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Nomenclature 
B non-dimensional parameter in mass distribution 
cT elastic wave velocity in target material, m/s   
DT hole diameter in target material, m 
Dexit maximum exit hole diameter in target material, m 
dP initial projectile diameter, m 
ET elastic modulus of target material, Pa 
h target thickness, m 

*h  transition thickness between penetration and perforation, m 
( )*h  thickness of fragmented plug, m 

j number of layer of fragments 
L projectile length, m 
M accumulated mass of fragments, kg 
m residual projectile mass, kg 
mP initial projectile mass, kg 
mT total mass of fragments from rear target surface, kg 
mi mass of ith fragment from rear target surface, kg 
N total number of fragments 

NS number of fragments from rear target surface layer 

NNS number of fragments from rear target layer next to surface layer 
pr spherical pressure wave amplitude, Pa 
r radial distance, m 
n accumulated number of fragments 

u target fragment velocity, m/s 

YT uniaxial yield strength of target material, Pa 

v instantaneous projectile velocity, m/s 
*v  projectile velocity at penetration depth ( )*hh− , m/s 

vP projectile impact velocity, m/s  
vexit exit velocity for residual projectile, m/s  
vT characteristic target velocity parameter, m/s 
W projectile impact energy, J 
Wp minimum target perforation energy, J 
YT uniaxial yield strength for target material, Pa 
YP uniaxial yield strength for projectile material, Pa 
α fraction of target fragments that is produced by spalling 
βT non-dimensional target penetration resistance parameter 
δi side length of ith (cubic) fragment from rear target surface, m 
δS average thickness of surface layer of fragments, m 
λ non-dimensional parameter in mass distribution 
ρT target density, kg/m3 
ρP projectile density, kg/m3 
ψT non-dimensional hole size parameter 
Ψ maximum angle for direction of motion for a fragment 
ϑ  angle for direction of motion for a fragment 
Θ half apex angle for truncated cone that becomes fragments 
θ half apex angle of conical- or ogive-nosed projectile 
  

Introduction 
   A model for rigid projectile penetration and perforation of hard metallic targets is 
suggested in [1]. When a projectile penetrates a target, then the material immediately in 
front of it is moved so that it finally becomes displaced in the lateral direction. During an 
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initial phase, when the penetration depth is not several times larger than the projectile 
diameter, the target resistance increases to βTYT, where YT is the yield strength for the 
target material [2]. A representative value for the penetration coefficient is βT=5.   
   A model for eroding projectile penetration is suggested in [3, 4] and is closely related 
to the model for rigid projectile penetration in [1] with respect to the behaviour of the 
target material. In the appendix to the present report the penetration model in [3, 4] for 
eroding projectiles is extended to account for perforation in a similar manner as for rigid 
projectiles in [1, 2]. 
   At a certain penetration depth the penetration phase stops and the perforation phase 
starts [1 - 4], whereby the remaining part of an eroding projectile is assumed to be rigid. 
The target material mT in front of the projectile is assumed to be instantaneously crushed 
to fragments, which requires certain energy and a corresponding reduction of the 
projectile velocity from the value that it has been reduced to during the penetration 
phase. Thereupon the fragments in front of the projectile are accelerated, causing further 
reduction of the projectile velocity to the final exit velocity vexit. If friction is negligible 
and the exit velocity vanishes, then the kinetic energy of the fragments also vanishes and 
the kinetic impact energy W is equal to the minimum perforation energy Wp. If friction is 
not negligible, then the fragments will have higher velocity than vexit, which may vanish 
if W is not sufficiently much higher than Wp [2]. The models in [1 - 4] and the Appendix 
yield the energy Wp and the mass mT as functions of the projectile and target parameters. 
   In the present report a model for the distribution of masses, velocities and directions of 
motion for the fragments, which is based on numerical and experimental results in [5] 
and experimental results in [6], and the corresponding exit velocity for the projectile is 
suggested. Such extension of the model for projectile penetration and perforation is 
necessary for the intended application. 
   In connection with this work two reviews of the literature concerning production of 
fragments due to projectile perforation have been conducted, one with respect to models 
and simulation and the other with respect to experiments [7, 8]. It should be emphasised 
that none of these suggests a model for the whole process of projectile penetration, 
perforation and fragment production in a coherent manner. 
 
Model for the total mass of fragments 
   With the models in [1 - 4] the hole diameter DT is equal to the projectile diameter dP if 
the projectile is rigid and is greater if it is eroding. In the latter case DT depends on the 
instantaneous projectile velocity v and a characteristic velocity vT for the target material 
so that  
 

 
T

PT v
vdD =         (1) 

 
with  
 

 
T

TT
TT

Yv
ρ

β
ψ= ,       (2) 

 
where ρT is the target density and ψT is an experimentally determined coefficient that 
differs marginally from one target material to another. Undisturbed eroding projectile 
penetration does not only require that v>vT, but that v is higher than a velocity vlim>vT so 
that there is room for the eroded projectile material in the hole [4]. For v<vlim there is 
disturbed eroding projectile penetration. The mathematical relations for v>vlim and 
v<vlim are continuously connected for v=vlim.  
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   When the front end of a projectile reaches the transition distance *h  from the rear 
surface of a hard metallic target, then the remaining material in front of the projectile is 
assumed to be instantaneously fragmented, which requires the additional energy *

pW  as 

in the Appendix. The distance *h  is somewhat larger than DT. When *hh<   perforation 
occurs without a preceeding penetration phase. The mass of fragments is assumed to be 
given by the cylindrical plug in front of the projectile when perforation starts 
 

