
FOI-R--1787--SE
ISSN 1650-1942

Ledningssystem
Användarrapport

September 2005

Erland Jungert, Martin Folkesson,
Jörgen Fransson, Tobias Horney,
Fredrik Lantz, Karin Silvervarg

Ett frågebaserat
beslutsstödssystem för

nätverksbaserade
ledningssystem

FOI är en huvudsakligen uppdragsfinansierad myndighet under Försvarsdepartementet. Kärnverksamheten är forskning, metod- och
teknikutveckling till nytta för försvar och säkerhet. Organisationen har cirka 1350 anställda varav ungefär 950 är forskare. Detta gör organisationen
till Sveriges största forskningsinstitut. FOI ger kunderna tillgång till ledande expertis inom ett stort antal tillämpningsområden såsom
säkerhetspolitiska studier och analyser inom försvar och säkerhet, bedömningen av olika typer av hot, system för ledning och hantering av kriser,
skydd mot hantering av farliga ämnen, IT-säkerhet och nya sensorers möjligheter.

FOI

Totalförsvarets forskningsinstitut Tel: 013-37 80 00 www.foi.se

Ledningssystem
Box 1165
581 11 Linköping

Fax: 013-37 81 00

FOI-R--1787--SE
ISSN 1650-1942

Ledningssystem
Användarrapport

September 2005

Ett frågebaserat beslutsstödssystem för
nätverksbaserade ledningssystem

 FOI-R--1787--SE
Innehållsförteckning
1. Inledning 5

2. Problemformulering 6

3. Scenario 7

4. Informationssystemet 10

4.1 Frågespråket 10

4.1.1 VisualΣQL 11

4.1.2 Sensorintegration 14

4.1.3 Fusion 15

4.1.4 Frågeexekvering 16

4.1.5 Arkitektur 19

4.2 Terränganalys 21

4.3 Situationsanalys 22

5. Sammanfattning och slutsatser 25

Referenser 27

Projekt publikationer 29

Särtryck av utvalda publikationer 33
3

FOI-R--1787--SE
Appendix A: 35
An Information System for Target Recognition

Appendix B: 49
Querying Distributed Multimedia Databases and Data Sources for Sensor
Data Fusion

Appendix C: 67
A Visual Query Language for Uncertain Spatial and Temporal data

Appendix D: 83
Uncertain Topological Relations for Mobile Point Objects in Terrain,

Appendix E: 91
An Ontology Controlled Data Fusion Process for a Query Language

Appendix F: 101
Iterative Information Fusion using a Reasoner for Objects with
Uninformative Belief Values

Appendix G: 111
A Fusion Framework for coarse-to-fine Target Recognition

Appendix H: 121
Agent architecture for a query language in NVD-Environment (in Swedish)

Appendix I: 129
Determination of Terrain Features in a Terrain Model from Laser Radar Data

Appendix J: 137
Context Fusion for Driveability Analysis

Appendix K: 147
Towards a Query Assisted Tool for Situation Assessment, Information Fusion
4

 FOI-R--1787--SE
1. Inledning
Beslutsstödssystem1 för bland annat militära och krisrelaterade tillämpningar integrerade i nät-

verksbaserade ledningssystem måste i de flesta fall kunna samla in, analysera, fusionera, han-

tera, lagra och till sist också kunna visualisera en mängd olika typer av sensordata. I dessa

system kan sensorer vara av en mängd olika typer. Ur användarens perspektiv är det inte önsk-

värt att behöva ha kunskaper om dessa sensorer, deras data eller hur dessa data skall hanteras

eftersom de flesta slutanvändare inte besitter den nödvändiga tekniska kompetensen som krävs

för detta. Den naturliga konsekvensen av detta blir att dessa beslutsstödssystem, som i sig ofta

utgör olika former av informationssystem eller tjänster, måste vara oberoende av vilka sensorer

som används av systemet och hur sensordata hanteras. Vidare måste dessa tjänster också vara

anpassade till de krav som för övrigt ställs på de ledningssystem i vilka de kommer att vara in-

tegrerade. Bland dessa krav kan nämnas anpassning till det nätverksbaserade försvaret (NBF),

tjänsteanpassade och interoperabla, dvs enkelt utbytbara, map aktuella sensortyper.

Syftet med detta arbete har varit att utveckla ett informationssystem omfattande ett antal be-

slutsstöd (tjänster) vilket kan integreras i ett nätverksbaserat ledningssystem. Detta informa-

tionssystem skall låta användaren ställa frågor i avsikt att samla in information om pågående

aktiviteter i ett specificerat geografiskt område av intresse för användaren. Frågor skall kunna

ställas riktade mot historiska data i en databas eller mot data som strömmar in från de olika da-

takällorna under en given tidsperiod där sensorer och andra observatörer övervakar den aktuella

terrängen. Datakällorna kommer i första hand att utgöras av sensorer men även andra typer, t ex

textmeddelanden från olika observatörer kan tänkas förekomma. Informationssystemet skall så-

ledes uppfattas som ett system som tillhandahåller ett antal tjänster, vilka kan leverera olika ef-

terfrågade data som återspeglar skeendet i den terräng systemet övervakar.

Den mest omfattande tjänsten i det informationssystem som beskrivs här utgörs av ett fråge-

språk, som i första hand användas för att ställa frågor om olika förekommande markmål, deras

relationer, egenskaper och status (t ex läge). Detta frågespråk är avsett främst för multipla sens-

ordatakällor där data ofta är heterogena. För övrigt omfattar informationsystemet två andra

1. Detta arbete ingår i ett forskningsprojekt vid FOI kallat informationssystem för markspaning (IS-MS)
och som finansierats av Försvarsmakten.
5

FOI-R--1787--SE
tjänster; en för situationsanalys och en för bestäming av bl a framkomligheten i terrängen med

hjälp av digitala kartor och med en högupplösande terrängmodell.

Denna rapport innehåller också särtryck av ett antal publikationer som skrivits och publiserats

under projektets gång. Dessa särtryck återfinns som ett antal olika appendix vilka refereras till

i rapporten för att ge läsaren en möjlighet till fördjupad förståelse av de olika delarna av arbetet

i projektet.

2. Problemformulering
Huvudproblemet i detta arbete har varit att utveckla ett informationssystem [1] för markspa-

ning. Informationssystemet skall innefatta ett frågespråk med förmåga att detektera och känna

igen markmål med hjälp av data från multipla sensortjänster.

I arbetet har också ingått studier för att utveckla en lämplig nätverksanpassad systemarkitektur

baserad på intelligenta agenter för att kunna allokera aktuella sensortjänster i ett nätverk och

analysera de data som dessa tjänster levererar. Ansatsen till systemarkitektur är baserad på ett

distribuerat ontologiskt kunskapssystem.

En väsentlig problemställning vid utveckling av frågespråket har varit att bestämma hur meto-

dik för fusion av multipla sensordata skall vara utformad. Vidare har funnits krav på metoder

för visuell interaktion på olika nivåer med frågespråket. Tjänster för situationsanalys och ter-

rängframkomlighet i högupplösande terrängmodell har också fokuserats. En ytterligare målsätt-

ning har varit att demonstrera markspaningsegenskaperna genom att integrera systemet med

MOSARTs [2] simuleringsmiljö.

Enligt förutsättningarna skall informationssystemet utnyttjas som ett beslutsstöd i NBF-miljö

som stöd för spaning i godtycklig geografisk omgivning med hjälp av ett avancerat operatörs-

stöd och multipla sensorer. Informationssystemet skall betraktas som en lagringsplats för olika

tjänster med avsikt att ge stöd för bl a markspaning, situationsanalys och underrättelseverksam-

het. Systemet skall dessutom kunna användas för:

- måldetektering och måligenkänning med fusion av data från multipla sensorer,
6

 FOI-R--1787--SE
- stöd för generering av en aktuell lägesbild.

3. Scenario
Vid FOI (genom medverkan av 51 olika projekt) har ett senario utvecklats för att demonstrera

förmågor hos olika beslutsstöd. Det aktuella scenariot går under namnet scenario för slaget vid

Stora Vredski klint (1455) och syftar på möjliga händelser i internationella uppdrag som i detta

scenario utgörs av ett FN-uppdrag. I scenariot beskrivs ett händelseförlopp där man med hjälp

av bl a ΣQL och ett antal sensormodeller och sensormanagementteknik samlar in information

om det pågående händelseförloppet (som simuleras i MOSART) för att skapa en lägesbild uti-

från vilken ledningen för FN-trupperna skall kunna fatta adekvata beslut om insatser mot dels

aktivisterna i området samt dels lokalbefolkningens demonstrationer med anledning av 550-

årssjubileet av slaget. En kortfattad beskrivning av scenariot och dess förutsättningar utgör föl-

jande beskrivning:

Bakgrund
I landet Crisendo finns två etniskt olika befolkningsgrupper A-folk och B-folk. A-folk är i
minoritet med ett antal enklaver. I den aktuella enklaven ligger berget Stora Wredskiklint som
var platsen för ett slag mellan de båda folken den 12 november 1455 och då B-folk besegrade
A-folk i grunden. Sedan dess firas denna seger bland B-folk årligen genom att deltagarna
marscherar in mot en punkt söder om klinten. Under senare år har firandet varit mycket
begränsat och främst genomförts av en mindre grupp nationalister. Berget Stora Wredskiklint
ligger i en av A-folkenklaverna. Denna enklav skyddas av FN-trupper. En halv FN-pluton (OP)
finns grupperad i en postering vid en punkt nära inmarschområdet till klinten. Detta år har
dock nationalisterna lyckats få gehör bland ett stort antal anhängare. B-folks aktiviteter startar
tidigt på morgonen den 12 november 2005 för firandet av 550-årsjubiléet.

Syfte och slutmål
I detta scenario är syftet dels att samla in information som återger läget och presentera detta
dels att fatta beslut om hantering av situationen. Målet är således att ge beslutsfattarna ett
underlag för att fatta beslut om vilka åtgärder som skall vidtas efterhand för att följa och styra
händelseutvecklingen med hänsyn till de aktiviteter som har registrerats. Det senare, dvs att
bestämma vilka beslut som skall tas, ligger dock utanför uppdraget.

Miljö
Scenariot kommer att simuleras i simuleringshjälpmedlet MOSART som utvecklats vid FOI.
Till hjälp för verksamheten kommer i det att finnas ett antal sensormodeller implementerade i
MOSART. Två olika beslutsstödshjälpmedel finns också anslutna; dessa är dels frågespråket
ΣQL dels ett system för sensorstyrning.

1. Förutom IS-MS har IAM, SEMARK, MOSART och TMDI projekten medverkat.
7

FOI-R--1787--SE
Tillgängliga FN-resurser
Förläggningsplats för FN-kompaniet är 2 km söder om Tingsberget.
Vid kompaniet finns en tillgänglig UAV med en IR-sensor och förmåga att lägga ut 6 små
marksensornät varje flygning. Totalt finns 10 marksensornät tillgängliga.
Ett sådant nät har batterier för 24 timmars drift.

För närvarande är en halv pluton (Op) grupperad nära klinten och dess inmarschområde strax
väster om Ströplahult.
Ytterligare två stationära sensornätverk ligger utplacerade vid (Eveborg) och (Älgmyra).

Vid behov kan också ett flygplan med en CARABAS (som är ett radarsystem utvecklad vid
FOI) rekvireras.

Begränsningar
Efter stora vägen norrut har vägen förstörts vid Smedstorp. Området är också minerat så att det
är omöjligt att ta sig fram här. Detta gäller både fordon och människor

Utgångspunkten för de frågor som skall ställas med hjälp av frågespråket är de befintliga mark-

sensornäten samt tillgången till CARABAS-systemet. Senare i scenariot kommer ytterligare

sensorer att bli tillgängliga men med det angivna utgångsläget kan man tidigt börja ställa frågor

för att bygga upp den aktuella lägesbilden. Vi har här valt att formulera frågorna som text för att

ge en ökad förståelse av frågespråkets förmåga, dvs den visuella tekniken används inte här.

Eftersom man har misstankar om förekomsten av vissa aktiviteter bör den första frågan bli:

Finns det några mobila objekt i området vid den angivna tiden?

Med området menas i detta sammanhang det aktuella intresseområdet. Genom att mobila objekt

efterfrågas innebär detta att man i första hand är intresserad av att detektera rörelser.

 Som tillägg till denna fråga bör också läggas villkoret:

på väg

Detta tilläggsvillkor är nödvändigt eftersom man vill specificera att det främst är fordon som

efterfrågas.
8

 FOI-R--1787--SE
Eftersom man också misstänker att det har upprättats en eller flera vägspärrar i området bör man

också specificera en tilläggsfråga:

Finns det några konstaterade fordon i området vid den angivna tiden?

Till denna fråga kan fogas en följdfråga som grundar sig på misstanken att vägspärrar finns upp-

rättade i området. Denna följdfråga kan formuleras som:

Förekommer det några vägspärrar i området?

Speciellt i detta sammanhang har vi valt att definiera en vägspärr som ett större fordon, t ex en

lastbil, som är placerad tvärs över vägen. Självklart finnas det andra typer av definitioner på

vägspärrar.

Med det angivna scenariot kan sedan ytterligare frågor ställas när man har skickat upp den till-

gängliga UAV:n. Dessa frågor har i huvudsak samma karaktär som de ovan angivna.

Figur 1. Översikt över informationssystemet.

CCD-kamera

Laserradar

Infrarödkamera

ΣQL-processor

Bild-
analys

Bild-
analys

Bild-
analys

Terrängfråge-
språk

Situations-
analys

Användar-
gränssnitt

kunskaps-
system

Fråge-
interpretator

Fusions-
modul

Meta-
data

Mål-
modeller

Ontologi

Användare
9

FOI-R--1787--SE
4. Informationssystemet
En översikt av informationssystemet återfinns i Figur 1 med exempel på några olika möjliga

sensorer. De olika modulerna i översikten kommer att diskuteras vidare nedan. Delarna finns

också beskrivna ur mera tekniska synvinklar i de efterföljande appendixen. Emellertid kommer

inte metoderna för sensordataanalys att diskuteras i denna rapport eftersom detta till största de-

len ligger utanför det nuvarande projektet. Delar av det arbete som berör sensordataanalysen,

finns beskrivna i [1] och i Appendix A och C.

4.1 Frågespråket
Frågespråket ΣQL kan ur ett användarperspektiv karaktäriseras enligt följande:

- Interoperabelt m a p sensortyper.

- Sensordataoberoende.

- NBF anpassat genom agentarkitektur.

- Tjänsteorienterat med förmåga att producera efterfrågad information.

- Inkluderar visuellt användargränssnitt för rumsliga/temporala frågor.

- Har förmåga att automatiskt fusionera registrerade sensordata.

- Dynamisk sensorallokering.

Med interoperabilitet avses här förmågan att enkelt kunna anpassa ett system till olika sensor-

typer där sensordata kan vara inbördes heterogena. Kravet på interoperabilitet har uppstått ge-

nom att Försvarsmakten har blivit engagerad i ett stort antal internationella operationer där

samarbete och utbyte av data med andra länders försvarsmakter och med olika försvarsorgani-

sationer, såsom t ex NATO måste kunna ske på ett enkelt sätt. Sensordataoberoende är besläktat

med dataoberoende i traditionella databassystem. Metodiken används här också för att göra det

enkelt för användaren att hantera stora datamängder genererade av multipla sensorer, minska
10

 FOI-R--1787--SE
arbetsbördan för användarna, för att öka tilltron till systemet förutom att stödja interoperabili-

teten. Vidare kan sensorer allokeras till systemet på ett dynamiskt vis med hänsyn till om väder

eller ljusförhållanden förändras över tiden. Allt detta kommer att beskrivas ytterligare i avsnitt

4.1.2 nedan.En fördjupad beskrivning av frågespråket återfinns i Appendix B och F, där det se-

nare arbetet också beskriver hur mer komplexa frågor kan ställas till ΣQL.

Tjänstekonceptet har sin grund i att traditionella programstrukturer har visat sig vara olämpliga

när man i nätverk behöver svara mot de krav som ställs på olika ledningssystem eftersom olika

aktörer har olika roller och därför också olika krav på de data som behövs i den aktuella arbets-

situationen. Därför har istället begreppet tjänst introducerats. En tjänst är en abstraktion som be-

skriver hur producenter kan åstadkomma nytta för konsumenten utan att man i detalj behöver

beskriva hur detta realiseras. Nyttan av en tjänst åstadkoms genom att en producent levererar en

prestation, vilken ger en effekt hos/för konsumenten. I ΣQL består tjänsten av att frågespråket

levererar efterfrågade data på ett sensordataoberoende sätt, i enkla termer som kan förstås även

av användare som inte är IT-experter.

4.1.1 VisualΣQL
Tyngdpunkten vid konstruktionen av det visuella gränssnittet till frågespråket har varit att an-

vändaren ska beskriva sina behov utifrån termer som är naturliga för denne och inte genom en

direkt koppling till sensorerna. Därför är gränssnittet utformat så att användaren beskriver var,

när och vad, se Figur 2. Var är en enkel begränsning i rummet och det har realiserats så att an-

vändaren markerar ett område på en karta. Vilken tid som är aktuell väljer användaren antingen

genom att välja start och sluttid eller genom att specificera tiden i absoluta termer, t ex de se-

naste 30 minuterna. Eftersom detta är ett system som fokuserar på markspaning får användaren

själv välja vad han söker efter genom att välja mellan möjliga objekt i en lista. I de enkla fallen

räcker detta för att ställa en grundläggande fråga mot systemet.

I det mer avancerade fallet har användaren möjlighet att sätta begränsningar på resultatet. Dessa

begränsningar formuleras genom att relationer grafiskt kopplas till olika objekt. Relationerna

kan vara begränsningar i rum, tid, egenskaper eller kombinationer av dessa, se Tabell 1. Rela-

tionerna finns grafiskt organiserade i olika paletter som användaren väljer från och ritar upp ob-

jekten och relationerna, se Figur 3.
11

FOI-R--1787--SE

Figur 2. Exempel på standardfråga med aktuellt intresse område, tid och objekttyp.

Table 1: Exempel på relationer

Rum inuti
avstånd mindre än 50 meter
norr om
bakom

Tid före
mellan klockan 13 och klockan 15
mindre än 1 timme emellan

Egenskap namnet är Linköping
hastigheten är större än 50 km/h
färgen är röd

Kombinationer Objekten ska mötas (vara vid samma
tid vid samma plats)

Tabell
12

 FOI-R--1787--SE
Figur 3. Fråga med tilläggsvillkor.

Figur 4. Illustration till resultatpresentation.
13

FOI-R--1787--SE
Resultatet av en sökning kan presenteras på tre sätt; genom en karta, en tabell och genom frå-

geevaluering, Figur 4. På kartan ritas objekten helt enkelt ut på den kända positionen. I tabellen

finns en lista på alla de funna objekten med möjlighet att också se deras olika egenskaper. På

kartan och i tabellen presenteras de objekt som uppfyller rums-, tids- och typbegränsningarna.

I frågeevalueringen får man se de grafiskt uppritade begränsningarna. När användaren väljer nå-

gon av rutorna i grafen så väljs motsvarande objekt ut i listan och på kartan ritas de med annan

färg. På så sätt kan användaren enkelt se vilka objekt som besvarar de olika delarna av den ställ-

da frågan.

Aspekter som berör osäkerheter i indata har också behandlats i detta arbete vilket finns redovisat

i Appendix C och D.

4.1.2 Sensorintegration
Frågesystemet har en mekanism för att automatiskt välja ut lämpliga sensordata för att besvara

en fråga. Systemet kan dessutom välja ut lämpliga måldetektions- och måligenkänningsalgorit-

mer för att applicera på aktuella sensordata. Detta bygger på ett ontologiskt kunskapssystem

som presenteras i Appendix E samt i [4]. Eftersom det är enkelt att lägga till information om nya

sensortyper och målextraktionsalgoritmer i kunskapssystemet kan nya sensorer och algoritmer

enkelt kopplas in så att de kan användas för att besvara frågor i frågespråket.

För att frågespråket ska kunna tillgodogöra sig data från en viss typ av sensor krävs förutom att

information om sensortypen läggs in i kunskapssystemet att meta-data och sensordata från sens-

orn lagras i den databas frågespråket använder när den letar efter data att använda för att besvara

en fråga. Över tiden behöver således sensorns täckningsområden, sensordata och/eller ev mål-

detektioner/observationer/målspår lagras i denna databas.

Den föreslagna agentarkitekturen för att hitta sensor- och algoritmresurser förstärker frågesprå-

kets förmåga att hantera olika sorters datakällor. Om denna arkitektur införs behöver inte sens-

ordata och måldetektioner/observationer/målspår lagras i frågespråkets egen databas utan

agenterna letar då reda på rätt information i sensornätet för att besvara en fråga. Informationen

som behövs för att besvara frågan kan således vara lagrad var som helst i sensornätet. Agentar-

kitekturen beskrivs övergripande nedan och mer i detalj i Appendix H.
14

 FOI-R--1787--SE
4.1.3 Fusion
Fusionstanken i frågespråket är ursprungligen att fusionera olika delresultat från olika datakäl-

lor. Detta görs i ett moment, före presentationen för användaren. Generellt antas dessa delresul-

tat vara kvalitativa. Fusionsfunktionaliteten som implementerats utvecklades dock för en

specifik tillämpning, igenkänning av markmål [1]. De olika igenkänningsresultaten var kvanti-

tativa, således mer informativa. Detta ökar förutsättningarna för ett lyckat fusionerat resultat.

Figur 5. Misstänkta måls dimensioner respektive orientering skattas i lågt upplösta data. Bilder-
na visar två olika tolkningar, med avseende på målets orientering. Fusionsmetoden bevarar båda
dessa, för värdering i högupplösta data. På så sätt ökar chansen att hitta optimal matchning mel-
lan data och målmodeller.

