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Chapter 1

Introduction

Today we live in the age of information technology. Information is easily available
via the Internet to anyone who may seek it. The speed with which information
travels world wide has increased astronomically in only a century. But how can
I as a user trust that the information sent to me is not read by someone else on
the way? This calls for the use of cryptography! In this introduction, will briefly
discuss two categories of such techniques: asymmetric and symmetric.

In asymmetric cryptography the sender and receiver do not share an identi-
cal key. The most common asymmetric cryptographical algorithm is the RSA
invented by Rivest, Shamir and Adleman in 1978 [1]. In RSA, each part has a
private key and a public key. The public key is created from the private key. The
public key is totally open for everyone and the private key is kept secret. When I
want to send a message to a friend, I encrypt it using his public key and then send
him the encrypted message. After the encryption the only one who can decrypt
the cipher text is the one who has the matching private key, i.e. my friend. The
idea is to use so-called one-way functions. Given a one-way function f and the
output y = f(x) it is very difficult to find the input x. The RSA is based on the
factorization of large numbers into primes combined with a number of modulo
operations. The private key works as a trapdoor simplifying the reversing of the
one-way function. The task to turn a one-way function “inside out” is however
not impossible, it is only very time consuming or “hard”. In complexity theory
the term “hard” corresponds to runtime exponential in the size of the problem.
Furthermore it is not proved that factorization of large numbers is hard, there
might be an algorithm yet to be discovered that factorizes large numbers in only
polynomial time. Such an algorithm has been found for quantum computers. To-
day there are no large-scale quantum computers available, but it is a hot research
field. In fifty years time we might have the first desktop quantum computer.
Figure 1.0.1 shows the schematics of public key cryptography.

Symmetric cryptography uses a single key for both encryption and decryption.
An example of a symmetric crypto is the Caesar crypto used by Caesar himself. To
encrypt a message each character is replaced by the character three places ahead
in the Latin alphabet. For example, Per would be encrypted as the cipher text
Shu. The receiver knows how the cipher text was created, i.e. the key, and can
recreate the original message. A more advanced symmetrical crypto is the DES
(Data Encryption Standard) which uses a 56 bits long key as a scheme for several
permutations to scramble the message. There are 256 = 72, 057, 594, 037, 927, 936

1
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Public Key
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Figure 1.0.1: Schematics of public key cryptology

different combinations for the key. This is a very large number but it is still
possible to find the key using an exhaustive search. An intercepted encrypted
message can be stored and worked on until the correct key is eventually found.
To be considered secure we need a long key and more important, we need to
change the key often. Every encrypted message using a certain key also holds
a clue to the key. If a key is used too often an adversary could break it using
the knowledge gathered from all intercepted cipher texts. If this happens our
adversary can read all encrypted messages encrypted with this key until the key
is changed. Think of this as changing from three to four characters ahead in the
Caesar cipher. Constantly changing this number would puzzle the enemy a lot
more. This calls for the exchange of keys between two parties. This is a Catch
22, to exchange secure information we need keys which need to be exchanged
securely. Today entrusted couriers are used when the demand for security is
extremely high. This is expensive, slow and cumbersome. There is a need for a
way to easily exchange secure keys between two points. The answer to the need
could be Quantum Key Distribution, abbreviated QKD. The interested reader
can find more on cryptology in the popular science book The Code Book by Singh
[2], which also briefly touches the QKD subject.

In QKD the key is transmitted from the sender, commonly called Alice, to
the receiver, commonly called Bob, encoded into single photons. Due to the prin-
ciples of Quantum Mechanics an adversary, commonly called Eve, can not make
measurements on the single photon without disturbing its state. By disturbing
the state, she will cause errors and can therefore be detected by Alice and Bob.
This is the corner-stone for the proof of total security in quantum key distribu-
tion. The idea was first presented by Bennett and Brassard in 1984 [3]. Eight
years later, the worlds first quantum key distribution was performed by Bennett
et al. in 1992 [4]. The transferred key will contain inevitable transmission errors.
These must be corrected using an information-exchange not encoded quantum
mechanically. This is known as the classical communication.

The gain in security is substantial. Whenever Alice wishes to send Bob a
secure message they use QKD to find a new long key, for example 500 bits. This
key is so long that exhaustive search will be finished long after the information
is out of date. If computing power of the adversary increase, Alice and Bob only
generate a longer key. Moreover, the key is only used once, not giving Eve a
chance to learn information about the key by matching different encrypted texts.
If the information is very sensitive, Alice and Bob can generate enough key to use
the one-time-pad, described in the next chapter. This encryption technique has
been proven unconditionally secure!

This thesis focuses on the codes used for the correction of inevitable errors in
the quantum transmission. The codes are implemented into a protocol which is a

FOI-R--1743--SE
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term for rules determining the format and transmission of the data. Compared
with the amount of research put into security and experimental setups, little has
been done on error correction and key reconciliation. This is mainly due to the
fact that research on QKD has been driven by physicists and mathematicians who
are experts in quantum mechanics and not in computer science. Papers describing
different protocols are often focused on one detail, leaving other questions open.
Results of large scale simulations is sparse, to say the least. The aim of this thesis
is to study the performance of different protocols for several different important
factors, e.g. error-correction efficiency, probability of correction and communi-
cation required in the process. The intention is to bring all pieces together and
present empirical results of simulations for each factor. The thesis analyzes four
different protocols which utilizes different techniques to correct errors.

The layout of the thesis is divided into three parts, Background, Key Recon-
ciliation and Performance Comparison. The Background chapter gives the reader
the basic theory required for the understanding of QKD in general and the Key
Reconciliation chapter in particular. The last section in Background gives the
scope of this thesis. The main chapter is Key Reconciliation, in which an ex-
tensive analysis of four different error-correction protocols is given. The following
chapter gives a numerical example for comparison of the process of going from raw
quantum transfer output to final secure key using the different protocols. The last
chapter, Conclusions, can be read independently of the thesis as a review, albeit
understanding all parts might be hard without previous knowledge of the field.
In the appendix there is a list of notations. It may come in handy when reading
the thesis.

The subject of quantum mechanics is often considered very mysterious and far
from real life. The cartoon below gives a humoristic approach trying to explain the
uncertainty in unknown quantum states, printed with permission from Stephen
Notley.

The deep and profound mysteries of quantum mechanics.

FOI-R--1743--SE
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Chapter 2

Background

2.1 Introduction

Quantum key distribution is a way of transferring a secret key from Alice to
Bob using single photons. The photons are send on the quantum channel. Eve,
who tries to eavesdrop on the quantum channel, will inevitably cause errors in
the transmission. Errors also come from imperfections in the setup. After the
quantum transfer, Alice and Bob have one string each. This is the raw information
from which the final secure key is extracted. The errors need to be corrected for
the key to be useful. The correction of the errors is done by error-correcting codes
which exchange additional information over a second channel. This is known as
the classical channel. This channel is an ordinary public communication channel.
Public means that the information is not encrypted on the classical channel, i.e. it
is available to Eve as well. Eve can gain knowledge of the key from eavesdropping
on the quantum and the classical channel. To erase Eve’s information, Alice
and Bob compress their strings using a hash function. This is called privacy
amplification. The compressed output string is the final secure key. The key will
be shorter than the original raw output from the quantum channel, but it will be
error free and unknown to Eve.

The quantum channel can be based either on fibre or in free space. The public
classical channel can be any way of transferring information. The intended setup
for this thesis is free-space optical communication for both channels. The objec-
tive is to evaluate different error-correction protocols with respect to parameters
important for the free-space setup.

In this chapter I will give an introduction to the basic theory and the scope
of the thesis. The first section deals with basic mathematics including statistics,
information theory and some basic cryptography. The following sections introduce
the different steps in Quantum Key Distribution, QKD. The last section gives the
scope of this thesis.

I highly recommend the review article by Gisin et al which extensively covers
the QKD subject [5].

5



6 Chapter 2. Background

2.2 Basic Mathematical Theory

2.2.1 Statistics

Stochastic variables are commonly denoted with upper case letters and observa-
tions from them are commonly denoted with the same letters but in the lower
case. Mathematicians favor the letter X, Y and Z for stochastic variables, I will
also make use of them. Furthermore, the notation X ∼ D is shorthand for “X
follows the distribution D”.

The probability of an error-correcting code successfully correcting all errors
is of great interest for this thesis since a key is useless if it contains errors. This
probability will be estimated by simulations. For an estimated parameter to be
useful it requires a confidence interval, hopefully a narrow one. For most of my
simulations with fixed parameter settings the algorithm corrects all errors in every
trail. This makes the standard deviation zero. Unfortunately the standard way of
constructing confidence intervals use the standard deviation with multiplicative
factors, thus the confidence will be interval zero. Instead I make use of the
binomial distribution.

First I define

X =
{

1 If the code corrected all erros in a given trial
0 Otherwise ,

with P (X = 1) = p. Then the sum of n trials,

Y =
n∑

k=1

Xk,

will be binomially distributed with parameters n and p, where p is unknown. The
estimate for p is p̂ = X̄ with X as above. Throughout this thesis, a bar on top
of a letter will denote the average value. Based on one observation, y, the lower
and upper limits, (pL, pU ), for a 100(1− α)% confidence interval solves

y∑

k=0

(
n
k

)
pk

U (1− pU )n−k =
α

2

and
y−1∑

k=0

(
n
k

)
pk

L(1− pL)n−k = 1− α

2
.

This is made easily with the command [phat,pci]=binofit(y,n,0.01) in MAT-
LAB producing p̂ and a 99% confidence interval for p̂. This means that 99
out of 100 such produced intervals will cover the true p, or in other words;
P (p ∈ [pL, pU ]) = 0.99.

To produce a narrow confidence interval we need to increase n. Figure 2.2.1
below shows the estimated p̂ together with a 99% confidence interval for obser-
vations y = 0.5 × n with increasing n. Based of Figure 2.2.1 and my available
computing powers, I will use n > 103.

To create confidence intervals for other observed parameters, I will use the
bootstrap method. In bootstrap you sort the observations in increasing order.
Then you symmetrically choose one lower and one upper observation as limits so

FOI-R--1743--SE
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Figure 2.2.1: Estimated p̂ with 99% confidence interval.

that 100(1 − α)% of the sorted observations lie between the chosen limits. This
gives an approximate confidence interval. I will use 99% confidence intervals as
standard in this thesis.

2.2.2 Information Theory

Information theory is concerned with the subject of sending information over
communication channels. The fundamental problem of this is to reproduce at
one point what was sent through a communications channel from another point.
Information theory was presented 1948 by Shannon with the first mathematical
definition of information [6]. Consider a stochastic variable X for some distrib-
ution p(x). Before we observe the value of X, there is a certain amount of un-
certainty about its value. After the observation, we have gained information by
reducing the uncertainty. We can therefore say that information and uncertainty
are related to each other. If we choose X to be the information, it is represented
by characters in some alphabet X . Let {p(x)}x∈X be a probability distribution
of which character in X is measured at the receiving point. The distribution p(x)
depends on the quality of the communication channel. The entropy of X, denoted
H(X), is defined as

H(X) = −
∑

x∈X
p(x) log p(x). (2.2.1)

Note that all logarithms in this thesis use the base two, unless specified otherwise.
H(X) is the average amount of uncertainty in X. If X is uniformly distributed
over X , then H(X) = log |X |. If X is a set, |X | denotes the cardinality, i.e. the
number of elements in X . In our case X = {0, 1} which makes X a Bernoulli
trial with P (X = 1) = p and P (X = 0) = (p− 1). This gives the binary entropy
function denoted

h(p) = −p · log p− (1− p) · log (1− p). (2.2.2)

Figure 2.2.2 shows the behavior of h(p). The entropy reaches its maximum value
of one when p = 0.5 and decreases symmetrical to reach zero at p = 0 and p = 1.

FOI-R--1743--SE
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The outcome of X has its maximum amount of uncertainty for p = 0.5. Knowing
that one outcome has greater probability, there is less uncertainty. For p equal to
zero or one, the outcome is deterministic, hence the entropy is zero.

Let A be a string of the outcome from m independent Bernoulli trials with
p = 0.5, then H(A) = m since H(Ai) = 1 and all bits are independent. A binary
symmetric channel, BSC, models a transmission of a string A independently ex-
posing each bit to noise with the probability p. Each bit takes a Bernoulli trial
to determine if it switches value, see Figure 2.2.3 below.

0

1 1

0

1−p

p

p

1−p

Figure 2.2.3: Schematic binary symmetric channel.

The Shannon capacity of a BSC is defined as

C(p) = 1− h(p).

There is a lower limit for the amount of information that needs to be exchanged,
i.e. revealed, in order to correct a certain amount of errors in a string sent over a
BSC [7]

nmin = nsif × [1− C(p)] = nsif × h(p), (2.2.3)

where nsif is the length of the string after sifting as described later. The prob-
ability p in Equation (2.2.3) corresponds to ē, the average bit error rate of the
transmission. If Eve disturbs the transmission, there is a risk that the errors will
come in bursts. Errors can come from non-uniform noise in detectors as well.
This makes the errors non-uniformly distributed. To use the BSC model, Alice
and Bob need to agree on a random permutation of their strings before starting
the error correction. After this, any binary input/output channel can be regarded
as a BSC.

FOI-R--1743--SE



2.3. Quantum Key Distribution 9

Another important measure in information theory is the mutual information

I(X;Y ) =
∑

x

∑
y

p(x, y) log
p(x, y)

p(x)p(y)
= H(X)−H(X|Y ). (2.2.4)

This measures the amount of information we have about X after having measured
Y . H(X|Y ) is conditional entropy giving the amount of uncertainty in X knowing
Y . If H(X|Y ) = 0, we have complete knowledge of X giving I(X;Y ) = H(X) =
1. In our case, let A be Alice’s secret key which she transmits to Bob, who mea-
sures the string B. If the transmission did not in any way corrupt the information
sent, Bob will have I(A; B) = m bits of information. This is equivalent to A = B.
Between the, two Eve can eavesdrop and learn the string E. Our objective is to
keep I(A; B) > I(A; E) and I(A;B) > I(B;E) so that Alice and Bob have more
mutual information than Eve does with any of the two.

2.2.3 Cryptography

In cryptography, the sender is commonly called Alice and the receiver is called
Bob. The enemy eavesdropping on Alice and Bob’s communication is commonly
called Eve. Alice has a plain message which she encrypts into a cipher text which
she sends to Bob. Eve can eavesdrop and learn the cipher text. Bob has access
to the key and can decode the cipher text into the plain message.

The only cryptographic method which is proved to be totally secure is the
one-time-pad or OTP [5]. The OTP is a symmetrical cipher, i.e. both sender and
receiver share the same key. Let m denote the plain message, c the cipher text
and k the key. Moreover mi, ci and ki are the characters at place i in messages
m, c and k. The message m must be represented in bits. Using the ASCII table
each Latin character is one byte represented by eight bits. For example A is
represented by the decimal number 65, i.e. the bit combination {01000001}. In
OTP k need to be as long as the plain message representation in bits. To send
two Latin characters using OTP the key k needs to be 16 bits. The key needs
to be totally random and can only be used once or else Eve can get information
from combining two cipher texts, hence the name one-time-pad. Given all this
the OTP is

ci = mi ⊕ ki, (2.2.5)

where ⊕ is addition modulo two. To decrypt the cipher text Bob calculates

ci ⊕ ki = mi ⊕ ki ⊕ ki = mi.

One definition of the security of the OTP is

I(m; c) = 0,

using Equation (2.2.4) in the section on information theory. Given the cipher
text, we know nothing about the plain message.

2.3 Quantum Key Distribution

2.3.1 Quantum Transfer

The basic idea in QKD is that Alice generates a sequence of truly random bits,
each with a value of either zero or one, code the information into single photons

FOI-R--1743--SE



10 Chapter 2. Background

and transmit these photons to Bob. Bits encoded in a quantum mechanic way
is referred to as a quantum bit, or qubit. This thesis will use the BB84 protocol
introduced by Bennett and Brassard in 1984 [3]. In BB84 there are four states
for coding the photon denoted

|↑〉 |→〉 |↗〉 |↖〉
0 1 0 1

which represent vertical 90◦, horizontal 0◦, 45◦ and 135◦ linear polarization. The
bit value 1 is assigned to horizontal and 135◦ and zero to the other two. The states
can be represented as four vectors in two orthonormal bases in two dimensions,
see Figure 2.3.1. The bases are denoted H/V or |+〉 for horizontal/vertical and
L/R or |×〉 for left/right.

135
o

o90

45o

0o

Basis H/V

Basis L/R

Figure 2.3.1: The two bases in the BB84 protocol

There are three terms to keep separated:

• Bit values - {0, 1}
• Bases - H/V = {90◦, 0◦} or L/R = {45◦, 135◦}
• States - {90◦, 0◦, 45◦, 135◦}
A measurement can be regarded as a quantum mechanic operation projecting

the state of the photon onto the chosen basis and giving the eigenvalue of the state
in that basis. Due to the overlap of the states the probability of measuring the
correct state given the wrong basis is one half. The calculation of the probability
is denoted |〈State|Basis〉|2. There are eight cases of projection with two different
probabilities of correct outcome:

|〈↑ |+〉|2 = 1 |〈→ |+〉|2 = 1 |〈↗ |+〉|2 = 1
2 |〈↖ |+〉|2 = 1

2

|〈↑ |×〉|2 = 1
2 |〈→ |×〉|2 = 1

2 |〈↗ |×〉|2 = 1 |〈↖ |×〉|2 = 1

This can be seen from Figure 2.3.1 as simple projection of a vector in one basis
onto a vector in the other. This is the main result giving the possibility of creating
a secure key.

