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1 Introduction

This paper describes computational analysis of the problem of estimating phys-
ical parameters of an object buried in the seafloor by acoustic probing. For a
more thorough description of the background see [5].

A ROV-mounted directive acoustic source sends a train of pulses at the object
and the reflected echoes are registered by a separately located vertical receiver
array as shown in figure 1.

55 - ... ; .............. , .............. .............. ............... RECEIVERS_
i SOURCE : : : °
H N N N N °
60 L B - e -
D -]
E
P
T BSk-- 8 ° - - .
H
m : : : : °
70 - ... P .............. .............. ............... ............. —
TS [ [ s FEOO T e .
: ‘SCATTERER : :
o 10 20 30 40
RANGE m

Figure 1: Ezxperimental geometry.

The scatterer has the shape of a homogeneous super-ellipsoid with acoustic
parameters representative of a TNT explosive, density 1630 kg/m3 and sound
speed 2680 m/s, figure 2.

Figure 2: Shape of the scatterer, a super-ellipsoid with half-axes 65, 15 and 15
cm.

Seven parameters, describing the range, depth, roll, yaw, pitch, density and
sound speed of the scatterer, have been studied. A coordinate system is defined
with upward pointing z axis passing through the source point and the positive
z axis directed towards the scatterer and the receivers. The angles, roll, pitch
and yaw will then be defined as the rotations around the z, y and z axes of the
coordinate system.

The signals at the receivers for a given parameter combination are computed
by a fast hybrid method based on ray tracing and plane wave reflection and
transmission coefficients. An example can be seen in figure 3 showing the signals
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Figure 3: Model-predicted signals corresponding to two different points in the
search domain. Range = 24.0 m and Depth = 74.85 m i.e. the true values
(Solid line). Range = 24.3 m and Depth = 76.0 m (Dashed line). The other
parameters have been kept constant at true values, table 1.

at each receiver for two different locations of the centre of the scatterer. The
program has been executed on a 23-node linux cluster.

The optimization problem arises when a set of parameters are to be determined
from experimental measurements of a scattered field registered at the receivers.
The parameters are estimated by minimizing a measure of the misfit between the
experimentally observed and the model-predicted signals. The sought parameter
combination arises from the model-predicted signal that results in the lowest
misfit value. In this paper only model computations have been performed i.e.
no experimental data have been used. Noise is therefore not present in the
calculations which makes the results very precise.

To solve the nonlinear global optimization problem effectively an evolutionary
algorithm the so called Differential Evolution, DE, has been implemented and
used. Differential evolution was introduced a few years ago by Price and Storn
[7], and has shown to be successful in solving problems with a highly nonlinear
object function consisting of many local minima. The results have thereafter
been evaluated by studies of the second derivative of the object function at the
global minimum and by resampling of the ensemble with the Neighbourhood
Algorithm Bayes, NAB, [8].

2 Parameter search regions

Actual experimental data for the arrival time 7 and the amplitude « at the
receivers have not been used during the optimization and model input data had
to be created. The parameter values stated in the “Original” column of table
1 were chosen, the corresponding transient echoes were calculated and used as
simulated experimental data in the fitness function. As a result not only 7 and
a are known but also the correct parameter values corresponding to the signal.
These parameter values are called original or true values.



Min | Max | Original

Range (m) 18 31 24
Depth (m) 7416 | 76 | 74.85
Roll (deg) -5 5 0
Yaw (deg) 15 25 19
Pitch (deg) -5 5 0

Density (kg/m3) 1400 | 1800 1630
Sound speed (m/s) | 2300 | 2700 2680

Table 1: Search domain and the original parameter values.

Table 1 shows the search region and the original parameter values used through-
out this study.

3 Object function

The fitness function, eq (1), is a measure of the misfit between the experimen-
tally observed time-series, in this case the modelled experimental input data,
and the model-predicted time-series.

Ti(u)—Ti 2 2

Tscal

N
sw) =Y (1)

i=1

Ai (ll) — Q4
Ascal

The arrival times 7; and the amplitudes «; at the receivers are those of the
simulated experimental data. T;(u) and A;(u) are the modelled arrival time and
the amplitude, respectively, at receiver i as function of the parameter vector u.