För att ytterligare öka förutsättningarna för hög kvalité på slutresultatet bör fusionsmetodiken

känna till den bakomliggande igenkänningsprocessen. Det visade sig att igenkänning kunde ge-

nomföras i två steg. I det första skattades målets attribut (egenskaper resp. tillstånd, såsom längd

resp. orienteringsriktning). Detta kan ses som algoritmens första tolkning av bilden. Tolkningar

genom olika algoritmer bör typiskt vara likartade, eller distinkt olika - kvalitativt sett. Till ex-

empel är det rimligt att tänka sig att olika algoritmers skattning av orienteringsriktning antingen

är likartade, eller skiljer sig åt med ett halvt varv. Som exempel, se Figur 5.

I det andra steget matchades målet mot lagrade modeller, med de skattade attributen som ut-

gångspunkt. Detta innebar finjusteringar av de skattade attributvärdena. Optimeringen genere-

rade det kvantitativa resultatet - ett mått på graden av matchning mellan målet och de olika

modellerna. Detta steg i igenkänningen kan ses som värdering av attributskattningen, dvs vär-

dering av tolkningen.
15

FOI-R--1787--SE
Det observerades att värderingen av attributskattning inte beror på vilken algoritm som genere-

rat skattningen. Således kan algoritmerna låtas distribuera tolkningar mellan varandra utan risk

för s k data incest [3]. Syftet är att öka chansen att hitta den bästa kombinationen av tolkning

och algoritm/data.

Distributionen av tolkningar/skattningar är att betrakta som en första del av fusionsmetoden i

denna tillämpning för frågespråket.

I fusionsmetodens andra del sorteras alla gjorda värderingar enligt de kvantitativa resultaten

från respektive matchning. Dessa matchningsvärden tolkas så att värden från olika algoritmer

antas vara direkt jämförbara.

För de objektmodeller som matchats av mer än en algoritm sparas endast resultatet med det hög-

sta matchningsvärdet. Det högsta anses alltså vara det mest korrekta. Detta grundar sig på anta-

gandet att matchningsvärden inte kan vara förrädiskt höga. Däremot kan höga brusnivåer i vissa

data, samt dåliga upptagningsförhållanden för vissa sensorer vid det aktuella tillfället, resultera

i för låga matchningsvärden från vissa algoritmer och data. En grundlig genomgång av fusions-

metodiken ges i Appendix G.

4.1.4 Frågeexekvering
Frågeexekveringen, dvs allt som händer mellan det att systemet tagit emot en fråga från en an-

vändare till dess att svaret på frågan presenteras, presenteras övergripande i Figur 6. Mer detal-

jer om frågeexekveringen finns i Appendix E.

Figur 6. Översikt av frågeexekveringsprocessen.
16

 FOI-R--1787--SE
De två grundläggande nivåerna i frågeexekveringen är invisningsnivån och igenkänningsnivån.

Den första av dessa är invisningsnivån, se Figur 7, där området användaren är intresserad av

(AOI, dvs Area Of Interest) kan vara stort och tidsintervallet användaren är intresserad av kan

vara långt. Med invisning i detta sammanhang menas att hitta målkandidater och deras positio-

ner. Med mål menas de typer av objekt en användare frågar efter; det kan vara vilka typer av

objekt som helst som systemet har resurser (sensorer, algoritmer och/eller databaser) för att kun-

na hitta.

Figur 7. Översikt av invisningsnivån - nya AOI genereras där målkandidater hittas.

Om flera olika detektionsalgoritmer och/eller sensorer använts genereras en ny målkandidat för

varje målkandidat som de enskilda sensorerna/algoritmerna genererat. Det går också att klustra

målkandidater så att de målkandidater som ligger nära varandra slås ihop till en målkandidat

innan dessa skickas vidare till nästa nivå i processen.

På invisningsnivån har hittills använts simulerade marksensornät med akustiska sensorer och si-

mulerad CARABAS i scenarion av typen övervakning av markgående fordon i terräng.

Figur 8. Översikt av igenkänningsnivån - klassificering av målkandidater.

Attribut-
estimering

Attribut-
fusion

Modell-
matchning

Matchnings-
fusion
17

FOI-R--1787--SE
I den andra nivån, igenkänningsnivån, se Figur 8, granskas närmare de potentiella målen från

invisningsnivån. Igenkänningsnivån är indelad i två huvudsakliga steg, attributestimering och

modellmatchning. I attributestimeringen används algoritmer som relativt snabbt kan skatta att-

ribut, t ex position, orientering och storlek på målkandidaterna. Vissa målkandidater kan också

avfärdas i detta steg om det visar sig att sensordata som används inte tyder på att det förekom-

mer några mål på den angivna positionen.

Eftersom flera olika attributestimeringsalgoritmer (för samma eller olika sensordata) med fördel

kan exekveras parallellt krävs fusion av hypoteserna med avseende på position, orientering,

storlek, etc innan de går vidare till nästa steg i processen. Detta kallas attributfusion och sker

genom en form av klustringsmetodik som beskrivs övergripande på annat ställe i detta doku-

ment och mer detaljerat i Appendix G.

Ett antal olika attributestimeringsalgoritmer som estimerar position, orientering och storlek på

mål i sensordata från IR- och CCD-kameror samt från skannande laserradar har testats. Vissa

algoritmer fungerar på data från flera olika sensordatatyper medan andra bara fungerar på en

viss typ av sensordata, se vidare Appendix A.

I modellmatchningssteget används algoritmer som matchar sensordata som innehåller målkan-

didaterna i tidigare steg mot modeller av målen för att försöka klassificera den aktuella målty-

pen. Eftersom det är ett mycket beräkningstungt problem att matcha sensordata mot alla

modeller i ett modellbibliotek i alla olika konfigurationer (skalningar, orienteringar, artikulatio-

ner, etc) är det mycket värdefullt om attributestimeringssteget kan ge en indikation på hur stora

målen är (avfärdar genast alla kandidater i målbiblioteket som har annan storlek), hur de är

orienterade (mycket bättre starthypotes kan användas för hur modellen ska vridas när den ska

matchas mot sensordata) etc kan sökrymden vid modellmatchningen kraftigt reduceras vilket

snabbar upp måligenkänningen. I detta steg kan många felaktiga hypoteser om målkandidater

avfärdas och målkandidater som klassas som mål kan ges en närmare klassificering beroende

på vilken modell från modellbiblioteket som passat bäst vid matchningen.

Eftersom flera olika modellmatchningsalgoritmer (på samma eller olika sensordata) kan exe-

kveras parallellt krävs fusion av hypoteserna om målets typ och andra attributvärden innan re-
18

 FOI-R--1787--SE
sultatet går vidare till nästa steg i processen. Detta kallar vi matchningsfusion och sker med en

form av röstningsmetodik som beskrivs mer detaljerat i Appendix G.

När systemet fått fram klassificerade mål med skattade attribut (position, orientering, storlek,

artikulering, etc) evalueras dessa mot de krav på attributvärden och spatiala och temporala re-

lationer mellan objekt som användaren av frågespråket specificerat i sin fråga. När detta är klart

är resultatet klart att presenteras.

4.1.5 Arkitektur
Problemet som behandlas i detta avsnitt är huruvida frågespråket ΣQL automatiskt kan hitta

lämpliga datakällor på nätet och hur systemet kan få åtkomst till data från dessa källor.

Uppkopplade på nätet finns olika sensorplattformar som kan vara allt från en soldat till en UAV,

ett markgående spaningsfordon, ett fartyg på havet eller en fast monterad stolpe på vilken man

kan montera en eller flera sensorer. Sensorer kan i sin tur vara allt från ögonen eller öronen på

en soldat till en radar eller en elektrooptisk sensor i en UAV.

Figur 9. Beskrivning av informationsflöde från sensor till användare.

Hela konceptet överförs enkelt från den militära världen till exempelvis civila katastrofsituatio-

ner där en konsistent lägesbild av ett område önskas.

I Figur 9 ges en schematisk beskrivning av hur informationsflödet från sensor till användare kan

se ut.
19

FOI-R--1787--SE
För att få hög robusthet krävs att systemet är distribuerat och att viktig information finns lagrad

på flera ställen i nätet (redundans). Eftersom mängden sensordata i ett sådant här system är

mycket stor krävs att data behandlas så nära källan som möjligt och att förädlad information

kommuniceras mellan de olika noderna i nätet.

Det gäller alltså att på ett intelligent sätt överföra minimala datamängder med så stort informa-

tionsinnehåll som möjligt vid så få och lämpliga tidpunkter som möjligt. Intelligenta agenter

lämpar sig väl för denna typ av autonomt uppträdande. Exempelvis kan de förhandla med andra

agenter (som har andra mål än agenten själv) om vad som är lämpligt att göra i olika situationer.

Sensorer sitter på plattformar och levererar sensordata. Med sensordata menas i detta samman-

hang data från en sensor innan någon måldetektion har genomförts. Exempel på sensordata är

således en IR-bild, en radarplott, en SAR-bild och en punktskur från en laserradar.

Sensordata i sig är inte mycket värda. För att få ut något värde ur sensordata måste man extra-

hera information ur datamängden, exempelvis genom måldetektion. Med måldetektion menas

här att man i sensordata försöker detektera ett eller flera objekt som man är intresserad av att

presentera i lägesbilden. Användaren av ett informationssystem ska inte behöva bry sig om vil-

ka plattformar, sensorer och databaser som finns tillgängliga för att besvara hans fråga. Syste-

met ska istället automatiskt hitta lämpliga datakällor (sensorer, databaser, etc) med den

information som behövs för att besvara en fråga. För att lösa problemet föreslås en arkitektur

baserad på intelligenta agenter, med två typer av agenter. Den första typen är en resursalloke-

ringsagent och den andra en dataåtkomstagent.

När en användare ställer en fråga skapas en resursallokeringsagent. Denna agent är sedan an-

svarig för att leta upp och hålla reda på de resurser som behövs för att besvara frågan över tiden.

Resurser som agenten letar upp och håller reda på är sensordata, algoritmer för behandling av

sensordata (måldetektionsalgoritmer etc), observationer och målspår som kan behövas för att

besvara frågan. Dessa resurser finns tillgängliga antingen i databaser eller i sensorplattformar,

men är i båda fallen åtkomliga via nätet.
20

 FOI-R--1787--SE
När resursallokeringsagenten har allokerat resurser för att besvara frågan skapas en dataåtkom-

stagent för varje sensordata-, observations- och målspårsresurs. Om resursen är sensordata

kommer dataåtkomstagenten att ta med sig information om vilka algoritmer som ska appliceras

för att få lämpliga observationer. En lämplig sensordatabearbetningsnod väljs (en bearbetning-

snod med lämpliga prestanda och ledig beräkningskraft så nära datakällan som möjligt) av

agenten och algoritmerna appliceras på aktuella data. Observera att tillgång till data om sensor-

data (metadata), bl a. täckningsområden för insamlade data, är av central betydelse för att resur-

serna i nätet ska kunna utnyttjas på ett bra sätt.

En mer omfattande och detaljerad beskrivning av agentkonceptet presenteras i Appendix H.

4.2 Terränganalys
Analys av terrängen är en naturlig del i ett beslutsstöd för markspaning. Terrängen är central vid

t.ex. analys av skydd, synfält eller framkomlighet. För att terrängdata ska vara användbart i ett

frågespråk är det nödvändigt att systemet kan tolka terrängen i termer som användaren själv kan

tolka och resonera om på ett naturligt sätt. Ett led i processen att tolka terrängen består i att klas-

sificera ytan i olika meningsfulla delar, d.v.s att detektera relevanta terrängobjekt, som t ex kul-

lar eller diken. De terrängdata som använts i IS-MS kommer från en flygburen, skannande

laserradar (TopEye) med en mycket hög upplösning (≤ 0.5 m). Dessa data kan användas till att

detektera väsentliga terrängobjekt av typ diken och kullar. För att terränganalys ska kunna ske

i nära realtid måste effektiva metoder för detektion av objekten utvecklas. Detta är ett komplext

problem eftersom en mycket stor mängd data måste lagras, bearbetas, distribueras och visuali-

seras, speciellt då hög upplösning krävs. Vidare krävs också metoder för reduktion av data, där

de relevanta delarna kan behållas, men de mindre viktiga delarna tas bort [5]. En metod för att

uppnå dessa mål baserad på bestämning av symboliska ytelement har utvecklats, Appendix I.

Ytelementen används sedan i en effektiv matchningsprocess för att detektera väsentliga terräng-

objekt. Den symboliska strukturen är en blandning av en reguljär och en irreguljär datastruktur

där vissa irreguljärt distribuerade, viktiga höjddatapunkter behålls. Den huvudsakliga fördelen

med denna struktur är att den tillåter en effektiv matchning mot användarens frågor om beskriv-

na terrängobjekt. Förutom att vara en lämplig struktur för att användas i ett frågespråk kan struk-

turen också användas som ett index till en höjdmodell. Detta skall ses som ett komplement till

en höjdmodell i hög upplösning och inte som en ersättning.
21

FOI-R--1787--SE
Framkomlighetsanalys i terräng innebär analys och visualisering av möjligheten att ta sig fram

i ett godtyckligt terrängavsnitt med ett givet fordon av någon typ, se vidare Appendix J. Slut-

målet är att generera ett eller flera förslag på sätt att ta sig från en position till en annan. Dessa

förslag ska vara de bästa ur någon given synvinkel, t.ex. de kortaste eller de säkraste. Framkom-

lighetsanalys är ett komplext problem som beror av många faktorer, men som också har många

olika tillämpningar. Förutom att vara ett stöd till militära beslutsfattare vid planering kan också

t.ex. utryckningsfordon vid skogsbränder vara i behov av en framkomlighetsanalys.Tyvärr är

det underlag som finns i allmänhet inte tillräckligt för att framkomlighetsanalys ska kunna göras

med en adekvat noggrannhet. Inte minst saknas 3D-data i tillräckligt hög upplösning men även

data, om t.ex. jordartstyper med tillräcklig upplösning saknas.

Inom ramen för detta projekt har tre arbeten [6], [7] samt Appendix J utförts där några av ovan-

stående problem adresseras. Utgående från de terrängobjekt som detekterats i 3D-data samt data

från Fastighetskartan [8] konstrueras ett nätverk av terrängobjekt med olika framkomlighetse-

genskaper. Hantering av fullständiga terrängobjekt istället för rena höjddatapunkter gör analy-

sen snabbare och gör att olika genererade förslag skiljer sig på ett meningsfullt sätt. De olika

objekten förknippas sedan med olika kostnader beroende på svårigheten att ta sig igenom ob-

jektet. Kostnaden beräknas genom att en mängd olika faktorer vägs samman i en kvalitativ an-

sats. Metodens viktigaste egenskaper är att vara robust mot ofullkomligheter i data, vilket

väsentligen är beroende av stora osäkerheter i ursprungsdata samt att data i många fall saknas.

Sökning i nätverket sker med en kombination av Dijkstra’s algoritm [9] och A*-algoritmen [9].

4.3 Situationsanalys
Det problem som behandlas i anslutning till situationsanalys berör associering av observationer

av vägbundna fordon och kan ses som ett generellt stöd för lägesuppfattning. Detta omfattar en

metod för associering av observationer av vägbundna fordon [10]. Med associering menas här

att avgöra vilka observationer som härrör från samma fordon. Det finns flera olika syften med

att associera observationer på detta sätt. Rent allmänt kan man säga att associering, om den är

genomförbar, ger färre målspår och därmed en mindre komplex lägesbild att analysera och för-

stå. En fråga man vill kunna besvara är exempelvis hur många fordon som har observerats. As-

sociering av observationer är ett sätt att göra detta. Med associering ökar också möjligheterna

till en visualisering som ger en förståelse av vad som har genererat observationerna. En målsätt-
22

 FOI-R--1787--SE
ning är att ge användaren en ungefärlig uppfattning om vilka rörelsemönster som finns i situa-

tionen.

Ursprunget till den här beskrivna metodutvecklingen återfinns i Appendix K, som beskriver ett

generellt ramverk för situationsanalys. Delar av de idéer som där förs fram har sedan legat till

grund för det fortsatta arbetet och kan sägas vara en vägledande vision för vad vi vill åstadkom-

ma på längre sikt. Det som primärt bör tillföras vid en fortsatt utveckling av metoden är hante-

ring av grupper av fordon.

Den utvecklade metoden för associering av observationer har två huvudkomponenter:

- skattning av lokal associationssannolikhet mellan varje par av observationer.

- global optimering för att finna den kombination av associationer som ger störst total

sannolikhet.

Skattningen av lokal associationssannolikhet mellan ett par av observationer baseras på följande

faktorer:

- Tidsdifferensen mellan observationerna.

- Längden på den kortaste färdvägen mellan observationsplatserna.

- En sannolikhetsfördelning för fordonets förväntade genomsnittliga hastighet.

- Eventuell typklassificering av observationerna.

- Graden av rationellt vägval som en färdväg mellan observationerna skulle innebära.

- En apriorifördelning av sannolikheten för olika grader av rationellt vägval.

- Skattad fordonstäthet.
23

FOI-R--1787--SE
Med rationellt vägval avses att vald färdväg inte utgör en lång omväg. Att en omväg måste ha

tagits kan ibland konstateras genom att studera vägnätets topografi i kombination med den his-

toria i form av målspår som finns för observationerna.

När alla parvisa lokala associationssannolikheter har beräknats görs en global optimering där

observationerna delas upp i grupper. Varje sådan grupp representerar observationer av ett och

samma fordon. Optimeringens målfunktion är

där

Pij är associationssannolikheten mellan observation i och j

δij = 1 om observation i och j är associerade, 0 annars

Optimeringsmetoden bygger på Genetiska Algoritmer (GA) [11], vilket är en stokastisk sökme-

tod inspirerad av evolutionsteorin. GA bygger på att man har en uppsättning lösningar som i ett

antal cykler genomgår slumpmässiga förändringar. I varje sådan cykel väljs de bästa ut för att

generera en ny uppsättning lösningar som är slumpmässigt modifierade versioner av de tidigare.

Metoden terminerar efter ett förutbestämt antal cykler, då den bästa lösningen som har genere-

rats så långt returneras.

För internt bruk har en visualiseringsfunktion som utnyttjar färgkodning utvecklats, se Figur 10

Denna ger emellertid en svåröverskådlig bild när antalet observationer växer och ger inte heller

någon uppfattning om tidsdimensionen.

Arbete pågår med att utveckla en metodik för att spela upp resultatet i simulerad tid. Där man

har haft målföljning ser man en fordonssymbol som rör sig enligt målspåret. I den tidslucka som

finns mellan två associerade målspår rör sig en annan symbol längs en hypotetisk färdväg mel-

lan målspåren.

V Pijδij 1 Pij–() 1 δij–()+
i j>
∏=
24

 FOI-R--1787--SE
.

Figur 10. Målspår över en tidsperiod i stadsmiljö. Målspåren har anpassats till vägnätet för tyd-
ligare visualisering. Målspår som bedöms härröra från samma objekt har samma färg.

5. Sammanfattning
Det informationssystem för markspaning som beskrivits här är primärt avsett för att integreras

med ett nätverksanpassat ledningssystem. Informationssystemet kan ses som ett beslutsstöd el-

ler lagringsplats för olika tjänster som kan allokeras av enskilda användare. För närvande upp-

går dessa tjänster till tre men kan efter behov utökas. Dessa tre tjänster utgörs av ett frågespråk

med ett antal underliggande sensordatatjänster, situationsanalys samt en metod för generering

av högupplösande terrängmodeller.

Frågespråket är för närvarande den mest komplexa tjänsten med förmåga att besvara dels enkla

frågor, som inte kräver någon djupare kunskap om hur frågespråk används, dels mer komplexa

frågor som kräver en mer omfattande kunskap. ΣQL kan hantera osäker information och kan

dessutom ge stöd för underhåll av en lägesbild. Frågor kan ställas med hjälp av ett kraftfullt vi-

suellt användargränssnitt. Frågespråket har också till uppgift att ge stöd till andra tjänster, t ex

stöd för situationsanalys etc.
25

FOI-R--1787--SE
Frågespråket är också försett med andra egenskaper bland vilka kan nämnas ett effektivt red-

skap för fusion och sensorinteroperabilitet. Dessa egenskaper stöds båda av det ontologiska

kunskapssystemet. Syftet med denna teknik, som beskriver data på ett hierarkiskt strukturerat

sätt, är att också ge stöd vid frågegenereringen, vilket sker genom att peka på lämliga objekt i

den ontologiska objektstrukturen.

Systemet kan allokera tjänster på olika nivåer, dvs direkt av användaren eller indirekt via direkt-

allokerade tjänster. Exempel på tjänster av den senare typen är sensortjänster. När det gäller för-

mågan att allokera tjänster så sker detta på ett användaroberoende sätt. Detta

sensordataoberoende gör det möjligt för användaren att hantera systemet utan att ha kunskap om

sensorerna eller de data som dessa producerar.

Sensorer genererar data som är mer eller mindre osäkra, vilket beror på sensorernas egenskaper

men också på väderleks- och ljusförhållanden. I detta arbete har vi kunnat visa att osäker infor-

mation kan hanteras på ett robust sätt, se bl a [1] men också Appendix C och D. Osäkerhet i data

påverkar också svaren på frågorna som ställs. Detta indikeras genom att systemet förser svaren

med trolighetsmått (eng. belief values) med normaliserade värden mellan 0 och 1. Exempel på

detta är att en T32 har observerats med ett trolighetsmått på 0.80. Detta bör tolkas som att man

kan ha en relativt hög tilltro till svaret.

Andra tillämpningar av detta system kan förutom militära också vara civila, t ex krisledning. Att

hantera stora datamängder vid krisledning är av central betydelse och speciellt i sådana sam-

manhang där behov finns av att ge stöd för databrytning (eng. data mining). Frågespråket i detta

informationssystem lämpar sig väl för denna problematik.