The transfer starts with Alice randomly choosing a sequence of bits and basis,
encodes this information into photon states and sends the photons to Bob through
the quantum channel. Bob, the intended receiver, has no information on which

FOI-R--1743--SE



2.3. Quantum Key Distribution 11

basis to use. He randomly chooses one of the two bases. He will on average select
the right basis for half of the photons and measure their states correct. The other
half of the photons states will be projected on to the wrong basis, thus giving
the wrong measured state for a quarter of the total number of photons. After
the quantum transmission, Bob will have a string of length nraw. The number
of bits measured correctly by Bob is nraw × ( 1

2 + 1
2 · 1

2 ) = nraw × 3
4 . Therefore

Bob’s string measured from the quantum channel contains about 25% errors due
to measuring in the wrong basis.

The next step is called sifting. In the sifting phase Bob publicly announces
which basis he used for each photon. Alice then tells Bob if he measured in the
right or wrong basis. If Bob used different basis, both parties discard that bit.
They never reveal which state the photon was in, i.e. the bit value, but given that
Bob chose the right basis to measure in, he will have the same string as Alice.
Their strings will on average be of length nsif = 0.5× nraw after sifting. If there
were no disturbance on the quantum channel, Bob’s string will not contain any
errors after sifting.

Eve, the adversary trying to make measurements on the quantum channel,
can not know which basis to use. Remember that Alice sends truly random states
of the single photons, i.e. truly random bits and bases. Eve can only follow the
same scheme as Bob and randomly select basis. Thus Eve will only be able to
measure three quarters of the string correct. Due to the principles of quantum
mechanics it is impossible to make a measurement on an unknown quantum state
without disturbing it. Disturbing the state of the photon may be seen as rotating
the state vector from Figure 2.3.1 by some angle. If a horizontal state vector is
rotated by some small angle, there is a chance of measuring it as a vertical state
when using the H/V-basis. Eve can try to send Bob a photon in the same state
as she measured the single photon leaving Alice. This is called intercept/resend
attack and is described further in Section 2.3.4. Another strategy would be to
clone the single photon and measure the clones in different bases. However this
has been shown to be impossible in quantum mechanics without introducing errors
due to inevitable background noise, see for example Gisin and Massar [8]. This is
also discussed in Section 2.3.4. Because of the uncertainty in Eve’s measurement
she will introduce errors that will remain after sifting. If the quantum channel
is noiseless, Alice and Bob will know that eavesdropping took place if Bob find
errors in his string after sifting. Things are however not so easy in the real world.
Limitations in the technology today give rise to a number of other problems.
Below I will discuss of some of the more important problems.

There are no efficient true single-photon sources available today. Therefore
most experimental setups use faint laser-pulses. Alice decides a state and sends the
corresponding laser pulse through a dense optical filter. The number of photons,
n, exiting the filter is Poisson distributed

P (n) = exp [−µ]× µn

n!
,

with an average of µ photons per pulse. The chosen µ needs to be smaller than
one, since there is a non-negligible probability of sending more than one photon.
For example P (n ≥ 2|µ = 0.1) ≈ 0.05. A pulse with more than one photon opens a
window for Eve to gain complete knowledge of this bit’s value. She can for example
split the multiple-photon pulse in two using a beam splitter, sending one photon
to Bob, and keeping the others unmeasured. This is known as photon-number-
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splitting or PNS attack. Bob will not discover this attack since he receives an
undisturbed photon as normal. Let us assume that Eve has unlimited resources,
allowing her to keep an arbitrary number of photons undisturbed for arbitrary
long time. Then Eve can measure the stored photon using the right basis after
Alice and Bob publicly announced it, thus getting full information of the bit value.
Therefore Alice and Bob need to minimize the number of multiple-photon pulses
by choosing µ < 1. Commonly µ = 0.1 is used. However P (n = 0|µ = 0.1) ≈ 0.9,
resulting in that most of Alice’s pulses contain no photons.

To compensate for the decrease in transfer speed due to the low µ, Alice
can increase her pulse repetition frequency, PRF. Since it is not deterministic
when Bob will receive pulses containing photons, Alice and Bob need a way to
distinguish between the pulses so empty ones can be discarded. This is done with
time windows in the measuring equipment. A time window is open for a short
fixed time when the photon arrivals are expected and then closed for a longer
fixed time before opening again. Alice sends one signal per open time window.
Bob only measures during an open time window. In the sifting phase, Bob first
announces in which time windows he detected photons, Alice discards all other
bits. The shorter the time window, the faster the transmission can be made.
The concept of time windows also helps compensating for dark counts in Bob’s
detector. A dark count is when the detector reports a photon detection without
a photon actually impinging on it. To set the length of the time window Alice
and Bob needs to consider several factors:

• The time window needs to be open longer than the pulse length, so there is
no risk of missing the photon in the pulse due to time window closing too
early.

• The closed time between two open time windows needs to be longer than
the time the detector takes to reset. This is known as the dead time of
the detector. If this is not done, a photon might impinge on a non-active
detector and thus be missed.

• The length of the time window should not be larger than the period set by
Alice PRF, i.e. one open window per incoming pulse.

• To lower the probability of dark counts in Bob’s detector inside time window,
the window should be made as short as possible.

There are lasers with a pulse length down to femtoseconds and lasers with PRF
in the GHz range available. Therefore the limitations today comes from the
electronics, both synchronizing and detector’s dead time. The shorter the time
window, the higher is the demand for accurate time synchronization between Alice
and Bob. Since pulse lengths can be very short, it is of great importance that
Alice and Bob have accurate synchronization. If synchronization fails, Alice and
Bob have no way of knowing which bits to save and which to discard.

A dark count happens when Bob’s detector gives a signal without an imping-
ing photon. The probability of dark counts in a time window can however be
controlled. I let pdc denote the probability of dark count occurring during an
open time window. The number of dark counts are usually given as total number
of counts per second (cps). The shorter the time windows are open, the lower is
the chance of a dark count happening inside them.

Noise can come from other sources such as:
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• Background noise from natural light sources, e.g. the sun.

• Imperfections in optics and electronics.

Background noise is mostly a problem during daytime operations. Reports from
free space experiments claim that during the day, a significant amount of the
errors comes from background noise [9]. It can however be filtered out with spatial
filtering and narrow bandwidth filters at the wavelength of the transmitting laser.
Imperfections in the optics of the setup can not be easily improved once a system
is built. Noise in electrical components can be very hard to eliminate. These other
noise sources are however only minor problems compared to the dark counts. The
total bit error rate, BER, in Bob’s string will be pdc +pnoise +pEve, where pEve is
the errors introduced by Eve during eavesdropping. BER is the number of errors
divided by the length of the string. I will denote the bit error rate in Bob’s string
by e.

The removal of errors is done in the error-correction phase. To reduce the
information Eve learned from eavesdropping, the key is shortened in the privacy-
amplification phase. This gives a final key of length r < nsif . The length depends
on which error-correction code is used and desired level of security after the privacy
amplification, more on this in Sections 2.3.2 and 2.3.3. Figure 2.3.2 illustrates the
steps in the quantum transfer. The schematic shows Alice sending a pulse in each
time window. The actual number of photons sent is marked as arrows representing
the state of the photons sent trough the quantum channel. Bob’s detector gives
two dark counts, one outside time windows and one introducing an error. The
dark counts are marked as crosses on the time window line and produces two
detector clicks marked as arrows. After the quantum transmission, sifting, error
correction and privacy amplification is performed. These steps use the classical
channel for communication.

To illustrate with an example which uses some rough estimations. The number
of unsifted bits exchanged per second is roughly estimated by

nraw = η × P (n ≥ 1)× Tatm × Topt × PRFAlice,

where η is the detector efficiency, Tatm the transmission through atmosphere and
Topt the transmission in the optics. The atmosphere has a transmission window
at 850 nm. At this wavelength Tatm is about 0.8 for a path of one kilometer
and the estimation of Topt is 0.1. The company PerkinElemer manufactures a
single-photon counter module with 250 dark counts per second, a dead time of 50
ns and η ≈ 0.45 for the 850 nm wavelength. Assume we obtain a time-window
opening of 10 ns followed by 50 ns closure with the synchronizing electronics,
thus making one period 60 ns long. This gives 1/60 · 10−9 ≈ 1.67 · 107 time
windows possible per second. Furthermore, we assume that Alice has a laser
fast enough to utilize full capacity and uses µ = 0.1. Then Bob will receive
0.45× 0.1× 0.8× 0.1× 1.67 · 107 ≈ 54 · 103 non-empty pulses per second, giving
equally many unsifted bits. This is made with the assumption that Bob can not
tell a one-photon click from a multiple-photon click. After sifting Alice and Bob
will have nsif = 27 · 103 bits per second. The pdc would be

250
1 s

(10+50) ns

× 10 ns

(10 + 50) ns
= 2.5 · 10−6.

There will thus be about 40 dark counts in Bob’s string.
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Figure 2.3.2: The essential steps in the quantum transfer.

The paper by Hughes et al. contains detailed discussion of similar estimates
as above for a real 10 km free space QKD experiment together with results from
the experiment [9].

2.3.2 Key Reconciliation - Error Correction

After the sifting, there will be errors in Bob’s string. These errors come from
Eve’s eavesdropping and transmission errors, i.e. as described above. The errors
must be corrected if the final key shall work properly. The name key reconciliation
means that Alice and Bob create identical keys by detecting the errors in Bob’s
measured string. This is done by error-correcting codes. I use the term error
correction albeit the errors can be discarded instead of corrected. Discarding the
errors decreases key generation ratio, but reduces the information leaked to Eve
during the process.

Classical optical transmissions-links have an error rate down to 10−9, hence
only a small portion of packages sent will contain errors. These can be detected
by check sums as used in most digital communication. If a package is found to
be erroneous, it is resent. In QKD the error rate is typically reported to be a
few percent. To achieve the same error rate as in classical optical communication
we would need to send a string with five percent error rate seven times, i.e.
0.057 ≈ 10−9. This is however not an option since the security relies on truly
random bits. Resending the sequence eliminates the possibility to extract a secure
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2.3. Quantum Key Distribution 15

key.
Bob counts all errors he corrects so that the actual error rate of the starting

string is known after the correction phase. If it is considered to be too large for
the key to be secure, he and Alice discard the key. Therefore there is no risk of
accepting an insecure key just because the starting estimation of the error rate
was to low.

The error-correction code exchanges information over the public channel, thus
exposing it to Eve. I will assume that the public channel is authentic, i.e. Eve
can listen but not tamper with the sent information. Since Eve can listen to
the correction information, she will gain partial information about the key. The
amount is modeled by a function f(x) : {0, 1}nsif → {0, 1}l, thus giving Eve l
bits of information. These bits can be either physical information of the value of
one bit or the parity of a block of bits. The function f depends on which error-
correction code is used. The less information we exchange, the better. Remember
that Equation (2.2.3) gives the lower limit. This limit is called the Shannon limit.

The leakage of information creates the need of enhancing the security, see the
Section 2.3.3 on privacy amplification below.

2.3.3 Privacy Amplification

After the quantum transmission and the key reconciliation, a proportion of the
secure key might have been leaked to Eve due to her eavesdropping. This amount
depends on her strategy of eavesdropping the quantum channel and which error-
correction code used. The number of bits leaked in the error correcting depends
on the number of errors to correct, i.e. the error rate e. To achieve security,
Alice and Bob will assume that all errors are introduced by Eve, thus leaking her
information. Eve’s information on the final key will be upper bounded by the level
of security chosen. The method of reducing Eve’s information of the final secure
key to an arbitrary small amount is called privacy amplification, as introduced
by Bennett et al. [10]. They used the concept of universal hashing, following the
ideas and notation from Carter and Wegman [11].

Definition 2.3.1. The class H = {g : {0, 1}i → {0, 1}j , i > j} is universal2 if for
any two distinct strings x, y ∈ {0, 1}i the number of g ∈ H : {g(x) = g(y), x 6= y}
is less than or equal to 1/2j × |H|.

The ‘2’ in universal2 comes from x being a binary string. If we then choose
g from H according to the uniform distribution, the probability that g(x) = g(y)
given that x 6= y is upper bounded by 1/2j for g : {0, 1}i → {0, 1}j . I choose the
function called H3 [11]. The property of Definition 2.3.1 was empirically validated
for my implementation of H3. The hash function spreads the input in a chaotic
fashion, as little as one bit-error in the in-string will multiply and produce a
significantly different out-string. This is the idea of privacy amplification.

When using privacy amplification, we shorten our partially secure string, x,
by an amount depending on our estimation of Eve’s knowledge about the string
and a security factor, s. This makes Eves information exponentially decreasing
in s. Assume Eve gains at most k bits of information from eavesdropping on
the quantum channel according to some function e(x) : {0, 1}nsif → {0, 1}k.
The function e(x) depends on her choice of strategy. She also learns at most l
bits according to f(x) : {0, 1}nsif → {0, 1}l from the key reconciliation phase
depending on which error-correction code was used. Let r = nsif − k − l − s
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be the length of the final key and choose g ∈ Huniversal2 : {0, 1}nsif → {0, 1}r

randomly from H. Since g is transmitted via the public channel, it will also be
known to Eve. Denote the final secure key by K = g(x), which is of length r.
Eve’s knowledge about e, e(x), f, f(x) and g is summed up in V . Then according
to Bennett and Brassard [10] Eve’s information is upper bounded by

I(K;V ) ≤ 2−s

ln 2
. (2.3.1)

If we choose s = 20, Eve will have as little as less then 1.4·10−6 bits of information
about K. This is of course given that we have chosen k and l properly. Lütkenhaus
gave the estimate (l + k) = τ(ε̄)× nsif where τ(ε̄) = log (1 + 4ε̄− 4ε̄2) [7]. When
correcting errors and leaking error positions in the error-correction phase, we
have ε̄ ≈ e. The estimate uses the restriction that Eve does not use coherent or
collective attacks and that Bob’s detector measures all states with equal efficiency.

Figure 2.3.3 displays a sketch over the amount of information that Alice, Bob
and Eve have in the different steps in QKD using the notation from previous
sections.
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Figure 2.3.3: Schematics over the amount of information available to the different
parties.

2.3.4 Security Aspects

Introduction

Eve can launch several different attacks on a QKD system. Figure 2.3.4 shows
a schematic picture of Eve having control of both the quantum and the classical
channel. Think of the box named Eve in Figure 2.3.4 as the collection of resources
available to Eve allowing her to perform different attacks. The subsections below
deal with some of the different attacks in Eve’s arsenal.
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Eve

Alice Bob

QC
Classical

Figure 2.3.4: Eve attacking both channels.

A QKD system is very vulnerable to the man-in-the-middle attack. Here Eve
has taken control of both the quantum channel and the classical channel. She can
perform measurements on the quantum channel which will be described below and
forge messages on the classical channel. Alice believes she is talking to Bob and
Bob believes he is talking to Alice but they are both talking to Eve mimicking the
other party. Eve use QKD to distil one key between her and Alice and another
between her and Bob. Alice and Bob uses their keys to send encrypted messages
to what they think is each other, but is really Eve who can decrypt their messages.
This threat calls for a way to ensure Alice and Bob that they are in fact talking
to each other, i.e. they need to authenticate the classical channel. Authentication
is described below.

Authentication

One way to authenticate the classical channel is for Alice and Bob to share a short
initial secret string. Using this string together with a hash function they can create
a tag from each message they wish to exchange. The other party will only accept
the message if he computes the same tag using his initial string. After one round
trip of QKD, Alice and Bob use some of their new key for authentication in the
next round trip. This is why quantum key distribution is sometimes referred to
as Quantum Key Growing. The issue of authentication with implementation on
QKD is explained in detail by Cederlöf [12].

Eve’s Eavesdropping Strategies

Eve’s attacks are divided into two main classes: individual and coherent [5]. In
a coherent attack Eve possesses the ability to measure several photons at the
same time. She can also use multiple probes on one photon. The beam splitting
example in Section 2.3.1 above, where Eve stores a number of photons and after
sifting measures all of them, is an example of a coherent attack. The example is
actually a special case of coherent attacks known as collective attacks. Eve only
uses one probe per photon, but measures all of them coherently.

Individual attacks are performed immediately on a single photon in the quan-
tum channel. I will describe three individual attacks.

Intercept/Resend

In intercept/resend attack, Eve performs measurements on every photon leaving
Alice. She then sends a photon to Bob in the same state as her measured outcome.
Eve can measure the photons in an arbitrary basis, most commonly discussed are
the canonical and Breidbart basis [5, 4].
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18 Chapter 2. Background

The two canonical bases are the normal rectilinear basis used by Alice and
Bob. The probability of Eve measuring correct bit value is 0.75. Measuring in
this basis will give Eve a mutual information of I(Ai; Ei) = 1− 0.5×h(0.5) = 0.5
per bit i [5]. Remember that h(pAi

) = 1 since Ai is chosen uniformly from {0, 1}
making pAi = 0.5. Her total mutual information will be I(A; E) = 0.5×nsif since
Eve also will know which bits were discarded in the sifting. Eve will on average
introduce 25% errors in Bobs string, i.e. the bits she measured wrong.

