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1 Introduction

In aeronautic design it is common to use Computational Fluid Dynamics (CFD)
to simulate air flowing around wings, airplanes, or through the inlet and outlet
of the propulsion units. CFD simulations have a lower cost than traditional
experiments, which enables to carry out studies requiring many simulations
such as parameter optimization. In aerodynamic shape optimization, the goal
is to improve an indicator of the aerodynamic performance of the design given
by a set of parameters. The improvement is measured by the reduction of a
cost function, which, typically, is an expression based on the drag, the lift, and
the moment coefficients [8, 10, 16, 18, 17, 2].

The minimization of the cost function by a gradient-based algorithm, which
is an efficient approach, still requires many function and gradient evalua-
tions [19]. In aerodynamic applications, each function evaluation requires a
CFD solution on a different design, which involves different CFD meshes. De-
forming the mesh is an efficient alternative to re-meshing and it enables to
build a smooth mapping from the design parameters to the cost function. In
aerodynamic shape optimization, we identify two main approaches of the mesh
deformation. The first is to use an interpolation algorithm, which may easily be
devised in the case of structured meshes, for example by displacing the nodes
along grid lines [8, 18, 17]. The second approach, suitable for unstructured
or hybrid meshes, is to use a mesh smoother, also called Laplace smooth-
ing [10, 16, 2]. This last technique involves solving large systems of equations.
This report proposes an alternative technique of mesh deformation that can be
used on arbitrary meshes and that reduces the computational cost.

The new algorithm is an interpolation method. It is derived from a problem
of interpolation presented in Section 2.1. By requiring that the interpolating
function is translation and rotation invariant, and linear in the displacements,
a representation formula is derived (Theorem 2.1.2). Combined with radial
basis functions, in Section 2.2, this yields the required mesh deformation al-
gorithm. It turns out that this is the same expansion as used by Beckert and
Wendland [5] for aeroelastic applications. They required that all first order
polynomials should to be interpolated exactly which leads to translation and
rotation invariance. The method is tested in 2D and 3D in Section 2.3.

Our purpose is to apply this method in aerodynamic shape optimization
and, in coming studies, for aeroelastic calculations. Section 3 details an exam-
ple of optimization of the ONERA M6 wing with the purpose to minimize a
cost function that depends on the CFD solution and on the design of the wing.
The particularity of this application, in contrast to aeroelasticity, is that the
mapping defined by the mesh deformation algorithm is involved at two stages
in the calculations. In the forward mode, when the cost function is evaluated
for a new design, the mapping deforms the mesh for a given deformation of the
wing, as explained in Section 3.1. In the backward mode, the Jacobian of the
mapping is used to calculate the gradient of the cost function with respect to
the parameters of design. Section 3.4 details the calculation of gradients of a
cost function.

1
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The performances of the mesh mapping, with respect to the computational
cost, is investigated in Section 4.1. The results of optimization of the ON-
ERA M6 wing are given in Section 4.2. In Section 4.3 we analyze the per-
formances of the mesh mapping, with respect to mesh qualities and to the
interpolation error.

2



FOI-R--1784--SE

2 Interpolation scheme for mesh deformation

In this paper we take an abstract approach to define the mesh deformation. The
idea is to construct an interpolant of the displacements of some boundary nodes,
in a CFD mesh, in such a way that it extrapolates those displacements into the
entire domain of the CFD mesh, with some constraints. The presentation of
the abstract problem stresses the connection to aeroelastic interpolation since
the two problems set common requirements.

2.1 Geometric interpolation problem

The following geometric interpolation/extrapolation problem is of relevance for
both the aeroelastic interpolation problem and mesh deformations.

Problem 2.1.1. Assume that we have a deformable structure Ω with rest
state/position Ω0. There are a number of control points {Pk}k∈VP

with coor-
dinates {xk}k∈VP

in Ω, where VP is the set of control nodes indexes. In the
rest position, the point Pk has the coordinates x0

k. Given that the points Pk

have coordinates xk, k ∈ VP , compute an approximation of the coordinates x

to a point P which in the rest state has the coordinates x0.

In the sections relative to mesh deformation VP is a subset of the mesh
nodes, therefore, it is convenient to use the following notations:

N = |VP | , and , VP = {ki}1≤i≤N .

The approximation of the coordinates of P depends on x0, {xki
}N

i=1 and
{x0

ki
}N

i=1

x = G
(
x

0, {xki
}N

i=1, {x0
ki
}N

i=1}
)
.

We will call the function G the geometric interpolation function.
For applications in aeroelasticity, Ω might be a wing of an aircraft and the

control points are nodes of the grid used for the Computational Structural
Mechanics (CSM) analysis. In this context, the geometric interpolation func-
tion is used to calculate the displacements of the points on the wing from the
displacements given by the CSM calculations at the control points. For mesh
deformation, the control points would be nodes, of the CFD grid, that are on
the wing. In this other context, the geometric interpolation function is used
to calculate the displacements of all the nodes in the CFD mesh. In all ap-
plications of this method, if x0 is within the convex hull of the control points
then the coordinate vector of P is interpolated, otherwise it is extrapolated.
As the mesh deformation is used here for aerodynamic shape optimization,
and because we use a gradient-based algorithm, we impose that the geometric
interpolation function is differentiable with respect to the displacements of the
control points.

We require that the geometric interpolation function satisfies the following
four conditions.

3
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1. If P is one of the control points, then the interpolation condition should
be satisfied

xki
= G

(
x

0
ki

, {xki
}N

i=1, {x0
ki
}N

i=1}
)
, ∀k ∈ VP . (2.1)

2. For all translation operators Tα, Tαx = x + α, and x
0 ∈ R

3, we have

TαG
(
x

0, {xki
}N

i=1, {x0
ki
}N

i=1}
)

= G
(
x

0, {Tαxki
}N

i=1, {x0
ki
}N

i=1}
)
. (2.2)

3. For all rotation operators R and x0 ∈ R
3, we have

RG
(
x

0, {xki
}N

i=1, {x0
ki
}N

i=1}
)

= G
(
x

0, {Rxki
}N

i=1, {x0
ki
}N

i=1}
)
. (2.3)

4. The displacement of any point should depend linearly on the displacement
of the control points.

Condition 1 states that G is an interpolant. Conditions 2 and 3 impose
that the interpolation method is invariant with respect to rigid motions. In
aeroelastic applications, the three first conditions guarantee the conservation
of virtual work, total load and total momentum, when the displacements are
transferred from the CSM grid to the CFD grid. Condition 4 limits in a natu-
ral way the space of possible interpolation functions. Most existing aeroelastic
interpolation methods satisfy condition 4. One exception is the CVT method
(constant volume tetrahedra) of L. Goura [12] which satisfies the conditions 1
to 3 but is non-linear in the displacements. For an overview of existing meth-
ods we refer to [14]. The program SPIVOL, developed by EADS-CASA, uses
volume splines for interpolation and satisfies these conditions [21]. We argue
that for mesh deformation it is also natural to require invariance under rigid
motions since these mappings preserves the qualitative properties of the mesh.
For convenience, we introduce the displacement vectors for the coordinates

v = x − x
0, (2.4)

vki
= xki

− x
0
ki

, 1 ≤ i ≤ N. (2.5)

The linearity condition can be written

v = G
(
x

0, {xki
}N

i=1, {x0
ki
}N

i=1}
)
−x

0 =

N∑

i=1

Ai(x
0)
(
xki

− x
0
ki

)
=

N∑

i=1

Ai(x
0)vki

.

(2.6)
The following theorem gives a representation formula for all the geometric

interpolation function which satisfy conditions 1 to 4.

THEOREM 2.1.2. The geometric interpolation function satisfies the condi-
tions 1 to 4 if and only if it has the following representation in three dimensions

x = x
0 +

N∑

i=1

ai(x
0)
(
xki

− x
0
ki

)
= x

0 +
N∑

i=1

ai(x
0)vki

, (2.7)

where ai : Ω0 → R are scalar valued functions defined on Ω0 that satisfy

N∑

i=1

ai(x
0) = 1 (2.8)

and

x
0 =

N∑

i=1

ai(x
0)x0

ki
. (2.9)

4
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Radial basis function φ(r)

Spline type (Rn) |r|n, n odd
Thin Plate Spline (TPSn) |r|n log |r|, n even

Multiquadric (MQ)
√

1 + r2

Inverse multiquadric (IMQ) 1√
1+r2

Inverse quadratic (IQ) 1
1+r2

Gaussian (GS) e−r2

Table 2.1: Common radial basis functions.