 ( )
TTT hDm ρπ *2

4
≈ ,       (3) 

 
where ( ) hh =*  for *hh<  and ( ) ** hh =  for *hh> . 
   In reality, for *hh>  fragments originate from a plug that is shaped roughly as a 
truncated cone with a larger diameter Dexit at the surface and with a smaller height than 

*h . It is suggested that the conical plug is defined by having the same mass, the same 
smaller (inner) end diameter as the cylindrical plug and, consequently, also a smaller 
height (length). Somewhat arbitrarily, the height of the conical plug is assumed to equal 
the diameter of the smaller (inner) end, from which it follows that  
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For a representative value of the transition thickness *h  as defined in [1, 2], namely 

TDh 4.1* ≈ , Eq. (3) yields Dexit≈1.6DT. The half apex angle Θ for the truncated cone plug 
is given by  
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For TDh 4.1* ≈  Eq. (5) yields Θ≈17o. Accordingly it is assumed that the angle Θ is 
independent of the projectile nose shape.  
 
Model for mass distribution of fragments 
   A model concerning production of target fragments in connection with projectile 
perforation is described in [5], where [5, Figure 5] shows the front end of an eroding 
projectile, which is close to the rear target surface. A mass mT of fragments is produced 
in front of the projectile. A similar picture but for a rigid projectile is shown in Figure 1. 
   An important feature of the model represented by Figure 1 is that the largest fragments 
are produced from the rear surface of the target and that the fragment size decreases 
inwards. It should be emphasised that the model in [5] is tacitly understood to be used 
for thick targets. The difference between thick and thin targets is defined in [1, 2] for 
rigid projectiles and in the Appendix for eroding projectiles. The target is thick for 

*hh>  and thin for *hh< . 
   A picture of the residual projectile after perforation, surrounded by accelerated small 
target fragments and projectile fragments at times 100, 125, 150, 175, 200 and 225 µs is 
shown in [5, Figure 14]. A reproduction of the two of last situations is shown in Figure 
2. It is stated in [5] that a significant fraction of the target mass loss corresponds to the 
ringlike segment detached from the rear surface of the target. The formation of the 
ringlike segment is out of the scope of the model at present. For the intended application 
of the model it is believed that all fragments must be accounted for. Consequently the 
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general features in Figures 1 and 2 are suggested to be extended to cover all fragments 
but in simpler mathematical form than those in [5]. 
   A model for the distribution of target fragment masses is suggested in [6]. The 
accumulated mass ( )nM  of the n  largest fragments is 
 

( ) ( ){ }λnBmnM T −−= exp1       (6)  
 
where B and λ are non-dimensional, empirical parameters. Experimental evaluation of 
two cases corresponding to projectile perforation of target plates yield B=0.1103, 
λ=0.6357 and B=0.1010, λ=0.5087. Without experimental results, from which B and λ 
can be determined, it is suggested here that 
 
 10.0=B         (7) 
 
and 
 
 50.0=λ         (8) 
 
should be used. 
   A computer program for assessment of effects and vulnerability for complex targets 
can be based on the Monte Carlo method for calculation of probabilities for events. 
Instead of using the fixed values in Eqs. (7) and (8) these parameters may be changed, 
from one Monte Carlo cycle to another, via random numbers and appropriately chosen 
distributions with average values given by Eqs. (7) and (8). In this manner realistic 
scatter is introduced in the computer program. Similar use of the Monte Carlo method is 
also suggested for several other situations described below.     
   When B<<1, as in Eq. (7), the mass of the largest fragment is  
 
 TmBm ≈1 .        (9) 
 
Similarly the mass of fragment number n is  
 
  ( )λλλ nBnBmm Tn −≈ − exp1 .     (10) 
 
 
 Model for fragments trajectories 
   All fragments are approximated by cubes. Thus the side of the largest fragment is 
 

 3 1
1

T

m
ρ

δ ≈ .        (11) 

 
If all fragments from the surface are temporarily assumed to have the same size, then the 
number of surface fragments is 
 

 2
1

2

min, 4δ
π exit

S
D

N ≈ .       (12) 

 
The mass of the fragment with number n=NS,min is given by 
 
 ( )λλλ min,

1
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min, SSTN NBNBmm
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The corresponding side of this fragment is  
 

 3 min,

min,
T

N
N

S

S

m

ρ
δ ≈ .       (14) 

  
If instead all fragments from the surface are temporarily assumed to have the same size 
as that with number n=NS,min, then the number of surface fragments is 
 

 2

2

max,
min,

4
SN

exit
S

D
N

δ
π

≈ .       (15) 

 
The model for the number of fragments from the surface is suggested to be the integer 
closest to the geometric average of the numbers NS,min and NS,max so that 
 
 min,max, SSS NNN ≈ .       (16) 
 
