8b. Each island is represented as a node.
The surrounding area is represented as a node as well.
If a user of the system would like to calculate the best path from the lower left
corner of the map to the upper right corner, see Figure 8b. The graph has only one
node to represent the surrounding area which implies that the start and end points
of this search are the same. Another requirement of the system is the ability to
describe different pathways around objects. This is not possible for map data like

a) b)

FOI-R--1698--SE

 21

in Figure 8a. Another strategy is to create a graph that better represents the
possible movements in the underlying map. See Figure 9 for an example of a
graph created from partitioned map data.

Figure 9: A graph created from partitioned map data.

The output of this step is partitioned map data that can be used to create a graph
corresponding to that data in a manner that will be described in chapter 7.

4.4 Graph creation

The purpose of creating the graph is to have a searchable data structure. For
details see chapter 8. The output of this step is a graph that represents the areas of
the different objects with nodes and possible pathways between areas with edges.

4.5 Graph search

The purpose of the graph search is to find a number of possible routes by means
of a search algorithm. Two algorithms that together find the k best routes in the
graph are used, see chapter 8.
A source and a destination node must be supplied to perform a search. The output
is a route highlighted on the underlying map data.

FOI-R--1698--SE

 22

FOI-R--1698--SE

 23

5 Data pre-processing
A work by Sjövall [3] resulted in a Java program called Category Viewer (CV) [3]
that can recognize geographical features such as ditches, roads and ponds from
laser radarc data. The laser radar data is transformed into 2×2m tiles where each
tile is matched to a specific category [3]. These categorized tiles are then used
together with a number of filters to recognize different objects. A recognized
object from CV, like a ditch, is represented by a number of grouped 2×2m tiles.

Figure 10: Category Viewer can recognize different geographical features. In this picture,
two ditches have been recognized (shown together with the centre line of a road).
The other surrounding objects are cavities that have been recognized in the same
process.

Some of these recognized objects (ditches and slopes) were further analyzed
together with different vehicle properties by Edlund [2] to decide where various
vehicles can drive. The result was called Driveability Viewer (DV), a Java
program that uses colouring to visualize the driveable areas in a driveability map.

5.1 Data requirements

In this work it was desirable to continue working on data from the two previous
works [2], [3]. Another representation of data than the output of CV and DV
(grouped 2×2m squares) is needed for the following reasons:

• A single ditch from CV and DV can be made by hundreds of grouped
squares (polygons). When working with most of the polygon-related
operations in MapObjects, like subtraction or union, the demand for
computer resources (memory and processing time) will increase as the
number of polygons grows [4].

• Visualizing objects represented by hundreds of squares is also
computationally demanding and is far too detailed for most applications.

c Laser radar is a high-resolution surveying technique, often used in land and ocean surveying.

FOI-R--1698--SE

 24

• Besides the computational disadvantages, the objects need a more
generalized shape that is easier to distinguish when visualized. Also, a
shape that better represents the true objects is required.

A new form of representation is required, in order to be able to do faster
geometric operations and improved visualization.

5.2 Data structure

GIS-related software usually has geometries (lines, points and polygons) stored in
a database. A typical database record of a polygon consists of all coordinate pairs
defining its vertices and some unique id of the polygon. By connecting a table of
geometries with information from another table, database queries can be used for
fast geographical analyses.
MO offers a data structure called FeatureClass (see chapter 0) for storage of
geometrical objects and their attributes in a table (similar to database tables). This
data structure allows for many convenient built- in methods to be used. GIS-
related queries can also be executed on a FeatureClass because its structure is
similar to a database. MO provides functionality for saving a data structure to file,
in the shapefile format. Saving in this format makes it possible to open and use the
data structure in other GIS-related software. This data structure has been used
throughout most parts of this work, because of these advantages.
For debugging purposes, open source software called JUMP Workbench [15] has
been used. JUMP can be used for viewing, creating and manipulating spatial data.
This is very convenient since it supports the shapefile format as well.

5.3 Polygon generation

MapObjects provides functionality for generating buffers around lines, points and
polygons [5]. There is a function that, given a radius called buffer distance,
returns a polygon that represents the outer shell of the geometry.

a)
b)

 c)

Figure 11 a) Example of geometries that can be used with MapObjects buffer function:
polygons, polylines and points.
b) An outer shell is created around the geometries with the buffer function.
c) The resulting buffers .

DV provides functionality for calculation of centre lines from the recognized
objects. Buffering those centre lines results in a new representation that is less
detailed than the square-shaped objects, see Figure 12.

FOI-R--1698--SE

 25

After initial prototyping, the representation from MO’s buffer functionality was
chosen instead of the square-shape since it met the requirements for visualization
and is less computationally demanding.

a) b) c)

Figure 12: a) Two square-shaped ditches together with some cavities generated by DV
 together with the calculated centre lines.
b) MapObjects buffering function applied to the centre lines.
c) The resulting buffer is a new representation that is less computationally
 demanding and is easier to distinguish from other objects when visualized.

5.3.1 Centre line adjustment

DV’s functionality for calculation of centre lines also enables adjustment of their
level of detail. The centre lines have an effect on the generated buffers. If a centre
line consists of many vertices (highly detailed) the corresponding buffer will also
be very detailed. If a centre line is too generalised the corresponding buffer will
not be a good abstraction of the underlying square-shaped representation.
The appearance and detail level of the centre lines have been adjusted to a level
suitable for our needs by adjusting available parameters in DV.

5.3.2 Centre line validation

The buffer function used, from MO, is not robust. When trying to buffer a
polyline that has self- intersecting segments, the result is undefined. In the worst
case, such a polyline may lead to a situation where the buffer function never
terminates. Therefore, centre lines are validated at an early stage to avoid
problems with the buffer function.

5.4 Overlap removal

When buffering a centre line, a value of the buffer radius (buffer distance) must
be chosen. An estimate of the width is calculated and collected from DV. The
generated buffers may overlap each other since the given width only is an

FOI-R--1698--SE

 26

estimate. This overlap has to be removed since the map partitioning process, as
well as many other polygon related operations, needs a well-defined data for
robustness and to work properly. The result from all these operations are
undefined if map data has overlaps.
This work treats two types of identified objects, ditches and, the more loosely
defined, slopes. Firstly, ditches may overlap each other as shown in Figure 13.
Secondly, slopes may also overlap each other. Furthermore, ditches and slopes
may overlap each other, and in some cases much more than shown in Figure 13.

Figure 13: Generated buffers can overlap.