The Breidbart basis is an intermediate basis between the two canonical bases.
In this case, the probability of Eve measuring the correct value is about 0.854. The
drawback is that her mutual information will be I(Ai; Ei) = 1−h(0.854) = 0.399.
In the canonical basis, Eve’s information will be deterministic in half the cases
but in the Breidbart basis she will measure correct with p ≈ 0.85 in each case, or
mathematically speaking using Equation (2.2.4)

h(0.5)− 0.5× h(0.5) > h(0.5)− h(0.854).

The intercept/resend strategy gives Eve k = 0.5×nsif for canonical basis and
k = 0.399× nsif for the Breidbart basis.

Gisin et al. stated in [5], that for a optimal symmetric individual inter-
cept/resend attack Eve’s information is:

Imax(A;E) = 1− h(p) = 1− h

(
1 + sin θ

2

)
,

where p is the probability of Eve measuring the correct outcome. The parameter
θ defines which basis she measures in. In this strategy, the fidelity of photons
sent from Alice to Bob will be F = 1 − D with the original states after passing
through Eve’s attack. D is equal to

D =
1− cos θ

2

This makes D equal to Bob’s error rate. The mutual information between
Alice and Bob is

I(Ai; Bi) = 1− h(e) = 1− h(D).

By choosing θ, Eve can control the amount of errors she introduces. Using θ = 0
will give D = 0 and thus I(A; E) = 0. The Breitbart basis is equal to θ = π/4
giving D = 0.1464 and

I(Ai; Ei) = 1− h

(
1 + sin π/4

2

)
= 0.399,

as before. The drawback is that we also have that

I(Ai; Bi) = 1− h(0.1464) = 0.399.

Thus Alice and Bob can not distil a final secure key if e ≥ 0.146, since then Eve
may have more mutual information. The tolerated error rate will be lower still,
if we assume that Eve can perform even better attacks.

Before the error correction starts, Alice and Bob can publicly announce a
number of random bits to estimate e. These bits are discarded. If Alice and Bob
find e equal to 0.25, they know eavesdropping occurred on the quantum channel.
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2.3. Quantum Key Distribution 19

Remember that Alice and Bob assume that Eve caused all errors. Alice and Bob
can abort and try again, hoping that Eve will not interfere a second time. A
better choice for Eve would be to only attack a fraction of the photons. This will
reduce the error rate induced, but it will also reduce her gain of knowledge by the
same fraction. This way Eve will increase her chance of remaining undiscovered.

Quantum Cloning Attack

If we assume that Eve has unlimited resources, she might possess the technique to
clone photons. It has been shown that it is impossible to perfectly clone a photon,
see for example Gisin and Massar [8]. Think of a cloning device as cloning N input
photons into M output photons by having M−N blank copies. All input photons
are in the same state and all output photons are in the same state. In a perfect
cloning machine all input and output photons would be in the same state. Gisin
and Massar use the fidelity, F , to measure the quality of the cloning. The fidelity
is the average overlap between any of the identical output copies and the input
state. If the copy is in the exact same state the overlap will be one and if the copy
is in a orthogonal state the overlap will be zero. The optimal fidelity achievable
still obeying the principles of quantum mechanics is

FN,M =
M(N + 1) + N

M(N + 2)
.

The fidelity of cloning one photon into two is thus F1,2 = 5
6 . For example, given

the state 0◦ on the input photon there is a non-negligible probability of measuring
the output photon in a different state even if measured in the H/V basis. This
prevents Eve from perfectly cloning the photons send by Alice, Eve will always
introduce errors. If Eve uses an optimal cloning device, the states of the photons
exiting from Eve will have an overlap of 5/6 with the state of the photon sent
by Alice. The chance of Bob measuring the wrong state even if using the correct
basis due to this non-perfect overlap is 1−F1,2 = 1−5/6 ≈ 0.167. Thus, an error
rate of 0.167 is enough to suspect the use of quantum cloning attack.

Photon-Number Splitting

By inserting a partially transparent mirror in the path between Alice and Bob,
Eve can split multiple-photon pulses into two beams. One part of the pulse goes
to Bob and the other is hers to make measurements on. Quantum mechanic
principles allow Eve to count the number of photons in pulses without disturbing
their states. She has the choice to only insert the mirror if there are more than one
photon, so she does not risk to disturb single-photons pulses. In links with high
transmission losses another strategy would be to block all single-photon pulses
and send one of the photons of multiple-photon pulses to Bob and measure on the
remaining. She must then also insert a lossless link to Bob, so he does not detect
the extra attenuation of the channel. Bob will only receive pulses for which Eve
also will learn the states. This gives her full knowledge of the final key, assuming
she can store the photons until the bases are revealed in the sifting.

The assumption that Eve learns all bits with multiple-photon signals gives her
the fraction [1− P (n ≤ 1)] = 1− (exp [−µ] + µ× exp [−µ]) of nsif .

The technology to store a photon undisturbed for arbitrary long time is distant.
Today the coherence time is considerably less than one minute. To prevent a PNS
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attack with today’s technology Alice and Bob simply waits longer than Eve’s
coherence time before the sifting. Thus Eve’s captured photons have changed
states and are useless. However, longer coherence time is required in quantum
computers and is therefore a hot research field.

Analysis of Security

The proof of unconditional security is hard and tedious. Gisin [5] found the bound
e ≈ 0.15 for individual attacks and e ≈ 0.11 for coherent attacks. Assuming
that Eve induces all errors, larger e than these bounds would give her too much
information for the key exchange to be considered secure. The bounds were
derived using assumption of one-photon source being available to Alice. Inamori et
al. [13] states a security proof dealing with among other things, weak laser-pulses.
Following the limitations for the QKD steps stated in the proof, the conditional
entropy of Eve’s total information of the final key K given her complete knowledge
V is

H(K|V ) ≥ |K| − ε(nsif , |K|)
where ε is exponentially decreasing in nsif and |K|. If H(K|V ) = |K| Eve has
minimum amount of information and can only hope to guess the key.

The unconditional security of QKD is a very hard question to solve. The proofs
often assume technology which today is out of reach for all the three of Alice, Bob
and Eve. Practical limits of today’s technology work both for and against Alice
and Bob. Although efficient single-photon emitters, which will prevent photon-
number-splitting, are not available yet, the technology today does not allow Eve
to store photons undisturbed for arbitrary long time either.

2.4 The Scope of the Thesis

The scope of this thesis is to analyze the performance of different protocols in
the classical communication of a QKD system, i.e. the key reconciliation and
the privacy amplification. The purpose of the work is to find suitable protocols
that can be used in a tactical free-space QKD link proposed by FOI (Swedish
Defence Research Agency) and analyze the performance. Therefore, this thesis is
constrained to investigate protocols appropriate for free-space QKD links, where
the requirements and limitations are somewhat different compared to fibre based
systems. Accessibility and transfer rate of the classical channel is seldom a prob-
lem in a fibre system since the classical channel is normally implemented on the
same fibre as the quantum channel. These features are not necessary true for the
classical channel of free-space QKD links. Therefore, the amount of information
transmitted over the classical channel and the interactivity between Alice and Bob
are of more importance when analyzing the performance of a free-space link. The
results of this thesis are of cause applicable for fibre systems as well. However,
special limitations for fibre systems are not taken in to account in the analysis of
the performance.

The tactical free-space QKD link proposed by FOI is intended to be used
between two mobile units, e.g. between vehicles or vessels, separated by a distance
of maximum a few kilometers. Free-space QKD has been demonstrated over a
distance of 23 km [14]. Stationary links, such as telephone lines and optical
fibres, cannot be used for the classical communication since the units are mobile.
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2.4. The Scope of the Thesis 21

FOI will implement the classical channel on a free-space laser link. Although
such a link is more complicated than for example a radio link, there are several
important advantages with a laser link. The transfer speed can be substantially
higher on an optical link. Furthermore, the beam of a laser is narrow and directed
in contrast to radio transmission or even microwave links. Therefore, it is very
difficult eavesdrop or even notice a laser link. However, the most important reason
FOI has chosen laser link for the classical communication is that the strong laser
link can be used for alignment of the quantum channel. The two channels will
operate along the same path but at different wavelengths, e.g. 850 nm and 1550
nm, where the atmosphere has transmission windows. It is demanding to keep
a high accessibility of an optical link since it is sensitive of disturbance such as
vibrations of the platform and turbulence in the atmosphere. With the very
weak signal on the quantum channel, this task becomes even more demanding.
Therefore, a strong laser link for the classical channel can be used to maintain the
alignment for both the channels. Moreover, FOI has chosen the BB84 protocol as
described above. Figure 2.4.1 below shows schematics of the proposed free-space
QKD link. Like most of today’s experimental setups, FOI will also use weak laser
pulses. As expected transfer speed the thesis will use nraw = 100 kbit/s. This
gives the norm of nsif = 50, 000. This assumption is with today’s technology
optimistic, but probably achievable in the near future.

Tele−
scope

Tele−
scope

Classicaloptical
communication
setup

Classicaloptical
communication
setup

Wavelength−
separator Wavelength−

separatorAlice’s Bob’s
detector

Weak
quantum
signal

Strong
classical
signal

Alice Bob

photon
emitter

Figure 2.4.1: Schematics over the free-space setup of QKD.

As mentioned above, the limit for tolerable e is about 11%-15%. Experiments
typically reports an error rate of about 6 ± 3%. I will use ē = {0.01, 0.03, 0.05,
0.06, 0.08, 0.1, 0.15} to cover the interesting interval.

The important measure is the key generation ratio

R =
r

nraw
× β, (2.4.1)

where r is the length of the final key after error correction and privacy amplifica-
tion and β as below.

I use the notation β for the probability of correcting all errors. This corre-
sponds to p in Section 2.2.1. If an error-correction code only succeeds in half the
cases, i.e. β = 0.5, it will half the key generation ratio. Because of this, β is
included in Equation (2.4.1).

Moreover I will comment on the amount of non-leaking information exchanged,
such as random permutations and so on. There are many ways to implement a
protocol for the classical optical communication. I model the total amount of
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information as a function of desired information to send, N , with

Ntotal ≈ α0 + α1 ×N.

The parameter α0 is redundant information such as start bits, stop bits and
checksum bits. The other parameter, α1, is the representation of the information
desired to send. Both parameters will of course vary with both the size and type
of N , but I assume them to be approximately constant. My point being that it is
better to send bits as one package instead of one at a time. With larger packages,
α0 will become a lower percentage of Ntotal. I make no intention of estimating α0

and α1, I just use the model to help the discussion of the communication in the
different protocols.
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Chapter 3

Key Reconciliation

3.1 Introduction

I have chosen the name key reconciliation since the main task of this step is to
ensure that Alice and Bob share identical keys. In my implementations all errors
are corrected, instead of discarded. This preserves the length of the key, but may
leak more information to Eve.

The four protocols chosen for this thesis is the Cascade protocol, Yahmamura
and Ihizuka’s protocol, Low Density Parity-Check Codes and the Winnow pro-
tocol. They represent different techniques of performing error correction. Many
other protocols are modifications of primarily Cascade, e.g. with introduction
of Low Density Parity-Checks. I have chosen to examine the original protocols
since understanding of modified protocols requires understanding of the original.
Also, we need to know the original performance to see if the modified performs
better. The combination and modification of protocols is left as experiments to
the interested reader.

To test the different methods, I have chosen a Monte Carlo strategy. Trials
were performed by randomly creating Alice’s string A and then introducing errors
to create Bob’s string B. Then the protocol corrected the strings. The errors
were introduced by making a Bernoulli trial for each bit with p = ē being the
probability of an error, i.e. the mean error rate. This makes the actual error
rate, e, differerent from the current ē. Since the error rate effectively is a sum of
Bernoulli trials, only scaled with sample size, it will binomially distributed.The
length of the binary strings, nsif , is large enough to use the normal distribution
approximation. Hence the actual error rate is normally distributed around ē.
For Low Density Parity-Check Code the error rate was fixed, but the errors were
introduced in random positions.

Some codes use random functions as a part of the correction. Computers can
create true random numbers via extra hardware, but not via software. Software-
generated “random” numbers are therefore called pseudo-random. These are cre-
ated from functions using an initial starting number called seed. For every seed
they give a purely deterministic series of numbers, but spread in a very chaotic
way mimicking true random numbers. The beauty of it is that Alice and Bob are
seldom dependent of true random numbers for security in error correction. They
only need to agree on the seed to create exactly the same “random” series using,
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24 Chapter 3. Key Reconciliation

assuming of course that Alice and Bob use the same pseudo-random generator
function. This drastically decreases the amount of classical information that need
to be sent. I will base all random numbers on a (0,1)-float generated with the
standard function.

I have implemented Cascade, AYHI and Winnow in Sun’s Java, version J2SE
5.0, with Eclipse as compiler and executer. For LDPCC I used MATLAB because
I found prefabricated codes for LDPCC to use in MATLAB.

3.2 Cascade Protocol

3.2.1 Introduction

The Cascade protocol was suggested by Brassard and Salvail [15]. It is designed
to work close to the theoretical Shannon limit. The protocol uses interactive
communication between Alice and Bob and works by the principle of comparing
parities between blocks of key-bits. This enables detection of blocks with odd
number of errors. When such a block is found, a binary search inside the block
reveals the position of an odd error. The protocol works in a arbitrary number
of passes, each pass uses different block partitions. After each pass, each block
contains an even number of errors or no errors. If an error is found in one block
in pass i, the algorithm tracks the bit back to it’s blocks in passes 1, . . . , i − 1.
By correction of the bit, there will now be a blocks with odd number of errors in
passes 1, . . . , i−1. Binary searches find these errors, possibly creating more blocks
with odd number of errors. This is continued until no blocks have an odd number
of errors. Then the protocol proceeds to the next pass and creates new blocks
and so on. The key to a good performance in the Cascade protocol is the how to
partition the string into blocks in each pass. The size of the blocks depends on
the bit error rate, e.

I have implemented the Cascade protocol proposed by Liu [16], called
Cascadeopt. Liu calculated the first two block-partitioning parameters k1 and k2

which maximizes the number of errors corrected in the first and second pass, since
most errors are detected in these passes.

3.2.2 Algorithm

The algorithm uses a function, in this section denoted f , which randomly maps the
bits in Bob’s string into a number of smaller blocks. The number of blocks in pass i
is dnsif/kie. In my implementation, f is an array with same length as the original
string containing elements representing to which smaller block the particular bit
in the original string should be mapped. For mapping A = {1, 2, 3, 4, 5} into
three smaller blocks one array possibility is

{2, 1, 1, 3, 2}
which gives

f(A) =
{{2, 3}, {1, 5}, {4}}.

To decide block lengths in each pass, the algorithm uses an estimate of the e.
Liu states that k1 and k2 should be chosen to minimize [16]

n

k1
+

n× Podd

k1
×log k1+

n

k2
+

1
2
×

(
n× ē− n× Podd

k1

)
×(log k1 + log k2) , (3.2.1)
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where

Podd =
1− (1− 2× ē)k1

2
.

Liu also states k3 = 2× k2 and k4 = 2× k3.
I have chosen to use the four passes, the same number as Brassard & Salvail

and Liu used. Choosing one more pass will help correction, but reveal more parity
information to Eve. We want to keep the number of passes as low as possible and
still correct all errors.

The Cascade algorithm is

procedure Cascade (A : Alice’s bit string
B : Bob’s bit string ) is

begin
– Decide k1, . . . , k4 based on the estimate for ē.
– Decide on one seed for creation of the random permutation function, fi.
– Alice does following:

Divide A into dnsif

k1
e blocks of size k1 and collect them in Set1.

Create f2 using the seed and collects the k2 blocks from f2(A) in Set2.
Repeat procedure to create Set3 and Set4.

– Using Set1,...,4, Alice creates a matrix P with the parities of all her blocks.
Row 1 will be the parities of the blocks in collected in Set1.

– Alice sends the parity matrix to Bob.
– Pass 1:

Bob creates Set1 by dividing B into dnsif

k1
e blocks of size k1.

Calculates the parities of the blocks in his Set1
and compares to the parity matrix P sent by Alice.
If a mismatch in parity is found, Bob and Alice run
a binary search within the block to find the
position of the odd error. This way Bob can
correct all odd errors in the blocks in Set1.

– Pass i=2,. . .,4:
Bob uses the seed to create fi which defines
Seti of new blocks according to fi(B).
Comparing his parities with row i of Alice’s parity matrix
Bob collects all blocks in Set2,...,i with parity mismatch
in a set called K.
He notifies Alice which blocks are in K,
and Alice also creates the set K.
Starting with the shortest block
in K, Bob and Alice run a binary search to find the
erroneous bit. Let this bit have index j.
Bob corrects this bit.
Then they collect all blocks in passes 1, . . . , i
that contains the bit j in the set B.
Then calculate the set K′ = (B⋃K)\(B⋂K)
which will be the set of blocks with parity mismatch after correcting j.
Set K = K′ and run again for the shortest block.
This is repeated until K = ∅.
Then go to pass i + 1.

end Cascade
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3.2.3 Simulation Results

The simulation was done with the following parameters

• Number of sifted bits, nsif = 10, 000

• Number of trials per each mean error rate, M = 10, 000

• Original mean error rates : ē = {0.01, 0.03, 0.05, 0.06, 0.08, 0.10, 0.15}
The number of sifted bits was chosen to agree with Brassard and Salvail [15]. The
number of simulations was chosen as large as possible, but still small enough for
the simulation to finish in reasonable time. The introduction of errors in Bob’s
bit string was implemented as described in the introduction above. The following
data is presented in the Table 3.2.1. Both confidence intervals are calculated with
bootstrap. N denotes number of revealed parity bits for one trial.