   The NS fragments are distributed within the cone with the apex angle 2Θ in Figure 1. 
This cone defines a spherical sector, which is part of a sphere with unit radius around the 
apex. The spherical sector area is 4πsin2(Θ/2). This area is divided into NS parts, and the 
surface fragment trajectories are assumed to pass through mid-points of these parts. The 
parts are approximately trapezoidal except for the innermost ones, which are 
approximately triangular, as shown in Figure 2. The mid-points are simply defined by 
the cross-points for the diagonals from the corners of the trapetzoids and by the cross-
points for the bisectors of the triangles. 
   Along the periphery of the spherical sector with the area 4πsin2(Θ/2) there are NS,1 
trapezoids, each with the area 4πsin2(Θ/2)/NS. Thus the average base length of these 
trapetzoids is 2πsin(Θ)/NS,1. Since approximately the trapetziods are sides of cubes the 
height is (assumed to be) equal to the base length. In practice the angle Θ is rather small 
so that sin(Θ)≈Θ. Thus the height of the periphery fragments is πDexit/NS,1, as shown in 
Figure 1, and the area of a peripheral trapetzoid is {2πsin(Θ)/NS,1}2{1-tan(π/NS,1}. The 
two expressions for the area determine the number NS,1 as the numerical solution to  
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   The solution of Eq. (17) is generally not an integer, which means that the closest 
integer value should be chosen. The spherical sector area inside these NS,1 trapetzoids 
defines a smaller apex angle 2Θ1, which is given by  
 

 












−





 Θ=Θ

S

S

N
N 1,

1 1
2

sinarcsin2 .     (18) 

 
Accordingly the number NS,2 of fragment trajectories that are closest to the periphery of 
this spherical sector with the circumference 2πsin(Θ1) is obtained as the closest integer 
to the solution to 
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Simliarly  
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and so on until NS,1+NS,2+…≈ NS  is obtained. In this manner the mid-points of all the 
surface fragment trajectories are defined, except for arbitrary rotations of the rings of 
fragment directions around the axis of the cone. These rotation angles should be 
determined via random numbers for every Monte Carlo cycle. 
   Random numbers should also be used to determine which of the NS trajectories each of 
the NS surface fragments will follow. Accordingly the largest surface fragment will 
generally go in different directions from one Monte Carlo cycle to another. 
   In Figure 2 the next few layers of fragments contain the same number of fragments as 
the surface layer. This will generally not be the case when the next layer of fragments is 
treated in analogy with the surface layer in Eqs. (11) – (20) since the number NNS of 
fragments in this next layer will normally differ from the number NS in the surface layer. 
In analogy with Eq. (11) the calculation starts with  
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In analogy with Eq. (16) the average thickness of the surface layer is (assumed to be) 
given by 
 
 

min,1 SNS δδδ = .       (22) 

 
Accordingly the outer diameter of the next layer of fragments is assumed to be given by 
Dexit - 2δStan(Θ). In analogy with Eq. (12) the minimum number of fragments from the 
next layer is given by  
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whereupon continued calculations follow the scheme in Eq. (13) – (20). Subsequent 
layers of fragments are treated in the same manner. 
   In Figure 2 the trajectories for all fragments cross the axis at about the same point 
along the axis except the outermost ones, which cross the axis somewhat closer to the 
rear target surface. However, for simplicity it is assumed that these also cross the axis at 
the same point as the others, which is at the distance z from the rear target surface. This 
point and the mid-points of the trapetzoids and triangles mentioned above define the 
trajectories for all fragments. Accordingly the outermost fragments follow trajectories 
along a conical surface with the apex angle Ψ as shown in Figure 1.   
   It is likely that Ψ should depend on the shape of the nose of the projectile so that a 
sharp-nosed projectile corresponds to larger Ψ than a blunt-nosed projectile. Maximum 
bluntness corresponds to a flat-nosed projectile, which may be regardad as the limit 
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θ=π/2 of a conical-nosed projectile. However, in practice projectiles are never flat-nosed 
but have ogival nose shape, which is characterised by a half apex angle θ and a radius R 
for the ogival surface. The length of the nose is given by Rsin(θ) and { } 2/2/2 ddR− . 
Equality between these two expressions defines the relations R=R(θ,d) and θ=θ(R,d). 
When the apex angle approaches the limit θ=π/2, then the projectile nose becomes 
hemispherical. The nose shape of an eroding projectiles is not known, but in [5, Figure 
13] the hole bottom in front of an initially flat-nosed projectile is approximately 
hemispherical already when the penetration depth is about DT/2. Until there are 
experimental results that call for some other model it is suggested that the trajectory 
apex angle Ψ is determined from the projectile apex angle θ via the simple linear relation 
 

 
3

2
2

θπ
−=Ψ .        (24) 

 
Thus a spherical-( or flat-)nosed projectile corresponds to Ψ≈π/6=30o, whereas θ≈π/4 
corresponds to Ψ≈π/3=60o.  
   Accordingly the apex point in Figure 1 for the fragment trajectories is (assumed to be) 
located at the depth  
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Model for the velocities of fragments 
   When a projectile penetrates a target elastic-plastic waves continuously emerge from 
the front end of the projectile. The corresponding dynamic stress-and-strain field in the 
target cannot be obtained by use of analytical methods. However, the radial pressure 
wave amplitude at radial distance r and time t around a spherical cavity with diameter DT 
in an infinitely large medium of solid material, due to internal pressure that is high 
enough to cause plastic flow in the cavity wall, namely at r=DT/2, should be similar to 
the corresponding pressure wave in a fluid [9] 
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where cT is the (relevant) wave velocity. In the present connection Eq. (26) is assumed to 
yield a sufficiently good approximation of the real elastic pressure wave in front of a 
penetrating projectile with the one-dimensional elastic wave velocity 
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Here ET is the elastic modulus for the target material. The pressure at the radius DT/2 is 
assumed to be given by the penetration resistance in [1, 2, 4]. Accordingly  
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where H(t)=1 for t>0 and H(t)=0 for t<0. When this pressure wave reaches the rear 
target surface then two waves are reflected, namely a tensile (or negative pressure) wave 
and a shear wave. The relative amount of tension and shear varies with the angle of 
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incidence for the pressure wave against the rear target surface (at the point straight ahead 
of the projectile, where the incidence angle is 90o, there is only tension). 
   Reflection of the incident pressure wave in Eq. (28) at the rear target surface may 
cause spalling (multiple fracturing) when the radial distance r to the rear target surface 
becomes so small that the incident pressure at the rear surface equals YT. Strictly this is 
not a sufficient criterion since the local specific compression and kinetic energy must be 
high enough to provide the surface energy corresponding to crack creation [10]. 
However, at the point on the rear target surface that is straight ahead of the projectile this 
occurs (with delay since the wave velocity cT is finite) for the distance *h  between the 
bottom of the hole and the rear target surface. Thereby the radial distance is 