It is desirable for the two terms in the function to be of the same order of
magnitude so that neither of the terms dominates the fitness value. The function
turned out to be very sensitive to scaling and this was therefore more thoroughly
examined. Among several different scalings two of the best were

Scaling : | Time Amplitude
Sl Tscal =1 Ascal = max; o
So Toeqr = max; 7; —min; 7; Agecqr = Max; o

The two different scalings, S; and S, gave almost the same results. Both
kept the difference in magnitude of the two terms in the object function at an
acceptable level. The S5 scaling has been used throughout this thesis.

4 Differential Evolution

The fitness function is in general a complicated nonlinear function, possibly with
several local minima. The optimal parameter combination must be sought by
methods for nonlinear global optimization. Differential Evolution, from here on



referred to as DE, is a relatively new evolutionary algorithm proposed by Storn
and Price [7].

The method described below is one of many variants of the DE algorithm,
though the difference between them is small. The algorithm is easy to work
with since only a few control variables exist and they remain fixed through the
entire optimization procedure [10]. Another advantage with the DE algorithm is
that the size of the population remains constant during the optimization process.
The initial population, P, consists of randomly chosen parameter vectors u},
where
uf = (uil,...,u;D), i=1,..,N.

After g generations the population can then be written as
Py ={uf,....u%}
The next population P4, is calculated in two steps. First a set of trial vectors

— {911 g+1
Poriri ={vf" ooy L

is computed, where the ¢’th trial vector vf“ is obtained by choosing a random
component number k; € {1,.., D}, and by selecting random numbers p, ¢, 7, not

equal to each other nor equal to i. Then for each element in VIt

Jst

S0t { wf , +F-(uf, —ul,)+n;-(bj—a;) if Ry <CRorj=k

J ui; otherwise

where j = {1, ..., D} and F and CR are constant parameters with values in (0, 1]
though usually they are in the range of [0.5,1]. R; is a uniformly distributed
random number. [a;, b;] is the search interval of parameter vector component j
and n; is an integer such that v?jl stays inside the search region, vff{l € [aj,b;].
A uniform probability distribution has been assumed for all random decisions.
There are many different schemes to acquire the ¢’th trial vector, this choice is
based on studies of the DE algorithm done by Rune Westin [3].

The new population is obtained by comparing the individuals from the current
and the trial populations according to

2
‘ uf  otherwise 2)

WO — {’Uf+l if @(vf“) < ®(uf)
New populations are generated until DE is terminated by fulfilling a stopping
criteria chosen a priori, eg. the decrease of the fitness value is less than a given
tolerance or the number of new individuals generated in the latest 10 generations
is zero.

The control variables, F' and C'R, influence the convergence rate and the ro-
bustness of the algorithm. The optimal choice of F and C'R depends on both
the object function and the population size N [6]. In practice F' and C'R are
tuned in by a few trial optimizations [11].

An advantage with DE is that the decision of accepting or rejecting a trial vector
is based on comparing it with only one individual instead of all individuals in



the current population [6]. This makes DE more robust and tends to prevent it
from getting caught in local minima.

5 Tools for evaluation of results

5.1 Local behaviour of the object function ®(u)

In a neighbourhood of its global minimum the fitness function ®(u) can be
written as

1
P = 5hTHh + ®ppin + O(R?)

where H is the symmetric Hessian matrix [4]. If \; and v;, ¢ = 1,..., D denote
the eigenvalues and the orthogonal and normalized eigenvectors of H, then

H=VTAV

where V is the orthogonal matrix

V= [’Ul7 «eerys UD

and A is the diagonal matrix

A= diag()\l, ceeey )\D)

The fitness function can now be written as
1
J

where k; = VjTh [1]. Thus the eigenvalues and eigenvectors decompose the
parameter space into parameter combinations where large eigenvalues indicate
parameter combinations with large influence on the object function in a neigh-
bourhood of the minimum point.

To study the sensitivity of the object function ®, as function of the components
of the parameter vector u, the second partial derivatives of the fitness function
were calculated by second-order central differences at the global minimum. The
eigenvalues and the eigenvectors of the Hessian matrix were then computed by
standard methods.

5.2 Neighbourhood Algorithm Bayes

After a completed parameter search the resulting set of models and their fitness
values, can be used to gain information about the unknown probability distribu-
tion of the parameters. The Neighbourhood Algorithm Bayes, NAB, has been
used to estimate the posterior probability density, PPD, of the samples gener-
ated by the DE algorithm. The resulting PPD depends upon the vectors chosen



by the DE algorithm, the fitness values and the statistics of all noise present. A
short summary of the algorithm is given below. For a more thorough description
see [3] and Sambridge [12] and [8].