För metodiken för framkomlighet kan konstateras att det fortfarande krävs mycket arbete med

att ta fram underlaget för framkomlighetsanalysen, många datakällor och nya analysmetoder be-

hövs. Inte minst måste metoder för fusion av olika terrängdatakällor, i syfte att bestämma rele-

vanta terrängobjekt, utvecklas. Själva analysmetoden måste också vara robust för att kunna

hantera de fall då data saknas, är osäker eller av varierande typ.
26

 FOI-R--1787--SE
Hur pass väl den utvecklade metoden för associering av observationer av vägbundna fordon

fungerar beror i huvudsak på förhållandet mellan fordonstäthet och observationstäthet. Den

fungerar speciellt bra för estimering av antalet fordon i relativt gles trafik. Bra klassificerings-

information får samma effekt som minskad fordonstäthet, vilket innebär att bra klassificering är

ett sätt att hantera större fordonstäthet. För framtiden är en utvidgning av metoden för att asso-

ciera observationer av grupper av fordon intressant. Dels är uppträdandet i grupper vanligt i

många sammanhang, dels ger detta möjlighet att utnyttja gruppernas sammansättning för beräk-

ning av likhetsmått mellan grupper, vilket skulle ge en ännu bättre förutsättning för associering.

Referenser
[1] E. Jungert et al., From Sensor to Decision, FOI user report, FOI-R--1041--SE, December

2003.

[2] M. Tyskeng, MOSART - Instructions for use, FOI-R--1098-SE, dec 2003.

[3] E. Sviestins, synergetic partnership. Militärteknisk tidskrift 1:14-19, 2003.

[4] T. Horney, Design of an ontological knowledge structure for a query language for multiple

data sources, FOI-rapport, 2002.

[5] F. Lantz, E. Jungert, Dual Aspects of a Multi-Resolution Grid-Based Terrain Data Model

with Supplementary Irregular Points, Proceedings of the 3rd International Conference on

Information Fusion, Paris, France, July 10-13, 2000.

[6] S. Edlund, Driveability Analysis, Linköpings Universitet, LITH-IDA-EX-04/031-SE,

2004,(FOI rapport FOI-R--1241--SE, maj, 2004).

[7] K. Gustafsson, J. Hägerstrand, Development of a Neighbourhood Graph for trafficability

Analysis, Linköpings Universitet, LITH-IDA-EX-05/047--SE, (FOI rapport FOI-R--1698--

SE, juni, 2005).

[8] Lantmäteriet, /Produktbeskrivning: GSD-Fastighetskartan i Shape och MapInfo-format/,

http://www.lm.se/gsd/fastighetskartan/fastshmi.pdf, August 2004, visited Jan 15, 2005.

[9] V.M.Jiménez, A. Marzal, J. Monné, A Comparison of Two Exact Algorithms for Finding the

N-Best Sentence Hypotheses in Continuous Speech Recognition, From the Proceedings of
27

FOI-R--1787--SE
the 4th European Conference on Speech Communication and Technology, EUROSPEECH-

95, Madrid, 1995, pp. 1071-1074.

[10] J. Fransson, Situationsanalys: Associering av observationer av vägbundna fordon, FOI-

memo 1366, Juni, 2005.

[11] E. Falkenauer, "Genetic Algorithms and Grouping Problems", Wiley, ISBN 0471 971502,

1998.
28

 FOI-R--1787--SE
Projektpublikationer, 2004-2005
Tidskiftsartiklar

S.-K. Chang, E. Jungert and X. Li, A Progressive Query Language and Interactive Reasoner for

Information Fusion, accepterad för publicering i the Journal of Information Fusion, Elsevier.

S.-K. Chang, G. Costagliola, E. Jungert, F. Orciuoli, Querying Distributed Multimedia Databa-

ses Data Sources in Information Fusion Applications, IEEE Trans. on Multimedia, Vol. 6, No.

5, October 2004, 687-702.

Bokkapitel

J. Alfredson, G. Derefledt, E. Jungert, Kunskapsrepresentation för utveckling av gemensam lä-

gesförståelse i närverk (in Swedish), in Samhällsförsvar - nya hot och ökat internationellt en-

gagemang, G. Derefeldt, H. Friman (Eds.), Utrikespolitiska institutet, Stockholm 2004, pp 177-

192.

Konferensbidrag

K. Silvervarg, E. Jungert, Uncertain topological relations for mobile point objects in terrain,

Distributed multimedia Systems, Banff, Canada, Sept 5-7, 2005.

F. Lantz, E. Jungert, Context Fusion for Driveability Analysis, Proceedings of the international

conference on Information Fusion (Fusion’05), Philadelphia, PA, July 25-29, 2005.

K. Silvervarg, E. Jungert, A Visual Query Language for Uncertain Spatial and Temporal data,

Visual Information System, Amsterdam, July 9, 2005.

K. Silvervarg, E. Jungert, Visual specification of spatial/temporal queries in a sensor data in-

dependent information system, Proceedings of the Workshop on Visual Language and Compu-

ting (VLC’04), San Francisco, California, September 8-10, 2004.

S.-K. Chang, G. Costagliola, E. Jungert, G. Casella, T. Horney, X. Li, An Architecture for Inte-

ractive Query Refinement in Sensor-based Information Fusion Systems, proceedings of the
29

FOI-R--1787--SE
Workshop on Visual Information Systems (VIS’04), San Francisco, California, September 8-10,

2004.

S.-K. Chang, E. Jungert, Iterative Information Fusion using a Reasoner for Objects with Uni-

formative Belief Values, Proceedings of the 7th international Conference on Information Fusion

(Fusion’04), Stockholm, Sweden, June 28- july 1, 2004.

T. Horney, J. Ahlberg, E. Jungert, M. Folkesson, K. Silvervarg, F. Lantz, J. Franssson, C. Grön-

wall, L. Klasén, M. Ulvklo, An Information System for target recognition, Proceedings of the

SPIE conference on defense and security, Orlando, Florida, April 12-16, 2004, Vol. 5434, pp

163-175.

Examensarbeten

S. Edlund, Driveability Analysis, Linköpings Universitet, LITH-IDA-EX-04/031-SE,

2004,(FOI rapport FOI-R--1241--SE, maj, 2004).

K. Gustafsson, J. Hägerstrand, Development of a Neighbourhood Graph for trafficability Ana-

lysis, Linköpings Universitet, LITH-IDA-EX-05/047--SE, (FOI rapport FOI-R--1698--SE, ju-

ni, 2005).

FOI-rapporter

M. Folkesson, C. Grönwall, E. Jungert, A Fusion Framework for coarse-to-fine Target Recog-

nition, FOI-rapport, FOI-R--xxxx--SE, September, 2005.

FOI-Memo

T. Horney, E. Jungert, Agent architecture for a query language in NVD-Environment (in Swed-

ish), FOI-memo 1025, September, 2004.

E. Jungert m fl, Verksamheten inom Försvarsmaktsprojektet Informationssystem för Markspa-

ning (IS-MS), FOI-memo 1126, December 2004.
30

 FOI-R--1787--SE
J. Fransson, Situationsanlys: Associering av observationer av vägbundna fordon, FOI-memo

1366, juni, 2005

E. Jungert, T. Horney, P. Follo, Integration av CARABAS med frågrespråket ΣQL för detektering

av markfordon, FOI-memo 1430, september 2005.
31

FOI-R--1787--SE
32

FOI-R--1787--SE
Särtryck av utvalda publikationer
33

FOI-R--1787--SE
34

FOI-R--1787--SE
Appendix A

An Information System for Target Recognition

 SPIE, Aerosense, Orlando, FA, April 12-16, 2004.

Horney, T., Ahlberg, J., Jungert, E., Folkesson, M., Silvervarg, K., Lantz, F., Franssson, J.,

Grönwall, C., Klasén, L., Ulvklo, M.
35

An Information System for Target Recognition

Tobias Horney1, Jörgen Ahlberg2, Erland Jungert1, Martin Folkesson1, Karin Silvervarg1,
Fredrik Lantz1, Jörgen Fransson1, Christina Grönwall3, Lena Klasén3, Morgan Ulvklo2

1) Dept. of Data and Information Fusion, Div. of Command and Control Systems
2) Dept. of IR Systems, Div. of Sensor Technology

3) Dept. of Laser Systems, Div. of Sensor Technology

Swedish Defence Research Agency (FOI)
SE-581 11 Linköping, Sweden

{tobho, jorahl, jungert, marfol, karin, flantz, jorfra, stina, lena, morgan}@foi.se

Abstract
We present an approach to a general decision support system. The aim is to cover the complete process for auto-
matic target recognition, from sensor data to the user interface. The approach is based on a query-based information
system, and include tasks like feature extraction from sensor data, data association, data fusion and situation anal-
ysis.

Currently, we are working with data from laser radar, infrared cameras, and visual cameras, studying target rec-
ognition from cooperating sensors on one or several platforms. The sensors are typically airborne and at low alti-
tude.

The processing of sensor data is performed in two steps. First, several attributes are estimated from the (un-
known but detected) target. The attributes include orientation, size, speed, temperature etc. These estimates are
used to select the models of interest in the matching step, where the target is matched with a number of target mod-
els, returning a likelihood value for each model. Several methods and sensor data types are used in both steps.

The user communicates with the system via a visual user interface, where, for instance, the user can mark an
area on a map and ask for hostile vehicles in the chosen area. The user input is converted to a query in ΣQL, a query
language developed for this type of applications, and an ontological system decides which algorithms should be
invoked and which sensor data should be used. The output from the sensors is fused by a fusion module and an-
swers are given back to the user. The user does not need to have any detailed technical knowledge about the sensors
(or which sensors that are available), and new sensors and algorithms can easily be plugged in to the system.

Keywords: Automatic target recognition, multisensor fusion, query languages

1 Introduction
This paper describes an information system for recognition
of ground targets, mainly various types of military vehicles.
Our aim is to cover the complete process of target recogni-
tion, from the sensors to the decision support in a command
and control system. Applications are surveillance and intelli-
gence in a network centric defence. The main goals of our
project have been to:

• Develop signal- and image processing methods for target
recognition;

• Demonstrate improved target recognition using data
fusion;

• Develop an information system for target recognition
based on a query language, with a powerful visual user
interface, for heterogeneous sensor data sources;

• Demonstrate how the decision support tool in the infor-
mation system can support situation analysis.

The outline of this paper is as follows. A background to this
kind of information systems is given in the remaining of this
section. An overview of our system is given in Section 2, and
its processing of user queries is described in Section 3. The
sensor data analysis, i.e., the target recognition algorithms, is
briefly described in Section 4, and how the output is fused is

described in Section 5. The supporting modules for terrain
analysis and situation awareness are prestented in Section 6
and Section 7. Finally, our implementation is treated in
Section 8 and concluding remarks given in Section 9.

1.1 Background

The next generation decision support tools for situation and
impact analysis [1] will generally require input from a large
number of sensors located on different platforms. These de-
cision support tools will also be integrated in a communica-
tion network enabling network centric warfare applications.
Systems designed for this type of applications, i.e., basically
command and control, will obviously become very complex.
Hence, they will either require users that are well trained in
using complex technical information systems or efforts must
be made into the design of usable systems [2]. The latter al-
ternative is clearly preferable since most users will place a
higher trust, or confidence, in the system at the same time as
they will be able to focus their efforts on their primary tasks.
Such a system requires capabilities to select sensors and al-
gorithms for sensor data analysis without any user interfer-
ence. Systems with this capacity are said to be sensor data
independent [3] and help in avoiding a situation where the
users of an information system need a deep understanding of
the sensors, when certain sensor types are usable, how to an-
alyse the sensor data, etc. Sensor data independence is basi-

cally similar to data independence in database design, where
it was first introduced to allow modifications of the physical
databases without affecting the application programs [15].
This was a powerful innovation in database design and gen-
erally in information technology. Sensor data independence
can from a practical viewpoint be carried out by means of an
ontology combined with an ontological knowledge-base [4,
5]. A nice aspect of this solution is that new sensor types and
sensor data analysis algorithms can be integrated simply by
updating the knowledge-base. The user of the information
system does not even necessarily need to be informed.

Another important aspect when designing systems for
command and control applications, and where sensors are the
primary input data sources, is that the users should be al-
lowed to define relevant application oriented goals [6]. This
should enable the system to acquire the information needed
to solve the problem associated with the given goal. Conse-
quently, a system of this type must be goal driven or, as will
be seen subsequently, query driven.

Various means can be used to accomplish the user-defined
goals. In this work a query language for sensor data, where
the different occurring sensor data types are homogeneous
with respect to the sensors, is presented. The query language
is called ΣQL. ΣQL uses a visual user interface [7] for appli-
cation of the user defined queries and an ontology with an
ontological knowledge-base to achieve sensor data inde-
pendence. A more thorough description of ΣQL can be found
in [8,9].

This paper focuses on the information system as such and
does not in detail describe the sensor data analysis algorithms
developed and used in the information system. The sensor
data analysis used by the information system is more thor-
oughly presented in [10,18,20,21].

One of the objectives of the information system is to ac-
quire information from the sensors and deliver input to a
module for situation assessment [11]. To support the latter, a
technique for generation of a symbolic digital terrain model
in very high resolution (~ 0.5 m) has been developed. This in-
cludes a filtering method for determination of various terrain
features [12]. However work has been done on the situation
assessment and terrain analysis parts, those are not integrated
in the current system implementation.

2 System structure
In this section an overview of the system structure is present-
ed. Also, the user interface, the ΣQL query processor and
other core functionality are described. The data fusion por-
tion of the system is described in Section 5.

2.1 Overview

An schematic overview of the system can be found in
Figure 1. The system is, from right to left, divided into the
visual user interface, the query processor, and the sensor
nodes to which the sensor data sources are attached. The sen-
sor nodes include means for target recognition and terrain
data analysis. The query processor includes a knowledge sys-
tem, a query interpretor and a sensor data fusion module.
Connected to the query processor is an ontology, a target
model library and a database with meta data for all available
sensor data.

There is also a situation analysis module which is more in-
dependently attached to the query processor. One of the pur-
poses with the query processor is to feed the situation
analysis module with relevant information. Below follows
descriptions of the different parts of the system.

2.2 User interface

The basic idea of the information system is that the user
should not need to have any knowledge about sensors or sen-
sor data. The consequence is that the user interface should be
based on concepts related to the user’s task. In this case those
concepts are area, object, and time, in particular the area of
interest (AOI), the requested objects and the time interval of
interest (IOI). The user interface for requesting a search of
sensor data is split into three parts; one for area of interest,
one for object selection, and one for specification of the time
interval.

Generally, the user is not interested in data from all loca-
tions, so he/she must select the relevant area for the current
query. To facilitate the selection of AOI the user interface
contains a map, see Figure 2 (left). It is possible to zoom and
pan the map to find the desired area of interest. Once the user
has determined the correct location he/she simply marks it on
the map. Although the user does not need to know anything
about sensors, it is nevertheless undesirable to make a query

CCD camera

Laser radar

Infrared camera

ΣQL query processor

Sensor data
analysis

Sensor data
analysis

Sensor data
analysis

Terrain
analysis

Situation
analysis

User
interface

Knowledge
system

Query
interpretor

Data
fusion

Meta
data

Target
models

Ontology

Users

Figure 1: System overview.

where no data are available. Consequently, the map is over-
layed with sensor coverage information for the selected time
interval.

The user also has to specify which kind of objects that are
currently of interest. This can be done by selecting the ob-
jects from a hierarchical list in the right part of the user inter-
face (Figure 2, left). The user can also use a more advanced
tool for the object type selection called the advanced query
designer (Figure 2, bottom right). In the advanced query de-
signer it is possible to specify object attributes, e.g., length
and velocity, but also relations, both spatial and temporal, be-
tween objects.

The third part of the user interface concerns the time-con-
straints on data for a particular search; that is basically the
time span of the data. The user can either specify the absolute
time for a query that should be repeated over time by giving
start and end time, or he can specify the query in relation to
now, for instance, by only using data collected during the last
30 minutes.

The result of the search is presented in a separate window
showing the zoomed-in area of interest (Figure 2, top right).
All occurrences of relevant objects recognized in the area by
the sensors are marked. At the user’s request, additional in-
formation from sensor data about each of the objects can be
shown.

In most cases a query concerns the occurrences of objects
of certain types including a number of attributes. Since the
sensors and their platforms always are associated with vari-
ous uncertainties there are always uncertainties associated
with the query result. Clearly, there is no way of avoiding
these uncertainties although the result can be improved, e.g.
if the sensors are improved. For this reason, means to indi-
cate the level of uncertainty in the query results must be
available to allow the users to draw their conclusions regard-
ing how trustworthy the query results are. Such means can,
of course, be presented by the system in many ways. In this
work we have chosen to represent the uncertainties by means

of what are here called belief values. A belief value is a nor-
malized value in the interval [0, 1]. The interpretation of such
a value is that when it is close to 1 there is a high belief in the
received objects and when close to zero the belief is low.

2.3 Knowledge system

Three requirements must be fulfilled to establish sensor data
independence. Firstly, the system must be able to select one
or more sensors while considering, e.g., the present weather
and light conditions. Secondly, proper recognition algo-
rithms must be chosen, i.e., algorithms that support an effi-
cient recognition of the requested targets under the existing
conditions. Finally, means to control the sensor data fusion
process and to determine the interconnections between the
controlling part and the fusion process must be established.

A system designed to support all these characteristics will
need a structure that on the basis of the requested targets is
able to pick the most appropriate sensor(s) and recognition
algorithm(s) and to access, analyse and eventually fuse the
information gathered from the sensors.

Selection of appropriate sensors and algorithms

The ontological knowledge-base has been designed to help
answering such questions as which sensor data to use under
certain circumstances. Also of importance is which recogni-
tion and cueing algorithm(s) that should be applied. An algo-
rithm that performs these selections using the ontological
knowledge-base has been developed, that is, the knowledge
in the ontological knowledge-base is used in conjunction
with the knowledge-base rules (described below) to deter-
mine which sensors and recognition/cueing algorithms are
the most appropriate under the given circumstances, i.e., the
actual ΣQL query, the meta data conditions, the external con-
ditions, and the terrain background. This algorithm is called
Algorithm For Finding Appropriate Sensors and Algorithms
(AFFAS) and is described in detail in [4].

Figure 2: The user interface. Left: Creating of a query. Top right: The result of a query. Bottom right: The advanced query designer.
Map copyright Lantmäteriverket 2001, ref. no. L2002/308.

In the process of deciding upon appropriate sensors and
algorithms it is necessary to have rules describing under
which conditions certain sensors and algorithms are appro-
priate. The rules that are used to decide how the impact fac-
tors impact the sensors and recognition/cueing algorithms
can be written in the following form:

If an impact factor x has the discrete strength value y then
the impact on the sensor/algorithm z has impact strength val-
ue v.

Example 1: If the impact factor Rain has the discrete
strength value Gentle then the impact on recognition algo-
rithm GeometricFeatureExtraction has impact strength val-
ue Little.

Example 2: If the impact factor View has the discrete
strength value Local then the impact on the sensor Standard
CCD Sensor has impact strength value None.

A complete set of rules is needed for the system to func-
tion properly. Definitions of impact factor, discrete strength
value, and impact strength value are presented in [4]. The
definitions are quite straightforward.

2.4 Ontology

The knowledge represented in the ontological knowledge-
base is modelled in a hierarchical manner known as the on-
tology. All concepts in the universe of discourse, the interest-
ing properties of the concepts and the important relations
between the concepts are modelled. The hierarchy has the ul-
timately general concept called Thing at the top. All other
concepts inherit directly or indirectly from Thing. The hier-
archy is organized so that more specialized concepts appear
further down the inheritance chain. The concepts of this on-
tology are divided into three major parts, i.e., things, charac-
teristics and conditions. An overview of the ontology is
presented in Figure 3. Further details can be found in [4, 5].

The Things to be Sensed and Recognized part of the ontol-
ogy models everything that can be sensed by the sensors and
everything that can be recognized by the recognition algo-
rithms or cued by the cueing algorithms. It is represented in
the ontology by the ThingToBeSensed concept and subcon-
cepts; examples are trucks and tanks.

The Sensor and Algorithm Characteristics part of the on-
tology models the characteristics of the sensors and the rec-
ognition and cueing algorithms. This part includes the
concepts Sensor platform, Sensor, Algorithm (including sub-
concepts), and Sensor-Algorithm (the combination of a sen-
sor and an algorithm).

The Conditions part of the ontology models the conditions
that have an impact on the appropriateness of the sensors and
the recognition/cueing algorithms. The conditions are state
conditions describing the state of something, for example
how rainy it is. The concepts that make up this part are View,
MetaDataCondition, ExternalCondition (including subcon-
cepts) and DiscreteStrengthValue.

Relations are used to model how the concepts in the ontol-
ogy are related to each other. It is important to note that rela-
tions are inherited, meaning that if concept B inherits concept
A and concept A has a relation to C, then concept B automat-
ically has that relation to C as well.

2.5 Query interpretor

In the advanced query designer (Figure 2, bottom right), the
user can enforce spatial and/or temporal constraints between
objects in the query. An example of a query with a spatial
and a temporal constraint is: “Show me tanks which are with-
in 50 metres of each other at some point in time inside the
area of interest during the time interval of interest”. The que-
ry interpretor evaluates which solutions are possible to a cer-
tain query given its constraints. In the example above, the
system will first search for all tanks in the area of interest
during the time interval of interest. After that, the query in-
terpretor will be called to make sure that out of all the tanks
the system found only those within 50 metres of another tank
(at the same point in time) become part of the result. Thanks
to the query interpretor a user can specify, e.g., a certain for-
mation of vehicles instead of just the vehicles taking part in
such a formation.