In particular, the coordinate vectors {x0
ki
}N

i=1 cannot be contained in any plane.
Moreover, the equations 2.8) and (2.9) together are equivalent to that

q(x0) =

N∑

i=1

ai(x
0)q(x0

ki
)

holds for all first degree polynomials q; that is, all first degree polynomials are
interpolated exactly.

In two dimensions, the scalar valued functions ai should be replaced by scalar
valued functions times a rotation matrix. Otherwise the theorem holds if the
equations are modified appropriately, that is, 1 in (2.8) should be replaced by
the identity matrix.

A proof is given in Appendix A. Due to (2.9), the representation (2.7) can
also be written

x =
N∑

i=1

ai(x
0)xki

.

2.2 Realization based on Radial Basis Functions

To obtain a geometric interpolation function that fulfills the conditions 1 to 4
above, we will apply radial basis functions interpolation for the displacements.
We begin with a review of some results on radial basis functions.

Radial basis functions provide a very general and flexible way of interpola-
tion in multi-dimensional spaces, even for unstructured data where it is often
impossible to apply polynomial or spline interpolation. Because of its good
approximation properties and ease of implementation, the method is a popular
choice in many different areas, ranging from statistics to the approximation of
partial differential equations, see for example [6] and the books [7] and [25].

According to Theorem 2.1.2, all first degree polynomials must be exactly
interpolated in order to satisfy conditions 1 to 4. Therefore, we need to consider
RBF expansions that satisfy this condition.

Suppose that g is the function to be interpolated at the set XP = {xki
}N

i=1

of data points, all in R
d. Let φ be a function defined on the positive real axis.

The interpolation space then consists of all functions of the form

s(x) =

N∑

l=1

γlφ(‖x − xl‖) + h(x), (2.10)

for coefficients γl ∈ R and first degree polynomials h. Here ‖ · ‖ denotes
the standard Euclidean norm. In many cases it is appropriate to scale the

5
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basis function with a so-called shape parameter ε. The basis function is then
replaced by φε(r) = φ(εr). For mesh deformation we need three interpolating
functions, one for each coordinate direction. The data points are sometimes
called centers, and the basis functions are radial around these centers. The
coefficients γγγ = (γ1, . . . , γN )T and the polynomial are then chosen so that s
interpolates g exactly at the data points

s(xki
) = g(xki

), 1 ≤ i ≤ N,

and γγγ must also be so that

0 =
N∑

i=1

γiq(xki
)

for all first degree polynomials q. This leads to a linear equation system for the
coefficients γγγ and the coefficients for the polynomial. If φ is one of the basis
function given in Table 2.1, then this system is non-singular, which implies
that a unique solution exists.

This linear equation system for the coefficient vectors γγγ and βββ takes the
form (

M P

PT 0

)(
γγγ
βββ

)
=

(
g

0

)
, (2.11)

where M is the interpolation matrix

Mij = φ(‖xki
− xkj

‖), 1 ≤ i, j ≤ N.

and P is the matrix defined by constraint to interpolate all first degree poly-
nomials exactly

P =




1 x0
k1

y0
k1

z0
k1

1 x0
k2

y0
k2

z0
k2

...
...

...
...

1 x0
kN

y0
kN

z0
kN


 . (2.12)

Here we have introduced the vectors g = {g(xki
)}N

i=1, and βββ is the vector of
coefficients for the polynomial h. Given that the interpolation matrix M is
invertible (as it is for many RBFs), we can solve for γγγ and βββ to obtain

γγγ = M−1g − M−1PMPPT M−1g (2.13)

and
βββ = MPPTM−1g, (2.14)

where
MP =

(
PT M−1P

)−1
.

Finally, the polynomial h in (2.10) becomes

h(x) = β1 + β2x + β3y + β4z,

where x = (x, y, z)T .
Now we apply this type of approximation to the displacements vx, vy , and

vz in each coordinate direction

vx = sx(x) =

N∑

i=1

γx
i φ(‖x − xki

‖) + βx
1 + βx

2 x + βx
3 y + βx

4 z,

vy = sy(x) =

N∑

i=1

γy
i φ(‖x − xki

‖) + βy
1 + βy

2x + βy
3y + βy

4z,

vx = sz(x) =
N∑

i=1

γz
i φ(‖x − xki

‖) + βz
1 + βz

2x + βz
3y + βz

4z,

6
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Figure 2.1: The undeformed domain together with its control points are shown to the
upper left. The upper right figure shows the deformation due to a random deflection of
the control points. The lower left and lower right figure show the deformation resulting
from sinusoidal and quadratic deflections, respectively.
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Figure 2.2: Deformation around a two dimensional airfoil. The right figure shows the
mesh after quadratic deflection of the control points on the surface

where the set of coefficients satisfy (2.11).
Clearly, the coefficients depend linearly on the displacements. Thus, ac-

cording to Theorem 2.1.2, the conditions 1 to 4 are satisfied. However, here
the linear dependence between the displacements of the control points and an
arbitrary point is implicit through the coefficients γγγ and βββ. If needed, it is not
hard to derive explicit formulas for the coefficient vector a(x0).

2.3 Simple test cases

To illustrate the method, two simple two-dimensional examples of mesh defor-
mation have been simulated in MATLAB

TM .
The result of the first test is shown in Figure 2.1. Here the control points

7
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lie on the outer boundary of a 3-unit-long and 1-unit-wide rectangle. The
test is performed with the inverse multiquadric basis function with the shape
parameter equal to 1. Although the deformation for all points outside the
structure is extrapolated rather then interpolated, the deformation is, in all
cases, very regular throughout the external mesh. A possible interpretation
is that the constraint to interpolate all first degree polynomials exactly has
a stabilizing effect. This is promising for applications to mesh deformation
where it is important to preserve the properties of the original mesh in order
to obtain good computational results. A slightly more complicated case is
shown in Figure 2.2.

8



FOI-R--1784--SE

3 Optimization of a wing

In this section we describe how the the mesh deformation algorithm defined
earlier is used in the optimization of the ONERA M6 wing, described in the
AGARD report [22], at Mach number M = 0.8395 and angle of attack α =
3.06◦. The numerical results are given in Section 4. The flow is modelled by
the Euler equations of gas dynamics.

The cost function J is designed in order to reduce the pressure drag, and
in addition penalize changes in the coefficients of lift and pitching moment:

J = λDCD +
1

2
λL

(
CL − C0

L

)2
+

1

2
λM

(
CM − C0

M

)2
, (3.1)

where superscript 0 denotes values at initial design. The coefficients of drag
(CD), lift (CL), and pitching moment (CM ), are calculated from the pressure
at nodes i, denoted pi, on the wing (i ∈ V(∂Ωw)):

CD =
∑

i ∈ V(∂Ωw)

pini · dD

1
2ρ∞u2∞Sref

,

CL =
∑

i ∈ V(∂Ωw)

pini · dL

1
2ρ∞u2∞Sref

,

CM =
∑

i ∈ V(∂Ωw)

pidM ·
(
xi − Oref.

)
× ni

1
2ρ∞u2∞SrefLref

.

(3.2)

Here, dD is a unit vector in the direction of the farfield velocity u∞, dL is a
unit vector orthogonal to dD such that CL is positive for lifting pressure forces,
and dM is a unit vector orthogonal to dD and dL. Other notations are ρ∞,
the density in the farfield, Sref a reference area of the wing, Lref a reference
length of the wing, Oref the reference center of rotation for the calculation of
the moments, xi the vector of coordinates of node i, and ni the normal surface
vector at node i.

The parameterization, given appendix B, is also used in [2]. It parameterizes
the wing in terms of twist, camber and thicknesses distributions. The mesh is
deformed by the RBF algorithm presented in Section 2.2 with additional treat-
ments at the symmetry and far-field boundaries, explained in Section 3.1. The
discretized Euler equations are presented in Section 3.2. The adjoint method
is used to compute the gradient of the cost function with respect to the design
parameters. In contrast to perturbation methods such as finite differences, the
cost of the adjoint method is independent from the number of design variables.
For a presentation of this approach we refer to [2, 20, 11, 13]. The adjoint equa-
tions are presented in discretized form in Section 3.3, and Section 3.4 details
the calculation of the gradient with respect to the design parameters.