In NAB all vectors, generated by the search method, are used since models that
fit the data poorly are informative as well. An attractive feature of NAB is
that no further solving of the forward problem has to be done. The algorithm
needs only to know an a priori probability density for the ensemble of parameter
vectors and an estimate of the distribution of the noise present in the data. The
a priori probability density p(u), at the point u in model space, is chosen to be
uniform within the search domain if no prior preferences of different locations in
the search space exists. NAB then estimates the posterior probability density
function, PPD, by resampling the parameter space. The PPD is thereafter
displayed in the form of marginal distributions of the components of u.

NAB requires the PPD of the noise to be known and in this study the noise has
been assumed to be Gaussian with standard deviation o. At any point u in the
model space the PPD is then proportional to

(I)(u)

P(u) ~ p(u) - ¢35

where ®(u) is the fitness value obtained from eq (1) [3].

Voronoi cells

The PPD estimate computed by NAB is based on Voronoi cells. A Voronoi cell
consists of all points u in the parameter space that are closer to sample point
u; than to any other sample point ug, k& # j. A neighbourhood approximation
of the PPD is derived by setting the known PPD of each model to be constant
inside each Voronoi cell. In the resampled ensemble the density of points will be
proportional to the PPD. In effect, each Voronoi cell acts as a 'neighbourhood
of influence’ about the corresponding point in the ensemble. Voronoi cells are
unique, space filling and can adapt their size and shape to the distribution of the
ensemble. This feature makes them very useful when working in any number of
dimensions with any distribution of irregular points.

Gibbs sampling

The Gibbs sampler [2] [9] is used to generate the resampled ensemble. The
method generates a random walk in model space, whose distribution asymptot-
ically converges. In NAB Gibbs sampling is used to generate samples distributed
according to the neighbourhood approximation of the PPD. The random walk
is performed in a series of steps parallel to each parameter axis in turn. The
walk can move into any intersecting Voronoi cell with probability determined
by the product of the width of the intersection and the PPD value.

Convergence of the Gibbs sampler is required and can be monitored using stan-
dard statistical techniques. The reason for NABs efficiency is that no further
solving of the forward problem has to be performed and that only the intersec-
tion with Voronoi cells along axis-parallel lines has to be calculated during the
Gibbs sampling.



6 Results

6.1 Structuring the parameter space

The task has been to study the behaviour of the fitness function when being
optimized and how different parameter combinations influence the object func-
tion. To handle the optimization problem the seven parameters were divided
into three groups.

A Range and Depth
B Roll, Yaw and Pitch
C Density and Sound speed

These groups were tested separately with DE as well as combinations of them,
e.g. AB, BC and so forth. The behaviour of the object function ® is markedly
different depending on the parameter group used. Some of the more notable
features are shown below.

Range and Depth

Range and Depth give rise to fitness values in the range of [0,87.4] and the
minimum at Range 24.0 m, Depth 74.85 m is well defined. The minimum in the
direction of the Depth parameter is stretched out a little, figure 4 and 5.

RANGE

MIN VALUE ON GRID 0.000840 AT X 23.982301 Y 74.850000
MAX VALUE ON GRID 87.424511 AT X 31.000000 Y 74.735000

Figure 4: The object function ® as function of Range and Depth.

Roll, Yaw and Pitch

The two angles, Roll and Pitch, have a large influence on the fitness function and
show a well defined minimum. Only large yaw angles will influence the object
function due to the box shaped scatterer and the source-receiver geometry see
figure 1. Small changes in the yaw angle will have little effect on the fitness
function, fig 6.



DEPTH

76.0

75.5

75.0

74.5

RANGE

MIN VALUE ON GRID -52.403025 AT X 23.99 Y 74.85
MAX VALUE ON GRID 0.000000 AT X 25.00 Y 75.77

Figure 5: The object function as function of Range and Depth. The figure is
plotted with a decibel scale and a smaller boundary region has been used to show
the area around the minimum (24.0, 74.85).
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Figure 6: The object function as function of Roll and Yaw. The figure is plotted
with a decibel scale.