2.6 Target model library

In the process of target recognition, the sensor data are
matched to models in the target model library. The models in
the library are described by their 3D structure and their ap-
pearance. The use of the target model library is described in
Section 4.

2.7 Sensor meta data DB

In a network centric warfare environment, where multiple
sensors on multiple platforms provide sensor data in real
time, it is very important to keep track of what kinds of sen-
sor data are available at what locations at what times. For this
purpose, we use a database of meta data from the sensor sys-
tems. This database is assumed to be correctly updated at all
times, i.e. our system does not today contain the functionality
to update the sensor meta data DB on the fly, instead we as-
sume it is correctly updated. An important issue is of course
to make sure to get sensor data from the interesting locations
at the interesting points in time (i.e., sensor management).
For now, our system is not involved in any sensor manage-
ment activities, this is assumed to be handled elsewhere.

Thing

Algorithm

Sensor
Platform

Sensor ThingTo
BeSensed

View MetaData
Condition

External
Condition

Discrete
StrengthValue

Recognition
Algorithm

Cueing
Algorithm

 SA

Weather
Condition

Light
Condition

PropertyTo
BeSensed

Recognizable
Object

 Mobile
Object

Immobile
Object

Vehicle

Combat
Vehicle

 Truck Bus Car

 IFV Tank

Terrain Building

 Road River VegetationLandform

 Hill Ditch

House Tent

1

2 3

4 5

1 - CarriesSensor (1 1..*)

2 - HasAlgorithm (1 1)

3 - HasSensor (1 1)

4 - HasAppropriateSA (1 0..*)

5 - HasDiscreteStrengthValue (1 2..*)

Figure 3: Ontology overview — The knowledge structure.

3 Query execution process
The execution of a query, that is, everything performed be-
tween the reception of a query entered by the user and the
presentation of the query result, is performed in a process
controlled by the ontological system; this includes the con-
trol of the data fusion process. An overview of the query ex-
ecution process is presented in Figure 4. More details can be
found in [5]. The two basic levels in the data fusion control
process are described below.

The first level is the cueing level, see Figure 5, where the
area of interest (AOI) can be large and the time interval of in-
terest (IOI) can be long. Cueing in this sense means finding
potential target objects (the ones searched for in the query)
and indicating the positions of these potential targets. Note
that the recognition algorithm can use other types of sensor
data that can classify and/or identify the targets found in
those positions. Sensor nodes for cueing are currently not in-
tegrated in the system.

The second level is the recognition level where the recog-
nition process takes place. This is where recognition and pos-
sibly identification of the potential targets found in the
cueing level is performed. The process includes two major
steps: estimation of the attributes of potential targets and
matching of the potential targets to models selected from a li-
brary. Recognition algorithms working in the first step are
called attribute estimation algorithms, whereas algorithms
working in the matching step are called matching algorithms.
Recall that the system allows for multiple algorithms to per-
form both attribute estimation and model matching. There-
fore, data fusion takes place both after attribute estimation
and after model matching, see Figure 6.

When the recognition step has been carried out it is time
to create an answer to the query. This is done by the query in-
terpretor which evaluates the logical expressions enforced in
the query by the user in the advanced query designer as de-
scribed in Section 2.5.

4 Sensor data analysis
In this section we describe the target recognition process and
the sensor data and algorithms used in that process. We will
also show some of the information system’s abilities to solve
target recognition problems.

4.1 Sensors

The target recognition task is performed by analysing sensor
data that is simultaneously recorded by multiple sensors.
Currently, data from infrared (IR) cameras, CCD cameras
(visual light), and laser radar sensors are used. Examples of
data are shown in Figures 7 and 8. Two types of laser radar
data sets are included. The first set consists of 3D scatter and
reflectance data from an airborne down-looking scanning
sensor (Figure 7 c–d). The second set consists of gated re-
flectance 2D images from a ground-based gated viewing sys-
tem (GV), sequentially retrieved at different ranges to the
target as illustrated in Figure 8. Such a data set provides for
3D reconstruction of the surface structure of a target, which
is utilized in the analysis. The sensors are located on the same
platform, with the exception of the GV sensor that is placed
on a complementary platform. The sensor systems and the
data collection in the visual, IR, and 3D/reflectance scatter
laser radar are described in [17]. The GV system and the data
collection are described [18].

4.2 The target recognition process

The target recognition process (i.e., the recognition level in
the query execution process) is performed in four steps; at-
tribute estimation, attribute fusion (i.e., fusion of attribute
estimations), model matching and model match fusion (i.e.,
fusion of matching results), see Figure 6. The attribute esti-
mation and model matching steps are described below, while
the fusion is described in Section 5.

Several constraints are applied to the target recognition
process in order to keep complexity down and also since
training and testing data are very expensive. For example, the
number of possible targets is limited to a small set and it is
assumed that cueing (detection and coarse localization of the
target) is handled separately.

As mentioned, the first step is to estimate the target at-
tributes that should a) be used as input to the matching phase,
and b) reduce the number of possibilities in the matching
process. If there are only a few models and few variations of
each model, the total number of matches can be kept small.
Examples of target attributes are position (i.e., refined local-
ization), orientation, dimensions, temperature, and colour.
The estimated target attributes are returned to the knowledge
system, which based on the attributes determines the possible
target types and which model matching algorithms to invoke.

Figure 4: Overview of the query execution process.

User
interface

Query
generation

Recognition
level

Cueing
level

Query
evaluation

User

Query

Query
result

input

User interaction Query execution

Figure 5: The cueing level — Identifying potential targets.

Figure 6: The recognition level - Classifying and possibly identifying potential targets.

Attribute
estimation

Attribute
fusion

Model
matching

Match model
fusion

The reliability of the attribute values are estimated by the al-
gorithms themselves and can also, in the case when more
than one algorithm has been invoked, be estimated by the
knowledge system.

In the model matching step a common target model library
is used, where each model is described by its 3D structure
(facet/wireframe models), its appearance (visual or infrared
textures), and, in some cases, algorithm/sensor specific at-
tributes (e.g., pre-processed imagery). Based on the opera-
tor’s query and the estimated attributes, a set of target models
are selected for the matching process. Depending on the sit-
uation and how reliable the attribute estimations are, one, a
few, or all of the available target models can be selected. For
example, if the length of the target is estimated to eight me-
tres, target models of small vehicles like cars can be exclud-
ed. However, if the length is an uncertain value, some of the
smaller targets are included in the set of target models for the
matching.

For each selected target model, one or more matching al-
gorithms are invoked. The matching algorithm matches the

sensor data to the corresponding target models and a belief
value is calculated. This is a value between 0 and 1, where 1
means a perfect match. The belief values from the different
algorithms and target models constitute the output from the
sensor data analysis module, and they are handed back to the
sensor fusion module, see Section 5, for a final decision.

Even though this division in attribute estimation and mod-
el matching might be suboptimal from a computer vision
point of view (compared to combining the two steps), it has
shown to be necessary when integrating the full system.

4.3 Sensor data analysis algorithms

The analysis methods need to be invariant to different sens-
ing conditions, i.e., varying orientation and number of on-
target samples. There is also a need to handle intra-class tar-
get variations, making the target differ from the pre-stored
target model. The intra-variations are, for example, caused
by variations in illumination, temperature, and minor shape
variations. Due to the different sensor characteristics, differ-

Figure 7: Registrations of an anti-tank gun vehicle BMP70 (left), truck TGB30 (middle) and a tank T72 (right). Top row: Visual senor data
(CCD), second row: IR sensor data, third row: laser radar range data, bottom row: laser radar reflectance data.

Figure 8: A sequence of gated 2D laser radar reflectance data recorded at varying distances. The target is a T72 main battle tank. Images are retrieved from in
front of (left), on (middle) and behind (right) the target. From such sequence a 3D description of a target can be estimated.

ent algorithms are needed for analysing the images. Moreo-
ver, several technical approaches are implemented to analyse
the sensor data. There are seven such algorithms implement-
ed, with varying technical approaches and capabilities of
handling occlusions, intra-variations and movements. These
algorithms are invoked by the knowledge system and can op-
erate simultaneously or sequentially. Moreover, they can
work on the same 2D or 3D data set or on different data sets
depending on the situation at hand. The algorithms for at-
tribute estimation and matching are of different types. Some
are less complex, while others are more sophisticated, in or-
der to handle specific cases like occlusion. In the attribute es-
timation step, the main criterion for algorithm selection is
fast computation, while in the matching step more complex
algorithms are also used.

Below, we will first describe the algorithms used for at-
tribute estimation, then the algorithms for model matching in
2D data (images) and 3D data (laser radar range data) are de-
scribed. The algorithms are very briefly described here.

Attribute estimation

The first problem is that the target is completely unknown,
i.e., we know that something is there, and we should estimate
its attributes. Naturally, we need to make relevant restric-
tions, for example we can look for man-made objects be-
tween three and twelve meters long.

When the input data is 3D range laser data, we can use ge-
ometric feature extraction [10,19]. Using this approach we
approximate a 3D point scatter by one or several rectangles,
and we can thus retrieve estimates of the length, width,
height, and 3D orientation of the target.

In 2D images, active shape models (ASMs) [23] provide
a technique for estimating contours around objects belonging
to a specific class. Here, we use an ASM to find rectangular-
shaped objects in IR images, 3D laser radar data, or laser re-
flectance data, the latter two resampled to 2D square pixel
images. The output from the ASM is a quite precise estimate
of the model parameters.

The assumption of rectangular targets holds well when
searching for vehicles, provided that the images are in top
view (the laser radar data can be resampled to any view).

Generative methods for 2D matching

To match one of the models from the target model library and
the image data, and thus produce a belief value for the corre-
sponding target type, the model needs to be adapted to the
image in terms of 3D translation and rotation. For this pur-
pose, generative models and methods are popular in the com-
puter vision community, and we have studied two
approaches here.

A generative model can, given a parameter set, generate
an image that can be compared to the input image. If the im-
ages are similar, then the parameters are assumed to be a
good estimate of the target parameters, and the similarity
measure can be used as a belief value (after appropriate nor-
malization).

Thus, we need search algorithms that minimize the differ-
ence between the generated model image and the input
image by changing model parameters controlling the
model’s position, shape, and texture. Since such algorithms
are typically greedy, they need a good initial suggestion of
the model parameters.

The ontology tells us which model in the target model
library to use for matching, and also the camera position rel-
ative to the target. Assuming approximately level ground,
known target size (from the target model), and estimated
attributes (position, orientation) we can initialize the param-
eters fairly well. Two search methods are implemented:

Using a sparse grid of Gabor probes. This approach is
based on multiscale Gabor filters in a sparse grid. The filters
represent edges and lines in different orientations and scales.
The target model library has been analysed by the filter
probes, and the outputs stored in an additional database. The
node positions are iteratively refined as to minimize the dif-
ference between the filter outputs and the pre-computed filter
outputs in the database.

Using active appearance models (AAMs) [22]. This ap-
proach has been tried out for adapting 3D models to 2D IR
images. Six pose parameters and a turret rotation parameter
are iteratively refined to minimize the difference between a
cut-out window from the sensor data and the generated mod-
el image.

Figure 9: The attribute estimation methods. Estimations are performed on 3D laser radar and IR data of a T72 main battle tank. Left: Attribute estimation based
on geometric feature extraction of 3D laser radar data. Each green dot is a background sample and the black stars are samples on the target. The rectangle shows
the estimated 3D size and orientation. Axes in metres. Right: Attribute estimation based on active shape modelling, applied on IR data. The rectangle shows the
estimated length, width and 2D orientation.

In both cases, the final difference (summed squared error)
between model and image is used as belief value and the
model parameters are used for refined attribute estimation.

3D matching

Three different approaches for 3D model matching are im-
plemented, suited for three different kinds of sensor data.

For infrared or visual image sequences, model-based rec-
ognition [20] is used for simultaneous tracking and recogni-
tion of targets. By tracking a few critical points of the target,
e.g. corners and turret its movements and shape variations
can be followed through the image sequence.

For 3D laser radar data, 3D scatter matching [21] is used
to match the sensor data to a 3D model of similar resolution.
The squared distance between the points and the facets of the
model is calculated as a belief value.

For GV laser radar data, we use a 3D range template
matching algorithm [21]. Based on the estimated attributes, a
synthetic range image of the model is generated, from which
surface and range boundaries are extracted. These are com-
pared to the surface and boundary images extracted from the
GV laser radar, resulting in a belief value.

4.4 Results and examples of system abilities

We describe some of the abilities of the system by three ex-
amples. By these examples we show the potential of multi-
sensor data and its fusion, and we stress the advantage of
combining different analysis methods. The first example
forms a “standard” situation and incorporates all data analy-
sis methods. The second and third examples show non-trivial
analysis problems where no general solution exists today.

Example 1: A target in an open field

This example is considered rather straightforward and sim-
ple, as the target in this case is located on a flat, homogenous
surface with no disturbing objects in the background. More-

over, the target is neither occluded nor camouflaged. The in-
put data is illustrated in Figure 7. The attribute estimation is
performed on 3D laser radar and IR data as shown in
Figure 9. Figure 10 shows active appearance modelling (giv-
ing a belief value of 0.86 for the target being a T72 tank) and
Figure 11 the shows result of model fitting with Gabor
probes using six different models. In Figure 12, a result from
the model-based reconstruction is shown, working on a se-
quence of IR images. Figure 14 (left) illustrates how the 3D
laser radar data is fitted, using 3D scatter matching, to a low
resolution CAD model, and 3D range template matching us-
ing GV data is illustrated in Figure 14 (right).

Example 2: Recognition of target variations

In Figure 15, articulation estimation in 3D laser radar data
using the geometric feature extraction algorithm is shown.

In IR data it is possible to detect the engine exhaust plume
and trails of a ground vehicle. These features are important
indicators of target activity. Furthermore, the direction of the
plume differs with target type and velocity. In Figure 13, the
exhaust plume and vehicle trails from a real IR image of a T-
72 is compared to the version generated by the target model
library.

Example 3: Recognition of a partly occluded target.

The problem addressed in this last example is more difficult.
However, for a ground target recognition system it is neces-
sary to be able to handle (partly) occluded and/or camou-
flaged targets. To solve the problem, the analysis methods
must be capable to perform their task even if parts of the tar-
get is not registered. The ability to penetrate sparse objects,
such as some categories of vegetation and camouflage, is a
key issue to overcome the problem.

Figure 10: The AAM search. a) The original synthetic model. b) The original
window. c) The final model. d) The final window.

a b c d

Figure 11: Matching with Gabor probe modelling for IR data in Figure 7.
The parameter ’c’ indicates the belief value for six different models.

Figure 12: Matching and tracking using model-based reconstruction applied on IR data from Figure 7. The marked points on the object are tracked. In this ex-
ample the sensor platform is moving and the target is still.

The technical approach used in here is to fuse IR and 3D
laser radar data. The 3D laser radar data analysis supports the
IR data analysis, by penetrating the vegetation and separating
objects at different heights, for example a tree and a vehicle.
The IR matching methods can then weight the image and fo-
cus the analysis on the image regions that have been classi-
fied as belonging to a target pixels.

5 Data fusion
There are two fusion processes in the query system. The first
one considers the attribute set estimations (ASE) which is
the output from all the attribute estimation algorithms. The
second one considers the matching output from the matching
algorithms, i.e. the matching results, which each consists of
a refined object state estimation and a belief value. The ob-
ject’s state is described by those attributes in the ASE that are
sent to the attribute estimation and matching algorithms1. A
target’s state easily changes over time; examples are orienta-
tion and speed.

5.1 Fusion of attribute estimations

The first step of the ASE fusion consists of identifying sets
of similar ASEs. Each set, or cluster, is then replaced with
one single, representative ASE, i.e. the fusion result. The aim
is to provide the matching process with a condensed number
of distinct ASEs. These can then be kept apart in the match-

Figure 13: Models for exhaust plume and vehicle tracks are included in the
IR-model library. Left: IR image of a T-72. Right: IR model of the T-72 with
activated models for exhaust plume and vehicle trails.

Figure 14: Matching using the target’s 3D structure (extracted from laser radar range data). Left: Matching using the 3D scatter matching method. The samples
on the target and the facets of the model are shown. The matching is performed on laser radar range data of the T72 shown in Figure 7. Right: Matching using
the 3D range template matching method. Top right: Processed sensor data. Bottom right: The model transformed to the same articulation. Matching is performed
on data of the T72 of the same type as shown in Figure 8.

Figure 15: Estimation of barrel articulation and turret extraction of a T72 using the geometric feature extraction algorithm. Note the different positions of the
barrel. The circles, x-marks and plus-signs indicate different parts of the object, approximately the barrel, turret and chassis. Axes in metres.

1. The other attributes of the ASE refer to the object’s proper-
ties. Those values are never sent to the model matching algo-
rithms. Instead, those algorithms are supplied with models
consistent with the estimated properties.

ing process, so that the second fusion process can make com-
parisons between belief values regarding objects in the same
state1. Since a typical ASE is likely to be incomplete, the
problem is similar to a general set of problems called cluster-
ing of incomplete data. Such problems have been addressed
for example in [14]. Here, an Euclidean distance between
ASEs has been used as a basis for clustering. Roughly, it
states that if the error volumes of a set of ASEs are pairwise
non-disjunct, the set forms a cluster.

Figure 16 visualises the first step of the attribute fusion
process. Note that the ASEs here are represented by dots
(with estimated error circles), which corresponds to complete
ASEs. Generally, however, the ASEs are incomplete. The
idealisation has been done here since both the state and the
properties really are multidimensional, which complicates
the drawing of an incomplete ASE.

Selection of a representative ASE for each cluster is the
second step of the first fusion process. Here, the ASE is cho-
sen and should be as complete as possible. The state, espe-
cially, needs to be well-defined. Otherwise, the fusion of
matching results cannot make the comparisons mentioned
above. Two main approaches to obtain a well-defined state
estimate have been identified. Which approach will be fol-
lowed is not yet decided but work to solve this problem is
currently continuing. However, the two approaches are:

1. Fusing state estimations, i.e. combining values from in-
complete estimations in order to form a complete one. This
is non-trivial, since the resulting state might be unattainable
from different aspects.

2. Supplying the matching algorithms with incomplete es-
timates, using them as input to the attribute estimation algo-
rithms and then rerun the processes. The states from the
matching algorithms should be well-defined. The belief val-
ues produced in the preliminary run can be fused with a
“safe” fusion method. Its result can be taken as a preliminary
result from the system.

5.2 Fusion of matching results

The second fusion step deals with the results from the differ-
ent matching algorithms. Here the belief value is in focus.

Several simple approaches have been implemented, corre-
sponding to different strategies respectively. For example,
one could argue that a hypothesis (model + state) should be
heavily supported by all matching algorithms to be consid-
ered heavily supported. Also, one could argue that high
enough support from one matching algorithm is enough.
Figure 18 exemplifies such a situation. Other desired proper-
ties of the fused result call for other strategies as well.

6 Terrain analysis
Most research in 3D terrain modelling is focused on obtain-
ing maximum accuracy and fidelity of the model, while not
being constrained with particularly difficult time require-
ments. In the military domain the purpose is often to perform
mission training or to simulate sensors with a very high level
of accuracy. In contrast to that, the terrain analysis consid-
ered in this project should be viewed as a part of a decision
support system. Such a system must be able to answer que-

1. It is assumed that two matching algorithms using similar state
estimates, refine these to essentially the same state estimate.
This is why clusters are identified in the attribute estimation
fusion.

properties

state
estimate

.
.

.

likely to be
clustered

estimate

Figure 16: Clustering of similar ASEs. In this example the ASEs are com-
plete and thus represented by dots (with estimated error bounds). In general,
ASEs are incomplete and represented by objects of higher dimension. Also,
both axes are in reality multidimensional.

Preprocessing

Category comparison

Segment detection

 Segment
composition

HMI

Category dataPoints Change data

Ground segmentation

Point selection

Category determination

Figure 17: An overview of the most important processing steps and data sets
in the terrain analysis system.

Fused result; “mean”:

Algo: 1
model: A
state: x
belief: 0.87

Algo: 1
model: B
state: y
belief: 0.67

Algo: 2
model: A
state: x
belief: 0.23

Algo: 2
model: B
state: y
belief: 0.73

Algo: 1,2
model: A
state: x
belief: 0.55

 Algo: 1,2
 model: B
 state: y
 belief: 0.70

Algo: 1,2
model: A
state: x
belief: 0.87

Fused result; “max”:

Algo: 1,2
model: B
state: y
belief: 0.73

 Matching results:

Figure 18: Illustration of the second fusion step, in this case with only two
hypotheses and two matching algorithms. Considering mean and maximum
belief values for the two hypotheses, respectively, leads to radically differ-
ent results.

ries from the users about the terrain properties, relevant to
their goals, with a speed and accuracy that is required by the
situation and the mission. Consequently, the designed terrain
analysis system must be adaptive and able to respond to que-
ries in close to real time. The system should also automati-
cally permit translation of the queries into an appropriate
format. Another important demand is that the system must be
able to support multi-step processing, where initial detection
and coarse description of the feature of interest is done first
and where refined, special purpose methods can be used af-
terwards to obtain the needed accuracy. To support this de-
mand, methods that reduce the data volumes have been
developed. Reduction of the data volumes is also necessary
to reduce the search times and to make further processing
more efficient. The approach in this work has been to use a
symbolic method, as no quantitative algorithm can answer
the queries quickly enough. The main result is concerned
with detection of important terrain features and can be used
for, e.g., construction of driveability maps. A recent over-
view of this part of the work can be found in [12].

During the last year, most effort has been put into design-
ing and implementing algorithms for detecting changes in
the terrain surface, derived from laser radar data collected at
different times. Change detection is an important component
in a terrain analysis system for two reasons. Firstly, the
ground surface changes very slowly over time and to store
and access large unchanged quantities of data is clearly det-
rimental to the system functionality. Considering only the
changed parts from a newly acquired data set can speed up
processing considerably, which is a necessity in a decision
support system. Secondly, the changes that have occurred are
potentially very important as they may be a sign of conscious
alteration of terrain. An overview of the terrain processing
system can be found in Figure 17.