2/*
TDhr +=  in Eq. (28), which yields 

 

 
2

1* −
= T

TDh β .       (29) 

  
   For other points on the rear target surface the incident pressure equals YT for smaller 
distances between the bottom of the hole and the rear target surface. Consequently an 
empirical relation for the distance *h , at which spalling occurs in connection with 
projectile perforation of a target, should be smaller than the “physical” result in Eq. (29). 
For the empirical models suggested in [1, 2] and Eqs. (A3), (A5) and (A10) in the 
Appendix the denominator in Eq. (29) is π instead of 2.  
   For the one-dimensional case the maximum velocity of spalling fragments from the 
rear surface of the target is 
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max, ≈ .       (30) 

 
Fragments ejected at small angles to the projectile trajectory should travel with velocities 
close to uS,max, whereas fragments that are ejected at larger angles should be slower. For 
hard steel targets with cT≈5 km/s, ET≈210 GPa and YT≈1 GPa Eq. (30) yields uS,max≈50 
m/s. This result agrees qualitatively, and probably also quantitatively, with the visual 
impression from experimental results in [11, Chapter 5, Figures 71 - 74], where the 
velocities of the larger fragments are many times smaller than the exit velocity of the 
projectile, which is closely accompanied by a cloud of small fragments. Thus it seems to 
be necessary to consider the total fragment mass mass mT to consist of a larger part mT,S  
with large and slow-moving fragments and a smaller part mT,F with small fast-moving 
fragments. It is then necessary to introduce a model for the ratio 
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between the total mass of the spalling fragments and the total mass of all secondary 
fragments. According to Eqs. (6) and (31) the number i of the largest fast-moving 
fragment is then given by  
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   According to Figure 2 the velocities of fragments decrease with increasing angle ϑ  to 
the direction of motion of the residual projectile, the mass of which is m (for a rigid 
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projectile m is equal to the initial mass mP). The velocity for the fastest and innermost 
fragment is about equal to the projectile exit velocity vexit. The velocity for the fastest 
and outermost fragment, for which Ψ≈ϑ , does not vanish but is about half of the 
velocity for the innermost fragment. Accordingly an assumption for how the velocity of 
the fastest fragments should vary with the direction is given by 
 









Ψ

=
3

cos1,,
ϑπ

exitexitF vu .      (33)  

 
   In Figure 2 fragments from deeper layers have smaller velocities. If the velocity of a 
foremost fragment is uF,exit,1 and the velocity of the following fragment is uF,exit,2, then 
measurements of positions of fragments in Figure 2 show that uF,exit,2/uF,exit,1≈0.8 yields a 
reasonable description for Ψ≤<ϑ0 . Differences between real starting points are 
negligible when the velocity ratio is evaluated with such rough accuracy. The velocity 
ratios for subsequent pairs of layers increase so that uF,exit,3/uF,exit,2≈0.9, 
uF,exit,4/uF,exit,3≈0.93, uF,exit,5/uF,exit,4≈0.95 and so on. These ratios are evaluated from a 
rather arbitrarily chosen, common and simultaneous starting point for all the fragments 
in Figure 2. The second decimal number in these ratios is quite uncertain but it indicates 
the magnitude of the effect in a reasonable way. A simple mathematical model for these 
velocity ratios between subsequent pairs of layers is given by  
 

 
ju

u

jexitF

jexitF 2.01
,,

1,, −≈+ ,       (34) 

 
and is assumed to remain reasonable for greater values of j. 
   For simplicity the model for the angle-and-layer dependence of velocities of small 
fast-moving fragments in Eqs. (33) and (34) is also assumed to hold for large slow-
moving fragments so that 
 









Ψ

=
3

cosmax,1,,
ϑπ

SexitS uu .      (35) 

 
and 
 

 
ju

u

jexitS

jexitS 2.01
,,

1,, −≈+ .       (36) 

 
   The model represented by Eqs. (33) - (36) corresponds to the exit kinetic energy 
 

 ∑
∞

=

+=
ni

niexitexit umvmW 22

2
1

2
1 .      (37) 

 
In order to determine vexit this energy is also assumed to be given by 
 
 pexit WWW −= .       (38) 
 
In reality there should be some additional energy loss due to friction and deformation 
during the acceleration of the small fast-moving fragments. Furthermore, the kinetic 
energy for the large slow-moving fragments should be part of the energy *

pW  in the 
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Appendix. However, the large slow-moving fragments are initially in front of the small 
slow-moving fragments. Thus there will necessarily be a multitude of interactions, 
which correspond to change of velocities and directions of motion for the fragments 
involved, before all faster-moving fragments are in front of all slower-moving 
fragments. Such complications are deliberately neglected in the model above as well as 
in [5]. 
   It should be emphasized that the fragments in [5, Figure 14] and Figure 2 are not only 
from the target but also from the (eroding) projectile.  
  