5.4.1 Process description

The following process for overlap removal has been inspired by the polygon
overlay process described in [4]. Here is a brief description:

1. Firstly, make a coarse test to see if two polygons overlap by comparing
their enclosing rectangles, see Figure 14b. This test is quick compared to
the test in step 2.

2. An exact check for overlap with a point-in-polygon (PIP) process is done,
if the enclosing rectangles overlapped, see Figure 14c. The PIP process [4]
verifies whether a given point is inside a polygon or not. In this case, when
checking for overlap, every vertex of one polygon must be compared to
the other polygon. The PIP process is done by first creating a half- lined
from the considered vertex. It can bee determined whether the point is
inside or outside the polygon by counting the number of intersections of
this half- line. A point inside a polygon has an odd number of intersections.

3. When removing overlap from two polygons, one of them has precedence
and will not be cut. This is accomplished by checking the polygons’
attribute tables. For example, the ditch with the highest maxslope will have
precedence over the other ditch.

4. When an overlap has been identified, the removal starts by identifying
where the two polygon boundaries intersect with each other. See Figure
14d.

5. Where an intersection is found, new vertices are inserted to both polygons
so that new line segments are created. The polygon with precedence (in
Figure 14, the right one has preceedence) is now completed and the other

d A half-line, in this context, is a line projected in only one direction from the starting point.

FOI-R--1698--SE

 27

one will loose all points identified as overlapping in step 3. The result can
be seen in Figure 14e.

Figure 14: a) Two overlapping polygons.
b) Checking for overlap with enclosing rectangles.
c) Checking for overlap with a point-in-polygon process.
d) Checking line intersections to determine new vertices.
e) The resulting polygons have three coinciding vertices (in black) .

This process is complex to implement. To save time, most of the steps have been
implemented using set operations provided by MapObjects.

5.4.2 Sliver polygons

When dealing with polygon-related operations, sliver polygons [4] can arise, see
Figure 15. Sliver polygons are polygons that, instead of having coinciding
segments, have thin slices of empty space or overlap between them. Using built- in
operations from MapObjects, overlap removal has shown to be unstable and can
in special cases generate sliver polygons. Sliver polygons are a common issue for
geometric operations. These kind of erroneous polygons must be taken care of to
ensure robustness of other polygon operations. A proposed solution is to identify
the sliver polygons and repair them [4].

Figure 15: Sliver polygons are polygons that, instead of having coinciding segments, have
thin slices of empty space or overlap between them.

There are many reasons why sliver polygons can arise. When removing overlaps,
there is a calculation to decide where line segments cross and where to put new
vertices, see Figure 14d-e. The result is dependant on the accuracy of the data

b) c)

d) e)

a)

Sliver

FOI-R--1698--SE

 28

used (number of decimals). It is hard to guarantee an error- free result, when using
some of MO’s built- in operations, since their implementations are hidden.

5.5 Creating attributes

The identified objects from DV each have a number of attributes, which are stored
in a data structure internal to DV. The attributes are extracted at the same time as
generating polygons from the square-shaped objects in DV. The attributes and the
generated polygon are stored together in a FeatureClass.
The following attributes are extracted from DV:

• TYPE Stands for “type of object” and holds the objects’ type
name e.g. DITCH or SLOPE.

• ID A FeatureClass holds a set of geometries, which must have
a unique id. The attribute table of a FeatureClass already
has a mandatory field that holds such an id. This field is a
copy of that field and is used for debugging purposes only.

• WIDTH A value (in meters) that is calculated from the 2×2m
square representation of an object by DV. The value
represents an average width of the groups of squares. This
value is used by the buffer function described earlier to
generate buffers with corresponding size.

• MAXSLOPE A value (in degrees) representing the highest slope within
an object. This is used when removing overlaps to
determine which object has precedence.

• MAINDIR A value that is not used, representing the main direction
(north-south etc.) of an object. For more information see
[2].

These are all the attributes available from DV. Both ditch and slope objects use
these attributes.

FOI-R--1698--SE

 29

6 Map data merging
In this work, all available information from DV is put together, creating an
overlay map as seen in Figure 16.
The data from DV contains only two kinds of recognized objects, ditches and
slopes. When considering a map with only such objects, there will be several
unknown areas (gaps) around these.
In order to associate those areas with appropriate costs in the network, see chapter
8, some additional information must be added to these unknown areas.

Figure 16: A map of identified ditches (dark) and slopes (light) from DV do not totally cover
the surface. More information must be added to create a map with full coverage
of the surface.

6.1 Land use map

Several related works [2], [8] have identified soil factors and type of vegetation as
important factors when analysing trafficability. A natural way of giving the non-
recognized areas relevant information is therefore to replace them with a map of
land use (LUM). A LUM describes which parts consist of forest, arable land,
residential construction etc.

FOI-R--1698--SE

 30

Map copyright Lantmäteriverket 2001, ärende nr L2002/308

Figure 17: A land use map showing arable land, forest, water etc.

If the information from a LUM is merged with data generated by DV, the LUM
will fill in all unrecognized areas and provide additiona l information. This means
that a map will be created that can tell which ditches are located in forest and
which are located in arable land. The LUM provides important information about
the identified objects, so the map of ditches is merged with a LUM. The LUM
used comes from Geografiska SverigeData – Fastighetskartan (GSD) [14] and
was delivered in Shapefile format [7]. GSD contains a large collection of layers,
and the LUM is a polygon layer with full surface coverage.

6.2 Overlay creation

The process of merging polygon data to create new polygons is called the polygon
overlay process [4], which means that different map layers are merged to create a
new map layer with new polygons. For vector data, this is described as “perhaps
the most challenging computational requirement” in [4]. In fact, this is the most
time consuming process in this work.

6.2.1 Process description

When merging different map layers, it is likely that overlaps occur. In this case,
merging a LUM, that itself has full surface coverage, with another layer from DV,
will create overlaps. The goal is to combine them such that polygons without
overlaps are created. Here follows a brief description of the method:

1. Starting with two map layers: a LUM and a layer containing identified
objects like ditches and slopes (DV-layer). Find all overlapping geometries
from the LUM, for each object in the DV-layer, see Figure 18a.

Arable land

Marsh (conifer)

Marsh (normal)

Marsh (severe)

Forest (conifer)

Clearing

Water

Open field

FOI-R--1698--SE

 31

2. If the DV-polygon has only one overlapping LUM-polygon, the DV-
polygon is left unchanged. An attribute describing the overlapping LUM-
polygon is copied to the DV-polygons attribute table. In this way, a ditch
can be described as overlapped by arable land. If the DV-polygon has
various overlapping LUM-polygons, the DV-polygon is partitioned into
correspondingly large pieces. These pieces get corresponding attributes
copied into their attribute tables. The result is a layer of ditches and slopes
divided into, for example, ditch- in-forest or ditch-in-arable- land, see
Figure 18b.