9
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Figure 3.1: Euler mesh on the ONERA M6 wing.

3.1 Constrained mesh deformation

The symmetry boundary is at the root of the wing y = 0, see Figure 3.1. It is
required that all points in the symmetry boundary (y = 0) must stay in this
plane for all allowed deformations. Moreover, we shall impose the constraint
that the points on the far-field boundaries are fixed. The latter constraint
is easily implemented using a suitable cut-off function. This implies that the
translation and rotation invariance are lost in the farfield.

We assume that the deformation of the control points is such that

∆yk

y0
k

is bounded. This means that the deformation in the y-coordinate of the con-
trol points is controlled by its distance to the plane y = 0. To describe the
interpolation of the deformation in the y direction we define the function

κ(y, α) = 1 − exp(−αy). (3.3)

Clearly, κ(y, α) ≈ y for small y and κ(y, α) ≈ 1 for large values (everything
relative α which defines the scale of the problem).

According to our assumptions, the quantities

ηk =
∆yk

κ(y0
k, α)

are bounded. Let sη be a RBF approximation of this function as described in
Section 2.2. Then

s∆y(x) = κ(y, α)sη(x)

gives a deformation in the y-coordinate which leaves all points in the plane
y = 0 fixed and interpolates the deformation at all control points. To complete
the deformation, we choose a smooth cut-off function ω which is identically

10
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n

i

i

iS

S
ij

i

j

nij

Figure 3.2: The dual grid control surfaces and associated surface normals, on the boundary
(left) and in a volume element (right). nij is the surface normal of Sij = Vi

T

Vj (partially
represented), and ni is the surface normal of Si (partially represented), the intersection
of Vi with the boundary ∂Ω.

1 in a neighborhood of the wing and decays smoothly to zero at the far field
boundaries. If s∆x and s∆z are the deformations in the x and z coordinate,
respectively, and s = (s∆x, s∆y, s∆z)

T then the function

x = x
0 + ω(x0)s(x0)

fulfills all imposed conditions for the mesh deformation.

3.2 Flow equations discretized in Edge

The program Edge [9, 23] solves a node-centered and edge-based finite-volume
approximation of the system of compressible Euler or Reynolds Averaged Navier
Stokes equations. The use of edge-based data is particularly efficient when us-
ing unstructured meshes. The discretization is based on the median dual grid
as depicted in Figure 3.2. For an introduction to this type of discretization, we
refer to Barth [4].

The Euler equations express the conservation of the mass, momentum and
total energy densities. The vector field of the conserved flow variables is de-
noted w = [ρ,m, E]

T
. In the finite volume method, a bounded region Ω of the

flow domain is discretized by control volumes Vi (see Figure 3.2), i ∈ V(Ω),
with V(Ω) the set of the nodes indexes in Ω. The finite-volume approximation
used here reduces the conservation equations, applied to each control volume
Vi, to a system of ordinary differential equations (ODEs) involving only the
values of the conserved flow variables at the mesh nodes. The system of ODEs
reads:

Vi

dwi

dt
+ Ri = 0, ∀i ∈ V(Ω) , (3.4)

where wi approximates the exact conservative variables at node i, that is w (xi)

wi = [ρi, mi, Ei]
T , where mi = ρiui . (3.5)

For a given node i in the domain Ω, the vector Ri, in (3.4), sums up the

11
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numerical fluxes through the boundaries of Vi:

Ri =
∑

j∈Ni

(nij · fij + dij) ∀i ∈ V(Ω) ,

Ri =
∑

j∈Ni

(nij · fij + dij) + ni · fbc
i ∀i ∈ V(∂Ω) ,

(3.6)

where Ni is the set of nodes connected to i with an edge ~ij. The numerical
flux through the control surface Sij of volume Vi (Figure 3.2) is the sum of
an advection flux (nij · fij), fluxes implementing the boundary conditions (ni ·
fbc
i ), and artificial dissipation (dij). In a central scheme approximation, the

convection flux density of the conserved variables through the control surface
Vij is supposed constant and replaced by

fij = (fi + fj) /2 (3.7)

where

fi = f (wi) , and f = [m , (m ⊗ m) /ρ + Ip , m (E + p) /ρ]
T

. (3.8)

In expression (3.8), the pressure p is calculated assuming an ideal fluid and the
law of perfect gas:

p = (γ − 1)

(
E − 1

2

m
2

ρ

)
. (3.9)

Integration of the flux density fij through the surface Vij is then obtained
by the dot products nij · fij where nij is the surface normal associated with
Vij . The artificial dissipation flux dij is a blend of second- and fourth-order
differences [15].

An impermeability boundary condition (ui ·ni = 0) is applied on wall and
symmetry boundaries yielding the boundary fluxes

fbc
i = [0 , Ipi , 0]

T
. (3.10)

On a farfield boundary the fluxes (3.8) are computed using the characteristic
primitive variables (vc) based on either the farfield data (v∞), for incoming
characteristics, or, the flow data at the previous time step (vi), for outgoing
characteristics. It is expressed in [9] as:

vc
i (n̂i) = L (n̂i,v∞)H (λi)L

−1 (n̂i,v∞)vi

+ L (n̂i,v∞) (I − H (λi))L
−1 (n̂i,v∞)v∞ ,

(3.11)

where L (n̂i,v∞) is a matrix of right eigenvectors that diagonalizes the Jaco-
bian matrix of the flux in primitive variables along the outward-directed unit
normal n̂i, H (λi) is a diagonal matrix whose diagonal is 0 for negative eigen-
values and 1 for positive ones, and I is the identity matrix. The boundary flux
takes the form

fbc
i = f (vc

i (n̂i)) . (3.12)

Convergence of (3.4) to steady state is accelerated by local time stepping
and agglomeration multigrid. We will use the following notations for the set of
all the surface normals associated with the control volumes of the dual mesh:

nh =
[
{ni}i∈V(Ω) , {nij}~ij∈E(Ω)

]
, and nh ≡ nh (Xh) . (3.13)

The definition of the surface normals, ni and nij , is based on the coordinates of
the centroids of the elements and of the element surfaces, and on the coordinates
of the mid-points of the edges ij. Recalling that Xh is the vector of the nodal
coordinates, we denote by nh (Xh), in (3.13), that the set nh depends on the
coordinate of the nodes. For the definitions of ni and nij we refer to [4, 1, 2].

12
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3.3 Adjoint of the flow equations in Edge

The adjoint of the discretized Euler equations, (3.4)–(3.12) in steady state and
including boundary conditions, are also solved by time marching of a system
of ODEs:

Vi

dw∗
i

dt
+ R∗

i = 0 ∀i ∈ V(Ω) , (3.14)

until steady state. The complete derivation based on discrete sensitivities can
be found in [1, 2] . The following gives expression for the numerical fluxes in
the adjoint equation (3.14):

R∗
i =

∑

j∈Ni

[
∂(fi · nij)

∂wi

]T
(
w∗

i − w∗
j

)

2
+
∑

j∈Ni

d∗
ij ∀i ∈ V(Ω) ,

R∗
i =

∑

j∈Ni

[
∂(fi · nij)

∂wi

]T
(
w∗

i − w∗
j

)

2
+
∑

j∈Ni

d∗
ij

+

[
∂(fbc

i · ni)

∂wi

]T

w∗
i ∀i ∈ V(∂Ω) , i /∈ V(∂Ωw) ,

R∗
i =

∑

j∈Ni

[
∂(fi · nij)

∂wi

]T
(
w∗

i − w∗
j

)

2
+
∑

j∈Ni

d∗
ij

+

[
∂(fbc

i · ni)

∂wi

]T

w∗
i − ∂J

∂wi

∀i ∈ V(∂Ωw) ,

(3.15)

where V(∂Ωw) is the set of nodes at which the cost function J is evaluated given
by (3.1), and expressions of the Jacobian matrices are detailed in [1, 2]. The
partial derivatives of the cost function at each node in V(∂Ωw), with respect to
the flow solution, are directly obtained from the expressions (3.1)-(3.2). The
artificial dissipation flux d∗

ij uses the stencil of dij , in the flow equations, but
applied to the adjoint flow w∗ and with artificial viscosities computed for the
flow solution w. The Jacobian of the farfield boundary fluxes is given by:

∂(fbc
i · ni)

∂wi

=
∂ (fi · ni)

∂vi

L (n̂i,v∞)H (λi)L
−1 (n̂i,v∞)

dvi

dwi

. (3.16)

The Jacobian of the Euler wall flux function is

∂
(
fbc
i · ni

)

∂wi

= (γ − 1)

[
1

2
|ui|2 , −ui , 1

]T

. (3.17)

3.4 Computation of gradients

Gradient with respect to the dual and primal grid data

Given an arbitrary variation of the dual mesh data nh (3.13), and neglecting
the effect of the artificial viscosity, the first variation of the cost function (3.1)
can be expressed in terms of the solution to the adjoint equations (3.14)-(3.17),
and of the numerical fluxes of the Euler equations (3.7)-(3.12):

δJ = −
∑

~ij∈E(Ω)

(
w∗

i − w∗
j

)T
fij · δnij −

∑

i∈V(∂Ωh)

w∗
i

T
fbc
i · δni +

∂J

∂nh

δnh . (3.18)

The proof can be found in [1, 2]. The notations δnij and δni, in (3.18) are
the variations of the surface normals, and δnh denotes the vector of all those
variations.

13
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Observing that the objective function (3.1)-(3.2) depends explicitly on the
normal vectors ni, where i is the index of a node on the boundary, expres-
sion (3.18) gives the gradient of J with respect to the dual data, denoted ∇Jn:

• for all edges ~ij

(∇Jn)
T
ij = −

(
w∗

i − w∗
j

)T
fij , (3.19)

• for all node i on a boundary, not on the wing:

(∇Jn)
T
i = −w∗

i
T
fbc
i , (3.20)

• for all node i on the wing (where J is evaluated):

(∇Jn)T
i = −w∗

i
T
fbc
i +

∂J

∂ni

, (3.21)

The partial derivatives in (3.21) are directly obtained from the expression of J
and of the aerodynamic coefficients (3.2). Details can be found in [2].

Denoting by Nh the number of mesh nodes, that is |V(Ω)|, the gradient
∇JX is the Nh-by-d vector whose entries are the partial derivatives of J with
respect to the nodal coordinates

(∇JX)i,1 =
∂J

∂xi

,

(∇JX)i,2 =
∂J

∂yi

,

(∇JX)i,3 =
∂J

∂zi

.

Recalling that the data nh depend on Xh, the set of coordinates of all the
nodes in the CFD mesh, the gradient of J with respect to the mesh coordinates,
denoted ∇JX , is calculated from (3.19)-(3.21) using the chain rule:

∇JX =

(
dnh

dXh

)T

∇Jn +

(
∂J

∂Xh

)T

. (3.22)

For a detailed algorithm to calculate ∇JX we refer to [1, 2].

Gradient with respect to the control points

Given ∇JX , we calculate the gradient ∇JP of the cost function J with respect
to the control points Pk introduced in Section 2.1.

First, the derivatives with respect to the coefficients λλλ and βββ in the RBF-
expansion are computed using the chain rule. Since the expansions in the x,
y and z directions are independent, the computation of the derivatives in the
different directions are independent as well.

The following expansions are valid for the x, y and z coordinate, respec-
tively:

x = x0 +

N+4∑

i=1

λx
i ϕi

(
x

0
)
,

y = y0 + κ(y0, α)
N+4∑

i=1

λy
i ϕi

(
x

0
)
,

z = z0 +

N+4∑

i=1

λz
i ϕi

(
x

0
)
,

14
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where κ(y0, α) is given by (3.3) and we have introduced the notation

ϕi(x
0) =





ω(x0)φ
(
‖x0 − x0

ki
‖
)
, i = 1, . . . , N

ω(x0), i = N + 1,
x0ω(x0), i = N + 2,
y0ω(x0), i = N + 3,
z0ω(x0), i = N + 4,

and λx,y,z
N+i = βx,y,z

i for i = 1, 2, 3, 4, so all coefficients, in each direction, are
gathered in one long vector, e.g. λλλx ,λλλy ,λλλz . We can now differentiate the cost
function with respect to λλλ

∂J

∂λx
i

=

Nh∑

k=0

∂J

∂xk

∂xk

∂λx
i

=

Nh∑

k=0

∂J

∂xk

ϕi

(
x

0
k

)
,

∂J

∂λy
i

=

Nh∑

k=0

∂J

∂yk

∂yk

∂λy
i

=

Nh∑

k=0

∂J

∂yk

κ(y0
k, α)ϕi

(
x

0
k

)
,

∂J

∂λz
i

=

Nh∑

k=0

∂J

∂zk

∂zk

∂λz
i

=

Nh∑

k=0

∂J

∂zk

ϕi

(
x

0
k

)
.

Second, we compute, also by the chain rule, the derivatives of J with respect
to the deflections of the control points vk, defined in §2.1. Using the usual
notations, vx ,vy ,vz denote the vectors of all control points displacements in
each of the directions x , y , z.

Denoting by M̃ the 2-by-2 block matrix (2.11), we have the relation

M̃
(

λλλx λλλy λλλz
)

=

(
vx ṽy vz

0 0 0

)

so (
λλλx λλλy λλλz

)
= M̃−1

(
vx ṽy vz

0 0 0

)

which yields

∂λx
j

∂vx
ki

=
∂λy

j

∂ṽy
ki

=
∂λz

j

∂vz
ki

= M̃−1
ji for 1 ≤ i ≤ N and 1 ≤ j ≤ N + 4.

Here ṽy
ki

is defined by

ṽy
ki

=
vy

ki

κ(y0
ki

, α)
.

Therefore
∂ṽy

ki

∂vy
ki

=
1

κ(y0
ki

, α)
.

The derivatives with respect to the displacements of the control points vk, de-
fined by (2.5), are the derivatives with respect to the control points coordinates
xk, that is, for 1 ≤ i ≤ N :

(∇JP )x
ki

=
∂J

∂xki

=
N+4∑

j=0

∂J

∂λx
j

∂λx
j

∂xki

=
N+4∑

j=0

∂J

∂λx
j

M̃−1
ji , (3.23)

(∇JP )
y
ki

=
∂J

∂yki

=

N+4∑

j=0

∂J

∂λy
j

∂λy
j

∂ṽy
ki

∂ṽy
ki

∂yki

=

N+4∑

j=0

∂J

∂λx
j

M̃−1
ji

κ(y0
ki

, α)
, (3.24)

(∇JP )
z
ki

=
∂J

∂zki

=

N+4∑

j=0

∂J

∂λz
j

∂λz
j

∂zki

=

N+4∑

j=0

∂J

∂λz
j

M̃−1
ji . (3.25)
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Gradient with respect to the design parameters

Given the gradient with respect to the control points (3.25), we calculate here
the gradient ∇J with respect to the variables of optimization in (B.1), the
parameters

[
cn,i, θn,i, d

+
n,i, d

−
n,i

]
1≤i≤n+1

. It is obtained by the chain rule:

(∇J)cn,i
=
∑

k∈VP

(
∂xnew

k

∂cn,i

)
· (∇JP )k ,

(∇J)θn,i
=
∑

k∈VP

(
∂xnew

k

∂θn,i

)
· (∇JP )k ,

(∇J)d+

n,i
=
∑

k∈VP

(
∂xnew

k

∂d+
n,i

)
· (∇JP )k ,

(∇J)d−

n,i
=
∑

k∈VP

(
∂xnew

k

∂d−n,i

)
· (∇JP )k ,

(3.26)

where the sum is over all the control points (VP ) and the coordinates xnew
k of

those points are calculated by (B.1)-(B.5). For this particular parameterization,
the partial derivatives of the coordinates vectors xnew

k with respect to the design
parameters are obtained at a cost that is negligible in regard to the mesh
deformation, using a perturbation technique. The present technique involves
complex arithmetic [24], which avoids the round-off errors of divided differences
methods.
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4 Numerical applications

An important feature of the method presented here is that it allows to lower
the CPU time per deformed mesh, which is confirmed by the tests carried out
in 3D in Section 4.1. In Section 4.2 we analyse the optimized designs obtained
by shape optimization. The differences with the results obtained in [2] come
from the different mesh deformation algorithms. Moreover, the method used
here involves an approximation of the geometry of the parameterized design.
These differences are analysed, numerically, in Section 4.3.