Comparison with experimental results 
   In the experiments in [5] the projectile diameter and initial length are dP=20 mm and 
L=120 mm, respectively. The projectile material is “tungsten sintered alloy” with density 
ρP=17.13 g/cm3 and Brinell hardness BHN 430, which is assumed to corresponds to the 
yield strength YP≈BHN/300≈1.4 GPa. The impact velocity is vP≈1.70 km/s. The target 
material is steel with density ρP=7.85 g/cm3 and Brinell hardness BHN 330, which is 
assumed to correspond  to the yield strength YT≈BHN/300≈1.1 GPa. 
   Experimental results for two target thicknesses are reported in [5, Table 2]. For h=40 
mm the residual projectile length is about 83 mm and the corresponding velocity is 
vexit≈1.58 km/s. The two tests resulted in the hole diameter DT=49.8 and 42.4 mm, the 
corresponding target mass loss mT=674 and 524 g and the correponding projectile mass 
loss 197.3 and 201.1 g. For h=70 mm the residual projectile length is about 59 mm and 
the corresponding velocity is vexit≈1.50 km/s. The two tests resulted in the hole diameter 
DT=41.0 and 42.4 mm, the corresponding target the mass loss mT=685 and 597 g and the 
correponding projectile mass loss 321.1 and 329.1 g. 
   According to the model in [4] a flat-nosed projectile, which impacts a semi-infinite 
target, should be eroded already from the impact time if YP<3YT. For the materials in [5] 
this criterion is well satisfied, in agreement with the picture in [5, Figure 13]. 
Furthermore, the relative reduction of projectile length should be much larger than the 
relative reduction of projectile velocity, which also agrees with the findings in [5]. The 
projectile mass loss for h=70 mm is about 1.6 times larger than for h=40 mm. Thus the 
projectile mass loss seems to be approximately proportional to the target thickness, 
which indicates that projectile erosion continues during most of the penetration-and-
perforation, as suggested at the end of the Appendix.   
   Half of the hole diameter DT above is called crater radius in [5, Table 2]. More 
specifically, it is the measured minimal crater radius and it is assumed that the material 
from the wider parts of the crater near the front and rear sides of the target belongs to 
the fractured zone, and has been ejected. The lateral dimensions of the targets are not 
specified in [5], but the numerical calculations are for targets with the initial external 
diameter about 93 mm or roughly only twice the hole diameter DT, as measured with a 
ruler in [5, Figure 13]. After penetration the final external diameter is measured to be 
100±1 mm. According to [2, 4] the penetration resistance for such small targets is 
significantly smaller than for infinitely large targets. If finite targets shall be reasonably 
representative for infinitlely large targets, then the initial external diameter must be at 
least, say, 15 times greater than the final hole diamater DT. When this requirement is not 
satisfied, then the penetration resistance coefficient βT or the characteristic velocity 
parameter ψT or both are significantly smaller than for an infinitely large target. 
   The projectile velocity reduction in the experiments in [5] is small enough to be 
neglected when the velocity parameter ψT in Eq. (2) is evaluated. A represenative value 
for the measured hole diameters above is DT=44 mm. With this value Eqs. (1) and (2), 
v=1.7 km/s and βT=5 yield vT≈0.77 km/s and ψT≈0.91. This value is significantly smaller 
than the corresponding values for tungsten alloy projectiles and steel targets in [4], 
namely ψT≈1.1. 
   There is no specification of the wider parts of the crater near the front and rear sides 
of the target [5]. If the crater is assumed to be cylindrical with the diameter DT=44 mm, 
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then the volume of the hole in the target with thickness h=70 mm is about 106 cm3 and 
corresponds to the mass about 830 g, which is significantly greater than the measured 
mass losses mT. However, the external volume increase of the target that is measured in 
[5, Figure 13] is 7.0π(10.02-9.32)/4≈74 cm3. Accordingly, the target volume and mass 
loss must be at least 106-74≈32 cm3 and about 250 g. The average mass loss for the four 
tests above is 620 g or about 2.5 times larger. Thus the wider parts of the crater near the 
front and rear sides of the target are significantly larger than DT, as they are stated to be. 
   Since the velocity vexit≈1.6 km/s is so close to the impact velocity vP≈1.7 km/s it is 
reasonable to assume that penetration-and-perforation correspond to an initial hole with 
the constant diameter 44 mm. Thus Eqs. (A5) and (A8), 44* =TD  mm and βT=5 yield 