7 Situation awareness
The work in this area has been oriented towards framework
design and identification of required algorithmic support. A
suggestion for a basic framework for situation analysis (SA)
support has been presented in [11]. Although a very general
framework, it is based on some assumptions of what the
characteristic problems are when looking at sensor observa-
tions spread over time and space in a dynamic tactical land-
based context. The basic underlying assumption is that of ob-
servation fragmentation in time and space. This makes asso-
ciation between observations a fundamental and difficult
problem, one which cannot be solved by physical laws and
statistics alone. To deal with such situations we have to make
use of a priori knowledge of typical organization and behav-
iour of military vehicles and units. Straightforward use of
such knowledge in a computer optimization model, to find
the most likely interpretation of a given data set, does how-
ever raise several questions. Two main concerns are those of
a priori knowledge reliability and context dependency. If we
ignore these issues, the result will most probably be an unre-
liable system with a high degree of user distrust.

The conclusion we draw from the reasoning above is that
the user must be involved in the interpretation process. The
SA system then becomes a tool for user guided exploration
of possible/likely interpretations. An optimization model is
still at the core of the SA system, but it is now required to be

able to find alternative solutions. The concept of alternative
solutions can be defined as a set of solutions which are suffi-
ciently likely and sufficiently dissimilar from each other to
be of interest. The estimation of solution likelihood should be
built into the optimization model, but the concept of solution
similarity is context dependent and can only be defined by
the user. The overall goal is to give the user an overview of
interpretation possibilities by presenting a manageable
number of solutions where the differences are relevant. This
should be done in an iterative way, where the user can be-
come more precise as to what information he is interested in
as the optimization process proceeds. This can be viewed as
a learning process.

To meet the requirements of a flexible optimization proc-
ess capable of generating multiple solutions, the paradigm of
evolutionary computation (EC) has been investigated [13].
This paradigm has some inherent properties that suit the de-
mands of our SA framework. It has for example been exten-
sively used in the area of multi-objective optimization, where
multiple solutions are searched for in parallel. In order to de-
velop an EC-based optimization kernel of our framework for
SA, there are two major methodological/algorithmic issues
that have been addressed.

The first issue is a selection of a representation and of op-
erators for EC for the combinatorial problem of set partition-
ing. There are some interesting suggestions in the literature.
A common property of all these pure EC variants, however,
is low computational efficiency. This is primarily due to the
strategy in pure EC based systems of blind randomization
with feedback, which is very general and flexible but often
inferior to heuristic based systems. To remedy this we have
adopted the common strategy of hybridization, where heuris-
tic components are integrated into the EC machinery to guide
the search process. In this case we use the local object-to-ob-
ject association values for search guidance. With this ap-
proach we can quickly find a good solution in most situations
and then continue searching for better or different solutions
as time permits. However, the machinery developed still
needs to be tested in realistic and dynamic scenarios.

 The second major issue is that of generating multiple so-
lutions which are “dissimilar”. There are quite simple ways
to achieve this but the principal problem is that of low com-
putational efficiency. Some efforts in this area are reported in
the literature, but none of which have the generality needed
in our framework. This is a crucial part of our suggested SA
framework which needs further research.

8 Implementation
A prototype of the information system and its query language
has been implemented. The prototype basically includes the
following:

• A ΣQL query processor;

• The query processor includes a knowledge-based system
which is connected to an ontology; designed to allow
sensor data independence from an end-user perspective;

• A data fusion module that fuses sensor data in two steps,
i.e to support fusion of attribute estimations as well as
fusion of matching results;

• A visual user interface that allows the application of que-
ries in a sensor data independent way;

• Means for visual presentation of query results;

• Application of sensor data from sensors of different
types, currently IR, laser radar (scanning and gated
viewing) and CCD-camera—the number and types of
sensors are extendable;

• Seven algorithms for analysis of the sensor data.

By means of the prototype, queries can be applied and an-
swered. Basically, these queries are concerned with recogni-
tion of targets of military type. Some recognition algorithms
include initial support for recognition of partly occluded tar-
gets.

The terrain data analysis activities show that the develop-
ment of the high resolution digital terrain model allow for:

• various terrain features to be efficiently identified by
means of a filtering technique;

• the terrain model to be used for efficient visualization of
the terrain in high resolution.

The activities to finally bring forward a system for situation
awareness have not yet come to a break-through although
some fundamental results have been demonstrated—the rea-
sons for this are that this part of the project has been going on
at a low pace and that the system basically has been built bot-
tom-up, i.e. starting at the sensor data.

9 Conclusions
In the system presented in this paper a user can define queries
in a visual user interface using well-known terminology such
as area of interest, time interval of interest, and interesting
object types. If necessary, spatial and/or temporal constraints
between objects in a query can be enforced using the ad-
vanced query designer. The system will then automatically
come up with answers to the query without user interference
in choice of sensors, sensor data analysis, data fusion, etc,
thus providing sensor data independence for the end-user of
the information system.

The query language is characterized by the sensor data in-
dependence capability, which makes it possible even for us-
ers that lack technical knowledge on sensors and sensor data
to use the system. To support the users even further, the sys-
tem includes, in addition to sensor data analysis algorithms
performing target recognition, means for sensor data fusion.
It can deliver answers to the queries so that the uncertainties
introduced by the sensors are taken into account by the re-
sulting belief values.

Furthermore, we can expect that information systems in
the future can gain access to enormous amounts of sensor
data in a network centric warfare context. In this situation, it
will be impossible for an information system user to access
and analyse the available data on his own. A system which is
sensor data independent, such as the one presented here,
helps the user with this task, so that he can be focused on his
primary tasks.

Thus we believe that ΣQL is a powerful tool that can be
used as a decision support tool in a network centric command
and control system. We also believe that even inexperienced
users can use the system and feel confidence in the results it
produces.

References
[1] Hall, D. L. and Llinas J. (Eds.), Handbook of Multisensor Data Fusion,

CRC Press, New York, 2001.
[2] Nielsen, J., Usability Engineering, Morgan Kaufman, New York,

2001.
[3] Jungert, E., Silvervarg, K. and Horney, T., “Ontology driven sensor in-

dependence in a query supported C2-system”, Proceedings of the
NATO workshop on Massive Military Data Fusion and Visualization:
Users Talk with Developers, Halden, Norway, September 2002.

[4] Horney, T., Design of an ontological knowledge structure for a query
language for multiple data sources, FOI-R--0498--SE, Swedish De-
fence Research Agency (FOI), May 2002.

[5] Horney, T., Jungert, E., Folkesson, M., “An Ontology Controlled Data
Fusion Process for Query Language”, Proceedings of the International
Conference on Information Fusion 2003 (Fusion’03), Cairns, Austral-
ia, July 8–11, 2003.

[6] Matheus, C. J., Kokar, M., Baclawski, K., “A Core Ontology for Situ-
ation Awareness”, Proceedings of the International Conference on In-
formation Fusion 2003 (Fusion’03), Cairns, Australia, July 8–11,
2003.

[7] Silvervarg, K. and Jungert, E., “Aspects of a visual user interface for
spatial/temporal queries”, Proceedings of the workshop of Visual Lan-
guage and Computing, pp 287–293, Miami, Florida, September 24–26,
2003.

[8] Chang, S.-K., Costagliola, G., Jungert, E. and Orciuoli, F., “Querying
Distributed Multimedia Databases and Data Sources for Sensor Data
Fusion”, accepted for publication in IEEE Transactions on Multime-
dia, 2003.

[9] Chang, S.-K. and Jungert, E., “Query Languages for Multimedia
Search”, in Lew, M. S. (Ed.), Principles of Visual Information Retriev-
al, pp 199–217, Springer Verlag, Berlin, 2001.

[10] Ahlberg, J., Klasén, L., Grönwall, C., Ulvklo, M., Jungert, E., “Auto-
matic Target Recognition on a Multi-Sensor Platform”, Proceedings of
the Swedish Symposium on Image Analysis, pp 93–96, Stockholm,
Sweden, March 6–7, 2003.

[11] Fransson, J., Jungert, E., “Towards a Query Assisted Tool for Sit-
uation Assessment”, Proceedings of the International Conference on
information Fusion 2002 (Fusion’02), Annapolis, Maryland, July 8–
11.

[12] Lantz, F., Jungert, E., “Determination of Terrain Features in a Terrain
Model from Laser Radar Data”, Proceedings of the Workshop on 3D
reconstruction from Airborne Laser scanner an in SAR Data, pp 193–
198, Dreseden, Germany, October 8–10, 2003.

[13] Coello, C. A. C., “A comprehensive Survey of Evolutionary-Based
Multiobjective Optimization Techniques”, International Journal of
Knowledge and Information Systems, 1(3):269–308, August 1999.

[14] Hathaway, R. J., and Bezdek, J. C., “Fuzzy c-means clustering of in-
complete data”, IEEE Transactions on Systems, Man and Cybernetics
- Part B: Cybernetics, 31(5), October 2001.

[15] Ullman, J. D., Database and knowledge-base systems, Vol. 1, pp 11–
12, Computer Science Press, Rockville, Maryland, USA, 1988.

[16] Grönwall, C., Mätningar med flygburet multisensorsystem - Mätrap-
port från fordonsplatserna i Kvarn och Tullbron, FOI-D--0060--SE,
Swedish Defence Research Agency (FOI), August 2002, (in Swedish).

[17] Steinvall, O., Klasén, L., Carlsson, T., Andersson, P., Larsson, H.,
Elmquist, M., Henriksson, M., Grindad avbildning - fördjupad studie,
FOI-R--0991--SE, Swedish Defence Research Agency (FOI), Novem-
ber 2003, (in Swedish).

[18] Carlsson, C., Vehicle Size and Orientation Estimation using Geometric
Fitting, Thesis no. 840, 2000, LiU-TEK-LIC-2000:36, Dept. of Elec-
trical Engineering, Linköping University, Linköping, Sweden, 2000.

[19] Steinvall O., Carlsson T., Grönwall C., Larsson H., Andersson P.,
Klasén L., Laser based 3-D imaging new capabilities for optical sens-
ing, FOI-R--0856-SE, Swedish Defence Research Agency (FOI),
2003.

[20] Klasén, L., Image Sequence analysis of Complex Objects – Law En-
forcement and Defence Applications, Linköping Studies in Science
and Technology, Dissertation No. 762, 2002, Dept. of Electrical Engi-
neering, Linköping University, Linköping, Sweden, 2002.

[21] Andersson P., Automatic target recognition from laser radar data. Ap-
plications to gated viewing and airborne 3D laser radar, FOI-R--
0829--SE, Swedish Defence Research Agency (FOI), 2003.

[22] Cootes, T. F., Edwards, G. J., Taylor, C. J., “Active Appearance Mod-
els”, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 23(6):681–684, 2001.

[23] Cootes, T. F., Edwards, G. J., Cooper, D. H., Graham, J., “Active
Shape Models – ‘smart snakes’”, Proceedings of British Machine Vi-
sion Conference, pp 266–275, Leeds, UK, 1992.

FOI-R--1787--SE

FOI-R--1787--SE
Appendix B

Querying Distributed Multimedia Databases and Data Sources for Sensor
Data Fusion

IEEE Transactions on Multimedia, Vol. 06, No 5, Oct. 2004.

Chang, S.-K., Costagliola, G., Jungert, E and F. Orciuoli
49

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 06, NO. 5, OCTOBER 2004 687

Querying Distributed Multimedia Databases and
Data Sources for Sensor Data Fusion

Shi-Kuo Chang, Fellow, IEEE, Gennaro Costagliola, Member, IEEE, Erland Jungert, and Francesco Orciuoli

Abstract—Sensor data fusion imposes a number of novel re-
quirements on query languages and query processing techniques.
A spatial/temporal query language called�QL has been proposed
to support the retrieval and fusion of multimedia information
from multiple sources and databases. In this paper we investigate
fusion techniques, multimedia data transformations and �QL
query processing techniques for sensor data fusion. Fusion tech-
niques including fusion by the merge operation, the detection of
moving objects, and the incorporation of belief values, have been
developed. An experimental prototype has been implemented and
tested to demonstrate the feasibility of these techniques.

Index Terms—Data fusion, distributed database, multimedia
database, query language, query processing, sensor data fusion.

I. INTRODUCTION

SENSOR data fusion is an area of increasing importance that
requires novel query languages and query processing tech-

niques for the handling of spatial/temporal information. Sen-
sors behave quite differently from traditional database sources.
Most sensors are designed to generate information in a temporal
sequence. Sensors such as video camera and laser radar also
generate large quantities of spatial information. Therefore the
query language and query processing techniques must be able
to handle sources that can produce large quantities of streaming
data within short periods of time.

Another aspect to consider is that user’s queries may be mod-
ified to include data from more than one sensor and therefore re-
quire the fusion of multiple sensor information. In our empirical
study we collected information from different type of sensors,
including laser radar, infrared video (similar to video but gener-
ated at 60 frames/s) and CCD digital camera. In a preliminary
analysis of the above described sensor data, it is found that data
from a single sensor yields poor results in object recognition.
For instance, the target object may be partially hidden by an oc-
cluding object such as a tree, rendering certain type of sensor
ineffective. Object recognition can be significantly improved if
the query is modified to obtain information from another type of
sensor, while allowing the target being partially hidden. In other

Manuscript received February 12, 2002; revised December 10, 2002. The as-
sociate editor coordinating the review of this manuscript and approving it for
publication was Dr. Sankar Basu.

S.-K. Chang is with the Department of Computer Science, University of Pitts-
burgh, Pittsburgh, PA, 15260 USA (e-mail: chang@cs.pitt.edu).

G. Costagliola is with the Dipartimento di Matematica ed Informatica, Uni-
versità di Salerno, Salerno, Italy (e-mail: gencos@unisa.it).

E. Jungert is with the Swedish Defense Research Institute (FOA), SE-172 90
Linköping, Sweden (e-mail: jungert@foi.se).

F. Orciuoli is with the Dipartimento di Ingegneria dell’Informazione e
Matematica Applicata, Università di Salerno, Salerno, Italy (e-mail: orci-
uoli@crmpa.unisa.it).

Digital Object Identifier 10.1109/TMM.2004.834862

words, one (or more) sensor may serve as a guide to the other
sensors by providing status information such as position, time
and accuracy, which can be incorporated in multiple views and
formulated as constraints in the refined query.

Existing query processing techniques are not designed to
handle sensors that produce large quantities of streaming data
within short periods of time. With existing query languages
such as SQL, it is also difficult to systematically refine the
query to deal with information fusion from multiple sensors
and distributed databases. To support the retrieval and fusion of
multimedia information from multiple sources and distributed
databases, a spatial/temporal query language called has
been proposed [6]. is based upon the -operator sequence
and in practice expressible in a syntax similar to SQL.
allows a user to specify powerful spatial/temporal queries
for both multimedia data sources and multimedia databases,
eliminating the need to write separate queries for each. A
query can be processed in the most effective manner by first
selecting the suitable transformations of multimedia data to
derive the multimedia static schema, and then processing the
query with respect to the selected multimedia static schema.

The main contribution of this paper is to provide a system-
atic approach consisting of fusion techniques, multimedia data
transformations and query processing techniques for sensor data
fusion. The paper is organized as follows. Section II presents
background and related research. The basic concept of the dual
representation of the -query is explained in Section III. The
usage of the various types of operators is discussed in Sec-
tion IV. The techniques of sensor data fusion are explained in
Section V. Section VI describes the architecture of the system
for sensor data fusion. Section VII presents the data model, and
Section VIII the detailed syntax of and some examples. In
Sections IX–XI, we discuss sensor data fusion using the merge
operation, the detection of moving objects in a video, and the in-
corporation of belief values, respectively. Section XII concludes
the paper.

II. BACKGROUND AND RELATED RESEARCH

Sensor data fusion posed some special problems. First of all,
there is no general solution to the problem of sensor data fu-
sion for an unlimited number of different types of sensors. The
problem is usually restricted to a limited number of object types
observed from a specific perspective by a limited number of sen-
sors [22]. One such example is to select sensors that are looking
only at ground objects, primarily vehicles, from a top view per-
spective where the sensors are carried by a flying platform such
as a helicoptor. By studying this restricted problem in detail,
we may be able to understand better how to deal with complex

1520-9210/04$20.00 © 2004 IEEE

688 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 06, NO. 5, OCTOBER 2004

queries for sensor data fusion. For a more general view on sensor
data fusion, see e.g., Waltz and Llinas [21].

As explained in the preceding section, sensor data fusion re-
quires a query language that supports sensor sources and the
systematic modification of queries. In early research on query
modification, queries are modified to deal with integrity con-
straints [19]. In query augmentation, queries are augmented by
adding constraints to speed up query processing [8]. In query re-
finement [20], multiple term queries are refined by dynamically
combining precomputed suggestions for single term queries.
Recently query refinement technique was applied to content-
based retrieval from multimedia databases [3]. In our approach,
the refined queries are manually created to deal with the lack of
information from a certain source or sources, and therefore not
only the constraints can be changed, but also the source(s). This
approach has not been considered previously in database query
processing because usually the sources are assumed to provide
the complete information needed by the queries.

In addition to the related approaches in query modification,
there is also recent research work in agent-based techniques that
are relevant to our approach. Many mobile agent systems have
been developed [1], [2], [16], and recently mobile agent tech-
nology is beginning to be applied to information retrieval from
multimedia databases [15]. It is conceivable that sensors can be
handled by different agents that exchange information and coop-
erate with each other to achieve fusion. However mobile agents
are highly domain-specific and depend on ad-hoc, ‘hardwired’
programs to implement them. In contrast our approach offers a
framework for data transformation and query processing and is
applicable to different type of sensors, thus achieving a certain
degree of sensor data independence.

III. THE DUAL REPRESENTATION OF THE

QUERY LANGUAGE

As noted in Section I, is a spatial/temporal query
language for information retrieval from multiple heterogeneous
sources and databases. Unlike SQL, which does not explicitly
deal with spatial/temporal queries, is designed with that
purpose in mind. Unlike SQL, which deals only with databases,

is designed to deal with both static sources (databases)
and dynamic sources (sensors), and furthermore these sources
are distributed. Its strength is its simplicity: the query language
is based upon a single operator—the -operator. Yet the concept
is natural and can easily be mapped into an SQL-like query
language. The -query is useful in theoretical investigation,
while the SQL-like query language is easy to implement and is a
step toward a user-friendly visual query language. An example
is illustrated in Fig. 1. The R, also called a universe,
consists of time slices where each time slice consists of objects
with the same time value. To extract three predetermined time
slices from the source , the -query in mathematical notation
is .

The meaning of the -operator in the above query is “select,”
i.e., we want to select the time dimension and three slices along
this dimension. The subscript in indicates the selection of
the time dimension. In the SQL-like language the query is
expressed as

Fig. 1. Example of extracting three time slices from a source.

SELECT t
CLUSTER , ,
FROM R

A new keyword “CLUSTER” is introduced so that the pa-
rameters such as , , for the -operator can be listed. The
word “CLUSTER” indicates that objects belonging to the same
subset of the universe (i.e.,, a cluster) must share some common
characteristics (such as having the same time value, being sim-
ilar to one another, etc.) Clustering is a technique used in pattern
classification to form subsets of similar objects. A cluster may
have a substructure specified in another (recursive) query. Clus-
tering is a natural concept when dealing with spatial/temporal
objects that are specifiable only through similarity to other ob-
jects. The mechanism for clustering will be discussed further
in Section VIII. The result of a query is a string that de-
scribes the relationships among the clusters. This string is called
a cluster-string, which will also be discussed further in Sec-
tion IV.

The dual representation of means that a query can be
formulated as an SQL-like query [6] or as a sequence of generic
operators (the -operators introduced above) and specialized
operators (the -operators to be discussed in the following sec-
tion). Translation from one representation to the other is quite
straightforward.

The operators may handle both qualitative and quantita-
tive information. Primarily, the operators allow operations on
a sensor-data-independent level, i.e., sensor data should be
transformed into information structures at high abstraction
levels that are sensor independent. To accomplish this, the
queries are expressed in terms of operator sequences where the
transformations of the sensor data are carried out stepwise by
the operators. The operators reduce the dimensions of the mul-
tudimensional search space to which each successive operator
is applied. Intuitively, the reduced search space is also another
cluster. Thus, as successive operators are applied, the clusters
become more and more refined.

In contrast to this refinement of the search space, the fusion
and related operators take multiple clusters as input and fuse
the information to determine a belief value that may support a
certain hypothesis such as whether different observations in the

CHANG et al.: QUERYING DISTRIBUTED MULTIMEDIA DATABASES 689

clusters correspond to the same object. Furthermore the fusion
and related operators can handle uncertain information through
the use of belief values.

IV. OPERATOR CLASSES

The operators in can be categorized with respect to their
functionality. The two main classes are the transformational op-
erators (the -operators) and the fusion operators (the -opera-
tors). In this section the two main operator classes are discussed
according to their input, output and functionality.

A. -Operators

A -operator is defined as an operator to be applied to any
multudimensional source of objects in a specified set of intervals
along a dimension. The operator projects the source along that
dimension to extract clusters [6]. Each cluster contains a set of
objects or components whose projected positions fall in one of
the given intervals along that dimension. As an example, let us
write a -expression for extracting the video frame sequences
in the time intervals and from a video source
VideoR. The expression is VideoR
where VideoR is projected along the time dimension to extract
clusters (frames in this case) whose projected positions along
the time dimenson are in the specified intervals.