3. The result from step two is then used to clip a hole in the original LUM.
This procedure is needed to make data fit together without errors and is the
single most time consuming part of this process. Some optimization has
already been done by first making a union of all ditches and slopes and
using that to clip once in the LUM. The result is a LUM with holes, see
Figure 18c. This operation requires about 2 hours to execute (Pentium
1.7GHz, 512MB) when using all available data from DV (ditches and
slopes, 800×800m).

4. Now the results from step 2 and 3 can be merged. They should fit together
like pieces in a jigsaw puzzle, see Figure 18d.

Figure 18: a) Two layers are compared to find overlapping polygons. One layer is a LUM
 and another layer consists of ditches and slopes.
b) Ditches and slopes get additional information copied from the LUM. Ditches
 can now be identified as ditch-in-forest for example.
c) All ditches and slopes are used to cut holes in the LUM.
d) The results from b and c are merged like pieces in a jigsaw puzzle.

6.3 Results

The results from chapter 5 and 0 are saved to files for later use in the partitioning
process described in chapter 7. An empirical analysis of the performance shows
that the execution time grows rapidly with the number of polygons, see Figure 19.
The performance test takes all operations from chapter 5 and 0 into account. Step
3 described in chapter 0 involves a union operation that requires approximately
99% of the execution time. The tests are performed on a computer with a 1.7GHz

b) a)

c) d)

FOI-R--1698--SE

 32

Pentium CPU and 512 MB of main memory. The four different points in Figure
19 correspond to the number of polygons contained in data from 200×200m,
400×400m, 600×600m and 800×800m. Partitioning an 800×800m area consisting
of about 1300 polygons takes about 120 minutes to execute.

Map data pre-processing and merging

0

50

100

150

0 500 1000 1500

number of polygons

ti
m

e
(m

in
u

te
s)

Figure 19: Performance test of the map data pre-processing and merging

FOI-R--1698--SE

 33

7 Map data partitioning
Partitioning is the process of dividing something into parts, in this case polygon
surfaces. The map data often contains polygons of complex shapes and with large
vertex counts. Polygons are also often complex in the sense that they contain
holes (have interior rings). These properties are undesirable for reasons that will
be explained. In this work, partitioning is divided into two parts: a partitioning
mechanism and a partitioning strategy. The mechanism refers to the actual process
of cutting areas into pieces, whereas the strategy refers to where, at which
locations, the areas are cut.
In the neighbourhood graph, each node represents a polygon and each edge a
border relation. Each node has a position which is used to approximate the
location of a polygon. Furthermore, each edge is used to approximate the
movement across the border from one polygon to another. To make these
approximations sensibly, the polygons must meet certain requirements:

• The shape of the polygons should not be too complex, i.e. the polygons
should be close to convex. A convex polygon guarantees that there is a
straight line between all points of the polygon, without the line intersecting
the edges of the polygon, thus, guaranteeing that all borders can be
reached with a straight line from the node, without the line intersecting
other adjacent polygons.

• The size of the polygons should be restricted. The bigger the polygons get,
the less accurate the graph nodes approximate the polygons.

• The length of connected borders between adjacent polygons should be
restricted. The longer the border gets, the less accurate the edges
approximate the border crossing between adjacent polygons.

• The polygons must not contain holes. This will help ensure that pathways
on both sides of polygons can be represented. Furthermore, this makes it
possible to implement simpler partitioning algorithms which are unable to
create complex polygons.

• Unless a multigraph is used, see chapter 0, there must only be one separate
border between two adjacent polygons. This will ensure that pathways on
both sides of polygons can be represented, see Figure 20. In case a
multigraph is used, the edges must have an attribute to keep track of which
separate border is crossed. This is also useful in the non-multigraph case,
but not necessary. This work does not use multigraphs.

Note that these requirements have been comprised to be suitable for the method of
graph creation described in 0.

FOI-R--1698--SE

 34

Figure 20: Possible paths are created on both sides of the grey polygon using:
a) three adjacent polygons around the grey polygon,
 which limits the number of separate borders,
b) two adjacent polygons, if a multigraph is used.

Polygons in un-partitioned map data normally meet these requirements poorly, see
Figure 21. The task of the partitioning process is to divide polygons into smaller
ones that better meet these requirements.

Figure 21: Example of a large and complex polygon. A single node would not be a good
approximation of this polygon. This polygon may have hundreds of surrounding
neighbours and several islands. If this polygon were to be represented by a single
node, the edges would deviate significantly from the actual borders that the
edges should approximate.

7.1 The partitioning mechanism

A tool is needed to divide areas, from map data, e.g. polygon data, into several
parts. This tool is referred to as a partitioning mechanism. This work is concerned
with dividing polygons, thus an algorithm for dividing polygons is needed.

7.1.1 The cut lines mechanism

This partitioning mechanism uses a set of cut lines to divide a polygon, see Figure
22. Cut lines are simply lines that define locations to cut. First the cut lines are
positioned using a partitioning strategy, and then the dividing algorithm uses these
lines to cut the polygon into pieces.

b) a)

FOI-R--1698--SE

 35

Figure 22: a) A polygon with two holes, and four cut lines de noted by the dotted lines.
b) An exploded view of the polygons resulting from the cutting algorithm using
the set of cut lines in a.

Cut lines can be placed as in Figure 22. If the cutting algorithm is to work, cut
lines must be placed so that:

• no resulting polygons have holes, not as in Figure 23a; this is due to an
algorithm limitation,

• the end points of cut lines touch a ring segment or ring vertex, not as in
Figure 23b,

• no cut lines intersect each other or rings, not as in Figure 23c; note that
touching end points is not considered intersection here,

• the cut lines must be positioned on the polygon surface, no t as in Figure
23d,

• no very thin polygons or polygons with very small interior angles are
created, not as in Figure 23f; this is due to a robustness limitation of the
algorithm.

Figure 23: Some invalid cut line placements.

b) c) d) a) f)

a) b)

FOI-R--1698--SE

 36

To avoid sliver polygons and to keep borders intact, new vertices are introduced
in neighbouring polygons at the locations where cut lines have touched, see
Figure 24.

Figure 24: A new vertex is added to the grey polygon where the cut line of the white polygon
touches.

7.2 The partitioning strategy

A strategy for positioning cut lines is clearly needed. All encountered partitioning
strategies have been of the binary kind, i.e. an area class is either free space or
obstacle. The problem in this work is not binary, but N-ary; forests, ditches, fields
and roads etc. all have different trafficability. Thus an N-ary partitioning strategy
had to be developed. An existing binary strategy served as a base, and was
extended to cope with the N-ary case.