• nmin, the average minimum number of revealed information needed to cor-
rect an error rate of ē, according to Equation (2.2.3).

• N̄ , the mean total number of parity bits revealed in the correction. This
includes N̄parity.

• N̄parity, the mean number of parity bits revealed in the binary searches.
These bits are the interactive communication, thus can not be sent in ad-
vance as a parity matrix.

• [NL, NU ], an approximate 99% confidence interval for the spread of N
around N̄ .

• [eL, eU ], an approximate 99% confidence interval for the spread of actual e
around ē.

• [#]Failure, Number of trials for each simulation where Cascade was unsuc-
cessful to correct all errors.

I calculated k1 and k2 with numerical optimization for k1, k2 ∈ [1, 1000]. The
interval was set after graphic inspection of the behavior of Equation (3.2.1). This
gave the following block parameters for each error rate:

Pass one: k1 = {70, 23, 14, 11, 8, 7, 4}
Pass two: k2 = {302, 103, 62, 54, 42, 32, 25}
Pass three and four: k3 = 2× k2, k4 = 2× k3

Table 3.2.1: The results from simulation of the Cascade protocol.

ē nmin(ē) N̄ N̄parity [NL, NU ] [eL, eU ] [#]Failure
0.01 808 868 665 699, 1056 0.0076, 0.0126 48
0.03 1994 2132 1525 1899, 2387 0.0257, 0.0346 3
0.05 2864 3164 2165 2906, 3433 0.0444, 0.0558 2
0.06 3274 3649 2413 3383, 3928 0.0539, 0.0662 0
0.08 4022 4470 2801 4189, 4751 0.0729, 0.0871 1
0.10 4690 5302 3324 5016, 5600 0.0922, 0.1080 0
0.15 6098 6933 3733 6663, 7212 0.1409, 0.1593 0

FOI-R--1743--SE



3.2. Cascade Protocol 27

Since the actual error rate in each simulation varies from the mean error rate,
Figure 3.2.1 is a scatter plot which shows the actual error ratio plotted against
the number of exchanged bits for all simulations.
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Failed trials

Figure 3.2.1: Ratio of information exchanged relative the lower bound set by the
Shannon limit for the Cascade protocol.

I also examined how sensitive the Cascade protocol is to changes in the error
rate. I simulated a total of 7000 trials with ki’s optimized for ē = 0.05 but used
mean error rates between 0.035 and 0.065. The curve Figure 3.2.2, corresponding
to Figure 3.2.1, clearly shows the expected minimum for e = 0.05. The curve
stays below 1.16 bits above Shannon limit for the interval e = 0.05 ± 0.02. As
seen in Figure 3.2.2, the protocol only failed once, which matches the performance
shown in Table 3.2.1.
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Figure 3.2.2: The ratio between exchanged parity bits and lower theoretical limit
with ki’s optimized for e = 0.05 and varied error rate.
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3.2.4 Performance Analysis

During the error-correction phase, the protocol exchanges N parity bits over the
public channel. An upper bound of the information leaked to Eve will therefore
be l = N to be discarded in the privacy amplification. Given nraw = 100 · 103

bits, there will on average remain nsif = 50 · 103 after sifting. The empirical key
generation ratio is

RCascade =
5 · (nsif −N)− k − s

nraw
, (3.2.2)

assuming β = 1 for the moment and accounting for the simulation using nsif =
10, 000 instead of the norm nsif = 50 · 103. To only investigate the reduction of
key generation ratio due to leakage in error correction I set k and s to zero. The
parameters k and s will not change the form of the graphs in Figure 3.2.3, they
will only translate the graphs downwards. The simulated key generation ratio for
Cascade is shown in Figure 3.2.3. The ratio is scatter plotted for each e. The
Figure 3.2.3 also has the mean estimated curve for RCascade together with a 99%
confidence interval for both ē and RCascade. The confidence intervals are swhon
in Table 3.2.1. The theoretical upper bound is Equation (3.2.2) with N changed
to nmin.
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Figure 3.2.3: The estimated key generating ratio for Cascade together with the
theoretical limit.

As Figure 3.2.3 shows, the Cascade protocol works close to the theoretical
Shannon limit. The performance is less than 116% of the theoretical limit, see
Figure 3.2.1. Therefore I have chosen N = 1.16 × nmin as an estimation for N .
Based on this the key generation ratio for Cascade will be

RCascadeopt >
[1− 1.16× h(e)]× nsif − k − s

nraw
× β. (3.2.3)

The correction efficiency of the code in four passes is good for ē ≥ 0.03. For
ē = 0.01, the Cascade protocol failed 48 times. Using Table 3.2.1 and the theory
of Section 2.2.1, Table 3.2.2 displays the following:

• y, observed number of successful trials, i.e. all errors corrected.
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• β̂, estimated probability of correcting all errors.

• [βL, βU ], a 99% confidence interval for the estimated β̂.

Figure 3.2.4 shows β̂ from Table 3.2.2 together with confidence intervals.

Table 3.2.2: The estimated probability of correcting all errors for the simulations.

ē y β̂ [βL, βU ]
0.01 9952 0.9952 0.9931, 0.9968
0.03 9997 0.9997 0.9989, 1.0000
0.05 9998 0.9998 0.9991, 1.0000
0.06 10,000 1.0000 0.9995, 1.0000
0.08 9999 0.9999 0.9993, 1.0000
0.10 10,000 1.0000 0.9995, 1.0000
0.15 10,000 1.0000 0.9995, 1.0000

0 0.05 0.1 0.15
0.992

0.994

0.996

0.998

1

ē

β̂

β̂

βL

βU

Figure 3.2.4: β̂ together with 99% confidence interval.

Further investigations of the failed trials showed that a trial will fail when two
erroneous bits happen to be mapped close to each other into the same block in
all four passes. When they lie in the same block there will not be an odd number
of errors so the algorithm proceeds to the next pass. Table 3.2.3 below shows two
error bits travel through one failed trial with ē = 0.01. The errors had index 2672
and 2681 in Bob’s original bit string.

Table 3.2.3: Two erroneous bits block-mapping in the four passes.
Pass 1 Pass 2 Pass 3 Pass 4

Block Index Block Index Block Index Block Index
38 12 30 78 3 135 2 302
38 21 30 79 3 136 2 303

As Table 3.2.3 above shows the two bits are never separated and never found
in any parity check. The blocks in the different passes are about ki bits long and
thus there are approximately nsif/ki blocks in pass i. The blocks for ē = 0.01
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are approximately 70, 302, 604 and 1208 bits long giving about 143, 33, 17 and
8 different blocks in each of the passes one to four. With ē = 0.03, the numbers
of blocks are 435, 97, 49 and 24 making it more unlikely for the two errors to
be mapped into the same block. For higher ē, the number of blocks in each pass
increases further which makes it less and less likely for two errors to be mapped
close to each other in the same block. To overcome this problem, we need to
change the way of computing ki. A lower ki means more blocks, but it also means
more communication and thus further away from the Shannon limit. Liu also
proposed the settings k1 = b(4 ln 2)/(3ē)c and k2 = b(4 ln 2)/(3ē)c [16]. 10,000
trials with these choices for ē = 0.01 gave 33 failures and an average of 876 parity
bits exchanged. Compare this with 48 failed trials and 868 revealed parity bits
for the presented simulation.

3.2.5 Communication Aspects

In the protocol Alice and Bob exchange parity bits, N , according to previous
section. Before the correction starts, they need to agree on a seed and the error
rate so they use the same values of ki. All this information can be sent as one
package. The parity matrix with approximately nsif

k1
+ nsif

k2
+ nsif

k3
+ nsif

k4
≈

N−Nparity elements can also be sent before the interactive communication starts.
However, when Bob detects a parity mismatch when comparing the sets he

needs to inform Alice which block to add to K. Then they send parity bits in
each direction to exchange parity information. This is ineffective, since they pay
the cost of redundant information for each single bit. They need to exchange the
parity bits for each block, thus one bit is sent in each direction. They run one
binary search for each error, i.e. on average a total of ē × nsif searches. The
interactive communication thus consists of ē × nsif block numbers and Nparity

parity bits in the binary searches.

3.2.6 Conclusions

The Cascade protocol works very well and close to the Shannon limit, less than
116% away. It has a high probability of correcting all errors. To correct errors
for ē=0.01, we would need lower ki’s or one more pass in the algorithm. Using
the estimation of 116 % of Shannon limit would give N = 1.16×nsif ×h(0.01) =
937, which is well above the simulated mean of 868, thus we can make about
70 additional parity checks and still use the estimation. Further work would be
to examine how to choose ki for the low error rates. In addition, it is better to
choose a pessimistic error rate when calculation ki’s. This sacrifices closeness to
Shannon limit but is less sensitive to changes in the error rate. Using the values
of ki for e = 0.15 to correct e = 0.05 will make Cascade perform at 1.5 bits above
Shannon limit, compared with the presented of about 1.13 bits above. As seen in
Figure 3.2.2, the protocol is not very sensitive to a change in error rate of 2%. I
assume this holds for all optimized ki’s.

One drawback is the high number of interactive communicated bits forcing
the classical channel to be operational for longer a time.

My implementation of Cascade was rather complicated using several different
representations of the key and conversions between them. This made my imple-
mentation of Cascade perform quite slowly in correction. To be useful in a real
system, the implementation needs to be done more efficient.
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The Cascade protocol is one of the first protocols presented and the mostly
used protocol. Therefore it will be used as norm for the comparisons of the other
three protocols.

3.3 Yamamura and Ishizuka’s Protocol

3.3.1 Introduction

I have chosen to abbreviate this correction protocol AYHI after the inventors,
Akihiro Yamamura and Hirokazu Ishizuka [17]. This protocol uses a very different
approach compared with Cascade. Alice and Bob share nsif uncorrected bits.
They now each divide their own string into three substrings r1, r2 and r3 of lengths
q + q + u = nsif . Sacrificing r2 and r3, they can correct all errors in r1 creating
a key of length q. The introduction of errors into a bit string of ones and zeros
can be seen as an exclusive or (xor) addition with a string of equal size where the
non-zero elements represent the errors, see Figure 3.3.1 for schematic explanation.
An example is

r1 ⊕ e1 = {0, 1, 1, 0, 0, 1} ⊕ {0, 0, 0, 1, 0, 1} = {0, 1, 1, 1, 0, 0},

thus introducing errors in elements four and six. The number of errors introduced
is the number of non-zero elements in e1, also known as the Hamming weight of e1,
denoted w(e1). The Hamming weight is on average the mean error rate multiplied
with the length, i.e. ē × |e1|. The Hamming distance, denoted d(r1, r2), is the
number of entries that differ between two vectors of same length. In the example
above d(r1, r1 ⊕ e1) = 2.

q

r r r1 2 3

q u

r1 r2 r3

Bob’s stringAlice’s string QC

qq u

e e e1 2 3

Figure 3.3.1: The fractionizing of string and introduction of errors by xor additions
with the error strings.

After quantum transmission and sifting, Alice and Bob agree on a hash func-
tion

H : {0, 1}q → {0, 1}u.

Alice sends H(r1) to Bob. Bob has r1 ⊕ e1 and tries to find etwid such that

H(r1) = H(r1 ⊕ e1 ⊕ etwid).

Note that w(etwid ⊕ etwid) = 0, since xor addition with itself generates a vector
with only zeros. If H is a good hash function, etwid = e1 with great probability.
Unfortunately there are 2q possibilities for etwid so the method so far is simply a
version of exhaustive search. There is also a security issue. If Eve can break the
hash function she will have full access to r1, i.e. the final key. To circumvent this,
Alice encrypts H(r1) with r3 using the one-time-pad technique, thus sending Bob
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H(r1) ⊕ r3. In order to give Bob partial information to narrow his search, Alice
also sends him r1⊕r2, see Section 3.3.2 for further details. If H has the property of
being a locally neighborhood collision free function [17], Bob has Equation (3.3.1)
below as stopping criterion to test whether etwid is correct [17]

d(H(r1)⊕ e3,H(r1 ⊕ e1 ⊕ etwid)) <
α + ē

2
× u. (3.3.1)

The parameter α in Equation (3.3.1) is significantly larger than ē and is de-
cided from the properties of the hash function used. The number of non-zero
elements with the same index in e1 and e2 is called the number of collisions,
which is denoted Xc with outcome xc = |{i : (e1)i = (e2)i = 1}|. Bob can not
know the outcome xc in advance and must test for all possible numbers. Xc is
binomial distributed according to Bin(q, e2). See Section 3.3.4 for details on how
this effect the number of iterations.

3.3.2 Algorithm

The AYHI algorithm is:

procedure AYHI (A : Alice’s bit string
B : Bob’s bit string) is

begin
– Alice and Bob agrees on H and q, remember that H gives u.
– Alice send H(r1)⊕ r3 and r1 ⊕ r2 to Bob.

This is equal to one-time-pad protecting H(r1) and r1.
– Bob has r1 ⊕ e1, r2 ⊕ e2, r3 ⊕ e3 from quantum transmission.
– Bob calculates:

(r1 ⊕ r2)⊕ (r2 ⊕ e2) = r1 ⊕ e2.
(r1 ⊕ e1)⊕ (r1 ⊕ e2) = (e1 ⊕ e2).
(H(r1)⊕ r3)⊕ (r3 ⊕ e3) = H(r1)⊕ e3.

– Bob uses his information to run the following searches, aborting if etwid satisfies
Equation (3.3.1).

Assume xc = 0,
Bob can find etwid = e1 by exhaustive search on
the non-zero positions in e1 ⊕ e2

and testing against Equation (3.3.1) for each guess.
There is 2w(e1⊕e2) different possibilities.

Assume xc = 1, . . .
Bob runs an exhaustive
search by generating a start guess as if there were no collisions.
Let I be the set of indices i with (e1 ⊕ e2)i = 0.
For each starting guess, Bob tests for every possible twiddle of the xc bits
from I.

– If a matching etwid is found, Bob declares success, else the q bits
are discarded.

end AYHI

I have chosen to correct for up to four collisions, xc = 1, . . . , 4, based on my
available computing powers.
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There are many functions H with the desired property. I have chosen sha−1 :
{0, 1}q → {0, 1}160 [18], thus making u = 160. The property has been empirically
validated [17] where the value of α = 0.25 was stated. The sha − 1 algorithm is
a part of the Java standard package.

To clarify with an example

e1 = {0, 1, 1, 0}
e2 = {0, 1, 0, 1}

e1 ⊕ e2 = {0, 0, 1, 1},

Note the collision in the second element, resulting in (e1 ⊕ e2)2 = 0. Bob first
assumes no collisions and tries the 2w(e1⊕e2) = 4 possibilities

etwid = {0, 0, 0, 0}
etwid = {0, 0, 0, 1}
etwid = {0, 0, 1, 0}
etwid = {0, 0, 1, 1}.

Finding no etwid to satisfy Equation (3.3.1), Bob continues to try for one collision,
i.e. twiddling every combination of one bit from I = {1, 2} for each starting guess:

estart = {0, 0, 0, 0} ⇒
{

etwid = {1, 0, 0, 0}
etwid = {0, 1, 0, 0}

estart = {0, 0, 0, 1} ⇒
{

etwid = {1, 0, 0, 1}
etwid = {0, 1, 0, 1}

estart = {0, 0, 1, 0} ⇒
{ etwid = {1, 0, 1, 0}

etwid = {0, 1, 1, 0}

He aborts when finding etwid that satisfies Equation (3.3.1), hence he and Alice
share the key r1 ⊕ e1 ⊕ etwid = r1. Notice that the number of keys Bob needs
to try grows exponentially in w(e1 ⊕ e2) and the number of collisions, xc. Both
these measures depend on q and ē. This is the prime concern when analyzing
performance of AYHI. My implementation continues up till four collisions. Keys
with more collisions are not corrected by my implementation.

As mentioned, there are 2w(e1⊕e2) starting guesses. When a starting guess
has been chosen, it is a combinational problem to place xc collisions amongst the
remaining q−w(e1⊕e2) zeros in e1⊕e2. Simple combinatorics gives the maximum
number of tests for each xc as

Nmax(w(e1 ⊕ e2), xc) =
xc∑

i=0

2w(e1⊕e2) ×
(

q − w(e1 ⊕ e2)
i

)
, (3.3.2)

where the summation comes from the algorithm trying for all possible number of
collisions up to xc.

3.3.3 Simulation Results

As mentioned above, the number of etwid’s Bob needs to try grows rapidly for
both longer q and larger e, the method is not feasible for q ≈ nsif−u

2 . Alice and
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Bob need to choose a reasonable large q, based on Bob’s computing power and
expected ē. They then run the protocol for

⌊
nsif

2q + u

⌋

partitions. This gives key length qfinal = b nsif

2q+uc×q before privacy amplification.
The leftover bits can either be corrected using a smaller q or be discarded.