4.1 Efficiency

We compare the RBF method for deforming meshes with a Laplace smoother
(DL) as in [2].

The tests are carried out on two unstructured meshes around the M6-wing.
The ’Euler mesh’ is suitable for inviscid flows calculations and contains about
136000 nodes, in 736000 tetrahedral elements. The wing itself is represented
in this mesh by approximately 16000 points. The ’Navier-Stokes mesh’ is gen-
erated for viscous calculations, and it has about 1 million nodes in 3 millions
tetrahedral and prismatic elements. About 19000 points describe the wing in
this last mesh. The results of the tests are presented in two tables. Table 4.1
summarizes the calculations on the Euler mesh, and Table 4.2 shows the results
on the Navier-Stokes mesh.

The computational times (CPU) are measured in seconds. The gradient
calculation involving the RBF method has been detailed in Section 3.4. In the
case of the Laplace smoothing the gradient computation is detailed in [2]. In
contrast with the RBF method, the DL method requires to solve a large sparse
linear system of equations in each of the directions x , y , z. These equations are
solved here by a diagonal preconditioned conjugate gradient (PCG) [3]. The
CPU times for solving the smoothing equations vary greatly with the tolerance
which decides on the convergence of the conjugate gradient methods. This is
the reason why we indicated, for all results the time for two tolerances (see the
tables). The choice of the tolerances influences the error on the displacement

’Euler mesh’
CPU time (s) DL (PCG) RBF (2166) RBF (1378) RBF (730)

Inverting matrix 0 34 9 3
Deformation (x,y,z) 66 (36) 17 9 4

Gradient 63 (33) 44 14 4

Table 4.1: CPU time in seconds for the calculation of deformed Euler meshes and gra-
dients, for the Laplace smoother (DL), and the RBF method with the inverse quadratic
(IQ) basis function. The number of control points in the RBF method are in parentheses.
The numbers in parentheses are for TOL=10−7, otherwise TOL=10−14.
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’Navier-Stokes mesh’
CPU time (s) DL (PCG) RBF (3602) RBF (1379) RBF (653)

Inverting matrix 0 173 9 1
Deformation (x,y,z) 1275 (515) 123 35 17

Table 4.2: CPU time in seconds for the calculation of deformed Navier-Stokes meshes,
for the Laplace smoother (DL), and the RBF method with the inverse quadratic (IQ)
basis function. The number of control points in the RBF method are in parentheses. The
numbers in parentheses are for TOL=10−7, otherwise TOL=10−14.

of the nodes in the interior of the domain. The maximum distance between
the deformed meshes indicates this error:

||Xh(TOL = 10−14) − Xh(TOL = 10−7)||∞ = 8 × 10−9 ,

||Xh(TOL = 10−14) − Xh(TOL = 10−3)||∞ = 2 × 10−4 .

A tolerance of 10−3 would not be sufficient for deforming meshes for viscous
calculations and may produce an additional error when calculating gradients
in shape optimization.

Finally, for the deformation of the Euler mesh (Table 4.1), the factor be-
tween the CPU times varies from 2 to 15, in favor of the RBF method, de-
pending on the number of control points (RBF method) and the tolerance (DL
method). This factor is between 4 and 75, when deforming the Navier-Stokes
mesh (Table 4.2), in favor of the RBF method. The differences in CPU times
between the tests on the Euler mesh and the test on the Navier-Stokes mesh
is likely to be observed for other meshes of the same types independently from
the geometries. Indeed, the numerical solution of elliptic equations, like the
ones solved for the DL method, is known to be penalized on highly stretched
meshes like the meshes for viscous calculations, whereas this does not affect
the RBF method.

4.2 Optimization of the ONERA M6 wing

The minimization of the cost function (3.1) aims to produce a design with
a lower pressure drag while keeping the lift and pitching moment coefficients
constant, at the prescribed Mach number and angle of attack, see Section 3.
The values obtained for these functionals before and after optimization are
given in Table 4.3 for various parameterizations (varying n in (B.1)). The
optimizations carried out here are denoted ’RBF’ and the results obtained
in reference [2], where a Laplace smoothing is used to deform the mesh, are
denoted ’DL’. The control points are chosen according to the rules 1 to 4 in
Section 4.3 with d = 0.47. The basis function in the calculation was the inverse
quadratic (IQ) basis function with relative shape parameter εrel = 0.3, and the
parameter α defined in (3.3) was set to 1.0. In this case this parameter had no
effect since there were no deformation in the y direction.

Figures 4.1 and 4.2 represent the pressure coefficients (Cp) calculated on
the designs obtained here by optimization (’RBF’) for n = 1 and n = 6, and
on the initial design of the M6 wing. These are interpolated data on cutting
planes which location is indicated in % of wingspan, where 0 is at the root and
100 is at the tip.

The reduction of the drag is achieved in all cases by a weakening of the
shocks and of the lift-induced drag. In Figure 4.1 we observe that the shock
waves are smoothened at all positions on the wing for both parameterizations
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C0
D = 144 C0

L = 0.331 C0
M = 0.113 J0 = 0.0144

104.∆CD ∆CL/C0
L ∆CM/C0

M ∆J/J0

RBF-1s −30 −1.382E − 02 3.133E − 03 −1.934E − 01
RBF-3s −33 −9.597E − 03 6.429E − 04 −2.240E − 01
RBF-6s −33 −9.466E − 03 5.196E − 04 −2.256E − 01

DL-1s −30 −1.633E − 02 1.376E − 03 −1.927E − 01
DL-3s −31 −8.430E − 03 8.615E − 05 −2.075E − 01
DL-6s −31 −1.162E − 02 −1.803E − 04 −2.091E − 01

Table 4.3: Variations of the aerodynamic coefficients and cost function, in comparison
to the values at initial design. RBF indicates the present calculations (using RBF-based
mesh deformation) and DL indicates similar optimization results from [2]. The notations
-1s, -3s, -6s, indicate the number of splines for the parameterization, that is n = 1, 3, or 6
in (B.1).

RBF-1s and RBF-6s. The Cp obtained for RBF-3s are not shown because they
are very close to the Cp for RBF-6s. The smoothing of the shocks is more
important for RBF-6s (and RBF-3s) than for RBF-1s. In Figure 4.3, we can
observe a downstream shift of the wingtip vortex, and it appears to be more
pronounced as the parameterization is finer (larger n in (B.1)). The plots
of the Cp for the results ’DL’ from [2] are similar to the Cp curves obtained
by the method ’RBF’. This also appears in the summary of the aerodynamic
coefficients in Table 4.3.

The differences between the ’RBF’ and the ’DL’ optimization results are
only due to the different mesh deformation algorithms:

• The interpolation method maps the displacements of the control points to
the displacements of all the other nodes in the mesh. The control points
are chosen here as a subset of the nodes that lay on the wing. That is,
for a node on the wing which is not a control point, the displacement is
not imposed by the parameterization, but it is mapped by interpolation
from the control points. We can also say that the interpolation method,
used to deform the mesh, makes a second parameterization of the wing
on top of the parameterization of the twist, camber and thicknesses used
here. Alternatively, we can consider this as an approximation of the
parameterization.

• Suppose that for a given parameterization, the interpolation would be
exact at the nodes on the wing that are not control points. Then, the
difference between the meshes would be only due to the differences in the
mesh qualities, possibly leading to different results to the discretized flow
equations, and different aerodynamic coefficients.

These differences are analyzed in the next section.
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Figure 4.1: Pressure coefficients at original design (line), optimized design RBF-1s (dots)
and RBF-6s (dashed line).
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Figure 4.2: Profiles at original design (line), optimized design RBF-1s (dots) and RBF-6s
(dashed line).
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Figure 4.3: Pressure iso-surfaces and particle tracing around the original design (top) and,
from the second row to the bottom, left column, the optimized designs RBF-1s, RBF-3s,
and RBF-6s. In the right column in grey (dark grey in BW) the shape at initial design
and in yellow (light grey in BW) the optimized shape.
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drel d (m) Number of points

1.0 0.236093 2166
1.3 0.306965 1763
1.5 0.354205 1378
1.7 0.401341 920
2.0 0.472333 730
2.5 0.590232 505
3.0 0.708748 322
3.5 0.82673 219

Table 4.4: The number of control points for different values of the distance d.