7.3 The split point strategy

This partitioning strategy divides areas into horizontal strips at certain locations
identified as split points. Split points is a concept developed in a related work [7],
for binary data, which had to be extended to work with N-ary data. The areas
generated from the partitioning process are referred to as tiles.

7.3.1 The binary variant

If only two types of area classes are considered, i.e. areas which are trafficable
(free space) and those that are not (obstacles), you get a binary trafficability
problem. The binary variant can for instance, as in [7], be used for marine
trafficability, where water is trafficable and land is not.
In [7], splitting of free space occurs at the points that, with respect to the y axis,
are local maximum or local minimum points of the obstacles, see Figure 25.
These points determine the location of the split points.

x

y

FOI-R--1698--SE

 37

Figure 25: The grey areas are obstacles; the surrounding white space is free space; the small
circles are split points. The areas enclosed by either dashed lines and/or obstacle
edges and/or map edges are tiles.

This variant is binary, and only partitions free space into strips, whilst the
obstacles are left intact. Further, this variant is not general since free space cannot
be inside obstacles. These details make this variant unsuitable for our needs.
However, it still serves as a good base, since it gives a background for our way of
reasoning and a terminology.

7.3.2 The N-ary variant

This variant divides areas (polygons) into strips, just like the binary version,
except that there is now no notion of free space and obstacle. Areas, which may be
seen as obstacles in a binary case, are also divided.
A way of reinterpreting the definition to apply to N-ary data is required, because
partitioning in the binary version originally is defined for binary data. The white,
free space in Figure 25 can be seen as a polygon with two holes. These holes
could be filled with obstacle polygons, shaped as each hole respectively. These
obstacle polygons are not necessary in the binary case. It is sufficient to state that
the free space polygon is trafficable, and that everything else, e.g. the holes, is not.
This is not true for the N-ary case; everything may be traversed, so everything
must be partitioned, even the polygons in the obstacle holes, see Figure 26.

FOI-R--1698--SE

 38

Figure 26: An example of a partition of a non binary case. The split points have been
coloured according to the polygon to which they belong. Note that the white box
also is a polygon with two holes in it.

The definition of a split point for the N-ary case is different from the binary case.
For the N-ary case, split points are, with respect to the y-axis, at maximum and
minimum vertices of the polygon rings, where the left or the right side of the
vertex is on the polygon surface, see Figure 27. Note that split points and cut lines
are handled on a per polygon basis, i.e. the positions of split points and cut lines
of one polygon are not affected by split points and cut lines of other polygons.
Each split point generates one or two cut lines. One to the left and/or one to the
right of the split point, see Figure 27. The cut line is extended between a split
point and the horizontally closest edge of all rings in the polygon. Sometimes a
split point only generates one cut line. This happens when there are horizontal line
segments in the polygon, as seen in Figure 27.

Figure 27: A single grey polygon with two white holes. The split points and the cut lines are
illustrated with circles and dotted lines respectively. Note that only local extreme
points with its left or right side on the polygon surface are considered split points.

Horizontal
segment

Left and right side
not on polygon
surface

Left and right side on polygon surface

Right side on
polygon surface

x

y

FOI-R--1698--SE

 39

7.4 Results

A theoretical analysis of the time complexity of the partitioning algorithm is
difficult to make. There are many factors that influence the result, such as number
of polygons, number of vertices in polygons, number of neighbours of each
polygon, etc. In addition, some sub-routines are developed by a third party, thus
the time complexity of these routines can sometimes only be guessed. However,
an empirical analysis can be used to measure the performance of the algorithm on
selected data, see Figure 35. The tests are performed using a computer with a 440
MHz UltraSPARC-IIi CPU and 384 MB of main memory.

Partitioning

0
100
200
300
400
500

0 500 1000 1500

number of polygons

ti
m

e
(s

ec
o

n
d

s)

Figure 28: Performance test of the partitioning algorithm.

Partitioning of an 800×800m area, consisting of about 1300 polygons, results in
about 9200 polygons and takes approximately seven minutes to calculate, see
Figure 29.

Figure 29: To the left: An 800×800m area of un-partitioned polygon data. To the right: The
polygon data partitioned using the split point strategy.

FOI-R--1698--SE

 40

FOI-R--1698--SE

 41

8 The neighbourhood graph
The purpose of the neighbourhood graph is to describe areas in a map, and how
these areas are connected. In this work, the areas are represented by polygons. In
the graph, each node represents a polygon and each edge a border relation, see
Figure 30. The position of each node is used to approximate the location of a
polygon. Furthermore, each edge is used to approximate the movement across the
border from one polygon to another. An authentic example of a neighbourhood
graph created for a partitioned map is shown in Figure 36 at the end of this
chapter.

Figure 30: A number of polygons and a neighbourhood graph representing the polygons and
their relations. The small circles are nodes representing the polygons; the dashed
lines are edges representing border relations of the polygons.

8.1 Graph generation

The graph is generated in a number of steps. In the first step, the nodes are created
and positioned. In the second, edges are added for each neighbouring polygon
pair. Note that the created graph is planar, thus there is a linear relation between
the number of edges and nodes.

8.1.1 Node generation

When generating the graph, a node is generated for each polygon. This node
represents the location of the polygon and should be somewhere on the surface of
the polygon. The centre of gravity cannot be used since it is only guaranteed to be
on the polygon surface for convex polygons. Instead, the position of the node is
calculated by finding the intersection between the polygon surface and a
horizontal line that goes through the centre of the polygon’s bounding box. This
intersection results in a number of horizontal line segments. The centre of any of
these resulting line segments can be used as the node position, see Figure 31. This
method is only guaranteed to work with polygons with one exterior ring.

FOI-R--1698--SE

 42

Figure 31: Node position of a polygon. The rectangle is the bounding box of the polygon and
the cross its centre. The dashed line is the intersection of the polygon and the
horizontal centre line of the bounding box. The circle is the final position of the
node, which is at the centre of the intersection line.

8.1.2 Edge generation

When all nodes have been created, edges are added. Edges are added between all
nodes whose associated polygons are neighbours. Each edge is supplemented with
a break point, which will direct the edge over the relevant section of the border.
The purpose of this is to try to reduce the number of edges crossing over other
polygons than the ones whose nodes the edge connects, see Figure 32. The
position of a break point of an edge for two adjacent polygons is determined by
the following steps:

1. The common border of the polygons is extracted as a polyline.

2. A vertical or a horizontal line is created through the centre of the
polyline’s bounding box.

3. The intersection of the line and the polyline gives the position of the break
point.

Figure 32: a) Edges without break points. b) Edges with break points.

a) b)

FOI-R--1698--SE

 43

8.1.3 Cost function

A set of attributes is associated with each polygon. These attributes have a name
and a value, see Figure 33. The values are used to calculate a cost for moving in
the area to which the polygon corresponds. The attributes are associated with a
certain node, but the costs are associated with the edges. Let the cost of moving a
meter, in an area represented by a node n, be D(n).