Density and Sound speed

As seen in figure 7 changes of the Density and the Sound speed give rise to
very small variations in the object function. The fitness values shows a shallow
valley oriented along the SW-NE diagonal of the region, not along contours
of the constant acoustic impedance pc. A separate investigation not included
in this report showed that for Density and Sound speed closer to the values
of the water the contours of the object function will have the expected form
pc = constant.
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Figure 7: The object function as function of Density and Sound speed.
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Figure 8: The object function as function of Density and Sound speed. A decibel
scale has been used to better be able to show the shape of the figure.
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6.2 Differential Evolution

Several trial optimizations were carried out to select optimal values for F', CR
and N for the optimization problem studied here. The values obtained were
F =0.5and CR =0.9 with N = 20.

To terminate the DE algorithm two stopping criteria have been used
e the current population has not changed in 10 iterations.
e the fitness value is smaller than a given tolerance, tol.

Range and Depth

In the first group, A, the parameters were easily determined at a tolerance of
tol = 1074, table 2. It might be noted that the Depth was slightly less correct
than the Range parameter. This behaviour is to be expected in view of the
elongated minimum in the Depth parameter direction seen in figure 5.

Original | case A
Range 24.0 24.998
Depth 74.85 74.856

Table 2: Optimized values for the parameters Range and Depth with the object
function ®(Range, Depth) with tol = 1074,

Roll, Yaw and Pitch
Roll, Yaw and Pitch, case B, were also easy to determine with DE. Overall Roll

and Pitch are better determined than the Yaw angle, table 3. This is because
of the behaviour mentioned in section 6.1 and seen in figure 6.

Original case B case B
tol - 101 10-°
Roll 0 6.54 10-2 | 3.50 1073
Yaw 19 18.98 19.01
Pitch 0 -6.76 1072 | -3.47 1073

Table 3: Optimized values for the parameters Roll, Yaw and Pitch with the
fitness function ®(Roll,Y aw, Pitch). Two separate runs are shown in the table
where the tolerance has been varied.

Range, Depth, Roll, Yaw and Pitch

When optimizing groups A and B jointly (i.e. the five parameters Range, Depth,
Roll, Yaw and Pitch) convergence was slow and the minimum was difficult to
reach. Increasing the tolerance does not improve the results since DE fulfils the
first stopping criterion and therefore terminates without creating new individ-
uals.
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Density and Sound speed

Neither the Density nor the Sound speed influences the object function by much
in the chosen domain giving rise to function values in the range of [0,1073],
figure 7. They are therefore difficult to determine by DE minimization. Both
parameters are well determined only if tol < 10~ however such small tolerances
are not very meaningful since they would be far below the noise level in actual
experimental data.

Comparing case AC with case BC

At a tolerance of 10~ all four parameters in case AC can be determined. The
smaller the tolerance the more difficult it is to reach convergence. When reaching
a tolerance of 10~% DE will still converge for the BC-case but it is not possible
to determine the Density and the Sound speed as well as in the AC-case, see
table 4.

Original | case AC | case BC
Density 1630 1630.32 | 1634.69
Sound speed 2680 2680.35 | 2695.31
Tol - 1077 1079

Table 4: Parameter values for the Density and the Sound speed when optimizing
case AC: with parameter Range, Depth, Density and Sound speed and case BC:
with Roll, Yaw, Pitch, Density and Sound speed.

All seven parameters

Larger tolerances had to be used to reach convergence when trying to optimize
all parameters at once. The Density and the Sound speed did not converge to
the original values and smaller search regions for the two parameters were tried
however this did not improve the results.

Original DE results
Optimization 1: | 43 iterations
Range 24.0 24.0
Depth 74.85 74.85
Optimization 2: | 81 iterations
Roll 0 -1.21074
Yaw 19.0 18.999
Pitch 0 8.96 1075
Optimization 3: | 19 iterations
Density 1630.0 1629.7
Sound speed 2680.0 2679.3

Table 5: Optimization by three parameter searches in sequence.

If the optimization is carried out over the groups A, B and C in sequence,
all searches converged to the true values, table 5. The results from the first
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optimization is used in the second and then in the third, the Range, Depth,
Roll, Yaw and the Pitch are kept constant with the obtained values from the
previous runs. The tolerance, tol = 10~?, was used in all three optimizations.