I used the following parameters:

• q = {20, 30, 40, 50, 60, 70}
• ē = {0.01, 0.03, 0.05, 0.06, 0.08, 0.1}
• M = 4000

• H = sha− 1, giving u = 160 and α = 0.25

The ē = 0.15 has been left out because early testing shown too long run time for
practical use for this high error rate. Due to the low q, some partitions did not have
any errors in them. This is discovered in the first test, i.e. with etwid = {0, . . . , 0}.
Table 3.3.1 displays the result of the simulations with different values of q’s. The
data presented is:

• N̄ , the average number of etwid Bob tested.

• %N < N̄ , the percentage of trials where N was smaller than N̄ .

• max(N), maximum number of tested etwid’s for single trial.

• BER ei, bit error rate for string ri for the trial which gave Nmax.

• [#]Failures, number of trials where no matching etwid was found.

I have chosen to regard trials with the number of collisions, xc, equal to five as
outliers and they are not included in N̄ or max(N). Each unsuccessful trial was
due to xc = 5, no failures was due to wrongful keys passing Equation (3.3.1).
The trials where xc = 5 have been included in Figure 3.3.2 below, albeit they
were not successfully corrected. The simulation with q = 70 had to be aborted
before ē = 0.1 was finished due to too long run time. Therefore I will not discuss
the performance for q = 70, but I have chosen to include the Figure 3.3.2(f) for
comparison.

Table 3.3.1: Simulation results for AYHI.
q = 20 q = 30 q = 40 q = 50 q = 60

N̄ 21 237 3.174 · 103 6.182 · 104 7.723 · 105

%N < N̄ 91 94 96 97 98

max(N) 1.292 · 104 2.562 · 105 7.132 · 106 4.148 · 108 2.141 · 109

BER e1 0.350 0.200 0.175 0.160 0.167
BER e2 0.250 0.233 0.250 0.140 0.217

[#]Failures 0 0 1 1 1
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Figure 3.3.2, on the next spread, shows N , i.e. the number of etwid’s Bob
tested against Equation (3.3.1) before finding a match plotted against w(e1⊕ e2).
As mentioned, the number of test depends largely on the number of collisions, xc,
which also is shown in Figure 3.3.2. More on this in Section 3.3.4. Nmax from
Equation (3.3.2) is shown as dashed lines in the graphs in Figure 3.3.2.

The connection of N to the mean error rate and q can be seen in Figure 3.3.3
on the next spread below. Here N has been plotted in bins labeled with the error
rate for the trial. N̄ from Table 3.3.1 have been included as dashed lines in all
sub figures in Figure 3.3.3.

3.3.4 Performance Analysis

I have not been able to find a good way to predict the number of etwid’s that needs
to be tested, N . We only have Equation (3.3.2) as an upper limit. The number of
collisions is distributed according to Xc ∼ Bin(q, ē2) for large enough nsif . The
Hamming weight of e1⊕e2 equals w(e1)+w(e2)−2×xc where w(e1) ∼ Bin(q, e)
and w(e2) ∼ Bin(q, ē). Empirically w(e1 ⊕ e2) ∼ Bin(q, 2ē − 2ē2) was found to
be a good fit. Figure 3.3.4(a) shows the empirical fit stated above together with
simulated w(e1 ⊕ e2) for q = 50 and ē = 0.08. The simulated curve was done
with 104 trials. Figure 3.3.4(b) shows the probability density function, pdf, for
Xc with same parameters, i.e. Bin(50, 0.082).

To analyze the worst case behavior of N I simulated 4000 Nmax’s for each
error rate by generating w(e1⊕e2) and Xc from distributions above and inserting
them into Equation (3.3.2). I used q = 50. Figure 3.3.5 shows the simulated upper
limits as black dots together with of Figure 3.3.3(d) as gray dots. It is clearly
seen that the simulations of upper limits give a good indication to the number of
required tests for each error rate. For each partition, Alice sends q + u bits. This
is far above the Shannon limit which, at least, is less than q. This makes a poor
performance when compared with the Shannon limit. For q = 60 and ē = 0.1 we
have (u + q)/(q × h(ē)) = 7 bits above Shannon limit. Hereafter I will not make
further comparisons with the Shannon limit.

The maximum number of bits discarded due to uneven partitioning is less
than 2q + u. We can consider H(r1) and r1 one-time-pad protected using r3

and r2, respectively, which would be totally secure if all bits in r1, r2 and r3

are truly random and unknown. However, Eve can know bits in r2 and r3 from
eavesdropping on the quantum channel. Furthermore, Eve also knows e1, e2 and
e3 if we assume that Eve causes all errors. Therefore, she can decrypt some bits
from r1 in the key reconciliation phase. According to Yamamura and Ishizuka
the algorithm leaks at most l = 2 × e × q ≈ 2 × ē × q bits per partitioning that
needs be removed in the privacy-amplification step [17]. Hence, the theoretical
key generation ratio will be

RAY HI >

⌊
nsif

2q+u

⌋
× (q − 2× ē× q)− (2q + u)− k − s

nraw
. (3.3.3)

Figure 3.3.6 below shows Equation (3.3.3) with k = s = 0 and u = 160.
One option is for Bob to stop the search if the number of tests reaches a certain

number, e.g. N̄ from Table 3.3.1. This would mean that about 5% of substrings
would be discarded, which means to multiply Equation (3.3.3) by about 0.95.
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Figure 3.3.2: The number of etwid’s Bob tried for each q.

FOI-R--1743--SE



3.3. Yamamura and Ishizuka’s Protocol 37

0.01 0.03 0.05 0.06 0.08 0.1 
10

0

10
1

10
2

10
3

10
4

10
5

ē
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Figure 3.3.3: The number of etwid’s Bob tried for each q.
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Figure 3.3.4: Distributions for w(e1 ⊕ e2) and Xc.
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Figure 3.3.5: The simulated upper limit of tests, Nmax together with observed
number of tests for q = 50.
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If no wrongful key passes Equation (3.3.1), the algorithm will correct all errors
up to four collisions. The probability of xc ≤ 4 is

βXc
= P (Xc = 0) + P (Xc = 1) + P (Xc = 2) + P (Xc = 3) + P (Xc = 4). (3.3.4)

In all trials made, no wrongful keys passed and no correct keys were missed
by Equation (3.3.1). AYHI failed three times, each time due to xc = 5, see
Table 3.3.1. The parameter βTest is the probability of the test in Equation (3.3.1)
working as intended. The total β for AYHI will then be βXc

× βTest, assuming
that the number of collisions and the passing of Equation (3.3.1) are independent.
The confidence interval of βTest is based on 4000 trials, but it succeeded in a total
of 96,000 trials. Therefore the confidence interval could be made narrower, but
I have chosen to use the number of trials with the same parameters, i.e. 4000.
Hence we have:

β̂Test = 1.0000, βTest,L = 0.9987 and βTest,U = 1.0000.

The total βAY HI is therefore:

βAY HI = βXc
× β̂Test, βL = 0.9987× βXc

and βU = 1.0000× βXc
.

In the confidence interval I have assumed that P (xc ≤ 4) can be regarded as
a constant, i.e. only a multiplicative factor.

Figure 3.3.7 shows βAY HI as a function of ē for different choices of q.
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Figure 3.3.7: The probability of correcting all errors versus the mean error rate.

3.3.5 Communication Aspects

Alice and Bob need to decide on ē in order to choose as low q as possible and
still end up with a positive number of bits after privacy amplification. The total
amount of data that needs to be transferred depends on the choice of q and u.
The number of bits needed to correct the string is given by

Ntotal =
⌊

nsif

2q + u

⌋
× (q + u). (3.3.5)

All the Ntotal bits can be sent in a large package at once. This makes the
AYHI protocol much less interactive compared with the Cascade protocol. After
decoding, Bob tells Alice for which fractions he found a matching etwid.
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3.3.6 Conclusions

The benefit of AYHI is that all this information can be send to Bob in one large
block, not needing to maintain interactive communication. Bob can do his com-
putations and afterwards tell Alice for which partitions he could find a matching
key. It also has a high probability for success, especially for lower q’s. The draw-
back of AYHI is the large amount of data needed to transfer and the need for Bob
to possess large computational powers. There is a trade off between β, q, Xc and
w(e1⊕e2) since more collisions highly increases the number of keys to try. I imple-
mented my algorithm in Java on an Intel Pentium III. The simulation for q = 30
took six minutes, while the simulation for q = 60 took over 48 hours. In my imple-
mentation the algorithm does not utilize object oriented programming. Therefore
AYHI is well suited for implementation in a linear programming language such
as Fortran which usually is faster than Java. Hardware implementation might
also be possible. Furthermore my AYHI algorithm can easily be parted between
several processors, a concept knows as parallel programming. There is no direct
order in which to generate etwid. Different processors can search between differ-
ent possibilities, if one processor finds a matching guess the other processors are
interrupted. I think an implementation in an even more low level language on a
number of processors will bring the speed up enough for AYHI to be useful.

3.4 Low Density Parity-Check Code

3.4.1 Introduction

Low density parity-check code, LDPCC, was discovered by Gallager in 1962 [19],
rediscovered by MacKay and Neal in the late 90s [20, 21] and finally adapted
to QKD by Pearson in 2004 [22]. LDPCC as developed by MacKay and Neal
was originally intended to protect transmitted data from errors by using a large
sparse matrix representing different parity checks. Pearson’s paper shows that it
can easily be adapted to QKD by only a number of minor changes [22].

Let H be a very sparse binary matrix with m rows and n columns, where
m < n The matrix has Hamming weight tc per column and uniformly weighted
rows with approximate weight tr. The correcting capacity of LDPCC highly
depends on H. To function properly, we need tc ≥ 3.

Alice has sent the binary bit string A of length n to Bob who has measured
B containing a number of errors. Alice then sends Bob z = HA (mod 2). Note
that z will have length m. Bob uses the information in z and B to find the most
probable x̂ such that Hx̂ (mod2) = z. The algorithm uses probabilistic decoding
and updates the probability for the value of each bit in x̂ in each iteration. This
is called belief propagation. The matrix H is created from a random seed shared
by Alice and Bob in order for them to share H without sending it. Schematic of
the information exchange is presented below.

[
A

] ·
[

I
H

]
(mod 2) =

[
A

HA(mod 2)

] }
n bits → Quantum Channel}
m bits → Classical Channel

Traditional coding theory with only one noisy channel would require

n

m + n
< 1− h(e),
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but since the parity information HA is sent on an approximately noiseless channel,
this relation does not directly apply. The rate of the code will instead be (n−m)/n,
thus the Shannon limit can be expressed as

m

n
> h(e), (3.4.1)

where m and n are the dimensions of H as before. LDPCC is considered to
leak m bits to Eve, i.e. l = m. This gives a fraction of 1 − m/n bits left after
privacy amplification, assuming k = s = 0. This requires m to be smaller than n.
Otherwise more information is sent on the classical channel.

Let xi, the element number i in x̂, be denoted bit and let zj be the j’th row
of H multiplied with x̂ (mod 2). The zj ’s are referred to as checks, and is the
xor addition of tr bits. Vice versa, each xi participates in tc checks. To illustrate,
take H to be the sparse matrix shown in Figure 3.4.1(a), with m = 15, n = 20,
tc = 3 and tr = 4.
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3.4.1(a): Sparse matrix H.
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3.4.1(b): Part of network of checks and bits.

Figure 3.4.1: Sparse matrix and part of belief network set by it.

According to Figure 3.4.1(a) we have z1 = x1 ⊕ x2 ⊕ x3 ⊕ x4. For example,
the bit x2 also participates in checks z7 and z12. We can build a network with
the bits and checks as nodes and the arcs between them defined by the matrix
H, see Figure 3.4.1(b). In each iteration, the algorithm updates the probability
for the value of each bit in x̂. To choose the bit value, the algorithm uses the
current probability of the other bits connected to it via the checks together with
the probability of satisfying the connected checks. The idea is that erroneous bits
will violate some checks and the algorithm chooses the bit value for the bits xi

with the highest probability. The performance highly depends on H being free
of cycles, otherwise we can get caught in a loop. The value of a bit in decoding
should not depend on its value in a previous iteration. This is related to the rank
of H. With m and n, we can only have a maximal rank of m, thus there will
be cycles since m < n. Hopefully the belief network is big enough for decoding
before the loop.

There is much work in progress finding an algorithm designing different good
matrices H rapidly. The development is used in traditional error correction as
proposed by Neal and MacKay but results are directly implementable on QKD.
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3.4.2 Algorithm

MacKay and Neal give two ways of constructing H, based on Gaussian elimination
[21]. I have not fabricated any method for building H, but used prefabricated
matrices freely available by courtesy of David MacKay [23]. I also used the matrix
generation algorithm included in the package in Reference [24]. The aim when
generating matrices is to avoid short cycles in the network of xi’s and zj ’s, but
still be able to generate the matrices in polynomial time.

The algorithm presented by MacKay and Neal [21] has a number of variables
presented and explained below. Here x is the bit value of one bit in the de-
coding and yi is the output i from the BSC with error probability p, i.e. Bob’s
measurement. First we have

f1
i =

{
1− p if yi = 1

p if yi = 0

and
f0

i = 1− f1
i .

These are the probabilities for the bit values of xi based on the measurement, i.e.
P (xi = 1|yi) = f1

i . For example if we have ē = 0.1 and Bob measures yi = 1,
then P (xi = 1|yi = 1, ē = 0.1) = f1

i = 0.9.
Define the two sets I and J as I(j) = {i : (H)ji = 1} and J(i) = {j :

(H)ji = 1}. These are the arcs between bits and checks as specified by H.
I(j) \ i denotes the set I(j) with the bit i excluded. The same notation is used
for J(i) \ j to exclude j’s. For example, using the matrix in Figure 3.4.1(a) we
have I(j = 1) = {1, 2, 3, 4} and J(i = 1) = {11, 6, 1}. This is also seen in
Figure 3.4.1(b).

The algorithm uses two different quantities, qx
ji and rx

ji, which are updated
by maximum likelihood estimations in the iterations. Note that q’s and r’s with
subscripts are variables in the algorithm and not key lengths as in the previous
sections. The quantity qx

ji is the probability of bit i having the value x given the
information from all checks except j. Similarly the quantity rx

ji is the probability
of check j being satisfied if bit i is fixed at the value x and all other bits have
values distributed according to their qx

ji’s. The final step is to calculate the final
probabilities for the bit values of x̂. These are denoted qx

i , i.e. q1
i > q0

i ⇒ x̂i = 1.
The algorithm starts with a starting distribution of qx

ji and it halts if the decoding
is successful or a maximum number of iterations is reached.

The tools for handling sparse matrices in MATLAB can make the implemen-
tations of this code simple, since we only need to work with the non-zero values
in H. I based my implementation on the MATLAB code in the package by Igor
Kozintsev found in Reference [24]. The package also contains a mex-file for build-
ing matrices, which I made use of without any changes to the code. The changes
to the algorithm in the file lpdc_decode.m was

• Send z as input.

• Change from Gaussian channel to BSC by changing how fx
i is calculated.

• Remove Binary Phase Shift Keying modulation of yi, since we use a BSC
and not a Gaussian channel.
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• Insert
z(length(ii))=0;sPdq(find(z(ii)==1))=-sPdq(find(z(ii)==1));
in horizontal step to create the (−1)zj .

• Change stopping criterion to mod(H*xhat,2)==z,
i.e checking if Hx̂ (mod2) = z.

The last two changes are given by Pearson in [22], being the adoption of normal
LDPCC to QKD.

Given the notations above the LDPCC is:

procedure LDPCC (A : Alice’s bit string
B : Bob’s bit string) is

begin
– Alice and Bob decide values for m, n, tc, tr and a seed to create identical H.
– Alice sends Bob z = HA (mod2).
– Bob calculates f0

i and f1
i based on his measurements yi

and the estimate for the error probability of the BSC.
Then he starts the decoding phase.

– Initialization: Set q0
ji = f0

i , q1
ji = f1

i ∀j.
do loop

–Horizontal step: Define ∂qji ≡ q1
ji − q0

ji and compute for each j, i:

∂rji = (−1)zj
∏

i′∈I(j)\i ∂qji′ .

Set r0
ji = (1 + ∂rji)/2 and r1

ji = (1− ∂rji)/2.

–Vertical step: For each i, j and x update:

qx
ji = αjif

x
i

∏
j′∈J(i)\j rx

j′i,

where α is chosen to normalize the probabilities so that q1
ji + q0

ji = 1.
Update the ‘pseudoposterior probabilities’ q1

i and q0
i as:

qx
i = αif

x
i

∏
j∈J(i) rx

ji,

again with α chosen to normalize the probabilities so that q1
i + q0

i = 1.

Set xi = 1 if q1
i ≥ 0.5, else xi = 0.

Calculate Hx̂ (mod2) and set iterations = iterations + 1.

while Hx̂ (mod 2) 6= z and iterations ≤ maxiterations

– If valid x̂ was found in decoding, declare success and return x̂.
Otherwise declare failure.

end LDPCC
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3.4.3 Simulation Results

The ability of correcting errors for this algorithm depends on the shape of H. I
try to find the maximal correctable error-rate for each matrix by trying to correct
increasingly higher error rates. Therefore I have chosen to create the errors in
a different way compared with the previous simulations. Instead of making a
Bernoulli test for each bit, I introduced a fix number of errors but in random
positions. The number of errors introduced was bē × nc, hence the error rate is
e = bē × nc/n. Then I made M trials for each error rate, thus the plots show
e rather then ē. A trial is considered successful if a valid decoding was found
which was identical to A. I denote the maximal error rate for which all trials
found a valid decoding by emax. This is the error rate with which closeness to
the Shannon limit and probability of correction is computed. By inserting the
errors this way, I will have M observations for emax, and can thus make a narrow
confidence interval.