NAME VALUE
SHAPE [geometry, e.g. polygon]
LANDUSE FOREST
TYPE DITCH
WIDTH 2
MAXSLOPE 20

Figure 33: Typical attributes for a feature object.

The actual cost of an edge depends on how much of the edge is in certain areas
and the cost of moving in those areas. The break point is used to estimate how
much of an edge that is in a certain area, see Figure 34. The cost, C(ei,j), of an
edge ei,j, is obtained from:

)()()()()(,,, jjibijiaji nDelnDeleC ⋅+⋅= ,
where la and lb are the lengths from node ni to break point bi,j and from break point
bi,j to node nj respectively. The nodes ni and nj are source node and destination
node, respectively.

Figure 34: Components used when calculating the edge cost. The break point bi,j is denoted
by a diamond; the nodes ni and nj, are denoted by circles; the edge ei,j is denoted
by a dashed line. la and lb are the lengths of the edge portions on each side of the
break point.

8.1.4 Results

A theoretical analysis of the time complexity of the graph creation algorithm is
difficult to make. There are many factors that influence the result, such as number
of polygons, number of vertices in polygons, number of neighbours for each
polygon, etc. In addition, some sub-routines are developed by a third party, thus
the time complexity of these routines can sometimes only be guessed. However,

pj

pi

nj

ni

ei,j

lb(ei,j)

la(ei,j)

bi,j

FOI-R--1698--SE

 44

an empirical analysis can be used to measure the performance of the algorithm on
selected data, see Figure 35. The tests are performed using a computer with a 440
MHz UltraSPARC-IIi CPU and 384 MB of main memory.

Graph creation

0

50

100

150

200

0 500 1000 1500

number of polygons

tim
e

(s
ec

o
n

d
s)

Figure 35: Performance test of the graph creation algorithm.

A partitioned 800×800m area, with about 9200 polygons, results in a graph with
about 9200 nodes and about 46000 edges, and takes approximately three minutes
to generate, see Figure 36.

Figure 36: Graph create d from a split point partitioned 800×800m area. Tiles are outlined
by grey lines; edges and nodes are denoted by black points and lines,
respectively.

FOI-R--1698--SE

 45

8.2 Graph search

A neighbourhood graph can be used to determine paths between delimited areas.
It is of interest to find the best (least cost) path (or paths) between two given
areas; a source area and a destination area. This can be done by using graph search
algorithms. Dijkstra’s algorithm can be used to find the least cost path from one
node to all other nodes, or with modification, the other way around, i.e. least cost
paths from all nodes to a single node. A specialized version of the A* can be used
to find multiple least cost paths between a pair of nodes in successive searches,
see [17]. The paths are found in increasing order of cost.
The algorithm stores an internal state between searches. If the number of required
paths K is known beforehand, the algorithm can be optimized for this, by only
generating enough state data to find K paths, i.e. only expand K paths. If K is
large or the number of required paths is unspecified, many sub-paths have to be
expanded and stored during the execution of A*. Thus it is imperative that the
heuristic function gives a very accurate approximation, hence the algorithm
expands fewer sub-paths, for A* to work in practice. In this work it is desirable to
find several good paths where K is not known in advance, or may be very large.
Thus it is important to find a good heuristic function for A*. For graphs
containing nodes with geometrical positions, the actual node distances can
sometimes be used for the heuristic function. This may be feasible if the cost of
edges is closely related to this distance, e.g. for a graph representing a network of
roads. This is not the case for this work; here the type of terrain usually is the
dominant factor and not the distance itself. The geometrical distance can
consequently not be used for the heuristic function in this case. Fortunately,
Dijkstra’s algorithm can be used to create exact values for the heuristic function.
Considering an undirected graph, Dijkstra’s algorithm can be run in advance to
generate the path cost to reach all nodes from a single node, D. This cost is the
same for reaching D from all other nodes. A* can use these costs for the heuristic
function where D is the destination node. However, if a directed graph is
considered, a path from A to B may not have the same cost as a path from B to A.
There may not even be such a path. In other words, the commutativity of path
costs for undirected graphs cannot be used. Instead, the cost problem is resolved
by having either Dijkstra’s algorithm or the A* algorithm “reversed”. Reversing
Dijksta’s algorithm is done by altering the algorithm so that it calculates the costs
to reach a single node from all other nodes. These costs are used for the heuristic
function of A*. Reversing A* is done by altering the algorithm so that it uses the
heuristic function to approximate the costs to reach nodes from the source node,
see [17]. These costs are what the normal Dijkstra’s algorithm produces.

FOI-R--1698--SE

 46

8.2.1 Results

The initial step of the search algorithm, to generate heuristic values using
Dijkstra’s algorithm, only takes a few seconds for a graph with about 9000 nodes.
The subsequent steps of generating paths with successive executions of the A*
algorithm takes about a second per path. The tests are performed using a computer
with a 440 MHz UltraSPARC-IIi CPU and 384 MB of main memory. The results
from a search can be seen in Figure 37. The paths show different routes which try
to avoid the ditches.

Figure 37: An example of a graph search. The black lines show multiple paths from a source
node to a destination node. The darker areas are ditches.

.

FOI-R--1698--SE

 47

9 Discussion
This chapter weighs the pros and cons of our achieved results. We also discuss
how the results can be used and give suggestions for future research.

9.1 Conclusions

In this work, it has been shown that it is possible to model arbitrary terrain using a
graph in which paths can be searched for. The advantage of basing the model on
arbitrary terrain instead of on an overlay of obstacles like in [9] and [13] is that
costs in the graph can be changed on a per terrain feature basis to encompass
different types of vehicles.
The pre-processing of map data is rather time-consuming, but the idea is to build a
repository of data so that pre-processing has to be done only once. The graph
search, which is our application of the graph, can be considered fast. A search
based on map data from an 800×800m area, with about 9000 nodes, typically
takes a few seconds to execute.

9.2 Future research

Because of a limited schedule, we did not have the opportunity to try all of our
ideas. We have tried to document some of the ideas that we think could be of
interest for future research.