56* ≈h  mm and mT≈668 g. The latter is only slightly larger than the experimental result 
for the average target mass loss above. It is natural to expect the rear side crater in the 
target to be significantly larger than the front side crater, especially for a flat-nosed 
projectile as in [5, Figure 13]. 
   In the discussion in connection with Eqs. (3) - (5) it is suggested that the rear side 
crater has the shape of a truncated cone with the height equal to the hole diameter. The 
actual hole diameter DT≈44 mm is almost equal to the smaller target thickness in [5]. If 
the rear side crater is significantly larger than the front side crater, then the target mass 
loss mT should be about the same for the two actual thicknesses, which is in agreement 
with the experimental results. For the thinner target fragment ejection starts almost 
immediately after impact, whereas the projectile has to penetrate about h-DT≈26 mm of 
the thicker target before fragment ejection starts.  
   As already mentiond just before Eq. (6) it is stated in [5] that a significant fraction of 
the target mass loss corresponds to the ringlike segment detached from the rear surface 
of the target. The corresponding fragments are not accounted for in [5]. Unfortunately, 
this significant fraction of the target mass loss is the part mT,S that is represented by the 
model in Eq. (5). If it is assumed that mT,S≈600 g and mT,F≈60 g, with which Eq. (29) 
yields α≈0.91, then Eqs. (5) - (7) and (10) yield m1≈60 g, δ1≈19 mm and m2≈24 g. If the 
velocity of the largest fragment is uS,max≈50 m/s, then the kinetic energy is about 75 J.  
   Experimental results for the distribution of small target fragment masses for h=40 and 
70 mm are given in [5, Figures 10 and 11]. The results are rather similar so only the case 
h=70 mm is examined below. The results in [5, Figure 11] are shown in Table 1. In both 
tests the reported mass of the largest fragment is m1=1.9+ g, where the + means that the 
real mass is somewhere in the interval from 1.9 to 2.0 g. The total mass mT,F is not 
specified. From Exp. 607 there are altogether 54 reported fragments with the 
accumulated mass somewhere between M(54)=30.7 and 84.7 g. The largest contribution 
to the minimum value comes from the group with 7 fragments with mass 0.8+ g, and the 
second largest contribution comes from the the group with 3 fragments with mass 1.0+ 
g. With these numbers in mind it seems quite safe to assume that the unknown 
contribution from the group with fragments with mass m20=0.0+ g should be less than a 
few grams. This contribution is negligible in comparison with the uncertainty in the 
value M(54) above. Accordingly the total mass of small fast-moving fragments is 
assumed to be just slightly larger than the average of the minimum and maximum values 
for M(54), namely mT,F=60 g, in agreement with the assumption above. 
   For Exp. 530 with mT≈685 g the accumulated mass for 81 target fragments is 
somewhere between  M(81)=50.1 and 131.1 g. The largest contribution to the minimum 
value comes from the group with 5 fragments with mass 0.8+ g, and the second largest 
contribution comes from the the group with 5 fragments with mass 0.7+ g. The average 
of the minimum and maximum values for M(81), namely mT,F≈90 g, is somewhat larger 
in comparison with the total fragment mass mT than in the previously considered 
experiment, but the significant fraction of target mass loss, namely α≈0.87, is similar. 
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   The velocity of the fastest fragments in Figure 2 is vexit≈1.5 km/s. If this is also the 
velocity of the largest fragment, then the corresponding kinetic energy is about 2.1 kJ or 
almost 30 times higher than for the most energetic spalling fragments above.  
   If the projectile mass and volume loss for the target thickness h=70 mm in [5, Table 
2], namely about 325 g and 19 cm3, is evenly distributed along the surface of a hole with 
diameter DT=44 mm, then the thickness of the layer of eroded projectile material is about 
2.0 mm. Such a layer should be clearly observable in [5, Figure 13]. Instead it seems as 
if the eroded projectile material has some remaining tensile strength or/and forward 
velocity so that it partly follows the residual projectile along the hole. Accordingly a 
significant part of the slower fragments in Figure 2 should come from the projectile, as 
also stated in [5, Figure 14]. If the total mass of fragments with mass 0+ g is assumed to 
be about equal to the groups with a few times larger mass, then the total mass of small 
projectile fragment should be about 110 g at the most.  Accordingly the mass of 
projectile fragments that are deposited in the target could be up to about 220 g. This 
means that the measured target mass loss should be increased with this amount, so that 
the significant fraction of target mass loss should be even larger than the values above, 
namnely α≈0.93 and 0.90. 
 
Exp.    530    607   
fragment   number of fragments  number of fragments  
mass, g  target  projectile target  projectile  
1.9+   1  0  1  0 
1.8+   2  0  1  0 
1.7+   0  0  0  0 
1.6+   0  0  1  0 
1.5+   1  0  1  0 
1.4+   0  0  2  0 
1.3+   0  0  2  0 
1.2+   2  0  2  0 
1.1+   3  5  0  5 
1.0+   3  5  3  5 
0.9+   3  10  0  10 
0.8+   5  3  7  3 
0.7+   5  5  2  10 
0.6+   3  13  3  13 
0.5+   3  13  2  17 
0.4+   5  30  4  27 
0.3+   11  37  2  43 
0.2+   8  63  7  57 
0.1+   26  ?  14  110 
0.0+   ?  ?  ?  ? 
minimum sum, g 50.1  75.4  30.7  91.3 
estimated sum, g 90  85  60  106 
total mass loss, g 685  321.1  597  329.1 
 
Table 1. Experimental results from [5, Figure 11]. Error in number of target fragments should be 
zero. Error in number of projectile fragments should be ±2 at the most.   
 
   Finally the validity of Eq. (6) for the total mass mT of target fragments should be 
investigated. Since neither the mass m1 of the largest fragment nor the number i of the 
largest fragment in Table 1 is known there is not sufficient information to determine the 
parameters B and λ. Accordingly one of these or i must be guessed. The average or 
representative values  
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mT=(685+597)/2=641 g  
mi=1.9 g  
M(i)-mi=641-(60+90)/2=566 g 
m1=? (not known) 
mi+11=1.0 g 
mi+29=0.5 g 
 

from Table 1 will be used. The three first relations yield 
 
 ( ){ }λiB−−≈ exp1641568  
 ( )λλλ iBiB −≈ − exp6419.1 1  
 
from which 
 

Biλ≈2.17  
i≈84λ 

 
are obtained. Accordingly Eqs. (7), (6) and (10) yield 
 
 B=0.1 

i≈63 
λ≈0.75 

 m1≈61 g 
 mi+11≈1.3 g 
 mi+29≈0.8 g 
 
These calculated results for mi+11 and mi+29 are of the right magnitude but significantly 
larger than the values from Table 1. The calculated mass m1 is about 10% of the total 
mass mT, which might be a realistic result but intuitively seems to be too large.  
   Alternatively Eqs. (8), (6) and (10) yield 
 