The maximum number of iterations for the vertical and horizontal steps was
set to be 100. This decision was based on the result in Figure 3.4.2 below, which
shows the ratio of successful decodings as a function of e for different maximum
number of iterations based on 100 trials for each e. Figure 3.4.2 shows no ten-
dency towards better decoding ratio for more iterations. Based on my available
computing powers, I have chosen to increase the number of trials rather than the
maximum number of iterations. Albeit the MATLAB code is very compact, it is
also rather slow compared with Java. Therefore I will only use n ≤ 20, 000, but
the algorithm is of course usable for arbitrary large n. It is still worth mentioning
that in some observed cases the error rate appeared to be stable at 0.1 for about
70 iterations and then suddenly drop to zero when a valid decoding was found. A
maxiterations = 50 would have been too small, therefore it advisory to be careful
when choosing maxiterations.
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Figure 3.4.2: The rate of successful decodings as a function of e plotted for dif-
ferent maxiterations.

Figure 3.4.3 shows how the error rate of current x̂ varies with the number of
iterations. Typically three different patterns were found:

• The error rate dropped with each iteration until reaching zero for a valid x̂.

• The error rate oscillates for the first iterations, but stabilizes on one value
different from zero until maximum number of iterations is reached.
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• The error rate drops and rises in an oscillatory fashion.
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Figure 3.4.3: The error rate of x̂ plotted against the number of iterations. Note
the log scale on the x-axis.

The Figures 3.4.2 and 3.4.3 was created using a H with n = 120, m = 64, tc = 3
and tr = {5, 6}.

Closeness to the Shannon limit for a suitable matrix H is determined by the
ratio between m and n, as stated in Equation (3.4.1). Therefore it is of interest
to try matrices of different sizes, but with the same ratio m/n to see how the size
matters.

The web source [23] contains a large variety of matrices, generated with dif-
ferent algorithms. Simulations revealed that matrices with same m, n, tr and tc
generated with the same algorithm but using different seeds performed close to
identical in the decoding. Therefore I will only present the result using one matrix
for each m and n.

I used the following parameters common for the three simulations:

• maxiterations = 100

• M = 2000

• tr as uniform as possible between the rows in the matrix.

Table 3.4.1 below shows the specific parameters used. I have chosen tc = 5
for m/n = 0.25 to compare with Pearson, who used tc = 5 for a matrix with
m = 1006 and n = 4096 [22]. The column “Source” refers to how the matrices
were obtained. Figure 3.4.4 shows the result, with the ratios of successful trials
plotted against e for each H. The tendency is that the curves get more step-like
for larger matrices. The largest matrices have an almost vertical drop to zero
when e increases over the maximal error rate the algorithm can correct.
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Table 3.4.1: Parameter settings for simulations of LDPCC

m/n Matrices with n equal to tc ē Source
400 800 1200 1600

0.25 2400 3200 4000 12,000 5 {0.0025 : 0.0025 : 0.04} [24]
16,000 20,000
96 204 504 816

0.50 1008 2640 4000 4896 3 {0.01 : 0.01 : 0.13} [23]
8000 20,000
200 1200 4000 6000

0.75 10,000 18,000 3 {0.01 : 0.01 : 0.2} [24]
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3.4.4(a): m/n = 0.25
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3.4.4(b): m/n = 0.50
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3.4.4(c): m/n = 0.75

Figure 3.4.4: Ratio of successful trials plotted against e for each H with m/n =
{0.25, 0.50, 0.75}. The small figure in each sub figure is a zoom of the larger,
with the curves for the smallest and the largest matrix plotted as solid lines and
the other curves as dashed.

Based on the results shown in Figure 3.4.4, I made plots of maximal correctable
error-rate, emax, in Figure 3.4.5. Table 3.4.2 below summarize the achieved emax.
The distance to the Shannon limit is calculated from Equation (3.4.1). Because
e > 0.15 is insecure and smaller n gives faster correction, I have chosen to use
n = 4000 and emax = 0.15 for m/n = 0.75, even if it appears as if LDPCC could
perform better for higher n.
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Figure 3.4.5: The emax plotted against n for each H with m/n = {0.25, 0.50, 0.75}.
Note the log scale on the x-axis.

Table 3.4.2: The emax for the different m/n’s.

m/n emax m/(n × h(emax)) bits
above Shannon limit

nemax

0.25 0.025 1.48 16,000
0.5 0.07 1.37 2640
0.75 0.15 1.23 4000

To test how the column weight, tc, effects the error correction I did 2000 trials
for twelve matrices generated from Reference [24]. The trials were conducted by
creating four matrices for each m/n with tc = 3, . . . , 6 and let them correct the
same random strings. I used an initial error rate, increasing it in small steps and
recorded the error rate when decoding started to fail.

Table 3.4.3: The emax for different tc and m/n

m/n tc = 3 tc = 4 tc = 5 tc = 6
1000/4000 0.012 0.022 0.022 0.020
2000/4000 0.07 0.065 0.06 0.05
3000/4000 0.15 0.12 0.11 -

Table 3.4.3 shows that Pearson’s use of tc = 5 was optimal for lower ratios
m/n. With m/n equal to 0.5 and 0.75, tc = 3 performed the best. The emax’s
are in agreement with the results in Table 3.4.2. Note that the matrix with
m/n = 0.75 and tc = 6 could not even correct the initial guess of emax = 0.1.

3.4.4 Performance Analysis

Pearson reports that his implementation performed at 1.26 bits above the Shannon
limit for e = 0.03. This is the only error rate for which he presents results.
He also writes that his implementation works faster and is less computationally
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demanding than his implemented version of the Cascade protocol [22]. Since I
have implemented my protocols in different languages, I can not comment on this.
Pearson does however not mention anything about which matrices he used, how
many trials he did or the estimated probability of correction.

My results are evaluations of LDPCC as a method, but also the design of
the matrices used. The results in Table 3.4.2 above shows that LDPCC, with
the matrices used, performs well for higher m/n. The performance is however
relatively poor for m/n = 0.25. My implantation only got down to 1.48 bits
above Shannon limit, whereas Pearson’s got to 1.26. Moreover, the result where
obtained with n equal to 16,000 which make the computation of both matrix
and decoding time-consuming. The reason for this might be that the algorithm
generating H does not perform well for lower m/n.

To use LDPCC in a real case, Alice and Bob first need an accurate estimate
of e. One way of doing it is to compare and discard a large enough number of
bits to achieve the estimate for e. Another way is to assume e = 0.15 and use
m/n = 0.75 to correct a small fraction of the string. If a valid decoding was found,
they have still saved 25% of the bits and can estimate e. If no valid decoding was
found, they know that e > 0.15 and abort due to insecure error rate. Based on the
estimate they agree on the m/n. A simple estimate can be made from Figure 3.4.5
and Table 3.4.2. For example, if we assume a maximal error rate of 0.09 for a
real system, Alice and Bob would use 0.5 < m/n < 0.75, e.g. m/n = 0.65. This
gives an approximate performance of somewhere between 1.23 and 1.37 bits above
Shannon limit from Table 3.4.2.

Alice and Bob can use n = nsif , but this is slow in both matrix generation,
encoding and decoding. Therefore they can create H with lower n and run LDPCC
for nsif/n blocks. I will assume they can find a n which is a factor of nsif , i.e. no
or very few bits fall outside the block partitioning. Bob then announces for which
blocks of length n he found a valid decoding. Recall that LDPCC is considered
to leak m bits, i.e. l = m. These need to be removed in privacy amplification.

The key generation ratio will be

RLDPCC =
bnsif/nc × [1−m/n]× n− k − s

nraw
× β, (3.4.2)

where m/n comes from estimation as described above. Figure 3.4.6 shows RLDPCC

using the results in Table 3.4.2.
The correctional probability is good based on the simulation results. As men-

tioned, emax is the highest error rate with 100% successful decodings for each
m/n. Hence β̂ is only valid for error rates smaller or equal to emax. The β will
be estimated to

β̂LDPCC(m/n) = 1.0000 [βL, βU ] = [0.9974, 1.0000],

from 2000 trials with m/n = {0.25, 0.5, 0.75} and error rates up to emax.
There could be a question of security in LDPCC, which Pearson does not make

any comments on. Since H is not secret, Eve could try to use her eavesdropped
information to perform the decoding herself. Let us assume that Alice and Bob
have estimated e = 0.05 and uses a pessimistic matrix with m/n = 0.5 to correct
their strings. In an optimal intercept/resend attack as described in Section 2.3.4,
this error rate gives Eve the probability 0.72 of measuring the correct outcome.
The effective error rate of Eve’s string will thus be 0.28. Fortunately for Alice
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Figure 3.4.6: The empirical key generation ratio for LDPCC together with theo-
retical upper limit set by the Shannon limit.

and Bob this decoding would require m/n > h(0.28) = 0.86 > 0.5. Hence Eve has
to little information to decode, as she is on the wrong side of the Shannon limit.
However, I have not included other attacks such as for example PNS. This issue
needs a more careful analysis. We need to examine whether there is a possibility
of designing an eavesdropping scheme, including all attacks, capable of gathering
enough information for decoding. Alice and Bob should therefore choose matrices
as close to the Shannon limit as possible, thus leaving Eve little room for decoding.
If a risk of security is found, Alice and Bob need to keep their matrices secret.
This would ruin the method, since we then use m × n secret bits to correct n.
If they only keep the seed for the matrix secret, the security of the final key will
only be as strong as the security of the seed, i.e. we gain no secret bits.

If Bob fails to decode, he could request the physical value of one key bit from
Alice. Using this bit, Bob can set the value fx

i to one or zero and try to decode
again. This can be repeated until decoding succeeds. Of course they have to add
one to l for every bit, but they still save key bits instead of discarding. This does
however introduce interactive communication, which we would like to avoid.

In a real system, Alice and Bob will of course have detailed and validated tables
of which m and n to use given an estimation of e. My MATLAB implementation
was rather slow, but Pearson reports that LDPCC is faster than his version of
Cascade. This is more suitable in a high-speed continuously transmitting system,
where the speed of error correction is of more importance than the remaining
fraction of the transmitted string.

3.4.5 Communication Aspects

The LDPCC protocol has very little interactive communication. After Alice and
Bob have decided on the seed for H, Alice splits her strings into blocks of length
n and sends Bob [nsif/n] ×m bits. All this information can be sent before Bob
starts his decoding. After decoding, Bob can declare for which blocks he found a

FOI-R--1743--SE



50 Chapter 3. Key Reconciliation

valid decoding. This gives a total of

Ntotal ≈ nsif ×m/n. (3.4.3)

Of course Alice and Bob need some interactive communication to change H
to match current ē. This is however only exchanged at specific times, e.g. once
every thirty seconds, and will thus be a small part compared with the correctional
information.

3.4.6 Conclusions

LDPCC has the large benefit of low interactive communication and low Ntotal.
It performs relatively close to the Shannon limit, between 150% and 123% above
it in my implementation. The drawback is that the generation time of matrices
H grows as n3. The encoding and decoding time also increases, therefore one
should use as low m and n as possible. Another drawback is the fact that once
m/n has been chosen we will fix the performance relative to the Shannon limit.
If they have made a very pessimistic assumption, they will sacrifice unnecessary
bits, whereas for example the Cascade protocol has a more adaptive fixation.
Therefore the actual error rate should be closely monitored and new matrices
fabricated adaptively.

The work in algorithms for matrix generation in classical error correction with
sparse matrices might further push down this limit. This is known as finding good
codes. This means finding high performance matrices. Such results are directly
applicable on QKD error correction with LDPCC.

Further work also includes the careful analysis of how different attacks may
give Eve enough information of perform decoding.

3.5 Winnow Protocol

3.5.1 Introduction

The Winnow protocol was presented by Buttler et al. in 2003 [25]. The protocol
works similar to the Cascade protocol, but instead of a binary search it uses a
different technique which lowers the amount of the interactive communication
required. Another contrast to Cascade is that the Winnow protocol discards bits
to maintain privacy. Hence we can set l = 0 and only use k and s in privacy-
amplification phase.

As the Cascade protocol, the Winnow protocol works with parities of smaller
blocks and random permutation of the strings between passes. The blocks are
of length N = 2m with m ≥ 3. The difference is that it uses a Hamming hash-
function instead of binary search. This hash function is represented by a binary
matrix, compressing each block into syndromes, see Section 3.5.2 for details.

By comparing the xor difference in the syndromes between Alice’s and Bob’s
block, errors can be detected. With only one error in the block, the syndrome
difference gives the binary representation of the position of the error. To correct
it, Alice flips this bit. This strategy only works for one error. In the case of two
errors, flipping the bit given by the syndrome difference will induce a third error.
For three errors, there is a chance of either creating a fourth error, correcting one
or not effect the errors at all. For the Winnow protocol to work, the probability
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of single error in blocks needs to be greater than the probability of two or more.
This is however the case for Alice’s and Bob’s strings.

To avoid the case with even errors, Alice and Bob exchange the parities of the
blocks and only run the Winnow protocol for the blocks with parity mismatch.
To maintain privacy, Alice and Bob discard one bit from the blocks with no parity
mismatch and log (N) + 1 = m + 1 bits from blocks with parity mismatch.

The Winnow protocol needs to be run in several passes in order to achieve an
acceptable final error rate, e.g. efinal ≤ 10−6. The length of the blocks in the
different passes determines how much the error rate is reduced and how many
bits are discarded. A shorter block handles higher error rates, but discards more
bits.

3.5.2 Algorithm

After the quantum transfer, Alice has the string A and Bob the string B. They
part their strings into blocks of size N = 2m with m ≥ 3. I denote a block
taken from B by the length of the block as a sub-index, e.g. B8 is a block of
length 8 from B. The first bit in each block will be discarded to maintain privacy
in th parity check, so the effective length of the blocks in Winnow protocol will
be Nh = 2m − 1. My implementation discarded the remaining bits after block
fractionalizing, thus creating bnsif/2mc blocks. Empirical trials below revealed
that this had only minor effect on the key generation ratio.

The Hamming hash function is denoted h(m) ∈ {0, 1}m×Nh . It is calculated as

h
(m)
i,j =

⌊
j

2i−1

⌋
(mod 2), (3.5.1)

where i ∈ {1, . . . , m} and j ∈ {1, . . . , Nh}. The matrix h(m) transposed gives
the binary representation of the numbers 1, . . . , Nh as the rows. The matrix for
m = 3 is:

h(3) =




1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1


 .

For each block with parity mismatch, Bob calculates the syndrome Sb = h(m) ·
BNh

and sends it to Alice. Remember that the fist bit in each block has been
discarded after the parity check. He also sends the number of the block, so that
Alice know which blocks to correct. Alice then calculates the syndrome difference
Sd = Sa ⊕ Sb ∈ {0, 1}m, where Sa is her syndrome corresponding to Sb. If there
are non-zero elements in Sd, i.e. w(Sd) > 0, Alice flips the bit in ANh

given
by Sd,1 · 20 + . . . + Sd,m · 2m. Sd,i is the bit i in the syndrome Sd. If there
was only one error in the block, this will now be corrected. If there for example
were three errors, there now will be two or four errors. After the bit-flip, they
discard the m bits at positions 2j with j ∈ {0, . . . ,m− 1}. Erroneous bits might
be discarded as well. There is a possibility of starting with eight bits with three
errors, introducing a fourth and then discard four bits including one error, leaving
four bits with three errors.
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The Winnow protocol is:

procedure Winnow (A : Alice’s bit string
B : Bob’s bit string) is

begin
– Agree on the number of passes and m for each pass,

based on the estimation of e.
– Agree on a seed for the random permutations for each pass.
for For all passes loop

– Apply random permutation to strings.
– Part their strings into blocks of size N = 2m,

which gives Nh = 2m − 1.
– For each block, Alice sends her parities to Bob.
– For each block, Bob calculates the parities. If

parities mismatch between his and Alice’s,
he calculates the syndromes Sb = h(m) ·BNh

(mod 2)
and sends all syndromes to Alice together with block numbers.
This way, Alice will know for which
blocks parities matched, and the syndrome of the remaining
blocks.

– Then run:
for All blocks loop

– Bob does:
if Parities match then

– Discard only first bit.
else

– Discard bits 1 and 1 + 2j with j ∈ {0, . . . ,m− 1} from current block.
end if

– Alice does:
if Parities match then

– Discard fist bit.
else

– Discard first bit.
– Calculate Sd = Sa ⊕ Sb.
if w(Sd) > 0 then

– Flip the block bit given by Sd,1 · 20 + . . . + Sd,m · 2m.
end if

– Discard bits 2j with j ∈ {0, . . . , m− 1} from current block.
Remember that these bit corresponds to bits 1 + 2j

in original block, since the first bit has already been discarded.
end if

end loop

end loop

end Winnow
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Section 3.5.4 describes how to choose the number of passes and m for each pass
in order to achieve acceptable low efinal and maintain as long string as possible.
This decision is based on the error rate. They also need to randomly permute
their strings before each pass prior to parting into new blocks. This is to separate
errors. Of course, Alice and Bob can send all required information before starting
to correct in each pass. Alice sends her parities for all blocks in current pass and
Bob replies with syndromes for blocks with parity mismatch. Then Alice runs the
Winnow protocol and Bob discards one or m + 1 bits based on the parity checks.
To illustrate an example with m = 3. Let Alice’s and Bob’s block be

A8 = {1 0 0 0 0 0 0 0}
B8 = {1 0 0 1 0 0 0 0}.