9.2.1 Polygon generation

We generate polygons by buffering centre lines. The centre lines have been
generated from identified objects that are represented by 2×2m squares. This is
not a robust solution since the generated buffers can consist of invalid polygons.
Invalid polygons can cause problems in other polygon-related operations
performed later in our process.
Instead of buffering centre lines there is another possibly less problematic
solution. The identified objects already have a polygon representation, grouped
squares, from which is possible to start. By buffering the grouped squares with a
very short radius instead of buffering their calculated centre lines, a large (still
square- like) outline-polygon will be generated. These outline-polygons will not
require as much computational power or memory but will have an unsuitable
shape for our partitioning algorithm. By applying a generalization algorithm that
smoothes the outline to an appropriate detail- level, polygon data that better meet
the requirements could be obtained.

9.2.2 Partitioning and graph-forming

In this work only a single partitioning strategy was implemented. It would be
interesting to test other ones as well. We think that the desirable requirements
could be better fulfilled using other, more complex strategies.
The partitioning strategy used in this work is simple and effective, but it has its
problems. The tiles are not necessarily compact, i.e. they can have the form of thin
horizontal strips. A preceding or succeeding vertical partitioning to limit the
length of the horizontal strips may resolve this. Also, some polygon splits, which
are bound to cause trouble, are difficult to avoid, e.g. very thin polygons, and

FOI-R--1698--SE

 48

polygons with very small interior angles. However, this can be difficult to avoid
in other partitioning methods as well.
Another partitioning strategy can be, for instance, to place cut lines between the
two closest points of two different polygon rings, see Figure 38. This could offer a
method to estimate how wide a passage is. This estimate could be used for
evaluating the trafficability given a vehicle’s width. Additional cut lines could be
used to make the polygons close to convex. This strategy is inspired from
delaunay triangulation, see [12].

Figure 38: An example of how an alternative partitioning strategy may look. The cut line A
signifies the shortest distance between the two interior rings of the white polygon.
If the vehicle should pass between the darker polygons, over cut line A, then this
cut line’s length could be used as measurement for the width of the passage.

When forming the graph, i.e. positioning the nodes and edges, no trafficability
aspects are considered. This is because the graph form should be general and
vehicle independent. However, there might be some types of objects that could be
a hinder for all intended vehicles. Given this, the graph could use this additional
information to form the graph. The same information applies when partitioning
data; areas could be partitioned differently depending on the actual type of terrain.
The ability to save graphs is of interest. To do this, a format must be defined.
Since the graph is highly dependent on the attributes of Features which can be
stored in shapefiles, the graph could be saved alongside all other files, which the
shapefile format consists of. This would also make the actual polygons available
that the nodes represent as well as other functionality that the shapefile format
offers.

9.2.3 Robustness

There are many geometry algorithms used in the system, some are developed in
this work, while some are third party library functions. A number of the library
functions have problems with robustness. Not to imply that developers of third
party libraries claim to have created robust algorithms; sometimes the developers
have chosen speed before robustness on purpose. The lack of robustness of some
of the algorithms used in the system is directly inherited from the third party
functions. In these cases, the only viable solution seems to be to find more robust
third party alternatives, or actually implement these functions.
Most of the non-robustness issues arise because of malformed or dubious data.
The unsupervised polygon and vector operations of the system are difficult if not

Width of passage

A

FOI-R--1698--SE

 49

impossible to get robust, e.g. sliver polygons arise and intersections are missed. A
tool for correcting such trouble-polygons must be used between the different steps
of the system. An alternative solution may be to transform the vector data into
some discrete representation during the actual polygon and vector operations.
Using raster data altogether, or in conjunction with vector data, could also be
considered.
Data from third party companies often come with certain guarantees, e.g.
polygons are valid, the distances between rings in polygons are always larger than
a certain value and the interior angles of polygons are always larger than a certain
value. These data are probably partly digitized by hand, analyzed and modified by
some advanced tool. We generate a lot of data automatically in a cascade fashion,
e.g. centre lines, buffers, merged data and partitioned data. It is difficult to make
any of the earlier mentioned guarantees on this data between the various steps. If
there is an error in an early step it usually propagates to the later ones, and at each
step the error increases.

9.4 Closing words

The results of this work can serve as a basis for further research. The search result
depends on what costs are taken into account when executing the search. The cost
can for instance represent the risk of moving through different types of terrain.
The area of trafficability is interesting from different points of view. Mostly, we
have encountered military applications, but there are important civil ones such as
rescue operations where arbitrary terrain must be forced. This work will,
hopefully, contribute to solving such problems in future works.

FOI-R--1698--SE

 50

FOI-R--1698--SE

 51

References
[1] E. Jungert, C. Grönwall (eds.), From Sensors to Decision – Towards

improved situation awareness in a network centric defence. Technical Report
FOI-R--1041--SE, Command and Control Systems, FOI, 2003.

[2] S. Edlund, Driveability analysis – using a digital terrain model and map
data, Technical Report FOI-R--1241--SE, Command and Control Systems,
FOI, 2004.

[3] M. Sjövall, Object and Feature Recognition in a Digital Terrain Model,
Technical Report FOI-R--0499--SE, Command and Control Systems, FOI,
2002.

[4] R. Laurini, D. Thompson, Fundamentals of Spatial Information Systems,
Academic Press, London, 1996.

[5] ESRI, MapObjects – Java. Developer’s Guide, 2003.
[6] ESRI, ESRI Shapefile Technical Description, An ESRI White Paper,

http://www.esri.com/library/whitepapers/pdfs/shapefile.p
df, July 1998.

[7] P. Holmes, E. Jungert, Symbolic and Geometric Connectivity Graph Methods
for Route Planning in Digitized Maps, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, May
1992, No. 5, p. 549-565.

[8] J. J. Donlon, K. D. Forbus, Using a Geographical Information System for
Qualitative Spatial Reasoning about Trafficability, From Proceedings of
QR99, volume 4364, Loch Awe, Scotland, June 1999.

[9] R. Glinton, C. Grindle, J. Giampapa, M. Lewis, S. Owens, K. Sycara,
Terrain-Based Information Fusion and Inference, From Proceedings of the
7th International Conference on Information Fusion, Stockholm, Sweden,
June 2004.

[10] ESRI, http://www.esri.com.
[11] D. Eppstein, Voronoi diagrams,

http://www.ics.uci.edu/~eppstein/gina/voronoi.html,
Information and Computer Sciences Online, visited Jan 14, 2005.

[12] P Chew, Voronoi Diagram / Delaunay Triangulation.
http://www.cs.cornell.edu/Info/People/chew/Delaunay.html,
Cornell University, March 1997, visited Jan 14, 2005.