λ=0.5 
i≈42 
B≈0.33 

 m1≈180 g 
 mi+11≈1.4 g 
 mi+29≈0.8 g 
 
Here the calculated mass m1 is even larger so this case seems less realistic than the 
former.  
   With an even smaller value B=0.05 one obtains 
 
 B=0.05 

i≈74 
λ≈0.88 

 m1≈31 g 
 mi+11≈1.4 g 
 mi+29≈0.7 g 
 
For B<<1 the case λ>1 yields m2>m1, which is not permitted for this model [6]. The 
limiting case corresponds to  
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λ=1 
i≈84 
B≈0.0258 
m1≈17 g  
mi+11=641{exp(-94B)-exp(-95B)}≈1.4 g  
mi+29=641{exp(-112B)-exp(-113B)}≈0.9 g 

 
Accordingly a rather different model than that in Eq. (6) is required if significantly better 
agreement with the distribution in Table 1 shall be obtained. However, with regard to the 
differences between the two cases in Table 1, to the mixture of projectile and target 
fragments in Figure 2 and to other uncertainties the model is believed to be acceptable, 
at least at the present stage. 
 
Discussion and conclusions 
   Projectile perforation of a thin target will perhaps produce a different distribution of 
fragment masses than that represented by Eqs. (6) – (8), for instance so that B is 
proportional to */ hh  whereas the value of λ is the same as for thick targets. However, 
new experimental results are required to estblish relations for B and λ for *hh< . 
   The intended application of the model for projectile penetration, perforation and 
production of fragments, which is suggested in four previous papers and above, is in 
computer programs for assessment of effects and vulnerability of complex targets. 
Description of such targets and relevant warheads, in particular their interaction, requires 
that the phenomena must be modelled in rather simple ways. Continuum mechanics 
calculation for penetration and perforation is probably only possible in special cases. 
The suggested model, which covers rigid as well as eroding projectiles, is sufficiently 
compact for the intended application. If a fragment and/or its velocity is small enough, 
according to some appropriate rule, then this fragment should be neglected. Thus the 
infinite number of fragments corresponding to Eq. (5) is reduced to a finite number of 
fragments to be followed through a complex target. Besides the parameters B and λ, with 
the suggested values in Eqs. (6) and (7), a value for the mass fraction α in Eqs. (29) and 
(30) must be specified. At the present stage α=0.10 appears to be a reasonable choise, at 
least on the average. 
   High velocity fragments can certainly damage vital and vulnerable components in 
complex targets. Consequently they must be described as realistically as possible. This 
requires a realistic description of and close connection to the preceeding process, namely 
penetration and perforation. It is easily imagined that there is a region in front of the 
projectile that is crushed into much smaller fragments than those produced by spalling. 
Furthermore, the volume of such a region should be quite small compared to the volume 
of spalling fragments. Fragments in this small region should be directly accelerated by 
the residual projectile. Consequently they should have velocities that are comparable to 
the exit velocity of the projectile. 
   Spalling produces relatively large fragments for which the velocities are restricted to 
the particle velocities in elastic waves with stress amplitudes about equal to the yield 
strength of the material. For steel the upper velocity limit for spalling fragments is about 
50 m/s. However, it is probable that some spalling fragments are accelerated to higher 
velocities when they are overtaken by the projectile and fragments from the faster-
moving group. 
   With this general picture of target fragmentation during projectile perforation it is 
necessary to account for two different groups of target fragments. Due to the natural 
experimental scatter in fragment production a simpler procedure than that in Eqs. (16) - 
(19) and (22) should be sufficient for determination of directions of motion for the 
fragments. However, it is still necessary to let the fragments be ejected layer after layer, 
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as represented by Eqs. (10) - (15) and (20) - (21), in order to account for velocity 
reduction with increasing layer number in Eqs. (32) and (34).    
   The kinetic energy of a large and slowly moving (spalling) fragment is often many 
times smaller than that of a small but fast fragment. Nevertheless, the former can be 
important in the intended applications of the model. Quantification of vulnerability for 
vital components in complex targets is often based on incident energy rather than the 
combination of mass and velocity. Under such circumstances both fragment groups must 
be accounted for. 
   Presently the model is restricted to the simplest case of impact, namely along the 
normal direction to the impacted surface and with negligible projectile yaw.  
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Figure 1. Schematic picture showing sudden production of fragments in front of a rigid projectile 
when the front end reaches the transition thickness *h  from the rear surface of the target. 
Previously the target material around the projectile and inside the broken line was subjected to 
elastic-plastic deformation, whereas the target material outside the broken line only was subjected 
to elastic deformation. In reality the elastic plastic boundary is 10 to 15 times larger than the 
projectile diameter dP. The fragmented material in front of the projectile is located inside a conical 
surface with the half apex angle Θ and the diameter Dexit at the rear target surface. For clarity the 
angle Θ is exaggerated: in reality Dexit probably is a couple of times smaller than the elastic-plastic 
boundary diameter at the rear target surface. All fragments are approximated with cubes, the sizes 
of which decrease with increasing distance to the rear surface. The NS surface fragments, which 
include the NS,1 peripheral surface fragments, have the side length πDexit/NS,1. Extrapolations 
backwards of all fragment trajectories are assumed to join at a point along the axis at the distance z 
from the rear target surface. In reality the angle Θ may be smaller than the angle Ψ so that *hz< .  
   In reality fragmentation is not instantaneous. Initially the larger surface fragments are detached 
due to elastic wave reflection, whereby the fragment velocities are restricted to the maximum 
particle velocity associated with such waves. Finally small fragments from the interior are 
accelerated through contact with the projectile and obtain velocities comparable to the exit velocity 
vexit of the projectile. When vexit is higher than the velocities produced via wave reflection there will 
be complicated interaction between the detached fragments. In the intended applications of the 
model such interaction must be neglected for reasons of simplicity. With this in mind the many 
other approximations and simplifications, which are necessary and consecutively suggested in the 
description of the model, become better justified. Moreover, some of these may even be considered 
to be unnecessarily ambitious. 
 