A discarded bit is denoted ‘·’, which does not count in length or index. It has
been included for comparison only. This gives

A7 = {· 0 0 0 0 0 0 0}
B7 = {· 0 0 1 0 0 0 0}

after discarding first the bit. A pass of Winnow gives the syndromes

Sa = {0 0 0}
Sb = {1 1 0}
Sd = {1 1 0}.

The error is thus in the bit 20 +21 = 3 in A7 which is correct! Alice flips this bit.
After this, Alice and Bob discards bits 1, 2 and 4 from A7 and B7 resulting in

A4 = {· · · 1 · 0 0 0}
B4 = {· · · 1 · 0 0 0}.

Each pass will hopefully lower the error rate until it get below chosen acceptable
efinal.

3.5.3 Simulation Results

As mentioned above, the Winnow protocol needs to be run in a number of passes.
In order to investigate the performance of Winnow, I simulated 105 single-pass
Winnow (SPW) trials. I used the starting error rate, e0, uniformly distributed in
the interval e0 ∈ [0, 0.3]. Figure 3.5.1 below shows both the ratio efinal/e0 and
η, the remaining fraction of the string, for each m after a SPW. The data is then
used to find good combinations of passes and m’s.

The expected fraction η for a SPW with given m and e0 is

ηm =
2m − 1−m×∑2m

ni=1, odd

(
2m

ni

)
eni
0 (1− e0)2

m−ni

2m
, (3.5.2)

according to [25]. The total remaining fraction η after {j3j4j5j6j7} passes will
then be

η =
7∏

m=3

jm∏
1

ηm. (3.5.3)
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3.5.1(a): Error correction ratio. 3.5.1(b): Fraction of string remaining.

Figure 3.5.1: The empirical performance for a single pass of Winnow (SPW).

The notation
{j3j4j5j6j7} → η

means j3 passes with m = 3 followed by j4 passes with m = 4 and so on, which
results in η fraction of bits remaining. One has to update e0 before evaluating
the next ηm, treating each SPW independently, receiving input from the previous
one.

Using the mean values of the curves in Figure 3.5.1(a) for efinal/e0 and Equa-
tion (3.5.3) for η, I set up an optimization problem to solve; Given an e0 and
desired efinal, choose the number of passes and the corresponding m’s that max-
imizes the remaining fraction and satisfies efinal. Based on available computing
powers, I set the maximum number of passes for each m to five.

Table 3.5.1 shows the result of the optimization. It should be pointed out that
the final error rates are based on the average of the curves in Figure 3.5.1(a) as
mentioned. For very low error-rates, the empirical curves displayed a non-smooth
behavior. This behavior was not included in the average estimations, which were
extrapolated into [0, 0]. The actual efinal may therefore not agree with predicted.
Further empirical investigation will reveal the true case. The expected η is based
on Equation (3.5.3) above.

Table 3.5.1: Predicted good choices of passes and m’s.

efinal < 10−6 efinal < 10−9 efinal < 10−12

e0 = 0.01 {00112} → 0.89 {00105} → 0.88 {00024} → 0.88

e0 = 0.03 {01104} → 0.75 {01115} → 0.74 {01123} → 0.73

e0 = 0.05 {10122} → 0.64 {10203} → 0.64 {10124} → 0.63

e0 = 0.06 {11022} → 0.60 {11015} → 0.59 {11024} → 0.58

e0 = 0.08 {20112} → 0.51 {20105} → 0.50 {20114} → 0.50

e0 = 0.10 {21022} → 0.43 {21015} → 0.43 {21024} → 0.42

e0 = 0.15 {40112} → 0.25 {40023} → 0.25 {40114} → 0.25

To examine the performance of the Winnow protocol I used the following
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settings in simulations:

• nsif = 50, 000 bits

• M = 10, 000

• e0 = {0.01, 0.03, 0.05, 0.06, 0.08, 0.10, 0.15}

• {j3j4j5j6j7} from columns in Table 3.5.1.

Tables 3.5.2-3.5.4 displays the following results of the simulation.

• ēfinal, the mean final error rate of all trials.

• [# Failures], the number of trials with efinal > 0.

• η̄, the mean remaining fraction of all trials.

• Approximate 99% confidence interval for η.

My implemented Winnow protocol ran faster than Cascade, therefore I used a
five times greater nsif in simulations. This made the spread in error rate around
ē0 smaller. Because of this, I will not include a confidence interval for e0.

Table 3.5.2: Empirical results for desired efinal < 10−6.

ēfinal [# Failures] η̄ [ηL, ηU ]

ē0 = 0.01 1.997 · 10−7 43 0.883 [0.876, 0.889]

ē0 = 0.03 1.490 · 10−7 27 0.744 [0.730, 0.754]

ē0 = 0.05 5.106 · 10−7 72 0.637 [0.624, 0.648]

ē0 = 0.06 9.323 · 10−7 134 0.592 [0.579, 0.606]

ē0 = 0.08 1.187 · 10−6 142 0.503 [0.492, 0.513]

ē0 = 0.10 1.161 · 10−6 109 0.426 [0.411, 0.437]

ē0 = 0.15 2.066 · 10−6 112 0.250 [0.238, 0.261]

Table 3.5.3: Empirical results for desired efinal < 10−9.

ēfinal [# Failures] η̄ [ηL, ηU ]

ē0 = 0.01 0.0 0 0.872 [0.864, 0.879]

ē0 = 0.03 0.0 0 0.726 [0.714, 0.737]

ē0 = 0.05 1.651 · 10−7 26 0.635 [0.622, 0.645]

ē0 = 0.06 0.0 0 0.584 [0.569, 0.597]

ē0 = 0.08 0.0 0 0.495 [0.483, 0.508]

ē0 = 0.10 0.0 0 0.417 [0.404, 0.429]

ē0 = 0.15 3.153 · 10−6 117 0.248 [0.233, 0.261]
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Table 3.5.4: Empirical results for desired efinal < 10−12.

ēfinal [# Failures] η̄ [ηL, ηU ]

ē0 = 0.01 0.0 0 0.871 [0.861, 0.881]

ē0 = 0.03 0.0 0 0.728 [0.719, 0.739]

ē0 = 0.05 0.0 0 0.626 [0.612, 0.638]

ē0 = 0.06 0.0 0 0.582 [0.569, 0.594]

ē0 = 0.08 0.0 0 0.494 [0.483, 0.506]

ē0 = 0.10 0.0 0 0.416 [0.401, 0.429]

ē0 = 0.15 0.0 0 0.245 [0.234, 0.257]

3.5.4 Performance Analysis

The empirical results for η in Table 3.5.2 to 3.5.4 are in good agreement with the
predicted from Table 3.5.1. The tendency for empirical fractions to be somewhat
lower then predicted could be caused by discarding bits left outside even block
partitions. From the results shown in Table 3.5.3, it is clear that the predicted
combination of passes did not match reality and Winnow performed badly for
ē = 0.05 and ē = 0.15.

The key generation ratio of the Winnow protocol is

RWinnow =
nsif × η − k − s

nraw
× β. (3.5.4)

Remember that Winnow preserves the privacy in the key reconciliation by dis-
carding bits, thus we have l = 0. Assuming β = 1 and k = s = 0, the empirical
curve based on the simulation results for efinal < 10−6 is shown in Figure 3.5.2.
The corresponding curve for efinal < 10−12 is almost identical to Figure 3.5.2.
The curve includes a 99% confidence interval for both e0 and R.
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Figure 3.5.2: The empirical key generation ratio for Winnow together with theo-
retical upper limit set by the Shannon limit.
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To convert a final error rate into β we need to do some thinking. Errors may
remain after correction if two erroneous bits were mapped together in all passes,
thus making the parity comparison useless. This will cause an even number of
remaining errors. Errors may also come from running the Winnow protocol on
block with more than one error. Assume that one block has three errors, all in
positions which will be discarded. The syndrome difference could make Alice flip
a correct bit, thus giving a fourth error. When bits are discarded, there will
remain one error in the block. If this happens in the last pass, this error will
remain. Simulations showed that over 98 % of failed trials had an even number
of remaining errors. There were two remaining errors in over 90% of the failed
trials. I will therefore assume a failed trial has two errors. Thus for given efinal,
we need on average 2/efinal bits to get two errors. These bits can be parted into
(2/efinal)/(nsif × η) final keys of length nsif × η. This gives the average fraction
of failed trials as

efinal × nsif × η

2
. (3.5.5)

Table 3.5.5 shows the expected (E) number of failed trials, i.e. Equation (3.5.5)
multiplied with 104 using efinal = {10−6, 10−9, 10−12} together with the observed
(O) from Tables 3.5.2-3.5.4. The observed number differs from expected because
the actual ēfinal archived differed from desired efinal. If ēfinal,archived/ēfinal,desired =
0.25, we have a four times lower observed value.

Table 3.5.5: Observed number (O) of failed trials with expected number (E).

efinal < 10−6 efinal < 10−9 efinal < 10−12

e0 O E O E O E
0.01 43 220 0 0.22 0 2.2 · 10−4

0.03 27 186 0 0.18 0 1.8 · 10−4

0.05 72 159 26 0.16 0 1.6 · 10−4

0.06 134 148 0 0.15 0 1.5 · 10−4

0.08 142 126 0 0.12 0 1.2 · 10−4

0.10 109 106 0 0.10 0 1.0 · 10−4

0.15 112 63 117 0.06 0 0.6 · 10−4

Based on Tables 3.5.2-3.5.4 and 3.5.5, we can draw the conclusion that our
prediction for efinal < 10−12 was good. The empirical results matched our pre-
dicted performance. We could also use the prediction for efinal < 10−9 except for
e0 = 0.05 and e0 = 0.15. The design of passes for efinal < 10−12 is however bet-
ter. It sacrifices insignificantly more bits and has a few more passes, which cause
some more communication, but the gain in correctional capability is substantial.
We can correct a 1,000 times longer string with efinal < 10−12 and get the same
expected count of failed trials as for efinal < 10−9.

I calculate β̂ from Table 3.5.5 above. The probability β represents both ex-
pected number of successes from Equation (3.5.5) and the probability to achieve
the desired final error rate. Since Winnow performed equally well for all e0, I only
present one β̂ based on 10,000 trials:

β̂Winnow = 1.0000 [βU , βL] = [0.9995, 1.0000].
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3.5.5 Communication Aspects

The Winnow protocol is interactive, but it only exchanges information at the
start of each pass. The problem in analyzing the amount of information is that
the length of the string is shortened in each pass. This makes it hard to know how
many blocks there will be in the next pass. However, both Alice and Bob know
before each pass how many blocks they will use. Alice then sends Bob the parities
for each block. Bob responds with the syndromes for which parities did not match
together with which blocks the syndromes belong to. The communication before
each pass thus consists of only two packages. The number of passes is

∑7
m=3 jm.

Hence Alice and Bob will at least know before correction how many packages
will be send. The Winnow protocol has still much less interactive communication
than the Cascade protocol. Figure 3.5.3 below shows the number of parity bits
sent by Alice and the number of syndrome bits returned by Bob for ten trials
with ē = 0.15 and efinal < 10−12. The number of syndrome bits for each pass is
the number of syndromes times the current m. Figure 3.5.3 does not include the
block numbers also sent by Bob.

0 2 4 6 8 10
10

1

10
2

10
3

10
4

Pass number

B
it

s

Number of parity bits

Number of syndrome bits

Figure 3.5.3: The number of bits exchanged for the Winnow protocol with ē0 =
0.15.

3.5.6 Conclusions

The Winnow protocol performs similar to the Cascade protocol, but has the
advantage of less interactivity due the use of syndromes. This eliminates the need
for the highly interactive binary searches. After privacy amplification, the key
generation ratio is not very far behind the one of Cascade.

Winnow also has a high probability of successful correction, apparently inde-
pendent of the error rate. The correctional capability is however related to the
estimate of e. If we underestimate e, Winnow will not succeed in correction due to
wrong setting of {j3j4j5j6j7}. On the other hand, if we overestimate e, Winnow
will correct the errors but discard unnecessary many bits. A small test showed
that {j3j4j5j6j7} for ē = 0.15 from third column i Table 3.5.1 corrected all errors
for actual error rate ē = 0.05 but left a fraction of 0.44 instead of 0.63. Further
testing revealed that a change in error rate of 1% had only minor effect on the
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3.5. Winnow Protocol 59

fraction remaining and Winnow still corrected all errors.
Moreover, Winnow was easy to implement and correction trials ran very fast

compared with Cascade.
Further work should include examinations of m > 7 and a better estimation

of efinal/e0 for low error rates. Moreover, more passes than five with each m may
also improve the performance.
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Chapter 4

Performance Comparison

4.1 Introduction

In this chapter I will compare the performance of the four error-correction methods
with each other. The comparison will be done for three different error rates; 0.03,
0.05 and 0.08. I will discuss all steps, from the sifted uncorrected strings to the
final secure key after privacy amplification.

I will assume nraw = 100·103 bits per second and µ = 0.1 for a real life system.
This gives nsif = 50 kbit/s. All through the rest of this chapter I will assume a
one second time span, and thus omit “bits per second”. The results still holds for
a slower transfer speed, one only has to wait longer until nsif = 50, 000 has been
received. Furthermore, we can assume that Alice and Bob share enough initial
secret information to authenticate the classical transmission.

Before correction starts, Alice and Bob randomly permute their strings to use
the BSC model. After this they disclose a number of bits to estimate e. I have
chosen to disclose 10%, i.e. the first 5,000 bits. They can choose the first bits,
since their strings have been shuffled already. This gives a new nsif of 45,000
bits. A better way to estimate e would be to assume a high e and correct a
small part of the string, and then count the number of corrected bits, and then
adaptively change the estimation of e. For simplicity I assume they estimate e
the by sacrificing bits. Remember that Alice and Bob will abort if e is to high for
QKD to be considered secure.

After the error correction, there is a probability of having remaining errors.
Recall that we compress the string by the use of a hash function in privacy ampli-
fication. If we compress the string as one whole, one remaining error would ruin
the entire string. To avoid this, we can part our string into substrings at the cost
of s bits per substring. In this case one remaining error would only ruin part of
the string. I will use two substrings. To validate the key after privacy amplifica-
tion, Alice and Bob must sacrifice further bits. If there was an error remaining,
this will now be multiplied due to the hash function and thus it will be easy to
discover if the strings did not match. The validation can be done by comparing
random bits and then discarding them. If any of the compared bits did not agree,
the entire string is discarded. Testing revealed that 3% is enough to sacrifice
after privacy amplification in order to detect string mismatch of only one bit for
nsif = 10, 000. I arbitrarily set the desired level of security to I(K; V ) < 10−30
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bits, which gives s = 101 from Equation (2.3.1).
I will assume that Eve performs the optimal individual intercept/resend attack

from Section 2.3.4 on single-photon pulses and a photon-number-splitting (PNS)
attack on the multiple-photon pulses. With µ = 0.1, 95% of the nsif bits will
come from single-photon pulses. Thus Eve will know 5% of nsif from PNS and
additional bits from intercept/resend attack on the remaining 95% of nsif . In
total Eve will learn

k = nsif × {0.05 + 0.95×
[
1− h

(
1 + sin θ

2

)]
} bits, (4.1.1)

by eavesdropping the quantum channel. Eve can choose θ and cause e = (1 −
cos θ)/2 from her attack. This estimation may be very far from reality, but I
will use it to compare the correctional methods. Better models for k will only
numerically change the calculations. Error rates of 0.03, 0.05 and 0.08 gives

k0.03 = 0.1314× nsif

k0.05 = 0.1847× nsif

k0.08 = 0.2630× nsif

4.2 Final Key Lengths and Correctional Proba-
bility

Common assumption is that Alice and Bob has nsif = 45, 000 and a good estimate
of the error rate, e. Further more I use ke as above and security parameter s = 202,
since we part the corrected string in two before privacy amplification and thus
loose 101 bits per part. Due to the 3% sacrifice to validate the key, all equations
are multiplied with 0.97. Recall the notation β for the probability of correcting
all errors.

Protocol specific assumptions are:

Cascade

The final length of the key after all steps is

r ≈ 0.97× [(1− 1.16× h(e))× nsif − ke − s] .

The β̂ presented in Table 3.2.3 used nsif = 10, 000. To translate β̂ to fit
45,000 bits, I regroup the simulations. Regard 10,000 trials with 10,000 bits as
2222 trials with 45,000 bits, thus groping 4.5 trials into one. The new β̂ will then
be out of 2222 trials. For example with e = 0.03, Cascade failed three out of
10,000 trials. I conservatively assume that the three failed trials will ruin three
separate new trials, i.e. three out of 2222 trials.