6.3 Local behaviour of the object function ®(u)
Range and Depth

The diagonal, the eigenvalues and the eigenvectors of the Hessian matrix at
the global minimum are shown in table 6. It shows that Range have the most
significant influence on the object function, and is therefore expected to converge
more rapidly to the true value than Depth. The Depth parameter influences
the fitness function less than Range and will converge slower and be slightly less
accurate. This can also be seen in figure 4. However both parameters will be
well determined and ®(Range, Depth) has a distinct minimum.

i} DiagonalofH|  [Eigenvalues Eigenvectors
7@135;62 5.27 5.51 Range| 1.00 —0.224
2
s 0723 0.481 Depth|0.224  1.00

Table 6: The diagonal of the Hessian matrix, H, with corresponding eigenvalues
and eigenvectors for ®(Range, Depth).

Roll, Yaw and Pitch

The second derivatives at the global minimum confirm that the fitness function
is much less sensitive to Yaw than to the other two angles. Thus the Roll and
Pitch angles are determined faster and more accurately by inversion than the
Yaw angle table 7.

= Diagonal of H Eigenvalues
T 2.77 6.05
ovger | 1381077 1.2410~2
-5
BT 3.30 9.3810
Eigenvectors

Roll 0.916 1.00 -0.210
Yaw | 9941072 0.394 1.00
Pitch 1.00 -0.912  0.202

Table 7: The diagonal of the Hessian matriz, H, and corresponding eigenvalues
and eigenvectors for the three angles Roll, Yaw and Pitch.
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Range, Depth, Roll, Yaw and Pitch

Also optimizing with the five parameters Range, Depth and the three angles
the Hessian matrix shows that Depth and Yaw are the two variables that will
be most difficult to determine, table 9.

Density and Sound speed

The influence of the variables Density and Sound speed on the object function
is very small and the function it self shows a faint slope at the global minimum,
figure 7. The diagonal, the eigenvalues and the eigenvectors of H are shown in
table 8. One eigenvalue of H is negative which can not hold at local minima
in the absence of computational errors. This indicates that the variation of the
fitness function with Density and Sound speed is smaller than the numerical
errors arising at computations of ®.

One should consider that these results holds for the search region and original
values, shown in table 1. Both Density and Sound speed have a greater impact
on the object function in a search region closer to the values of water, in this
case 1000 respective 1438.

Diagonal of H

- Eigenvalues
GRED

FFapge? 4.83 1.87

SToath 0.533 0.488

% 214108 1.5210*108

BSouf?de?peed2 14710_9 —2:8510

Eigenvectors

Range 1.00 -0.102 148106 1.1210 ¢
Depth 0.102 1.00 -1.45107% -3.49 1075
Density -9.74107% 4.17107° 0.357 1.00
Sound speed | 3.04 107® -1.30 10~° 1.00 -0.357

Table 8: The diagonal of the Hessian matrix, H, with corresponding eigenvalues
and eigenvectors for the parameters Range, Depth, Density and Sound speed.

All seven parameters

At a discretization step of h = 0.001 the derivative resembles the one obtained
with the AB case since the Hessian matrix elements are zero in the rows and
columns for Density and Sound speed, table 9. One way to find out how many
of the parameters that can be expected to be determined by inversion is to plot
the eigenvalues of the Hessian matrix and draw a line at the level of the noise.
This is shown in figure 9 where three of the eigenvalues are seen to be well
above the noise level. Thus three parameters are well determined by the data.
The fourth eigenvalue is close to the noise level, dotted line, and the rest of the
parameters will drown in noise.

14



Diagonal of H
75 5 o7 Eigenvalues
(?)Raznge2 . 11.5
_0%® 7.93
6D62pq§h2 : 0.505
a _
DRI 2.77 . 3.1410_§
W 1.3810~ 2.5230
dPifch? 3.30
0% 0.00 0
Do ity® ' —3.5810~°
dSoundspeed? 0.00
Eigenvectors
Range 1.00 -0.048 0.766 0.544  0.00 0.00 0.105
Depth 0.209 1.00 -0.0866 -0.0255 0.00 0.00 1.16 1073
Roll -0.722 0.120 1.00 -0.356  0.00 0.00 -0.273
Yaw 8231072 -3.20107% 0.179 -0.547 0.00 0.00 1.00
Pitch -0.791 0.0942 0.0345 1.00 0.00 0.00 0.393
Density -0.00 0.00 0.00 0.00 1.00 0.00 0.00
Sound speed -0.00 0.00 0.00 0.00 0.00 1.00 0.00

Table 9: The diagonal of the Hessian matrix and the corresponding eigenvalues
and eigenvectors of the Hessian matriz for all seven parameters.