In case of uncertainty, the components of the clusters may be
associated with various probabilities or belief values. Input and
output data may be of either qualitative or quantitative type, al-
though generally the later type is of main interest. Thus input
data will be accessed from either a raw-data source such as a
sensor, or from a structured data source such as a database, or
from some internal source such as qualitative strings that are
strings consisting of object descriptions projected along certain
dimension(s) [6]. The output data correspond to clusters in rela-
tional representations that in practice may be available as qual-
itative strings of various types [6]. The general formalism can
thus be expressed in the following way:

A variety of -operators can be defined [11]. Many of these
operators are common in most spatial applications. Examples
are the determination of various attributes and spatial relations,
such as “northwest-of,” “to the left of,” etc. For simple inputs,
these operators can be described as

As an example to find a pair of objects such that the blue
object precedes the red object along the spatial dimension
V, the -operator instance is

where is a cluster string.
In case of uncertainty the input and output to the -operators

may include an attribute corresponding to a specific belief value.
The - and the -operators may include this attribute.
The -operator is concerned with matching between objects
found in a sensor image and objects stored in a library database
and where both objects are described in the same terms that may
be either qualitative or quantitative. Traditionally matching was
regarded as a part of information fusion. Generally, however, the

-operator and its result, i.e., a set of objects and their corre-
sponding normalized belief values, can be expressed as follows
when the input to the operator is a single cluster:

where corresponds to the normalized belief value that in
practice becomes an attribute to the actual object. An instance
of this is

The -operator can be expressed as follows:

For example, to find three moving objects, each preceding the
other, along the spatial dimension U, the operator instance is:

B. -Operators

The -operators are more complex because they are con-
cerned with sensor data fusion. Consequently these operators
require more complex expressions as well as input data in dif-
ferent time periods from multiple sensors.

The -operator performs sensor data fusion from het-
erogeneous data sources to generate fused objects. Fusion of
data from a single sensor in different time periods is also al-
lowed. The output of the -operator is some kind of high
level, qualitative representation of the fused object, and may in-
clude object type, attribute values and status values. The output
may also include a normalized belief value for each fused object.

The fusion operators rely upon solutions to the association
problem [11], which is generally concerned with how to deter-
mine whether an object of a certain class observed at one time is
the same object observed at a later time. The observations may
be made by the same sensor or by different sensors of either the

690 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 06, NO. 5, OCTOBER 2004

same or different types. This is a complex problem [11] that nor-
mally requires probability-based approaches such as Baysian
networks [10] or Dempster–Shafer theory of evidence [23].

The output from the fusion operator may serve as the answer
to a query. This result may consist of a list of objects each having
a belief value. The object with the highest belief value is the
most likely answer to the query and thus should come first in the
list. The general description of the fusion operator is therefore

Last, but not least, a -operator that takes two images
from either the same sensor or two different sensors, transforms
them into unified cluster data and then establishes the similarity
between the two with respect to their contents, can be described
as

The similarity operator relies upon qualitative techniques
such as the technique described in [7]. Similarity retrieval
has for a long time been part of image information retrieval
and includes techniques for iconic indexing [4]. However in
similarity retrieval the complete content of the images, instead
of just single objects, is of concern. Similarity retrieval is also
less concerned with the identity of the objects but with sets of
objects, and their relationships and positions.

V. SENSOR DATA FUSION

In sensor data fusion [4], queried objects from the different
sensors need be associated to each other in order to determine
whether they are the same object registered at different times
and at different locations. Tracking is another problem that is
closely related to the sensor data fusion problem. In tracking, the
problem is to verify whether different object observations repre-
sent the same or different objects. Another problem of concern
is the uncertainties of the sensor data. Consequently, there is a
demand for a well-structured and efficient general framework to
deal smoothly with a large number of different query types with
heterogeneous input data.

In sensor data fusion, the main issue is how to develop a
general framework that can be applied to carry out the fusion
process in query processing. The fusion framework that will be
applied in this work is based on a method described by Horney
et al. [25], which makes use of a technique that is quite general
and can be applied not only to fusion of sensor data but also to
other problems. However this fusion method should be replace-
able by other methods, which will be tested later. The fusion
method is chosen because it is efficient, simple to implement,
demonstrates a high degree of generality and fits well into the
environment of concern in this research work. Other related ap-
proaches to fusion are given by Parker [18] and Klein [14].

For certain sensors the objects can only be determined with
respect to their type but rarely with respect to their identity.
Therefore classification of the objects is necessary. This is a
process that can be carried out in a matching algorithm that

TABLE I
EXAMPLE OF BASIC SPATIAL STATE VALUES AND THEIR BELIEF VALUES AND

WITH THEIR QUALITATIVE VALUE SETS

should display a result that includes not only the type of the
object but a normalized belief value, , associated to the ob-
served object type. A number of attributes and state variables
can be extracted from the sensor data where the actual types of
attributes depend on the actual sensor types. Among the most
important state variables are orientation, type and position, di-
rection of motion, speed and acceleration. Most attributes and
state variables, such as position and orientation, may be deter-
mined either in quantitative or in qualitative terms. In , rea-
soning is generally performed on qualitative information, ba-
sically represented in terms of Symbolic Projection. For this
reason, it is an advantage to use qualitative input to the fusion
process as well.

The following probabilities are determined during the fusion
process for indication of the belief values in different state vari-
ables.

The probability is the probability that object
observation A is the same as object observation B.

is the probability that the observations A
and B can be associated to each other given the position of
B relative the position of observation A.

is the probability associating the
observations A and B to each other given the position of B
and its direction relative the position of A.

These probabilities can be replaced by a set of belief values
as can be seen in Table I. Here the belief values are of qualitative
type but they may be quantitative as well.

Given some spatial attributes and their probabilities or nor-
malized belief values, as in Table I, the basic means to carry out
the fusion process are available. The attributes/state values and
their belief values correspond to information obtained from the
sensor data as a consequence of the queries. However, the result
of this process must clearly be represented in a structure that
efficiently supports the fusion process. The structure proposed
for completion of the fusion process is to a high degree related
to a scheme proposed by Chong et al. [7]. The structure here is
called a fusion scheme. A difference between the two schemes
is that the one used by Chong et al. is merely concerned with de-
termination of tracks of objects, i.e., both the tracks registered
by individual sensors and tracks from the fusion process, which
they call a system track. In this work, the scheme is concerned
with all information that relates to the objects, i.e., including
state variables and attributes.

Generally, the information acquired from the sensors is stored
as instance descriptions and eventually forwarded into the fu-
sion composition table (FCT), which serves as input to the fu-
sion routine. FCT is organized as a set of pages, one for each
observation. These pages are called object instance pages (OIP).

CHANG et al.: QUERYING DISTRIBUTED MULTIMEDIA DATABASES 691

Fig. 2. (a) Flow of the sensor data fusion process for two single instance sensors. (b) Flow of the sensor data fusion process for two sensors with multiple instances.

In some applications it may be convenient to represent these
pages in terms of HTML code since that way it may be pos-
sible to carry out the fusion process in a distributed environ-
ment. The fusion process can now be seen as a process where
information acquired from a set of sensors is fed into the query
system and its fusion routine. Query execution corresponds, in
principle, to a process where a multudimensional search space
through projection is reduced to clusters in lower dimension-
ality. In the extreme, a cluster may correspond to a single ob-
ject instance, which together with its belief value is fed into the
FCT. Eventually the fusion is carried out by the -operator. This
scheme is automatically created by the system. The structure of
the scheme may vary depending on the type of sensor informa-
tion that is under consideration, e.g., image sequences from a
video generate sequences of pages while for single images just
a single page is generated [see Fig. 2(a) and (b)].

The fusion process proceeds all through the execution of the
query feeding the FCT and produces a response to a proposi-
tion, i.e., which of the registered objects can be associated to
each other. The registered objects are determined by the query
interpreter and inserted into the FCT for a fusion step. Since the
object instance pages in the FCT contains the actual attribute
values and their corresponding qualitative belief values it is fea-
sible for the -operator to answer propositions like: “are all the
observations in the FCT corresponding to the same object.” The

result of the fusion process will tell which object observations
that can be associated to each other, although the result, to some
degree, exhibits a qualitative uncertainty, which must be evalu-
ated by the user in his final decision process.

The fusion method is applied to the FCT under considera-
tion of the current proposition, which depends on the query, the
sensor types and the data. For all the object combinations and
with respect to the qualitative belief values for the various at-
tributes and state variables, the process is carried out with re-
spect to the given proposition. The value set of the qualitative
belief values is {h(igh belief), m(edium belief), l(ow belief)}.
In practice, this means that a score need to be given to the ac-
tual voting alternative of FCT, which may be 3 for a high belief
value, and so on. The scores given for a certain attribute alter-
native may be added up and a total score is available for each
alternative. The alternative with the highest score is considered
the most probable and the remaining alternatives are ordered
with respect to their rank.

A query demonstrating the usage of with the sensor
sources video and laser-radar can now be provided. Given the
input information from the laser-radar [Fig. 3(a)] and the video
camera [Fig. 3(b)], the query is as follows: is there a moving
vehicle present in the given area and in the given time interval?
In this query, the laser-radar data can be used as an index to
the video. In this way, most of the computational efforts can be

692 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 06, NO. 5, OCTOBER 2004

Fig. 3. (a) Laser radar image of a parking lot with a moving car (encircled). (b) Two video frames showing a moving white vehicle (encircled) while entering a
parking lot.

Fig. 4. (a) Flow of the sensor data fusion process for the video/laser-radar example. (b) Set of objects observed at different times and where the arrows indicate
the different situations in a simplification of Fig. 3(a) and Fig. 3(b).

avoided since the vehicles can be identified in almost real time
in a laser-radar image. However, in the laser-radar used here, it
cannot be determined whether an identified vehicle is moving
or not. Consequently, once a vehicle has been identified in a
laser–radar image, we need to determine whether it is moving
by analyzing a small number of video frames taken in a short
time interval. This is possible to accomplish because the loca-
tion of the vehicle at a certain time is known from the laser-radar
information, which is illustrated in Fig. 3(a) and (b). The three
images illustrate a situation where a car is first about to enter a
parking lot (the two video frames) and at a later time the car has
entered the parking lot (the laser-radar image).

The query is logically split into two parts, one looking for the
vehicles in the laser-radar image and another looking for the ve-
hicles in the video frames during the same time interval as the
laser–radar image. The result of these two subqueries are fused
by applying the fusion operator , which in-

cludes the fusion procedure with the voting scheme. The fusion
is applied with respect to type, position and direction including
also their belief values.

The query demonstrating the problem can thus be expressed
as

CHANG et al.: QUERYING DISTRIBUTED MULTIMEDIA DATABASES 693

Fig. 5. System architecture for sensor data fusion.

The -operator performs the fusion process during the exe-
cution of the query. Each vehicle identified in any of the images
during the query is subject to the determination of these state
variables and attributes and their belief values. Fusion is then
completed with respect to all the possible combinations of the
identified vehicles. The proposition that takes place in the fusion
process for this query can thus be formulated as: can observa-
tion A be associated to observation B?

A simplified description of the situation in Fig. 3(a) and
Fig. 3(b) is shown in Fig. 4(b), where just one of the parked cars
is left, i.e., the one to the right. The arrows or rather all their
combinations taken in sequence correspond to all the possible
combinations that will be subject to fusion. Consequently there
are eight alternatives to discriminate between.

VI. SYSTEM ARCHITECTURE FOR SENSOR DATA FUSION

Fig. 5 illustrates a generic system architecture for sensor data
fusion. A user interacts with a user interface to produce a -
query. This can be done directly or through a domain specific
virtual environment customized to the user’s level of expertise
and described in the user awareness subsystem. Once a -query
has been formulated, it can be compiled and its correctness and
feasibility checked. For a -query to be executable all the re-
quired operators must have been implemented in the system.

Fig. 6. Hierarchy of dimensions.

The knowledge of what type of queries the system can execute
is given in a knowledge base formed by the Meta Database and
the Applied operators. The Meta Database contains a set of ta-
bles describing which operators are implemented in the system
and how they can be used. The Applied operators are the set
of algorithms that implement the operators. Once a query has
been successfully compiled the Sigma Query Engine executes it
against the Distributed Multimedia Database or directly against
the sensors input. During the execution it applies input filtering,
indexing and data transformation required by the application of
the operators in the query. The execution of a query produces
(Fused) Knowledge that can then be used to modify the virtual
environment in which the user operates, providing useful feed-
back through appropriate result visualizations.

One of the important characteristics of this architecture is that
the same query language can be used to access any data source.
This is possible due to the fact that the Meta Database and the
Applied Operators hide the information to be processed, pro-
viding the processor with a general data model, on which
programmers base their queries.

VII. DATA MODEL

The query language makes use of the Dimension
Hierarchy Data Model (DHDM) to support a common and uni-
form treatment of heterogeneous data sources. The dimension
hierarchy is a generic structure, based upon which different
instances of representation schema can be constructed to best
suit the sources and the queries. In this data model, a data
source type is represented by a set of table schemas called
Representation Schema (RS for short). Each table schema
describes a dimension along which to cluster the sources of
that type and is characterized by a name and a list of fields:

(with) where

• dim is the name of the table schema;
• attr is a proper attribute of dim;
• are the names of other table schemas.

Given an RS, a Representation Schema Instance (RSI) of a
source is a set of instances of the table schemas in RS. In the
following, an instance of a table schema will be referred to
as a table of type and is composed by a possibly ordered
set of rows where is
a value for the attribute of and is a reference to
a table of type .

694 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 06, NO. 5, OCTOBER 2004

Fig. 7. RSI of a short video clip illustrating the spatial/temporal position of the people shown in the video clip.

Let us give an example showing how to represent a video clip
according to DHDM. The first thing to do is to create an RS for
video clips. The main idea is to successively project or decom-
pose the video clip along some dimensions. On one hand, the
type and number of dimensions strictly depends on the level of
detail of the video clip representation we need to reach in order
to get to the entities of interest occurring in the video clip. On
the other hand, each dimension must have been implemented as
an operator that must be present in the Applied operators reposi-
tory. As an example, let us suppose we want to represent a video
clip and are interested in representing the spatial/temporal posi-
tion of the people shown in it. The already implemented dimen-
sions we want to use are then the , the and the

, in this order. The resulting RS is given by the following
table schemas:

The initial dimension defines the sources to be
processed and the dimension along which
these are to be decomposed. Similarly the dimension
defines the temporal instances to be considered
and the dimension along which to decompose the
resulting entities. The dimension does not refer to any
other dimension since we are not interested in further details.
It can be noted that the chosen RS actually defines a hierarchy
of dimensions along which to decompose the source. The
underlying hierarchy is shown in Fig. 6.

Let us suppose that the video clip has three frames, each par-
titioned into 4 4 slots, and shows, among others things, four
people in the slot position (3, 3) of the first frame, the slot posi-
tions (4, 3) and (4, 4) of the second frame, and the slot position
(1, 3) of the third frame, respectively. Fig. 7 shows the corre-
sponding RSI.

It should be noted that the table of type has only one
entity, i.e., the video clip under consideration. This entity refers
to a table of type containing three entities that, in the above
example, are the three frames of the video. Each frame refers to
a table of type , each containing a set of entities corre-
sponding to the slots partitioning the frame. Finally, the tables
of type contain entities corresponding to the actually rec-
ognized shapes in each slot. For the sake of clarity, not all the
tables are shown in Fig. 7.

An alternative way of depicting the RSI shown in Fig. 7 is
the graph view given in Fig. 8 where each dimension (table) is
depicted with an oval and each entity (row) is depicted by a box.
Again for the sake of clarity, not all the graph nodes are shown.

From the graph view of Fig. 8 the hierarchy of dimensions
underlying the representation schema becomes evident. As a
matter of fact, the hierarchy shown in Fig. 6 is easily built from
Fig. 8 by disregarding the entity nodes.

Given a data source, there are many ways of representing it.
This means that a source can be represented with different RSIs,
depending on which information in the data source needs to be
represented and then queried. Therefore, flexibility is the main
motivation behind this approach. As an example, an alternative
dimension hierarchy for representing a video clip is shown in
Fig. 9. Here, again, we look at a video clip as a sequence of
frames, but now each frame is seen as a set of separated rows
and columns. Moreover, each frame row or column is seen as a
set of shapes of a certain type.

VIII. LANGUAGE

To write a query on a given data source, a programmer
must know which representation schemas are available on that
source and, for each schema, the corresponding dimension hier-
archy. This is similar to SQL, where a programmer must know
the table names and the table attributes of the relational database
for the query. To better explain the behavior of a query, we
first need to refine the concept of clustering first introduced in
Section III.

CHANG et al.: QUERYING DISTRIBUTED MULTIMEDIA DATABASES 695

Fig. 8. Graph view of the RSI shown in Fig. 7.

Fig. 9. Alternative hierarchy of dimensions to represent a video clip.

Given a representation schema instance, i.e., a set of instan-
tiated tables representing a source, a cluster is represented by
a set of table rows from one or more tables. Given a subset of
tables st in a representation schema instance, with the term clus-
tering we refer to the operation of creating a cluster from st by
deleting or simply not selecting some of the table rows in st.

Examples of clustering on the RSI of Fig. 7, are
that creates a cluster, on the table of type
“time,” with all the video frames;

{ : 1, 3} that creates a cluster, on the table of type
“time,” with only the video frames with
time stamps 1 and 3;
that creates a cluster, on the tables of type
“position,” with all the video frame areas
occurring in the third column of each
frame.

A clustering operation on a subset st of tables can work in one
of the following modes: destructive mode, where all the table

rows or entities that are not selected are deleted from st; and
conservative mode, where all the current table rows or entities
that are not selected are kept in st but not included in the cluster,
i.e., they are virtually deleted. They will be used to show the
context of the selected cluster elements.

On the other hand, a cluster can be
open the cluster, created by a clustering operation, is open

to successive destructive clustering operations, i.e.,
the elements in the cluster can be deleted by succes-
sive clustering and selection operations;

close the elements in the cluster can only be virtually
deleted by successive clustering and selection oper-
ations.

As an example, if the clustering operation { : 1, 3} on
the table of type “time” in Fig. 7 is considered destructive, then
the second video frame, i.e., the second row in the table, will be
deleted from the RSI.

Basically, a query refines a source RSI by successively
clustering it on some dimension under some constraints. In other
words, by using clustering operations, the query selects
and/or deletes entities in a data source. The result of a query can
be used by a nesting query to further refine the data source or
can be output according to some presentation criteria.

The following is a simple query template:

SELECT dimension_list
CLUSTER clustering_op_list
FROM source [query_re-
sult][{nested_query}]
[WHERE condition]
[PRESENT presentation_method]

696 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 06, NO. 5, OCTOBER 2004

The FROM clause requires the specification of the input to
the query: this can be either the name of the data source, or the
result of a previously executed query or a nested query.
The SELECT clause requires the list of the dimensions along
which to cluster the input. The CLUSTER clause requires a list
of clustering operations, one for each dimension declared in the
SELECT clause. The form of a clustering operation is as those
shown above:

with the addition of the optional keyword “filt_mode” standing
for one of the four filtering modes:

1) PUBLIC if the clustering operation is to be destructive
and the resulting cluster is to be open.
2) PRIVATE if the clustering operation is to be destructive

and the resulting cluster is to be close.
3) ALL&PUBLIC if the clustering operation is to be con-

servative and the resulting cluster is to be open.
4) ALL&PRIVATE if the clustering operation is to be con-

servative and the resulting cluster is to be close.
If no filtering mode is provided then the clustering operation

is considered PUBLIC. Each refers either to the
wild character “ ” indicating that all the dimension values must
be considered, or to a constant value or to a variable whose con-
straints are to be set in the WHERE clause. The use of the fil-
tering modes allow us to define the granularity of the context of
a query result.

If the query is not nested in any other query it may not require
any clustering and behave as a standard SQL query. In this case
the keyword CLUSTER is followed by the wild character “ .”

The PRESENTATION clause requires the name of a presen-
tation module that should have been defined “ad hoc” for the
presentation of the particular type of the query input. If omitted,
the presentation of the query output will be done by using a de-
fault presentation module.

Given the dimension hierarchy in Fig. 6 representing a video
clip, we want to write a query to retrieve the columns of the
second frame in a video clip, containing some people.

// Subquery 4
SELECT type
CLUSTER
FROM
{
// Subquery 3
SELECT shape
CLUSTER {shape: }
FROM
{
// Subquery 2
SELECT x-coord
CLUSTER {x-coord: }
FROM
{
// Subquery 1
SELECT time

Fig. 10. Another possible hierarchy of dimensions for representing video
clips.

CLUSTER {time: 2}
FROM Video
}

}
}

WHERE type = ‘person’

The query must be read starting from the inner subquery and
proceeding with the closest enclosing ones. Subquery 1 clus-
ters the video source along the dimension and extracts the
frame with time stamp 2. Subquery 2 extracts all the columns
from the frame by clustering along the dimension x-coord. For
each column, subquery 3 extracts all the shapes from all the
columns by using the dimension .

Subquery 4 extracts all the people from all the shapes by
asking for shapes of type “person.” The final result will then
be only the columns of frame 2 containing shapes representing
people while all the other shapes will be lost. Note that subquery
4 does not use clustering but, more likely to an SQL query, uses
the WHERE clause to further refine the data. This is possible
because subquery 4 is not nested in any other subquery.

Given the hierarchy of dimension of Fig. 10, we will now
write some queries to retrieve information from a video clip.

In the following, we will consider the simplified input video
clip shown in Fig. 11.

Query 1: Extract all the video frame columns containing en-
tities with the name John and entities with the name Bill.

SELECT name
CLUSTER PUBLIC
FROM
{
SELECT x-coord
CLUSTER { x-coord: PUBLIC }
FROM
{
SELECT time
CLUSTER { time: PUBLIC }
FROM Video
}

}
WHERE name CONTAINS ‘John’ AND name CON-
TAINS ‘Bill’

CHANG et al.: QUERYING DISTRIBUTED MULTIMEDIA DATABASES 697

Fig. 11. Simplified video clip.