Yamamura and Ishizuka

As in Section 3.3, I assume that the hash function is sha− 1. This gives u = 160.
AYHI does not need an estimation of e, but it helps in choosing block lengths q
based on Bob’s available computing powers.
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AYHI parts the nsif bits into bnsif/(2 × q + u)c fractions of length q. The
final key length is

r = 0.97×
[⌊

nsif

2× q + u

⌋
× (q − 2× e× q)− ke − s

]

The drawback is the low key generation ratio, see Figure 3.3.6. The ke will
translate the graphs downwards, even below zero for shown the q’s in the graph.
To have a positive RAY HI , we need larger q’s. The minimal for positive number
of final key bits together with chosen q’s, respectively are

q0.03 ≥ 33 → q0.03 = 100
q0.05 ≥ 59 → q0.05 = 100
q0.08 ≥ 142 → q0.08 = 150

Unfortunately the number of test would be too high for the two higher error
rates. See Section 3.3 for explanation of the tests. An e of 0.03, q = 100 was
computable in under a minute with my implementation. The case for e = 0.05
with q = 100 and e = 0.08 and q = 110 was too hard for a near real-time
application. The expectation value of the upper limit Nmax from Equation (3.3.2)
is

q E{Nmax}
q0.03 = 100 12.5 · 103

q0.05 = 100 61.2 · 105

q0.08 = 110 3.99 · 1014

If the number of tests, N , is about 1% of the expected maximal value, then for
q = 150 Bob has to perform approximately 4 · 102 tests for each of the bnsif/(2×
150 + 160)c ≈ 100 fractions. This gives about 4 · 1014 tests which is too time
consuming.

Since I have not been able to perform enough simulations to create trials for
nsif = 45, 000, I can not make good estimations on β̂Test. Based on previous
calculations I assume β̂Test = 1.0 for all q’s. I present the total probability
β = β̂Test × βXc from Equation (3.3.4) with the q’s from above.

Low Density Parity-Check Codes

The correctional capability is determined by the dimensions m and n of the sparse
matrix H. The curves in Figure 3.4.5 levels out above n ≈ 4000. We want to keep
as small n as possible to reduce the encoding, decoding en matrix-generation time.
Therefore I assume 4000 < n < 10, 000. The problem is to choose appropriate
corresponding m’s. I assume the deviation from e is no more than 30%, i.e.
emax ≤ 1.3× e.

With nsif = 45, 000 I choose n = b45, 000/7c = 6428 which only leaves 4 bits
outside blocks. This gives the following m/n and m from linear interpolation
between the simulation results for emax versus m/n:

m/n0.03 ≈ 0.345 m/n0.05 ≈ 0.476 m/n0.08 ≈ 0.606

The final key length will be

r = 0.97× [nsif × (1−m/ne)− ke − s] .
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The final key lengths appear low, but this is due to a pessimistic estimation
of emax. As seen in Table 3.4.2, we got to 1.37 bits above Shannon limit for
emax = 0.07. Further and finer testing with more ratios m/n will give material
for better estimations, thus less pessimistic limits. A more stable error rate in the
quantum transfer will also help the estimation of emax.

Based on simulation results in Section 3.4, I assume that LDPCC with n =
6428 and m’s as above will succeed in the same number of trials as the simulations
presented, i.e. 2000. This corresponds to 286 trials with nsif = 45, 000. The
confidence interval will thus be quite broad due to small number of trials.

Winnow

I will use the passes described by {j3j4j5j6j7} from the third column in Ta-
ble 3.5.1, which corresponds to efinal < 10−12. This was concluded to be the best
choice of passes. From Table 3.5.4, we then get the remaining fraction of the key,
η, for the different error rates.

We have

r = 0.97× [nsif × η − ke − s] ,

Since I made 10,000 trials with nsif = 50, 000, I simply restate β̂ from Sec-
tion 3.5.

Summary

Using all the assumptions above, the resulting final key length are given in Ta-
ble 4.2.1 and converted to key generation ratio in Figure 4.2.1. The corresponding
correctional capability β together with confidence interval is shown in Table 4.2.2.

Table 4.2.1: Final key length in bits for the different protocols.
Cascade AYHI LDPCC Winnow

r0.03 28.0 · 103 5.4 · 103 22.7 · 103 25.8 · 103

r0.05 21.1 · 103 2.65 · 103 14.6 · 103 19.1 · 103

r0.08 11.8 · 103 180 5.5 · 103 9.9 · 103

Table 4.2.2: β̂ for the different protocols.
Cascade AYHI LDPCC Winnow

β̂0.03 0.9986 1.0000 1.0000 1.0000

βL,U [0.9951, 0.9998] [-, -] [0.9816, 1.0000] [0.9995, 1.0000]

β̂0.05 0.9991 1.0000 1.0000 1.0000

βL,U [0.9958, 1.0000] [-, -] [0.9816, 1.0000] [0.9995, 1.0000]

β̂0.08 0.9995 0.9992 1.0000 1.0000

βL,U [0.9967, 1.0000] [-, -] [0.9816, 1.0000] [0.9995, 1.0000]
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ē

R

Theoretical upper limit

Cascade

LDPCC

Winnow

AYHI

Figure 4.2.1: The final key generation ratio for the four protocols together with
the upper limit set by the Shannon limit.

4.3 Communication

All protocols require an initial package of information to set the different parame-
ters. This information is however comparatively small and approximately equal
for all protocols, hence I will not include it in the comparison. The hash function
H3 from Section 2.3.3 used in privacy amplification is implemented as a random
binary matrix of size r×nsif . This needs to be truly random and thus generated
by one part and the send over the public channel. This matrix is also common
for all protocols and thus I will not include it either.

I will use the error rate of 5%, since it is in the middle and I only want to
present the rough estimate of information sent.

Protocol specific assumptions for this comparison are:

Cascade

Bob needs to inform Alice of the blocks for which parities did not match. This
is done before the correction in each pass starts, i.e. some integers. I will not
include this information because it is comparatively small. Remember that Alice
and Bob need to exchange parity bits, i.e. one parity bit in each direction.

The presented numbers is 4.5 times the numbers for ē = 0.05 shown in Ta-
ble 3.2.1.

Yamamura and Ishizuka

I will use the q’s stated in the section above.

Low Density Parity-Check Codes

I will use the m/n stated in the section above.
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Winnow

I will use the upper limit
nsif

2m
× jm × (m + 1),

for each pass, thus ignoring the shortening of the string from bit-discarding. This
is the number of blocks times the number of passes with this jm times the m syn-
drome bits and one parity bit. Furthermore, Bob does not send the syndrome bits
when parities did match, whereas the estimation always includes the syndrome
bits. This limit gives a rough estimate. I have left out the block number, since
it is not send for all blocks. The number of passes is

∑7
m=3 jm, which is about

ten. The empirical trials shown in Figure 3.5.3 gave about 38,000 transferred bits,
which is lower than my estimate for e = 0.05 shown below.

Summary

Table 4.3.1 shows the estimated number of bits needed to transfer.

Table 4.3.1: Rough estimates of the number of bits transmitted in correction.
Cascade AYHI LDPCC Winnow

Initial bits 4500 32500 21400 -

Bits in one interactive round 2 - - < 22500− < 2800

Number of round trips 9900 - - 8

Total number of bits 24300 32500 21400 < 52700
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Chapter 5

Conclusions and Further
Work

In this thesis, I have performed fairly extensive simulations of four different im-
plemented error-correction protocols intended to work in a free-space Quantum
Key Distribution set-up. The classical channel is intended as an optical transmis-
sion which will work in the same path as the quantum channel. As mentioned
there are three important measures for which the correction protocols have been
tested. They are: length of final secure key, correctional probability and amount
and type of communication required. The length of the final secure key is related
to closeness to Shannon limit in the sense that we reveal as little information as
possible. First I shortly present the results for the four protocols :

The Cascade protocol has been around for a decade and will be used as norm in
the comparison. It performs close to the theoretical Shannon limit, only at most
1.16 bits above. This gives it the longest remaining key of the four protocols.
The cost for this is the very high level of interactive communication due to binary
searches. The correctional probability is good for error rates around three percent
and above. For lower error rates, around one percent, my implementation failed
too many times for Cascade to be considered a good choice.

Yamamura and Ishizuka’s protocol AYHI looked promising in the paper, but
simulations revealed that it is more of a theoretical mathematical result, rather
than a useful error-correction protocol. The problem lies in the low key generation
ratio. The performance depends on chosen block length, but the computations
required for positive number of bits after error correction and privacy amplification
is too large. It has however a low degree of interactivity and high probability
of successful correction. Moreover, we do not need an estimate of ē for error
correction, other than to set a good block length. To save the idea, we need more
powerful computers. If we could use block lengths of a thousand bits, AYHI is an
option to be considered.

The Low Density Parity-Check Code (LDPCC) works very well. Albeit the
implementation does not perform close the Shannon limit, at most 1.5 bits above,
the low amount of interactive communication is very desirable. Given correct
choice of ratio between the dimensions of the sparse matrix, the LDPCC code
also has an high correctional capability. However, the LDPCC is sensitive to
changes in error rate. The other protocols can correct various error rates without
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changing the settings. LDPCC needs new matrices if the error rate suddenly
grows above assumed maximal correctable error rate, emax. There are still some
factors that need to be analyzed further, but LDPCC looks very promising.

Finally, the Winnow protocol, which works as something between LDPCC and
Cascade. It uses blocks and parities as Cascade, but sparse matrices to perform
searches as LDPCC. Since it discards bits to preserve privacy, its performance is
far from the Shannon limit. However, after privacy amplification, it still performs
almost identical to the Cascade protocol. The correctional probability is the best
one of the four protocols. The communication is still interactive, but more of the
one-way type. Alice sends Bob the parities of all her blocks, and Bob responds
with his parities and his syndromes. These are considerably larger packages than
just one information bit. Another benefit with Winnow was that it was easy to
implement and fast in correction.

The conclusion is that Cascade, LDPCC and Winnow all have individual char-
acteristics that makes them good choices for error correction in different situations.

If the foremost desire is to preserve key length, i.e. the quantum channel has
considerably lower capacity then the classical, Cascade is the best option. The
drawback is that we then need a reliable and fast high capacity classical channel.
In an optical fibre setup, the classical channel fill these requirements and thus
Cascade will work well. However, the Cascade protocol’s interactivity will cause
one side to halt in correction whilst the other is calculating. The LDPCC has the
advantage of low interactive communication and fast decoding, since correctional
information can be sent by Alice at the same time as Bob is decoding previous
bits. This makes it good for a continuously running system, such as an optical
fibre communications link. It is possible that all fibre communications in the
future will have a parallel QKD system securing the information.

In the free-space setup between mobile units, we can expect that we need
to preserve as many key bits as possible. The classical communication will have
good capacity whilst operational, but is more unreliably than a fibre channel. The
Winnow protocol will be the best choice here, since we have a good number of key
bits left and controlled communication. Even if it is interactive, the information
is only send at fixed intervals. The LDPCC protocol also has a low amount of
interactivity. The drawback is that the amount of remaining key bits is about
half the amount of Winnow and Cascade for my implementation. LDPCC is also
very sensitive to changes in the error rate. However, there are single matrices pre-
sented which perform very good. Progress in the development of algorithms for
the generation of such matrices is directly applicable on QKD-LDPCC. Therefore
it could outperform the other two protocols with more research. A failure in de-
coding can be saved by sending additional bits forcing interactive communication,
but the total interactive communication will still be less than for Cascade.

All three protocols are dependent of the error rate when choosing parameters.
This makes it important to carefully monitor the error rate and adapt accord-
ingly. The Cascade protocol was shown to be robust to changes of 2%. This will
cause communication between Alice and Bob which this thesis has not focused on
commenting. The aim was the information relevant for correction of two given
binary strings.

Further work consists of two parts, one to perform bigger simulations and finer
testing of the correctional protocols and the other one to actually implement the
protocols into an experimental set-up.
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Over all, larger simulations should be performed to give a firmer statistical
conclusion of the performance of the protocols. The thesis has not focused on op-
timizing the computational performance of the different protocols. The number of
iterations was monitored for AYHI and LDPCC and the simulations ran faster for
Winnow than the other protocols, but otherwise no information was gathered on
memory usage or number of operations. A more careful implementation optimiz-
ing performance for each protocol together with the counting of operations could
reveal new findings. These could lead to different conclusions on which protocol
to use in various scenarios.

An implementation using all four protocols would be interesting to examine.
For example, use LDPCC to correct initial part of the string to estimate the error
rate and still save bits and then adaptively change between protocols to achieve
optimal performance.

The Cascade protocol has a lot of potential in examining how different block
partitioning effects the performance of the protocol. For lower error rates, the
implementation needs more work help the low correctional capability.

The LDPCC protocol needs the most work before it becomes operational.
First it would be advisory to implement it in some faster language, since MAT-
LAB is slow compared with other languages. Some articles propose hardware
implemented matrix-generation algorithms, which would be faster than software
implementations. Furthermore, the design of good matrices is a big research field
on its own. All the results are directly implementable in the QKD error-correction
protocol. The further tests of LDPCC would be to examine the maximal cor-
rectable error-rate as a function of the shape and size of the sparse matrices used.
The goal would be to generate a complete 2D surface for emax. Finally for LD-
PCC, the possibility of Eve being able to achieve successful decoding should be
carefully analyzed. The protocol will be cumbersome if we need to keep the ma-
trices secret. Then we need to sacrifice key bits to generate the next matrix and
share more initial secret data than the bits we need for authentication.

The Winnow protocol should be examined with block lengths larger than
27 and more than five passes with each block length. A better analysis of the
performance of a single Winnow pass could give a better estimate to use when
choosing the number and order of block lengths. The Winnow protocol’s setting
of passes is dependent of the error rate. Sudden changes in the error rate require
changing block lengths. Therefore simulations with wrong choice of passes should
be performed to see how Winnow handles undetected sudden changes in error
rate. Simple testing indicated that settings for higher error rates corrected lower
error rates but with larger amount of discarded key bits.

The four protocols presented in this thesis are of course not the only ones used
in QKD. Many of these are based on the Cascade protocol, but with different
parameters optimized or different techniques instead of binary search. Further
work would be to study these other protocols in the same way as this thesis has
examined its protocols.

Literature gives examples of other ways of privacy amplification. Liu states
that privacy amplification can also be performed with extractors, based on a small
number of truly random bits [16]. Extractors use asymptotically smaller fraction
of bits from the partially secure string. These should also be studied and compared
with performing the privacy amplification step by using Carter and Wegman’s H3

from [11] as described in Section 2.3.3.
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It would be very interesting to fit the correction protocols into an experimen-
tal free-space optical communication channel. The design of good communication
protocols for implemented error-correcting codes is the next step. This can be
done without the quantum channel. Alice and Bob simply agree on a binary bit
string each with expected error rate between them, and use the optical classical
channel to correct it. This protocol should include all steps of key reconcilia-
tion including authentication, validation of key and adaptation to changing error
rate. Once such a system is build, realistic measurements on the communication
required can be made and new conclusions can be drawn.

The next step after this would be to also implement the quantum channel.
I firmly believe that the error-correction protocols will perform equally well on
a simulated binary string with given error rate as one exchanged through the
quantum channel.

Although there are many obstacles to overcome in QKD, the dream of Earth-
Satellite systems with free-space QKD is realistic with enough funding for re-
search. In such a system, more work will surely be done on authentication and
error correction. This thesis has only nibbled at this great field of research!
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Appendix A

Notations

⊕, xor : Exclusive or, xi ⊕ yi = xi + yi (mod 2).
| · | : Absolute value if · is a scalar, number of elements if · is a vector or a

set.
b·c : Highest integer still less or equal to the number ·.
d·e : Lowest integer still greater or equal to the number ·.
w(e) : Hamming weight of e, the number of non-zero elements in e.
d(e1, e2) : Hamming distance, the number elements that differ between e1 and

e2.
nraw : Quantum bits received by Bob.
nsif : Number of bits remaining after sifting.
e : Bit error rate, i.e. number of errors divided by number of bits in

string.
ē : Mean bit error rate.
nmin : The lower Shannon limit on number of bits.
Ntotal : The total number of bits transferred in error correction.
BER : Bit Error Rate.
β : Probability of the error-correction protocol successfully correcting all

errors.
ε̄ : Disturbance parameter.
l : Number of bits leaked in error correction.
k : Number of bits leaked on the quantum channel.
s : Safety parameter in privacy amplification.
r : Length of final key.
u : Length out output from hash function in AYHI.
q : Partitioning length in AYHI.
pdc : Probability of dark count in Bob’s detector.
x, y : Bit strings, usually of same length, often information sent through

some channel.
x, y : Observations of stochastic variables X and Y .
m,n : H ∈ {0, 1}m×n in LDPCC.
m : Parameter determining block length in Winnow protocol.
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A : Alice’s bit string, i.e. Alice’s key.
B : Bob’s bit string, i.e. Bob’s key.
E : Eve’s bit string, i.e. Eve’s guess of A or B.
Ai : Bit i in Alice’s bit string.
Bi : Bit i in Bob’s bit string.
M : Number of trials for each parameter setting in simulation.
R : Key generation ratio, r/nraw.
K : The final secure key.
V : Eves gathered knowledge of e, e(x), f, f(x) and g.
X,Y : Stochastic variables
η : Fraction of key remaining in Winnow.
H : Sparse matrix used in LDPCC.
H3 : A set of hash functions with the universal2-property.
H(X) : Entropy function.
e(x) : Function that models Eve’s eavesdropping, thus giving her k bits of

information.
f(x) : Function that models Eve’s gain from error correction, giving her l

bits of information.
g(x) : Universal2 hash function in privacy amplification.
h(p) : Binary entropy function.
f(A) : A function randomly mapping A to smaller blocks.
I(A; E) : Eve’s mutual information about A given from E.
I(B; E) : Eve’s mutual information about B given from E.
I(A; B) : Bob’s mutual information about A given from B.
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