4.3 Mesh qualities and interpolation accuracy

In this section, we test the mesh deformation method with respect to interpo-
lation accuracy and mesh quality for different RBFs, sets of control points and
shape parameters. The input to the mesh deformation program is the bound-
ary nodes for the optimized wing RBF-3s given i Table 4.3. The tested basis
functions are: inverse quadratic (IQ), multiquadric (MQ), inverse multiquadric
(IMQ), Gaussian (GS) and the compactly supported Wendland function W33.

The interpolation properties for RBFs are best on even distribution of con-
trol points. In our application, the control points is a subset of the mesh points
on the wing which, for usual meshes, have inhomogeneous distribution. An al-
gorithm is devised here in order to extract control points from the set of mesh
nodes with an approximately even distribution:

1. Choose a minimal distance d between control points. We relate the value
of d to the mesh density on the wing

d = drelhV(∂Ωw).

where the mesh density is measured by

hV(∂Ωw) = max
i∈V(∂Ωw)

min
j∈V(∂Ωw),i6=j

‖xi − xj‖2.

2. Assume that all points on the wing are given in a long array. Pick the
first point in the array to be the first control point.

3. The next control point is chosen as the point in the array whose distance
to all previously chosen control points is at least d.

4. Continue until reaching the end of the array.

Table 4.4 shows the relation between drel, d, and the number of control points.
The shape parameter ε for the RBF, defined in Section 2.2, should be related
to the density of the control points. Too small values of ε give ill conditioned
matrices whereas too large values give poor interpolation properties. Therefore
we relate the shape parameter to the approximate distance d between control
points

ε = εrel/d.

where εrel is a dimensionless quantity.
The quality of the mesh deformation is measured with respect to two dif-

ferent objectives. First, since not all points on the wing are used there will
be a discrepancy between the points on the wing in the deformed mesh and
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the deformed points on the wing given as in data. If all points on the wing
were used as control points then this discrepancy would of course be zero. The
discrepancy will be measured in both l2 and l∞ norm. Second, the quality of
the mesh is essential for accurate calculations. Mesh quality can be measured
in a number of different ways. Here we will use three different measures:

1. Let r be the radius of the largest inscribed sphere in a tetrahedra and
let R the radius of the circumscribed sphere and let ρ = 3r/R. For a
equilateral tetrahedra this ratio is 1.

2. The maximal dihedral angle χ of an element. For an ideal equilateral
tetrahedra this is 72◦.

3. The aspect ratio η is defined as the quotient between lengths of the longest
and the shortest edge.

In Table 4.5 to 4.14 we give the results for five different basis functions and
two different values of drel , 1.3 and 2.0, and with the relative shape parameter
varying from 0.1 to 1.0 in step of 0.1 except for 0.7 and 0.9 which are excluded.
If we first look at the approximation properties, we see that the l2 norm of
the discrepancies are in general very small, ranging from one to a couple of
millimeters. The l∞ norms indicates that there are some point whose discrep-
ancy are about two centimeters. However, if we compare this with the length
of the wing, which is 15m, the relative error is of the order 10−3, which should
be sufficient for most engineering applications. It seems as small values of the
shape parameter give better interpolation results.

For the mesh quality, all results are compared relative the undeformed mesh.
For the radii-ratio, dihedral and aspect ratio measures, we define for each
element i = 1, . . . , Nel, the quantities

radi = ρi

ρ0
i

,

apsi = ηi

η0
i

,

dihedi = χi − χ0
i .

The average and maximum of these quantities are given in all tables with
subscripts av and max, respectively. Except for a few cases, these measures
indicate that the qualities of the deformed meshes are similar to the qualities
of the initial undeformed mesh. For some basis functions problems occur for
small shape parameters. For example, for IMQ with drel = 2.0 and εrel = 0.2,
the aspect ratio quotient is apsmax = 13.8 which implies that the quality of
some cells is very bad. As can be seen from the tables, there are few results
for relative shape parameters less than 0.3 since the deformation has resulted
in inverted cells in these cases.

εrel radav radmax dihedav dihedmax aspav aspmax l2 l∞

0.3 0.99 1.40 0.9◦ 23.4◦ 1.02 1.74 0.0008 0.0139
0.4 0.99 1.29 0.8◦ 14.1◦ 1.02 1.36 0.0009 0.0172
0.5 0.99 1.29 0.8◦ 13.0◦ 1.02 1.36 0.0011 0.0186
0.6 0.99 1.32 0.8◦ 12.3◦ 1.02 1.35 0.0012 0.0191
0.8 0.99 1.36 0.8◦ 13.9◦ 1.02 1.38 0.0014 0.0216
1.0 0.99 1.39 0.8◦ 15.1◦ 1.02 1.46 0.0015 0.0242

Table 4.5: IQ drel = 1.3
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εrel radav radmax dihedav dihedmax aspav aspmax l2 l∞

0.4 0.98 1.47 1.0◦ 26.2◦ 1.02 1.95 0.0008 0.0141
0.5 0.99 1.28 0.9◦ 19.0◦ 1.02 1.46 0.0009 0.0161
0.6 0.99 1.28 0.9◦ 15.0◦ 1.02 1.36 0.0009 0.0173
0.8 0.99 1.27 0.8◦ 12.2◦ 1.02 1.33 0.0010 0.0185
1.0 0.99 1.26 0.8◦ 11.8◦ 1.02 1.31 0.0011 0.0191

Table 4.6: MQ drel = 1.3

εrel radav radmax dihedav dihedmax aspav aspmax l2 l∞

0.3 0.98 1.52 1.0◦ 27.6◦ 1.02 2.15 0.0007 0.0129
0.4 0.99 1.29 0.8◦ 16.7◦ 1.02 1.40 0.0009 0.0164
0.5 0.99 1.27 0.8◦ 13.2◦ 1.02 1.35 0.0010 0.0180
0.6 0.99 1.27 0.8◦ 12.2◦ 1.02 1.34 0.0011 0.0189
0.8 0.99 1.29 0.7◦ 11.5◦ 1.02 1.31 0.0012 0.0193
1.0 0.99 1.30 0.7◦ 11.7◦ 1.02 1.30 0.0013 0.0208

Table 4.7: IMQ drel = 1.3

εrel radav radmax dihedav dihedmax aspav aspmax l2 l∞

0.5 0.98 1.65 1.2◦ 41.7◦ 1.03 3.53 0.0006 0.0100
0.6 0.99 1.48 0.8◦ 21.7◦ 1.02 1.66 0.0008 0.0131
0.8 0.98 1.53 0.9◦ 22.2◦ 1.02 1.78 0.0012 0.0189
1.0 0.98 1.58 1.1◦ 27.8◦ 1.03 2.11 0.0017 0.0260

Table 4.8: GS drel = 1.3

εrel radav radmax dihedav dihedmax aspav aspmax l2 l∞

0.1 0.98 1.51 1.0◦ 29.7◦ 1.03 2.26 0.0007 0.0135
0.2 0.99 1.49 0.8◦ 18.9◦ 1.02 1.60 0.0010 0.0177
0.3 0.98 1.58 1.1◦ 27.8◦ 1.03 2.12 0.0017 0.0253
0.4 0.97 1.65 1.3◦ 37.9◦ 1.04 2.86 0.0028 0.0385
0.5 0.97 1.65 1.6◦ 47.2◦ 1.04 4.21 0.0048 0.0597

Table 4.9: Wend33 drel = 1.3

εrel radav radmax dihedav dihedmax aspav aspmax l2 l∞

0.2 0.98 1.58 1.1◦ 38.4◦ 1.03 2.81 0.0012 0.0145
0.3 0.99 1.25 0.8◦ 11.5◦ 1.02 1.28 0.0016 0.0213
0.4 0.99 1.26 0.8◦ 10.4◦ 1.02 1.25 0.0019 0.0230
0.5 0.99 1.27 0.8◦ 10.4◦ 1.02 1.26 0.0020 0.0248
0.6 0.99 1.28 0.7◦ 10.9◦ 1.02 1.28 0.0022 0.0267
0.8 0.99 1.32 0.7◦ 11.8◦ 1.02 1.33 0.0025 0.0310
1.0 0.99 1.34 0.7◦ 12.9◦ 1.02 1.35 0.0028 0.0355