Fig. 12. Extracting all the video frame columns.

The result is given by the following frame column shown in
Fig. 12.

Query 2: Extract all the video frame columns containing an
entity with name Joe Moe. We want to know who else is in the
same frame columns.

SELECT name
CLUSTER
FROM
{
SELECT object
CLUSTER {object: PRIVATE }
FROM
{
SELECT x-coord
CLUSTER {x-coord: PUBLIC }
FROM
{
SELECT time
CLUSTER {time: PUBLIC }
FROM Video
}

}
}

WHERE name CONTAINS ‘John’ AND name CON-
TAINS ‘Moe’

The result is shown in Fig. 13. Note that because of the
PUBLIC filtering mode along the dimensions frame and
column, all the frames and columns that are not concerned with
the final query have been eliminated. However, because of the
filtering mode PRIVATE along the dimension object, all the
objects have been kept both in the “SELECT object” and “SE-
LECT name” subqueries. The final result shows the required
objects in a highlighted form and also (nonhighlighted) others
forming their column context.

Let us consider now the hierarchy of dimensions in Fig. 14
for querying the Web.

Let us now consider the following query:

SELECT pattern
CLUSTER
FROM
{/ subquery 1 /
SELECT image, url
CLUSTER {image, url: ALLPRIVATE }
FROM
{/ subquery 2 /
SELECT page
CLUSTER { page: PUBLIC }
FROM WWW
}

}
WHERE pattern CONTAINS ‘Bill Clinton’
AND pattern CONTAINS ‘dog’

Subquery 2 allows the external queries to search one Web
page at a time. Because of the PUBLIC filtering mode all the
pages that will not match the whole query will be deleted. Sub-
query 1 will project each page against the dimensions image and
url illustrating all the images and the address of each page. The
outer query will then project all the resulting clusters of single
images against the dimension pattern selecting the images with
patterns corresponding to Bill Clinton and a dog. Because of the
ALLPRIVATE filtering mode on image and url, the query will
return all the complete web pages containing at least an image
with Bill Clinton and a dog, together with their url address.

698 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 06, NO. 5, OCTOBER 2004

Fig. 13. Extracting all the video frame columns containing an entity with name Joe Moe.

Fig. 14. Possible hierarchy of dimensions for the web.

IX. SENSOR DATA FUSION USING THE MERGE OPERATION

In this and the next two sections, several important topics
in sensor data fusion, including fusion by the merge operation,
the detection of moving objects, and the incorporation of belief
values, are discussed in detail. Although we cannot say they are
the only topics of interest in sensor data fusion, we found these
topics to be very important in order for sensor data fusion to
work.

From the database point of view the merge operations are
used to fuse information coming from two or more RSIs to pro-
duce a new RSI. There are many possible merge operations and
they strictly depend on the particular environment the query has
to work in. A simple example of merge operation is the CARTE-
SIAN_MERGE operation defined in the environment of the re-
lational databases. Each operator can be defined on one or more
distinct pairs of RSI, but the same operator may not have dif-
ferent implementations for the same pair of RSI. It is impor-
tant to note that the merge operators may behave differently de-
pending on the clusterings defined in the queries used in the op-
eration. The template of an application of a merge operation is

MERGE OPERATOR
FROM
{select operation [merge operation]}
,
{select operation [merge operation]}

Given the hierarchy of dimensions template for relational
databases in Fig. 15, and a relational database containing,

Fig. 15. Dimension hierarchy template for relational databases.

among other things, a table “Names” with attributes SSN and
name containing data about some people. Suppose we want
to look for all Web pages containing images about the people
whose name is in the database. To do this, we first extract the
table “Names” from the database by temporarily storing it in
resultTable. This is done by using the following INSERT INTO
clause:

INSERT INTO resultTable
{
SELECT Table
CLUSTER { Table: ‘Names’}
FROM DataBase

}

The final result is obtained through the following composed
query:

MERGE_AND
FROM
{
SELECT name
CLUSTER {name: }
FROM resultTable
},
{
SELECT pattern
CLUSTER {pattern: }
FROM
{

CHANG et al.: QUERYING DISTRIBUTED MULTIMEDIA DATABASES 699

Fig. 16. Dimension hierarchy for VIDEO.

SELECT image
CLUSTER {image: }
FROM
{
SELECT url
CLUSTER {url: PUBLIC }
FROM WWW

}
}
}

In this query, the operator MERGE_AND returns a RSI made
of the Web documents containing images with the people whose
names occur in the name field of the table “Names.”

X. DETECTING MOVING OBJECTS IN A VIDEO

Let us consider a data source VIDEO described by an RSI
based on the dimension hierarchy in Fig. 16.

This hierarchy does not allows us to write queries to de-
tect which objects are moving in a given time interval, though it
allows us to select the frames in an interval. To detect movement,
we would need to find two frames in the interval containing the
same object with high belief value. If the two occurrences are in
the same positions then it is likely that the object is still. Other-
wise the object is likely to be moving.

In order to identify the moving objects in a VIDEO by using
the language we need to introduce the concept of derived
attribute. A derived attribute of an entity stores information pro-
duced by the processing of already known information. The de-
rived attributes are calculated by using transformation methods
that translate an RSI into another. This new RSI describes the
same search space but it may be based on a different dimension
hierarchy.

As an example, let us consider the following query
based on the dimension hierarchy of Fig. 16.

/ Query 1 /
INSERT INTO video_piece
{
SELECT
CLUSTER
FROM aVIDEO
WHERE AND

}

Fig. 17. Hierarchy dimension generated by the show_state algorithm.

Query 1 stores in video_piece all the frames of aVIDEO in
the interval . In order to detect all the moving objects
in such interval we write the following query:

/ Query 2 /
SELECT moving_property
CLUSTER
FROM
{
SELECT object
CLUSTER: show_state: { object:

PUBLIC }
FROM video_piece
}

WHERE moving_property=‘moving’

The inner subquery in Query 2 not only selects all of the
objects in the required interval but also builds on them the
new dimension moving_property by using the transformation
method show_state. The old RSI is then translated into the new
RSI in Fig. 17 that is then used to represent all the objects in
video_piece. The external subquery in Query 2 is then able to
select all the objects with moving_property=‘moving’.

The transformation method show_state calculates the
moving_property attribute value of each object by checking
the object coordinates in each frame. In order to give the
appropriate values, for each object, it has to calculate the object
identity over the frames.

The change of RSI in is an operation very similar to
the creation of a view in SQL: indeed, starting with an RSI we
build a new RSI by structuring already stored information in a
different way. On the other hand the attribute moving_property,
calculated by the algorithm translating the RSI, may be consid-
ered as a derived attribute in SQL, since it provides information
derived by other existing data.

XI. BELIEF VALUES

Detecting the object identity over several frames is not an
easy task and most of the times it is not possible to state with
certainty whether two objects in two different frames are the
same. It becomes then necessary to use belief values for derived
attributes. In this case we can rewrite Query 2 as follows:

/ Query 3 /
SELECT moving_property
CLUSTER

700 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 06, NO. 5, OCTOBER 2004

Fig. 18. Example of video_piece.

FROM
{
SELECT object
CLUSTER: show_probable_state: { ob-

ject: PUBLIC }
FROM video_piece
}

WHERE

This query selects not only the objects that certainly moved
in the required interval in video_piece but also the objects that
moved with a belief value. As an example, supposing to use the
dimension hierarchy of Fig. 18, let us apply Query 3 to the input
video_piece shown in Fig. 18.

The inner subquery uses the method show_probable_state to
obtain an RSI based on the dimension hierarchy of Fig. 17. The
transformation method will use the function similar defined as
follows:

This function returns the belief value for the identity of its
two object arguments:

(for all the other combinations the belief value is zero).
Due to the execution of show_probable_state, the objects in

video_piece are represented as shown in Fig. 19.
The probability that moved is 0.7 since is the same as

and , and it has a different x-coordinate. and are
occurrences of the same object with belief value equal to 1 and
have different positions, then we can state that the corresponding
object moved. and are occurrences of the same object and
have the same position in the frames they appear, (resp.)
is the same as with belief value 0.7 and its x-coordinate is
different from that of , then it moved with belief value 0.7.
and (resp.) are the same object with belief value 0.9 and
have different x-coordinates, then moved with belief value
0.9. The external part of Query 3 deletes all the objects with
belief value less than 0.9.

Fig. 19. Output of Query 3 (parts colored in gray are not to be considered).

As an example, let us now provide a query translation
for the -query discussed in Section V. We want to retrieve all
the moving vehicles detected simultaneously by a laser radar
and a video camera. The query is made of three parts. The fist
part inserts into vehicles all the objects identified as vehicles
by first clustering the data from a laser radar along the time
dimension and then clustering the result along the object_3d
dimension in the time interval between t_in and t_out.

INSERT INTO vehicles
{
SELECT type
CLUSTER
FROM
{
SELECT object_3d
CLUSTER {object_3d: PUBLIC }
FROM
{
SELECT time
CLUSTER {time: PUBLIC ALIAS T}
FROM laser_radar
WHERE AND
}

}
WHERE type = ‘vehicle’
}

In the second part, the inner subquery selects a video frame
every ten frames in the same interval t_in and t_out. From each
of these frames all the objects are retrieved and, successively,
with a change of representation, the moving status of each object
is made explicit, i.e., the attribute status is added to each object.
Again, an operator such as show_state must exists in the Meta-
Database in order to make the recognition of a moving object
possible. Finally, all the resulting moving objects are inserted in
moving_objects.

INSERT INTO moving_objects
{
SELECT state
CLUSTER
FROM

CHANG et al.: QUERYING DISTRIBUTED MULTIMEDIA DATABASES 701

{
SELECT object
CLUSTER: show_state: {object: PUBLIC

}
FROM
{
SELECT time
CLUSTER {time: PUBLIC ALIAS T}
FROM video
WHERE AND AND

}
}

WHERE state =‘moving’
}

The last part of the query simply applies the MERGE_AND
construct to the results of the previous parts. Such operation will
finally retrieve only the moving vehicles detected by both the
laser radar and the video camera in the same time interval.

This application of MERGE_AND is legal since vehicles
stores a set of objects with attributes type, time, x, y, and z,
while x, y and characterize the position of the object in the
space. On the other hand, moving_objects stores a set of objects
with attributes state, time, x and y. The attributes involved that
can be joined are then time, x and y. It should be noted that the
dimensions and directions, occurring in the original -query,
are not considered here for the sake of clarity.

XII. DISCUSSION

In this paper, we described how to carry out sensor data fusion
from multiple sensors. In our approach, the queries are manually
created, and then modified, to deal with the lack of information
from a certain source or sources, and therefore not only the con-
straints can be changed, but also the source(s).

An experimental query processing system has been
implemented by researchers at the University of Pittsburgh,
the University of Salerno, and the Swedish Defence Research
Agency, to demonstrate the feasibility of applying the proposed
techniques to data from three types of sensors, including laser
radar, infrared video (similar to video but generated at 60
frames/s) and CCD digital camera. The users have successfully
tested a number of queries, ranging from simple queries to
complex ones for fusion, and systematic usability study is
currently being conducted. Having established the feasibility of
the techniques, we now discuss a number of issues for further
research.

The sensors in the above experiment are limited to the three
prespecified types of image sensors. To handle a large number of
different sensors, we propose the following extension [5], [24]:
the characteristics, applicable ranges, and processing algorithms
of these sensors are stored in a knowledge base, which enables
the system to deal with new sensors. The incorporation of do-
main-specific information into the knowledge base makes this
approach extendible to other multimedia applications.

The fusion method is based on a method that is replaceable
by other methods. Examples of other fusion methods that can be
used are Basian networks [10] and Dempster–Schafer [23]. The
proposed information structure is an information flow structure
that works in parallel with the queries and allows acquisition
and determination of the information necessary to carry out the
sensor data fusion process. It is not only necessary to determine
the objects, their state variables, and attributes that are requested
by the query but also the belief values associated to them. This
will put a heavy burden on the user to judge the result of the
queries with respect to the belief values returned by the query
system based on the uncertainty of the sensor information, be-
cause there will always be uncertainties in data registered by any
sensor. How to replace the manual query refinement process by
a semi-automatic or fully automatic query refinement process
is of great importance from a user’s point of view and will be
further investigated.

Regarding the issue of generality of the language, it is
at least as powerful as SQL because an SQL query can be re-
garded as an query with the clause “CLUSTER .” Since

can express both spatial and temporal constraints individ-
ually using the SELECT/CLUSTER construct and nested sub-
queries, and sensor data sources are by nature spatial/temporal,
there is a good fit. Its limitation is that constraints simultane-
ously involving space and time cannot be easily expressed, un-
less embedded in the WHERE clause. Although such constraints
may be infrequent in practical applications, further investigation
is needed in order to deal with such complex constraints.

Finally, the qualitative methods used by the -operators are
developed to support indexing and efficient inference making by
transforming the information acquired from the heterogeneous
data sources into a unified spatial/temporal structure. Such a uni-
fied structure is desirable because generic reasoning techniques
can be applied independently of the original sensor data struc-
tures. Thus, generic -operators based on qualitative methods
can be designed and implemented to support qualitative struc-
ture such as Symbolic Projection, which is discussed further in
[4] where a number of alternative qualitative approaches can
also be found.

REFERENCES

[1] J. Baumann et al., “Mole—concepts of a mobile agent system,” World
Wide Web, vol. 1, no. 3, pp. 123–137, 1998.

[2] C. Baumer, “Grasshopper—a universal agent platform based on MASIF
and FIPA standards,” in First Int. Workshop on Mobile Agents for
Telecommunication Applications (MATA’99), Ottawa, ON, Canada,
Oct. 1999, pp. 1–18.

[3] K. Chakrabarti, K. Porkaew, and S. Mehrotra, “Efficient query refine-
ment in multimedia databases,” in 16th Int. Conf. Data Engineering, San
Diego, CA, Feb. 28–Mar. 3, 2000.

[4] S. K. Chang and E. Jungert, Symbolic Projection for Image Information
Retrieval and Spatial Reasoning. London, U.K.: Academic, 1996.

[5] S. K. Chang, G. Costagliola, and E. Jungert, “Multi-sensor information
fusion by query refinement,” in Proc. 5th Int. Conf. Visual Information
Systems (Visual’02), Hsinchu, Taiwan, R.O.C., Mar. 2002.

[6] S. K. Chang and E. Jungert, “A spatial/temporal query language for mul-
tiple data sources in a heterogeneous information system environment,”
Int. J. Cooperative Inform. Syst. (IJCIS), vol. 7, no. 2 & 3, pp. 167–186,
1998.

[7] C.-Y. Chong, S. Mori, K.-C. Chang, and W. H. Baker, “Architectures
and algorithms for track association and fusion,” in Proc. Fusion’99,
Sunnyvale, CA, July 6–8, 1999, pp. 239–246.

[8] G. Grafe, “Query evaluation techniques for large databases,” ACM
Comput. Surv., vol. 25, no. 2, June 1993.

702 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 06, NO. 5, OCTOBER 2004

[9] F. V. Jensen, An Introduction to Bayesian Networks. New York:
Springer Verlag, 1996.

[10] E. Jungert, “A data fusion concept for a query language for multiple data
sources,” in Proc. 3rd Int. Conf. Information Fusion (FUSION 2000),
Paris, France, July 10–13, 2000.

[11] , “A qualitative approach to reasoning about objects in motion
based on symbolic projection,” in Proc. Conf. Multimedia Databases
and Image Communication (MDIC’99), Salerno, Italy, Oct. 4–5, 1999.

[12] , “An information fusion system for object classification and deci-
sion support using multiple heterogeneous data sources,” in Proc. 2nd
Int. Conf. Information Fusion (Fusion’99), Sunnyvale, CA, U.S.A, July
6–8, 1999.

[13] E. Jungert, U. Söderman, S. Ahlberg, P. Hörling, F. Lantz, and G. Neider,
“Generation of high resolution terrain elevation models for synthetic en-
vironments using laser-radar data,” Proc. SPIE, Model., Simul. Visualiz.
Real Virtual Environ., vol. 3694, , pp. 12–20, April 7–8, 1999.

[14] L. A. Klein, “A boolean algebra approach to multiple sensor voting fu-
sion,” IEEE Trans. Aerosp. Electron. Syst., vol. 29, no. 2, pp. 317–327,
Apr. 1993.

[15] H. Kosch, M. Doller, and L. Boszormenyi, “Content-based indexing
and retrieval supported by mobile agent technology,” in Multimedia
Databases and Image Communication, M. Tucci, Ed. Berlin, Ger-
many: Springer-Verlag, 2001, pp. 152–166.

[16] D. B. Lange and M. Oshima, Programming and Deploying Java Mobile
Agents with Aglets. Reading, MA: Addison-Wesley, 1999.

[17] S. Y. Lee and F. J. Hsu, “Spatial reasoning and similarity retrieval of
images using 2D C-string knowledge representation,” Pattern Recognit.,
vol. 25, no. 3, pp. 305–318, 1992.

[18] J. R. Parker, “Multiple sensors, voting methods and target value anal-
ysis,” Proc. SPIE Signal Processing, Sensor Fusion and Target Recog-
nition VI,, vol. 3720, pp. 330–335, April 1999.

[19] M. Stonebraker, “Implementation of integrity constraints and views by
query modification,” SIGMOD, 1975 PAGES???.

[20] B. Vélez, R. Weiss, M. A. Sheldon, and D. K. Gifford, “Fast and effective
query refinement,” in Proc. 20th ACM Conf. Research and Development
in Information Retrieval (SIGIR97), Philadelphia, PA, July 1997.

[21] E. Waltz and J. Llinas, Multisensor Data Fusion. Boston, MA: Artech
House, 1990.

[22] F. E. White, “Managing data fusion systems in joint and coalition war-
fare,” in Proc. EuroFusion98—Int. Conf. Data Fusion, Great Malvern,
U.K., Oct. 1998, pp. 49–52.

[23] F. E. Yager, F. E. Fedrizzi, and F. E. Kacprzyk, Eds., Advances in Demp-
ster-Shafer Theory of Evidence. New York: Wiley, 1994.

[24] S. K. Chang, G. Costagliola, and E. Jungert, “Multi-sensor informa-
tion fusion by query refinement,” in Lecture Notes in Computer Science
LNCS. Heidelberg, Germany: Springer-Verlag, Mar. 2002, pp. 1–11.

[25] T. Horney, E. Jungert, and M. Folkesson, “An ontology controlled data
fusion process for a query language,” in Proc. 6th Int. Conf. Information
Fusion. Cairns, Australia, July. 8-11, 2003, pp. 530–537.

Shi-Kuo Chang (F’86) received the B.S. degree from
National Taiwan University, Taipei, Taiwan, R.O.C.,
in 1965, and the M.S. and Ph.D. degrees from the
University of California, Berkeley, in 1967 and 1969,
respectively.

He was a Research Scientist at the IBM T. J.
Watson Research Center, Yorktown Heights, NY,
from 1969 to 1975. From 1975 to 1982, he was
Associate Professor and then Professor with the
Department of Information Engineering, University
of Illinois at Chicago. From 1982 to 1986, he was

Professor and Chairman of the Department of Electrical and Computer Engi-
neering, Illinois Institute of Technology, Chicago. From 1986 to 1991, he was
Professor and Chairman of the Department of Computer Science, University
of Pittsburgh, Pittsburgh, PA. He is currently Professor and Director of Center
for Parallel, Distributed and Intelligent Systems, University of Pittsburgh. His
research interests include distributed systems, image information systems,
visual languages, and multimedia communications. He has published over 240
and wrote or edited 14 books. His books Principles of Pictorial Information
Systems Design (Englewood Cliffs, NJ: Prentice-Hall, 1989), Principles of
Visual Programming Systems (Englewood Cliffs, NJ: Prentice-Hall, 1990),
Symbolic Projection for Image Information Retrieval and Spatial Reasoning
(New York: Academic, 1966), and Multimedia Software Engineering (Norwell,
MA: Kluwer, 2000), are pioneering advanced textbooks in these research areas.
He is the Editor-in-Chief of the Journal of Visual Languages and Computing
published by Academic Press, and the Editor-in-Chief of the International
Journal of Software Engineering & Knowledge Engineering published by
World Scientific Press.

Gennaro Costagliola (M’95) received the Laurea
degree in computer science from the University
of Salerno, Italy, in 1987, and the M.S. degree in
computer science from the University of Pittsburgh,
Pittsburgh, PA, in 1991.

He is currently Professor and Director of the
Laurea degree courses in computer science at the
University of Salerno. His research interests include
programming languages, visual languages, parsing
technologies, multimedia databases, web technolo-
gies.

Dr. Costagliola was guest coeditor of the February 2002 Special Issue of on
Querying Multiple Data Sources for the Journal of Visual Languages and Com-
puting. He is a member of the ACM and the IEEE Computer Society.

Erland Jungert received the Ph.D. degree in com-
puter science from the University of Linköping,
Linköping, Sweden, in 1980.

He has been a Research Staff Member at
the Swedish Defence Research Agency (FOI),
Linköping, since 1980, except for a short period in
1985–1986, when he was a Visiting Professor at the
Illinois Institute of Technology, Chicago. Since 1987,
he has been Director of computer science research at
FOI and, since 1997, he is also a part-time professor
at the Computer Science Department, University of

Linköping. His current research interests include query languages, methods
for qualitative spatial reasoning and various aspects of GIS. He is a coauthor
of one book on spatial reasoning and a co-editor of two other books on visual
languages and spatial reasoning. He is also an associate editor of the Journal of
Visual Languages and Computing.

Francesco Orciuoli was born in Salerno, Italy, on
April 6, 1975. He received the Laurea degree in
computer science (cum laude) from the University
of Salerno, Italy, in 1999.