Θ
Ψ 

≈ πDexit/NS,1 

z 

Elastic-plastic

Elastic 
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Figure 2. Calculated results in [5] for ejection of fragments from eroding projectile perforation of a 
target. The projectile diameter is dP=20 mm. The initial external target diameter is slightly less than 
about twice the final hole diameter, which is much smaller than required in order to represent an 
infinitely wid target. After perforation the target diameter is increased with about 7% [5, Figure 
13], which accounts for a significant part of volume of the hole through the target. The upper half of 
the figure is at time 200 µs and the lower half is at time 225 µs after impact of the initially flat-nosed 
projectile on the right target surface plane. The exit velocity of the residual projectile is vexit≈1.6 
km/s.  
   The calculations are carried out in axial symmetry (instead of full three-dimensionality). Thus 
every point corresponds to an “expanding” ring of fragments. Since all points are of equal size the 
figure does not describe the cross sectional areas but only the positions, velocities and directions of 
motion for the fragments in the rings. Moreover, since the projectile is eroding the fragments consist 
of both target and projectile material.  
   It is emphasized in [5] that the model does not account for all fragmented and ejected target 
material but only a minor fraction, typically about 10% or even less, which moves with velocities 
that are comparable to vexit. The fragments in this minor fraction are (almost certainly) considerably 
smaller than the fragments in the remaining fraction, which previously must have been ejected via 
wave reflection at the rear target surface and, accordingly, move with initial velocities that are much 
smaller than vexit.   
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Appendix: Perforation with eroding projectiles 
   Change from the penetration phase to the perforation phase in hard steel and metallic 
target material for blunt, rigid projectiles is modelled in [1]. The energy Wp required to 
perforate a target of thickness h without preceding penetration is a simple function of the 
target strength YT, the projectile diameter dP and the thickness h 
 

 ( ) TPPp YdhdhW 2
8

+= ππ .      (A1) 

 
When there is preceding penetration to the depth *hhP −= , then the perforation energy 
is  
 

 ( ) **2

4 pTTPp WYhhdW +−= βπ ,     (A2)  

 
where *

pW  is given by Eq. (1) with *hh= . Thus Wp is a continuous function of h as it 

must be. The transition thickness *h  is determined by requiring that the derivative 
hWp ∂∂ /  also is continuous, which yields 
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   For eroding projectiles the following model for perforation is suggested. The first case 
to be considered is when the impact velocity is so great that the projectile always makes 
a hole which is larger than required for deposition of the instantaneously eroded 
projectile material. According to the model in [4] the hole depth at which the hole 
diameter becomes too small is given by Plim, which must be calculated with numerical 
integration. Thus the first case certainly occurs when Plim>h. When the penetration depth 
is *hhP −= , whereby the velocity is *v  and hole diameter is *

TD , the eroding projectile 
is assumed to become rigid and require the additional energy  
 

 ( ) TTTp YDhDhW **** 2
8

+= ππ .     (A4) 

 
to accomplish perforation. The transition thickness *h  is determined by requiring that 
dwT/du from [4, Eq. (5)] equals */ dhdWp  from Eq. (A4), which yields  
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The model for eroding projectile penetration yields the instantaneous penetration depth 
P(v) and projectile length L(v) as functions of the instantaneous projectile velocity v. 
Accordingly Eq. (A5) and  
 
 ( ) ** hhvP −=         (A6) 
 
must be solved numerically to yield the velocity *v , and the cooresponding transition 
thickness *h , at which penetration is changed to perforation. The corresponding hole 
diameter from [4, Eq. (2)] is  
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   The total mass mT of fragments that are ejected by the projectile when it leaves the 
target is 
 

 TTT hDm ρπ *2*

4
= .       (A8) 

 
   The model represented by Eqs. (A5) – (A8) is not only valid for Plim>h but for 

*
lim hhP −> . For *

lim hhP −<  the projectile velocity and hole diameter decrease to vlim 
and DT,lim, respectively, at the penetration depth Plim. The values vlim and DT,lim are 
obtained from [4, Eqs. (15) and (17)]. For P>Plim the velocity continues to decrease and 
the hole diameter is constant. The transition thickness is given by 
 

 
π

β 1
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* −
= T

TDh .       (A10) 

 
For *

lim hhP −=  the corresponding velocity is *v  is equal to vlim in [4, Eq. (17)]. 
   It is not necessary to assume that the remainder of an eroding projectile becomes rigid 
when the penetration depth *hhP −=  is reached. Erosion can be assumed to continue at 
some appropriate rate, for instance with dPdL /  constant for *hhP −≥ . Thereby 
additional energy is required for the corresponding deformation (shortening) of the 
projectile, as specified in [4], and should be added to Wp in Eqs. (A1) and (A2). 
 
 