Table 4.10: IQ drel = 2.0
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εrel radav radmax dihedav dihedmax aspav aspmax l2 l∞

0.3 0.99 1.39 1.0◦ 21.1◦ 1.02 1.49 0.0014 0.0175
0.4 0.99 1.24 0.9◦ 12.2◦ 1.02 1.29 0.0016 0.0197
0.5 0.99 1.24 0.8◦ 10.5◦ 1.02 1.25 0.0017 0.0203
0.6 0.99 1.23 0.8◦ 9.9◦ 1.02 1.24 0.0017 0.0206
0.8 0.99 1.22 0.8◦ 9.6◦ 1.02 1.23 0.0018 0.0211
1.0 0.99 1.22 0.8◦ 9.4◦ 1.02 1.22 0.0019 0.0215

Table 4.11: MQ drel = 2.0

εrel radav radmax dihedav dihedmax aspav aspmax l2 l∞

0.2 0.97 1.64 1.6◦ 56.1◦ 1.04 13.79 0.0011 0.0121
0.3 0.99 1.25 0.9◦ 12.5◦ 1.02 1.30 0.0016 0.0204
0.4 0.99 1.23 0.8◦ 10.4◦ 1.02 1.25 0.0018 0.0219
0.5 0.99 1.25 0.8◦ 9.9◦ 1.02 1.24 0.0019 0.0230
0.6 0.99 1.25 0.8◦ 9.9◦ 1.02 1.24 0.0020 0.0242
0.8 0.99 1.26 0.7◦ 10.3◦ 1.02 1.25 0.0022 0.0267
1.0 0.99 1.28 0.7◦ 10.7◦ 1.02 1.27 0.0024 0.0292

Table 4.12: IMQ drel = 2.0

εrel radav radmax dihedav dihedmax aspav aspmax l2 l∞

0.5 0.99 1.47 0.8◦ 19.7◦ 1.02 1.50 0.0015 0.0199
0.6 0.99 1.41 0.8◦ 15.2◦ 1.02 1.44 0.0019 0.0251
0.8 0.99 1.45 0.8◦ 17.4◦ 1.02 1.54 0.0026 0.0325
1.0 0.99 1.51 0.9◦ 20.2◦ 1.02 1.64 0.0032 0.0417

Table 4.13: GS drel = 2.0

εrel radav radmax dihedav dihedmax aspav aspmax l2 l∞

0.1 0.99 1.32 0.8◦ 13.5◦ 1.02 1.34 0.0015 0.0184
0.2 0.99 1.39 0.8◦ 14.8◦ 1.02 1.48 0.0022 0.0260
0.3 0.98 1.51 0.9◦ 20.2◦ 1.02 1.64 0.0032 0.0412
0.4 0.98 1.59 1.0◦ 27.2◦ 1.03 1.93 0.0046 0.0583
0.5 0.98 1.62 1.2◦ 33.5◦ 1.03 2.48 0.0077 0.0790
0.6 0.98 1.65 1.3◦ 38.5◦ 1.03 3.20 0.0133 0.1238

Table 4.14: Wend33 drel = 2.0
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5 Summary and perspectives

5.1 Summary

The method presented here performs deformation of meshes, structured or un-
structured, in 2D or 3D, based on an interpolation method. It was be verified
on numerical examples that the qualities of the deformed meshes are compa-
rable to the qualities of the initial mesh. Another advantage of the method,
when repeated deformations of the flow domain are necessary, is the low com-
putational cost, without increasing the memory requirements.

The method of adjoint, in gradient-based aerodynamic shape optimization,
is gaining in popularity because it allows an efficient calculation of the gradients
of the objective function. In order to fully take advantage of the method, it
requires to formulate the backward transformation of the mesh deformation.
The backward algorithm, for the mesh deformation, calculates the gradient
with respect to the control points when the gradient with respect to the nodal
coordinates is provided by the adjoint approach. Therefore a particular effort
was made here to present in details all the steps of the mesh deformation
mapping and how it is involved in the gradient calculation, in order to allow
efficient and straight-forward implementations.

5.2 Perspectives

The application of the same algorithm to the coupling of the CFD and CSM
calculations, in aeroelasticity, is the object of current investigations [23]. There,
the purpose of the interpolating function is twofold: to transfer displacements
of the structural grid, into the CFD grid and to transfer loads from the CFD
into the structural counter part in a physically reasonable way.

For the deformation of CFD meshes, as tested here, special constraints are
imposed on the interpolation in order to preserve the far-field and symmetry
boundaries of the mesh. The derivation of suitable boundary conditions for
more complicated geometries than the ones investigated here could be investi-
gated.

Finally, the method could be modified in order to construct an algorithm for
the parameterization of geometrical shapes. Algorithms of parameterization
play an important role in aerodynamic shape optimization as they strongly
influence the outcome of the optimization. Parameterization is not a trivial
issue because it determines the regularity of the shape as well as it should
enable to formulate industrial-like constraints involving the angle of wedges,
the volume, or the thickness at some locations.

27





FOI-R--1784--SE

Acknowledgement

The authors thank Jonathan Smith for the introduction to the aeroelastic inter-
polation problem and fruitful discussions during the preparation of this work,
as well as Adam Jirasek and Martin Berggren for their comments and sugges-
tions during the preparation of this report.

29





FOI-R--1784--SE

Bibliography

[1] O. Amoignon, Adjoint-based aerodynamic shape optimization, Tech. Re-
port IT Licentiate theses 2003-012, Department of Information Technol-
ogy, Division of Scientific Computing, Uppsala University, Box 337, SE-751
05 Uppsala, Sweden, October 2003.

[2] O. Amoignon and M. Berggren, Adjoint of the median dual finite volume
method applied to 2D and 3D transonic aerodynamic shape optimization,
(2005), In review.

[3] O. Axelsson, Iterative Solutions Methods, second ed., Cambridge Univer-
sity Press, 1996.

[4] T.J. Barth, Aspects of unstructured grids and finite-volume solvers for
the Euler and Navier–Stokes equations, Special Course on Unstructured
Methods for Advection Dominated Flows, AGARD Report 787, May 1991,
pp. 6–1–6–61.

[5] A. Beckert and H. Wendland, Multivariate interpolation for fluid -
structure-interaction problems using radial basis functions, Aerosp. Sci.
Technol. 1 (2001), no. 11, 1–11.

[6] M. D. Buhmann, Radial basis functions, Acta numerica, 2000, Acta Nu-
mer., vol. 9, Cambridge Univ. Press, Cambridge, 2000, pp. 1–38.

[7] , Radial basis functions, Cambridge Monographs on Applied and
Computational Mathematics, vol. 12, Cambridge University Press, Cam-
bridge, 2003.

[8] G.W. Burgreen, O. Baysal, and M.E. Eleshaky, Improving the efficiency of
aerodynamic shape optimization, AIAA Journal 32 (1994), no. 1, 69–76.

[9] P. Eliasson, Edge, a Navier–Stokes solver, for unstructured grids, Tech.
Report FOI-R–0298–SE, Swedish Defence Research Agency, Stockholm,
November 2001.

[10] J. Elliot and J. Peraire, Aerodynamic design using unstructured meshes,
AIAA Paper (1996), no. 96-1941.

[11] M.B. Giles and N.A. Pierce, An introduction to the adjoint approach to
design, Flow, Turbulence and Combustion 65 (2000), 393–415.

[12] G. S. L. Goura, Time marching analysis of flutter using computational
fluid dynamics, Ph.D. thesis, University of Glasgow, 2001.

[13] Max D. Gunzburger, Perspectives in flow control and optimization, Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2002.

31



FOI-R--1784--SE

[14] M. H. L. Hounjet and J. J. Meijer, Evaluation of elastomechanical and
aerodynamic data transfer methods for non-planar configuration in compu-
tational aeroelastic analysis, Tech. report, National Aerospace Laboratory
NLR, 1995.

[15] A. Jameson, W. Schmidt, and E. Turkel, Numerical solution of the Eu-
ler equations by finite volume methods using Runge-Kutta time stepping
schemes, AIAA Paper (1981), no. 81-1259.

[16] Hyoung-Jin Kim, Daisuke Sasaki, Shigeru Obayashi, and Kazuhiro Naka-
hashi, Aerodynamic optimization of supersonic transport wing using un-
structured adjoint method, AIAA Journal 39 (2001), no. 6, 0001–1452.