[13] R. Glinton, J. Giampapa, S. Owens, K Sycara, Integrating Context for
Information Fusion: Automating Intelligence Preparation of the Battlefield,
From Proceedings of the 5th Conference on Human Performance, Situation
Awareness, and Automation Technology, Daytona Beach, FL, March, 2004.

[14] Lantmäteriet, Produktbeskrivning: GSD-Fastighetskartan i Shape och
MapInfo-format,
http://www.lm.se/gsd/fastighetskartan/fastshmi.pdf,
August 2004, visited Jan 15, 2005.

[15] Vivid Solutions Inc, JUMP Workbench,
http://www.vividsolutions.com, January, 2004.

[16] H. R. Lewis & L DenenBerg, Data Structures & Their Algorithms, Addison-
Wesley, 1991

[17] V.M.Jiménez, A. Marzal, J. Monné, A Comparison of Two Exact Algorithms
for Finding the N-Best Sentence Hypotheses in Continuous Speech
Recognition, From Proceedings of the 4th European Conference on Speech

FOI-R--1698--SE

 52

Communication and Technology, EUROSPEECH-95, pp. 1071-1074,
Madrid, 1995

[18] Sun Microsystem, Java 2 Plattform, Standard Edition, v 1.4.2 API
Specification, http://java.sun.com/j2se/1.4.2/docs/api/,
November 2003, visited Jan 26, 2005.

FOI-R--1698--SE

 53

Thesis specification (Swedish)

Examensarbete – Beslutsstöd för Framkomlighetsanalys 2

Bakgrund:
Analys av framkomlighet i terräng ger ett viktigt beslutsunderlag för alla typer av
aktiviteter som kräver förflyttning i terrängen. Denna typ av analys behövs både
för att kunna bedöma andras möjligheter till förflyttning (målföljning), och för
planering av egna förflyttningar. Vid FOI i Linköping finns sedan tidigare en
metod framtagen för att bestämma framkomlighet i olika delar av terrängen, för
att skapa en framkomlighetskarta. Sedan tidigare finns också en algoritm för att
hitta den bästa vägen mellan olika noder i ett nätverk. För att kunna utnyttja dessa
tillsammans måste dessa metoder utvecklas, samt ett nätverk skapas utifrån
framkomlighetskartan.

Problemställning:
Uppgiften består i att skriva ett program för att bestämma de bästa vägarna mellan
två givna områden. För att göra detta måste man skapa ett nätverk utifrån en
framkomlighetskarta. Framkomlighetsegenskaperna är beräknade utifrån en
högupplöst höjdmodell, information om terrängtyp från Gröna kartan (skog, väg
etc) och information om fordonens egenskaper. Ett mindre jobb för att utnyttja
den tidigare utvecklade programvaran måste också göras. Den färdiga analysen
ska visualiseras på en karta där de bästa vägarna finns utmärkta.

Kontaktpersoner:
Erland Jungert, jungert@foi.se, 013-37 83 37
Fredrik Lantz, flantz@foi.se, 013-37 82 36
Institutionen för Data- och informationsfusion
Avdelningen för Ledningssystem
FOI, Linköping
Utbildning:
C- eller D-linje.

Tidsperiod:
Start sker tidigast 20:e september eller senare under hösten -04.

FOI-R--1698--SE

 54

MapDataManager
This is a brief description of a tool developed to prepare data for partitioning and
graph creation in another tool, Grapher, see Appendix C. Offered functionality
corresponds to the initial steps described in chapters 5 and 0.

Architecture

This application, MapDataManager (MDM), is written in Java (version 1.4.2)
[18] and uses MapObjects [5], a toolkit from ESRI [10]. MDM is an extension of
DV [2], introduced in chapter 5. DV is an extension of CV [3], also introduced in
chapter 5.
CV is an application that, from a special kind of map data [3], can identify
geometrical features (objects) and store them in a data structure. DV extracts these
objects from CV and calculates some properties like average width of objects and
store these properties in a data structure.
MDM is designed to extract the identified objects together with corresponding
properties from DV and then prepare this data for further processing in Grapher.
The result from MDM can be saved as shapefiles [6], which will serve as a map
data repository for Grapher.

MapDataManager is composed of CategoryViewer and DriveabilityViewer. Arrows show the
information-flow through the system.

Portability

Software written in Java is generally portable to different platforms. MDM is
developed and tested on a UNIX platform. MDM has also passed some tests on
Windows XP, but with some modifications:
MDM is composed of CV and DV, which have certain paths to its input data hard-
coded. To run MGM on another platform or on the same platform but from
another machine or directory, these paths must be updated and MGM recompiled.
The paths for which change is needed are found in a source file of

CategoryViewer

Laser
radar data

Driveability-
Viewer

Map data
processing

Land use
map

Map data
repository

MapDataManager

Grapher

FOI-R--1698--SE

 55

DriveabilityViewer called Properties.java. This is obviously a limitation, but
acceptable since this can be considered as a series of prototypes.

Installation

The MDM installation consists of the following directory-tree, which must not be
altered for proper execution:
MapDataManager/
 Build/
 CategoryViewer compiled classes for CategoryViewer
 DriveabilityViewer compiled classes for DriveabilityViewer
 mapDataManager compiled classes for mapDataManager
 data/
 inData/
 fastighetskartan map data from Lantmäteriet
 laserradar data from laser radar
 outData/
 200x200m out data repository (size 200x200m)
 400x400m out data repository (size 400x400m)
 600x600m out data repository (size 600x600m)
 800x800m out data repository (size 800x800m)
 docs/ generated Javadoc for the application
 filters filters used by CategoryViewer
 lib binary libraries from MapObjects
 src sources for the application

The installation includes a pre-generated out-data-repository with data in four
different sizes (200x200m - 400x400m).
Besides the source code, Java class- files, input data-files etc. a Java virtual
machine must be installed. Versions compatible with version 1.4.2 can be
downloaded free from [18].

FOI-R--1698--SE

 56

User interface

The user interface is divided into the following different areas, see screenshot
below:

A. Menu bar with functions for data import, data manipulation and
visualization.

B. Toolbar, buttons with functions for zooming-, panning-, searching- and
saving screen shots.

C. Layer view with a hierarchical tree view of all map layers that are open
and available in the system.

D. Map view, where map layers that have been selected in the layer view are
shown.

MapDataManager’s user interface is divided into four areas.

Menus

Most of the functions are carried out from the menus. There are three menus
available: File, Tools and View with the following contents:
File

 Save selected layer // This menu choice saves the selected
layer from the layer view to a shapefile.

 Import to temp repository // This menu choice imports ditches and
slopes from DrivabilityViewer and
stores them in a temporary repository
(RAM, not to disc).