Eigenvalues
=

Figure 9: FEigenvalues from table 9. The dotted horizontal line

noise level.

6.4 Neighbourhood Algorithm Bayes

represents the

Two choices of ensembles, consisting of parameter vectors with corresponding
fitness values, used as input to NAB were investigated: All trial vectors and
only the accepted trial vectors, respectively, generated by the DE search. One
difference between these ensembles is how densely they fill out the search region,
see figure 11 and 10.
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Figure 10: The set of all trial vectors
in a DE search.

Figure 11: The set of accepted trial
vectors in a DE search, see eq (2).

NAB is dependent on having sample points from the entire domain to pro-
duce accurate results. The algorithm also requires that the minimum (the area
around the lowest misfit) has been well searched during the optimization. There-
fore NAB has been run with a vector containing values from all generated trial
vectors.

NAB assumes that noise is present in the data and this has therefore been added
during the DE optimization. The added noise prevents DE from reaching as low
tolerances as stated in section 6.2.

Range and Depth

Depth turns out not to be as well defined as the rest of the parameters when
being resampled with the parameters Range, Roll, Yaw and Pitch, which can be
seen in figure 12 and 13. This indicates that Depth will be harder to determine
well than the other parameters. Range, on the other hand, is easily determined
partly because of its sharp slope of the function, at the minimum, in the Range
direction.

Roll, Yaw and Pitch

The angles cause no problem during the resampling and the resulting ensemble
shows that Roll, Yaw and Pitch have been well determined during the DE
optimization. The problem of reaching convergence with a low tolerance when
running the DE algorithm, with noise added, seems not to have any influence
of the accuracy of the angle parameters.

Range, Depth, Roll, Yaw and Pitch
The results from the DE optimization with ®(Range, Depth, Roll,Y aw, Pitch)

showed that Yaw was not as well determined as the two other angles. This
observation is confirmed by NAB, fig 12 and 13.
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Figure 12: 1D marginal distribution Figure 13: 1D marginal distribution
by DE. by NAB.

Density and Sound speed

The fitness values obtained from ®(Density, Sound speed) are very small and
the parameters Density and Sound speed are therefore not determinable by
inversion even without noise present. When noise was added the parameters
became very hard to determine properly and the needed tolerance of 10~ could
not be reached.

The results presented by NAB are somewhat confusing when one or both of
the Density and the Sound speed is present during the resampling. All other
parameters involved will be claimed as indeterminable. This could be the case,
but it is more likely that it is the Density and the Sound speed that are causing
this since they are not well determined during the DE optimization.

7 A final test

The results obtained in the previous chapters indicate that perhaps ®(Range,
Roll, Pitch) would give well defined results by a DE optimization. This was
therefore tried and the following values was obtained, tab 10.

Due to the well defined global minimum of the fitness function and the high
tolerance the DE does not have to search for long to find the optimal value
of ®. This results in fewer iterations with DE and thus fewer values in the
resulting ensemble. The marginal distribution from the DE ensemble shows
therefore only small peaks at the original values.

17



moz>o

T

ZE+1

1.8 2.0 2.2 2.4 26 28 30 32 3.4

rroo

Wg#;g#ﬂu#\ .

-4.8 -3.6 -2.4 -1.2 0.0 1.2 2.4 3.6 4.8 6.0

TOo——T

S p—

L L
-4.8 -3.6 -2.4 -1.2 0.0 1.2 2.4 3.6 4.8 6.0

Figure 14: 1D marginal distribution
by DE; from the top Range, Roll

moz>x

1 1 1 L 1 1 1 1
.8 20 22 2.4 26 28 3.0 32 3.4
/E+1

oo

I 1 1 1 1 1 1 1
-4.8 -3.6 2.4 -1.2 0.0 1.2 2.4 3.6 48 6.0

TO——T

L L L L I L L L L
-4.8 -3.6 -2.4 -1.2 0.0 1.2 2.4 3.6 4.8 6.0

Figure 15: 1D marginal distribution
by NAB; from the top Range, Roll

and Pitch. and Pitch.
Original | DE values
Range 24.0 24.0
Roll 0 9.89 103
Pitch 0 -7.06 103
tol - 105

Table 10: Optimized values for the parameters Range, Roll and Pitch with the
fitness function ®(Range, Roll, Pitch).