[17] A. Le Moigne and N. Qin, Variable-fidelity aerodynamic optimization for
turbulent flows using a discrete adjoint formulation, AIAA Journal 42

(2004), no. 7.

[18] M. Nemec and D.W. Zingg, Towards efficient aerodynamic shape optimiza-
tion based on the Navier–Stokes equations, AIAA Paper (2001), no. 2001-
2532.

[19] J. Nocedal and S. Wright, Numerical optimization, Springer Series in Op-
erations Research, 1999.

[20] O. Pironneau, Optimal shape design for elliptic systems, Springer Verlag,
1984.

[21] R. Ripollés, M. Cordero, M. Hermanns, and Valero E., Spivol: A vol-
ume spline interpolation tool for elastomechanical and aerodynamic data
transfer problems, EADS-CASA, 2003.

[22] V. Schmitt and F. Charpin, Pressure distributions on the ONERA-M6-
WING at transonic mach numbers, Experimental Data Base for Computer
Program Assessment, AGARD-AR-138, May 1979, pp. B1–1–B1–44.

[23] J. Smith, Aeroelastic Functionality in Edge, Initial Implementation and
Validation, Tech. Report FOI-R–1485–SE, Swedish Defence Research
Agency, Stockholm, December 2005.

[24] W. Squire and G. Trapp, Using complex variables to estimate derivatives
of real functions, SIAM Review 40 (1998), no. 1, 110–112.

[25] H. Wendland, Scattered data approximation, Cambridge Monographs on
Applied and Computational Mathematics, vol. 17, Cambridge University
Press, Cambridge, 2005.

32



FOI-R--1784--SE

A Proof of Theorem 2.1.2

To complete the paper here is a proof of Theorem 2.1.2.
Proof. Condition 4, the displacement for a point P depends linearly on the

displacements for the control points, can be expressed as

v =

N∑

k=1

Ak(x0)vk,

where Ak(x0), k = 1, . . . , N , are matrix-valued functions. Translated to the
coordinates this is

x = x
0 +

N∑

k=1

Ak(x0)
(
xk − x

0
k

)
. (A.1)

The translation invariance condition implies that

x + α = x
0 +

N∑

k=1

Ak(x0)
(
xk + α − x

0
k

)
(A.2)

for all α ∈ R
3. Combined with (A.1), it follows that

α =

N∑

k=1

Ak(x0)α, ∀α ∈ R
3

Since α ∈ R
3 is arbitrary, the matrix valued functions must sum up to the

identity matrix everywhere

I =

N∑

k=1

Ak(x0), x
0 ∈ Ω0. (A.3)

For each rotation operator R we should have, according to condition (4),

Rx = x
0 +

N∑

k=1

Ak(x0)
(
Rxk − x

0
k

)
.

By subtracting equation (A.1) from this relation we obtain

(R − I )x =

N∑

k=1

Ak(x0) (R − I )xk. (A.4)

Another application of (A.1) yields

(R − I )x
0 + (R − I )

N∑

k=1

Ak(x0)
(
xk − x

0
k

)
=

N∑

k=1

Ak(x0) (R − I )xk. (A.5)
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By putting xk = x0
k in (A.4) we can replace the first term in (A.5), which

yields

(R − I )

N∑

k=1

Ak(x0)
(
xk − x

0
k

)
=

N∑

k=1

Ak(x0) (R − I )
(
xk − x

0
k

)
.

In terms of the displacements of the control points vk, we have after simplifi-
cation

N∑

k=1

{
RAk(x0) − Ak(x0)R

}
vk = 0.

Since the displacements can be arbitrary, we conclude that

RAk(x0) − Ak(x0)R = 0, ∀k = 1, . . . , N.

A matrix which commutes with all rotations must be a constant times the
identity matrix (the constant may depend on x0). If we denote this constant
by ak(x0) the formula (2.7) follows. The relation (2.8) is then a consequence of
(A.3). Now we look at relation (A.4) with this new information and xk = x0

k

(R − I )

(
x

0 −
N∑

k=1

ak(x0)x0
k

)
= 0. (A.6)

This relation should be true for all rotation operators, which implies that (2.9)
follows. The last statement in the proposition is a consequence of (2.8) and
(2.9). The proof is complete.
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B Parameterization of the ONERA M6 wing
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Figure B.1: Left: Basis functions (n = 6) for the parameterization of the distributions of
twist, camber and thickness, in the spanwise direction (fixed geometry at the root y = 0).
Right: a sketch representing effects of the twist (θ (y)) about the trailing edge and of a
camber deformation on the parameterized shape.

For the sake of the presentation, we derived a parameterization of simple
modifications of the geometry. Functions controlling the camber (c (y)), the
twist about the trailing edge (θ (y)), the relative distance (d+ (y)) to the z = 0
plane of the nodes in the z > 0 half domain, and the relative distance (d− (y))
to the z = 0 plane of the nodes in the z < 0 half domain, are parameterized in
the spanwise direction (y), by n + 1 splines (see figure B.1):

c (y) =

n+1∑

i=1

cn,isn,i (y) (camber) ,

θ (y) =

n+1∑

i=1

θn,isn,i (y) (twist) ,

d+ (y) =

n+1∑

i=1

d+
n,isn,i (y) (thickness, z > 0) ,

d− (y) =

n+1∑

i=1

d−n,isn,i (y) (thickness, z < 0) ,

(B.1)

The parameters of the optimization are cn,i, θn,i, d+
n,i and d−n,i, which are real
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numbers. The functions sn,i (y) are C1 piecewise cubic polynomials defined as:





sn,i (y) = 3

(
y

hL
n,i

)2

− 2

(
y

hL
n,i

)3

, i ≤ n , y ≤ hL
n,i ,

sn,i (y) = 1 − 3

(
y − hL

n,i

hR
n,i

)2

+ 2

(
y − hL

n,i

hR
n,i

)3

, i ≤ n , hL
n,i ≤ y ≤ L ,

sn,n+1 (y) = 3
( y

L

)2

− 2
( y

L

)3

, y ≤ L ,

(B.2)
where L is the span width and:





hL
n,i + hR

n,i =L ,

hL
n,i =

iL

n + 1
.

(B.3)

The leading and trailing edges are lines in the plane z = 0. The streamwise
coordinate is x, and we denote by xT (y) and xL (y) the x-coordinate of the
point on the trailing edge and on the leading edge, respectively, at coordinate
y in the spanwise direction. Thus, the x- and z- coordinates of any point on the
parameterized geometry, denoted with upperscript new, if it is in the section y
of the wing, is mapped from the reference geometry, denoted (x, z), and the
parameters of the camber and twist (B.1) as:

ynew = y ,

c̃ (y) = c (y)

(
x4 − x2

xT (y) − xL (y)

)2

, (scaling)

cz (x, y) = c̃ (y) (x − xT (y)) (xL (y) − x) ,

nz (x, y) =
1√

1 + c̃ (y)
2
(xT (y) + xL (y) − 2x)

2
,

nx (x, y) = c̃ (y)nz (x, y) (2x − xT (y) − xL (y)) ,

(B.4)

In (B.4), cz (x, y) describes a camber line at constant y, and (nx (x, y) , nz (x, y))
are the coordinates of the unit normal vector to this line. We denote by x4

and x2 the streamwise coordinate of the leading edge and the trailing edge,
respectively, at the tip of the wing. Adding the thicknesses, to the camber and
the twist parameterizations yields:

z̃ (x, y) =
(
1 − ω sin

(
d+ (y)

))
z , if z ≥ 0

z̃ (x, y) =
(
1 − ω sin

(
d− (y)

))
z , if z ≤ 0

xnew (x, y) = xT (y) + cos (θ (y)) (x + z̃ (x, y)nx (x, y) − xT (y))+

sin (θ (y)) (cz (x, y) + z̃ (x, y)nz (x, y)) ,

znew (x, y) = −sin (θ (y)) (x + z̃ (x, y) nx (x, y) − xT (y))+

cos (θ (y)) (cz (x, y) + z̃ (x, y)nz (x, y)) ,

(B.5)

where cz, nx, nz are calculated as in (B.4), and ω = 0.3 is used to bound the
changes of thickness.
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