D

C

A
B

FOI-R--1698--SE

 57

 Import and generate merged data // This menu choice imports ditches and
slopes from DriveabilityViewer and
merges them with a land use map. The
result is three new layers: one with
ditches, one with slopes, and one with
the merged data.

 Temporary repository // This menu choice becomes available
after choosing the Import to temp
repository menu command. It holds
ditches and slopes in a grouped square
representation. It also holds calculated
centre lines for both ditches and slopes.
From here the desired objects can be
extracted for further processing.

 Open (GSD) Land use map // This menu choice opens a land use map
(GSD fastighetskartan) from the
installation directory.

 Open (GSD) Road map // This menu choice opens a road map
(GSD fastighetskartan) from the
installation directory.

Tools

 Reduce layer extent // This menu choice reduces the extent
(map size) of one of two selected layers.
The purpose is to reduce the extent of
layers originating from GSD
fastighetskartan to the same extent as
imported data from DriveabilityViewer.

 Remove line loops // This menu choice removes any existing
line loops from a selected (line) layer.
Line loops can cause the Generate
buffers function to not terminate or may
generate an error message.

 Generate buffers // This menu choice generates outer shell
polygons (buffers) on the geometries of
a selected (line) layer. The purpose is to
create polygon objects from
DriveabilityViewer’s centre lines.

 Remove invalid geometries // This menu choice removes any existing
invalid geometry from a selected layer.
The result is shown in a new layer.

 Merge

 Ditches and Slopes // This menu choice merges two selected
layers, one with slopes and one with
ditches, to a new layer.

 DV-data with Land use map // This menu choice merges two selected
layers, one with DV-data (Ditches or

FOI-R--1698--SE

 58

slopes from DriveabilityViewer) and one
with a land use map, to a new layer.

 DV-data with Roads // This menu choice merges two selected
layers, one with DV-data (Ditches or
slopes from DriveabilityViewer) and one
with Roads (created from the
Experiments submenu), to a new layer.

 Remove overlap

 Ditches or Slopes // This menu choice removes overlaps
from a selected layer. The result is
shown in a new layer.

 Test data // This menu choice removes overlaps
from a selected layer containing test data
created with JUMP Workbench
(different attributes than ditches and
slopes). The result is shown in a new
layer.

 Experiments

 Generate outlines // This menu choice generates outer shell
polygons (buffers) on the geometries of
a selected (polygon) layer. The purpose
is to create polygon objects from
DriveabilityViewer’s grouped squares,
only implemented for experimental
purposes.

 Buffer roads // This menu generates outer shell
polygons from a selected line layer (of
roads). The generated polygons will be
eight meters wide. This menu choice is
only implemented for experimental
purposes.

View

 Colorize Land use map // This menu choice colorizes the selected
layer (containing a land use map).

FOI-R--1698--SE

 59

Normal usage

The normal use of this program can be described in a number of steps:
• Extract data (ditches and slopes) from DV.

• Extract corresponding centre lines from DV.

• Remove possibly intersecting segments (line loops) from centre lines.

• From centre lines create new polygon data (buffers).

• Remove individual overlaps for both ditches and slopes.

• Merge ditches and slopes and remove their overlaps.

• Merge the ditches and slopes with additional map data (land use map), to
receive map data with full surface coverage and more attributes.

• Save the resulting map data to file (shapefile) for later use in the tool
Grapher.

All steps described above, except for saving the result to file, can be done with
one single selection from the menu, see screenshot below. If this is not wanted or
data from other sources should be used, all steps can also be executed manually
from the menus.

Import and prepare data from DV in one step by selecting Import and generate merged data
from the File menu.

FOI-R--1698--SE

60

Grapher

This program has the ability to partition polygon data and build/search graphs,
using the strategies explained earlier in this report.

User interface

A. Menu bar – Contains menus for partitioning and graph functionality.

B. Layer view – A tree and toolbar for managing layers, e.g selecting, opening,
closing and saving layers.

C. Graph view – A list and toolbar for managing graphs, e.g. selecting and
closing graphs.

D. Toolbar – Standard MapObjects toolbars, containing functionality for
zooming, panning, searching etc.

E. Map view - View of the layers accounted for in the layer view.

F. Status bar – Shows the status of some time consuming processes, e.g.
partitioning and graph creation.

Screenshot of Grapher.

E

C

B

A
D

F

FOI-R--1698--SE

 61

Partitioning

This is a step by step instruction on how to partition data using Grapher.
1. Add a layer containing polygon data. This is done by clicking the add layer

button in the layer view, and then selecting a data source containing
polygon data e.g. all_800x800.shp from MDM’s data repository.

2. Select the layer to partition in the layer view by clicking on its name.

3. Start the partitioning process by selecting the Tools menu on the menu bar,
then selecting Partitioning, then clicking on Partition.

4. Wait a couple of minutes… The progress of the process can be followed from
the status bar.

5. A new layer should show up in the layer view and the map view. This layer
can be saved for later use by clicking the save layer button in the layer
view.

Graph creation

This is a step by step instruction on how to create and visualize a graph using
Grapher.

1. Add a layer containing polygon data, preferably partitioned data. This is done
by clicking the add layer button in the layer view, and then selecting a data
source containing polygon data.

2. Select the layer, from which the graph should be created, in the layer view by
clicking on its name. This can be a layer from step 1 or a layer created by
following the partitioning instructions.

3. Start the graph creation process by selecting the Tools menu on the menu bar,
then selecting Graph, then clicking on Create Neighbourhood Graph.

4. Wait a couple of minutes… The progress of the process can be followed from
the status bar.

5. The graph is now created and should show up in the graph view.

6. The previous step merely created the graph, now it could be visualized if one
so desires. Select the graph by clicking its name in the graph view. Then under
Tools on the menu bar, select Graph, and then click Visualize Graph.

7. Wait a couple of minutes… The progress of the process can be followed from
the status bar.

8. Two new layers, representing the graph, should show up in the layer view and
map view, one layer for nodes and one for edges.

FOI-R--1698--SE

 62

Graph search

This is a step by step instruction on how to perform a search on a graph using
Grapher.

1. Create a graph using the steps in the Graph creation instructions.

2. Select the graph by clicking on its name in the graph view.

3. Select the layer, in the layer view, from which the graph was created.

4. Open the search dialog by selecting Tools on the menu bar, then selecting
Graph and finally clicking Search Graph.

5. Click on two polygons that should be used for the search. This will fill in the
source and destination fields of the search dialog with the id of the clicked
polygons.

6. Click the search button repeatedly to generate successive paths.