, Diagonal of H|  [Eigenvalues
% 5.27 11.3_2
22 I GO I
AP itch? 3.30 :

Eigenvectors

Range | 1.00 0.775 0.477

Roll -0.723 1.00 -0.436

Pitch | -0.792 0.066  1.00

Table 11: The diagonal of the Hessian matriz, H, and corresponding eigenvalues
and eigenvectors for the three angles Roll, Yaw and Pitch.

The second derivative, tab 11, shows that all three parameters will be well
determined which is also confirmed by NAB, fig 15.
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8 Discussion

When studying an optimization problem it is important to investigate the func-
tion itself as well as the results given by the optimization. A study of the deriva-
tive at the global minimum shows if one or several parameters will be hard to
determine during the optimization. Such properties of the object function in-
fluence the optimization process and the choice of the optimization algorithm.
For the object function used here DE has been a good choice, easy to work with
and usually rapidly convergent.

Range and Depth

Both Range and Depth are well determined by a two dimensional DE search for
these parameters. The second derivatives at the global minimum show that the
axes of the level curves of ®(Range, Depth) are nearly parallel to the Range and
Depth coordinate axes, with a ratio of ca 3 between the Depth and the Range
oriented diameters. Thus Range is slightly better defined than Depth.

Roll, Yaw and Pitch

Pitch has been most easily determined out of the three angles, which is due to
the box shaped scatterer. A different shape of the scatterer changes which angle
that influences the fitness function the most.

When Roll, Yaw and Pitch are included in the DE optimization it is harder to
get well determined values and also more difficult to reach convergence. Yaw
influences the object function much less than Roll and Pitch and is thus less
well defined. This is due to the box shaped scatterer and the small Yaw angles
used in this study. Larger Yaw angles will have a larger influence on the fitness
function.

The convergence difficulties when searching for the angles seem not to affect the
accuracy of the parameters. NAB shows that all three parameters will be well
determined. However with more noise in the data the accuracy of the yaw angle
is expected to deteriorate faster than that of Roll and Pitch.

Density and Sound speed

The low fitness values obtained from ®(Density, Sound speed) indicates that
Density and Sound speed has little influence on ®. The second derivative at
the global minimum shows that ®(Density, Sound speed) has a faint slope at
the minimum. Therefore the parameters could only be well determined with a
tolerance of 102, which is not very meaningful since it would be far below the
noise level in actual experimental data. To calculate the PPD with NAB noise
had to be added during the DE optimization. Now, due to the low fitness values
and the faint slope at the minimum, the parameters could not be determined
with DE since the fitness values drowned in noise.

As with the Yaw angle, a change in the search region for the Density and the
Sound speed would increase the parameter’s influence on the fitness function.
The search domain should in this case be chosen closer to the values of the
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water, i.e. the studied inversion technique is useful for determining interior
density and sound speed for softer acoustically water-like objects. Also, by
using a smaller distance between the source and the receivers, a larger incidence
angle will be obtained which may enhance acoustic penetration into the box,
and thus increase the influence of the Density and the Sound speed on the object
function.

The final test (Range, Roll and Pitch)

Range, Roll and Pitch are well suited to be optimized jointly. A larger tolerance
can be used during the DE optimization without any effect on the accuracy of
the end result.

In general the fewer parameters included in the optimization the better results
presented by DE. Attempts to determine all seven parameters by a single DE
optimization failed.

9 Conclusions

As a conclusion Range, Roll and Pitch are easily determined with DE. Depth
seems to be harder to determine when the number of parameters grows and
should perhaps be determined with as few other parameters as possible. Also
the Yaw angle can be more well determined if a smaller number of parameters
are involved during the DE optimization. These results are dependent on the
chosen search domain and the specified experimental geometry. A change in
either one of these will give rise to different results than stated above.

The influence of Density and Sound speed on the object function is too small
for inversion for these parameters to work in the chosen search region. Inves-
tigations not included in this report indicate, however, that the Density and
Sound speed of acoustically softer (more water-like) objects are identifiable by
the inversion technique studied here.
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