He is a Research Contractor with the Department
of Computer Engineering and Applied Mathematics
(DIIMA), University of Salerno), in the area of dis-
tributed object infrastructures. His fields of interest
are component-based design, compiler building tech-
niques, design patterns, object oriented analysis, de-
sign and implementation, relational databases, web

services, and UML.

FOI-R--1787--SE

FOI-R--1787--SE
Appendix C

 A Visual Query Language for Uncertain Spatial and Temporal data

Visual Information System, Amsterdam, July 5, 2005.

Silvervarg, K., Jungert, E.
67

A Visual Query Language for Uncertain Spatial
and Temporal data

Karin Silvervarg, Erland Jungert
FOI, (Swedish Defence Research Agency)
Box 1165, S-581 11 Linköping, Sweden

{karin, jungert}@foi.se

Abstract. Query languages for sensor data will have similarities with tra-
ditional query languages but will also have diverging properties that cause a
higher complexity than the traditional ones. Both types require data inde-
pendence. However, as different sensors create data of heterogeneous type
the commonly used methods for data selection cannot be used. Furthermore,
sensor data will always be associated with uncertainties and since also sensor
data fusion must be possible to carry out this cause further problem in devel-
opment of the query languages. Here a visual query language for sensor data
input is discussed from these perspectives to allow a complete set of spatial
temporal queries by means of its visual user interface.

1 Introduction

Query languages intended for multiple sensor data sources and other types of external
data sources such as text messages differ in many ways from conventional query lan-
guages. A characteristic of this type of systems, which include multiple sensor data
sources, is that they generally are more complex than traditional query systems. In par-
ticular, they will in most applications, be concerned with queries of spatial/temporal
type. It will come from several different sources, but one important type of source is
sensor data. Such data sources must be able to handle information that in various ways
is uncertain. There are several sources of uncertainties in sensor data; one is due to lim-
itations in the sensors and the navigation systems of the platforms carrying the sensors;
another depends on the resolution of the sensor data; and a third reason is that some sen-
sor types are sensitive to weather conditions such as snow or rain. All types of uncer-
tainties will consequently have effects on the way the queries are executed. Another
consequence when multiple data sources are involved is that in those cases fusion [16]
of data must be possible to handle. Sensor data fusion becomes specifically complicated
since the sensor data mostly are of heterogeneous type, i.e. sensor data are of different
types.
Other problems that appear concern the selection of the data sources. Sensor technolo-
gies are constantly developing and for this reason it becomes almost impossible for a
user to have sufficient knowledge about the capabilities of all occurring sensors. Thus
the selection of data sources should be carried out by the query system independently
of the users, for instance by using ontology [21]. This will result in a system that from
a user’s perspective is sensor and sensor data independent [22], [8]. Another motivation
for this approach is to delimit the workload of the users and let them concentrate on their
primary activities. In this way they do not need to have any particular technical knowl-
edge on sensors and sensor data. It should be enough for a user to have a general under-

standing of the problems associated with the sensor data e.g. due to the uncertainties the
sensors cannot correctly measure all possible attributes of the sensor data.
The work discussed here, which is an extension of [26], is focusing on a visual user in-
terface of a query language for multiple sensor data sources. Clearly, many of the char-
acteristics mentioned above will have an impact on such a user interface; among them
sensor data independence. To achieve sensor data independence the system cannot and
should not communicate concepts related to the sensors to the users. Instead, the system
should work with concepts relevant and familiar to the users. This is along with tradi-
tion of traditional query systems where data independence plays an important role.
A large number of applications for query languages for sensor data fusion can be fore-
seen. Among these are applications where the query language is integrated to a com-
mand and control system for military applications and for crisis/emergency manage-
ment systems but other less complex applications exist as well.
In this paper we only look at the problems concerned with specifying the query. How
to present the result of the query is also an important problem, but that is a different
problem, and we will not discuss that further in this paper.
Among the related works that should be pointed out are the work by Abdelmoty and El-
Geresy [1], who have designed a system for graphical queries that is a filter based ap-
proach. It is primarily designed for spatial queries with similarities to ΣQL. Malan et al
[24] works with data that in uncertain in the temporal aspect, in their case searching old
African art where the dating is imprecise. Other approaches that focus on temporal que-
ries of varying complexity are [17], [12], [11], [15] and [14]. Chang [6] has made an
approach to use c-gestures for making spatial/temporal queries in what he calls a sen-
tient map. Bonhomme [5] have proposed a visual representation for spatial/temporal
queries based on a query-by example approach and related variation of this, called que-
ry-by-sketch, is presented in [4]. Hirzalla and Karmouch [19] have a more direct query
approach to spatial/temporal queries, but they treat the spatial and the temporal parts
separately and not together.
This paper is structured as follows. In section 2 the problem definition is presented and
discussed. After this follows a presentation of the ΣQL query language in section 3,
which forms the bases of the work presented here. In section 4 some of the basic ele-
ments that are present in the query language are presented. In sections 5 and 6 are the
aspects of spatial and temporal queries discussed. After this follows in section 7 a dis-
cussion of the aspects of uncertainty. The section on uncertainty is followed by a section
including a set of examples illustrating Visual ΣQL. Furthermore, there is also a discus-
sion of the problem of completeness of the queries in section 9. Finally, conclusions
from the work are given in section 10.

2 Problem definition

The main focus of the query language described in this work is concerned with moving
ground based objects that correspond to various types of vehicles. The sensor may ei-
ther be airborne, e.g. UAVs, aircrafts, or satellites. As these objects may be moving
from time to time the sensor system must be able to detect and classify these objects.
The consequence of this is that the query system primarily must be designed to respond

to spatial/temporal queries where uncertainties in the data must be taken into consider-
ation.
Given the above background the main problem in this work has been to develop a visual
user interface for a query language where spatial/temporal queries are in focus.
Generally, a set of elements can be associated with the queries. These elements relates
to where?, when? and what?, that is where? corresponds the area of interest (AOI),
when? to the time-interval of interest (IOI) and finally what? to the object type(s) that
is asked for. These three elements are basically part of most, trivial as well as complex,
queries since it is obvious that if we ask for a particular object (vehicle) then we must
also consider a particular area where the object can be found but also a certain time in-
terval during which it can be found in that area.
A further problem is associated with the visualization of the query results. To be con-
sidered in connection to this are again the aspects of uncertainty and the context in
which the query, as well as the result, are directed. The first one of these aspects cannot
be avoided because of the limitations of the sensors and the sensor platforms. The con-
text is concerned with the geographical background of the requested objects. Thus the
context can be demonstrated by means of geographical map information, corresponding
to traditional map objects, such as roads, forests, lakes etc. Clearly, the map information
is not only required for visualization of the query result but also for representation of
the area of interest in the queries as will be demonstrated subsequently.

3 The query language, ΣQL

The query language discussed in this work is called ΣQL [1], [10], [7]. Originally, ΣQL
was developed as a query language for querying of a single sensor image at a time.
However, later it has evolved into a query language for multiple sensor data sources
with capabilities for sensor data fusion and sensor data independence. The various sen-
sors may be of different types and generates heterogeneous sensor data images. For this
reason a large number of algorithms [20] for sensor data analysis must be available and
administered by the system.
It is required that selection of sensors and algorithms must be carried out autonomously
and for this reason means for such selection must be available. In ΣQL this is controlled
by the ontological knowledge based system [21], [22]. The reason for the autonomous
selection is to allow sensor data independence. Sensor data independence is motivated
for a large number of reasons. One reason, which already has been mentioned, is to al-
low the user to concentrate on the work at hand without any knowledge of the sensors
and their data types. Another motivation is to make repetitive queries possible without
interference from the users. In this way light and weather conditions may, for instance,
change during the period when the query is repeated across a specified area of interest
resulting in different selections of sensors.
This query language allows classification of objects not only from the sensor data
sources; it also allows cuing (detection) of possible candidates as a first step towards
classification. Sensors used for cuing can, for example, be a ground senor networks or
a synthetic aperture radar (SAR), while sensors for classification can be IR/camera, la-
ser/radar and CCD/camera. The distinction between these two classes of sensors is that

the former covers a much larger area than the latter. Thus the former can be used to
quickly search through the AOI for object candidates much faster than the sensors used
for classification. They can also determine a much smaller search area for the classifi-
cation sensors. Consequently, this depends on differences in coverage and resolution,
i.e. the classification sensors have a low coverage and a high resolution opposite to the
cuing sensors.
The basic functionality of the query language can be described as follows. A query is
inserted by the user and then the input is fed in to the dependency tree generator which
in a dialogue with the ontological knowledge structure generates a set of nodes in the
dependency tree. As long as there are nodes in this tree, new sub-queries can be built
(one for each of the selected sensors), refined and executed by the query processor.
Once the sub-queries have been executed instances are created in the multilevel view
database to support query refinement in a subsequent step. As new sets of dependency
tree nodes are generated new sub queries can be executed and their result refined. This
goes on until the dependency tree becomes empty, i.e. when there is no more sensor data
available to process. In the final step data fusion is, if applicable, carried out using the
result of the sub queries as input and then the process terminates. This process is further
discussed in [8].
Sensor data fusion [22] is another property of ΣQL. It is quite unique and does not occur
in traditional query systems. The motivation for sensor data fusion is to allow informa-
tion from different sensors to support identification, but also to complement the infor-
mation since different sensors can register different things; for instance a CCD camera
might see that a car is blue, while an IR camera might see that the engine is running.
A serious question is how to interpret the fused result of a query. The approach taken
here has been to associate a belief value to each result from the various sensors that are
used in a query. Belief values are determined by the involved sensor data analysis algo-
rithms and a common value is determined by the fusion process, which also is forward-
ed to the user as a part of the query result. All belief values are normalized and a high
value means that a user may have a higher confidence in the result. It is not only to fa-
cilitate the fusion, but also to give the user a sense of how strong belief or confidence
he can have in the result. This is an important aspect of the system that has been intro-
duced to give the users a higher degree of trust in the query result as well as in the query
system.

Figure 1 Simple selection of AOI, IOI and object type.

4 Basic Query elements

From a logical representation of ΣQL we have developed a visual language, called Vis-
ual ΣQL [25][26]. The basic questions to be considered are where?, when? and what?.
We have chosen to let the user mark the AOI in a map and IOI, in its simplest form, is
set by the start and end points in time, see figure 1 in the upper right corner. Queries can
be repeated over time, i.e. the same query can be applied several times but with different
IOI. Object types can in their simplest form be chosen from a list, but the user often has
other requirements on the result. He may not be looking for all vehicles, but only for all
moving vehicles, or all vehicles moving along a certain road. Consequently, a way to
select the object types and put them in relation to each other is required. The solution is
to use a structure with both object types and relations. There are many different ap-
proaches to this, one is query-by-example [5], and another quite similar is query-by-
sketch [4]. We have chosen the approach of dataflow [18]. The object types are simply
selected from a list, and eventually the user can apply relations to these objects, thus
putting restrictions on the query result.
The user interface is built up around a work area and palettes. The work area is the space
where the object types and the relations are placed and set in relation to each other by
using a visual approach. The palettes contain the object types and the relations, organ-
ized according to attribute types, to be easily navigated.
Objects correspond to all kinds of object types that can be found by the sensors although
in our application ground vehicles are of primary interest. The objects have both prop-
erties that are static, e.g. type of vehicle and color, but they also have properties that

may vary over time e.g. velocity and orientation. Objects can also be of geographical
type e.g. roads, towns. An ontology containing a hierarchy of the objects is available as
well making it possible to say that a car is a vehicle etc. [21]. The ontology describes
the properties of the different objects. A car may, for instance, have attributes of type
orientation, color, size, position, velocity, while a road may have speed restrictions,
pavement and position. When the user selects an object type and places it in the work-
space it is visualized as a rectangular box with the object type written inside, see e.g.
figure 2.
As all objects are assumed to be linked to various relations there has to be ways to spec-
ify the details of the query. Once the type of objects is set together with the relations,
the relations delimit the answer to include just those objects for which the relations are
true. The relations can be either unary or binary. Unary relations are for example “color
equals blue” or “velocity is greater than 50 km/h”. The binary relations can be undirect-
ed or directed. Directed means that the order of the involved objects matters, for in-
stance the relation “before” gives a different result depending on the order of the in-
volved objects, whereas the result of “equals” does not.
The user can select the relations from a palette. The relations are also visualized as box-
es, where the possible relation is illustrated with an icon rather than by text, since it is
often simpler for a human to grasp an icon [5]. To distinguish the relations further from
the objects they also have a different color at the edge of the box, see figure 2.

Figure 2 The user has selected the object-types
vehicle and road, and the relation inside.

Objects and relations are connected to each other with arrows. Everything passed be-
tween a pair of such “boxes” is represented as a set of tuples. Output from an object
box corresponds to a tuple of size one that simply contains an item from the set de-
scribed in the object; e.g. a vehicle. In a binary relation two different tuples are related
to each other and the resulting output tuples may contain more than one element.

RoadVehicle

Figure 3 a. A relation where one of the tuples has more than one element and
where the result contains only a part of all possible elements.

b. Settings of that relation.

If an input tuple contains more than one element the user has to define which of the el-
ements in the tuple that is part of the relation, see figure 3b. In the resulting tuple the
user can choose to include any parts from the input tuples. For example, in figure 3a we
have the relation inside. One of the participating sets contains cities and the other could
be a result of a relation relating the cars to the nearby rivers. In this case we could relate
the cars to the cities to find out which of the cars that are in the city. In this case probably
only car1. The resulting tuple from the relation can contain car, river, and city, or any
subset thereof i.e. car and river; car and city; river and city; car; river; city. In figure 3a
the resulting set is shown where the tuple consists of river and city.
The query language also includes some set operations, i.e. union, intersection and set
difference. They are treated similarly to relations, but function a bit differently. The un-
ion operator simply produces a set containing all tuples from both incoming sets. The
only restriction is that all the resulting tuples must have the same number of elements.
To make it meaningful the user pairs elements from the incoming tuples. If some ele-

City

{<Washington>}

{<car1, Potomac>,
<car2,Nile>}

{<Potomac, Washington>}

a. b.

ments that are paired do not contain the same type of objects, the ontology is used to
find the object that is closest above both objects in the object hierarchy to get the result-
ing type. This situation may occur in queries where objects of similar types are asked
for. For instance, the incoming tuples may hold elements of the tuples <car, road> and
<road, truck, river>; then the result may contain <vehicle, road>, which is more mean-
ingful than other possible combinations.
Intersection is a bit different from union, because in intersection only a single element
in each of the input tuples is chosen, just like in our normal relations. These objects are
used to compute the intersection just like in normal set operations. The resulting tuple
can include elements from all incoming tuples. If, for instance, <car, river> is intersect-
ed with <car, road> and car in both tuples is chosen for the intersection then the result
could be <car, road, river>.
Set difference is similar to intersection in the aspect that only one element in the partic-
ipating tuples are selected. Contrary to intersection set difference is a directed relation
so all elements that are in the first, but not in the second tuple is kept as the result. Sim-
ilarly to intersection the resulting tuple may contain elements from both participating
tuples.
On all relations the not operator can be applied. Usually this means that all results for
which the relation would be true is now false and vice versa, but it will work a bit dif-
ferent when dealing with uncertainties, see chapter 7 for further explanations. Not is vis-
ually denoted by drawing a line diagonally across the icon, see figure 4.

Figure 4 Not applied to the inside relation.

All types of relations can not be applied to all types of objects, for instance, it is nor-
mally meaningless to apply a color comparison to a city. To satisfy the need to know,
which relations that can be applied to which type of object the ontology has been ex-
panded. It also contains information about, the properties of each object type. This can
be matched with the requirements the relations have on the attribute values the objects
being related must have.
No relation is in any way selected to be the result of the query. Instead all “boxes” can
be seen as the results or partial results. This will give the user a better opportunity to
analyze the consequences of different relations. Another effect is that the workspace
may contain several unrelated queries on the same objects, AOI and IOI.

5 Spatial queries

In [13], Egenhofer identifies eight atomic topological relations disjunct, meet, equal, in-
side, coveredBy, contains, covers, and overlap, which have different spatial relational
properties. All these have been included in the query language as a basis for spatial que-

ries. We have also found needs for directional spatial relations i.e. northOf, southOf,
north-eastOf etc. Similar to this we have also directional relations that are determined
with respect to a local object or position, i.e. inFrontOf, behind, leftOf etc.
All relations require different properties with respect to the objects to which they relate.
For instance, inFrontOf requires that the position and the orientation of the object is
known, while inside requires an extension in space. To make sure that the relations only
operate on objects with the required relational properties the ontology also includes in-
formation about the type of properties that can be expected from each type of object.
Then each relation has a set of requirement on the object properties. The spatial prop-
erties defined here are hasExtension, hasPosition and hasOrientation.
All of the mentioned spatial relations are binary. Sometimes there is a need to relate an
object to a fixed point or area and for this purpose we have included the spatial attribute
entity (SAE) that only has a position or area and no other properties. A SAE can be used
together with all of the relations mentioned above to determine objects that relate to
fixed points or areas. The only difference when relating an object to a SAE compared
to when relating a pair of objects to each other is to determine the output tuple. Since a
SAE is not an object it is not allowed to be included in the result.

6 Temporal queries

The classical work on temporal relations has been done by Allen [3]. He has defined 13
binary relations that concerns relating two time interval to each other. These relations
are: before, after, meets, metBy, overlaps, overlappedBy, finishes, finishedBy, starts,
startedBy, contains, during and equals. We have chosen to use the same icons for these
relations as those used by Hibino et al [17]. The only difference is that we have decided
to use squares instead of circles, see figure 5; the reason for this is described in the sec-
tion on uncertainties.

Figure 5 Visualization of Allen’s 13 temporal relations.

In analogy to spatial queries there is also a need for relating objects to fixed points in
time or time intervals. Thus the functionality for creation of a temporal attribute entity
(TAE) has been included. If only a point in time is needed the start and end of the time

interval become equal. Consequently, Allen’s relations [3] can be used to relate objects
to fixed times as well.
Determination of tracks is a quite common task in most sensor data systems. To produce
tracks by means of a query language from sensor data requires special attention. Thus,
when general attribute relations are combined with either spatial or temporal relations
then it is quite simple to determine tracks. However, when combining general attribute
relations with both spatial and temporal relations then the system must keep track of
which observations that fulfill both the time and spatial relations since otherwise simul-
taneousness may be lost.
The objects that are related by the temporal relations, just like the spatial relations, re-
quire certain properties. While the spatial relations have three different properties, the
temporal relations have just a single one, i.e. hasTime. The reason for this is that time
is one-dimensional while space, so far, in our system is 2D.

7 Uncertainties

As have been pointed, out sensor data are always associated with uncertainties that de-
pends not only on the limitations in the sensors but also to limitations in the navigation
systems, unless the sensors are at fixed positions. Obviously, these uncertainties will in-
fluence the result of the queries in more than one way; especially when dealing with ex-
tremely large data volumes and when the data from multiple data sources are part of the
sensor data fusion process. It also turns out that from a user’s perspective there are two
aspects that need to be handled. That is, uncertainties in space and in time.
All spatial relations should be possible to apply in a mode where uncertainties will be
considered. This is visually distinguished by representing the areas inside the icons by
more fuzzy looking symbols. The effect of this is that a relation may be true with respect
to the uncertainties but in reality with completely accurate data the relation may not be
true. The advantage of this is that no crisp results will be missed. Take for instance the
inside relation; here all areas that could be inside will be returned even though they also
might be slightly outside, but with respect to uncertainties we can not tell for sure,
which is the case.
Uncertainties in time are treated similarly. All relations have an uncertain mode, which
is visualized by replacing the squares with circles, see figure Figure 6. There are two
reasons for using squares in the accurate case and circles in the uncertain. One reason
is because it is easier to associate the sharp corners of the squares with the actual data
and the round shape of the circle with the more uncertain data. Another reason is that
we believe that the users most often will use the uncertain mode of the relations and thus
we will be using the same symbols as Hibino et al [17].

Figure 6 The relations before and start, where consideration will be taken to the
uncertainties in the data when evaluating the relation.

The result of applying not to a relation that account for uncertainties is a bit different
from when it does not. Usually, the complete inverse of the result would be kept, but
when the uncertainties are considered the result will be a bit different. For example the
inside relation for uncertainties will include all results that might just be inside. The not
inside relation will include all results that might be outside, including some results that
actually are inside, although it cannot be proven. Thus some results are part of both in
the inside and in the not inside relation.
So far, no complete implementation of this part of the system exists. However, the ac-
tual implementation of the evaluation of relations concerned with uncertainties can be
made in several ways. Several theories exist, one is rough sets [2] another is the egg
yolk theory [23]. There is also some research being done on how to evaluate informa-
tion with different levels of uncertainty [24]. The aspects of uncertainty of data must be
studied further to be able to logically respond to the queries in a correct way and to give
the users a better support. The starting point for such a study must be to regard uncer-
tainty manipulation in the queries as the default case.

8 Completeness

The visual query language should be at least as powerful as the relational algebra. The
operators of the relational algebra are union, set difference, projection, selection and
cartesian product [27].
Union, is the set of tuples that are in R or S or both. Union in the relation algebra can
only be applied to relations of the same arity. Union is directly implemented in our lan-
guage, with the additional convenience to allow selection of subparts of the tuples to
make them equal in size.
The set difference of R and S contains those tuples in R which are not also in S. Set dif-
ference just like union is implemented directly in Visual ΣQL.
The subset of R that contains all tuples that satisfies a given logical formula is a selec-
tion of R; this is the equivalent of selecting some of the rows in a table. In this visual
query language this is carried out by the relations.
The idea behind projection is to remove some elements/components from a relation. If
a relation is seen as a table then projection is the act of selecting a set of columns in that
table. In this work this corresponds to the selection of which elements that should be
included in the resulting tuple.
The cartesian product of R and S is the set of all tuples whose components forms a tuple
in R and a tuple in S. Our binary relations are cartesian products with a selection and a
projection. If the relation is set up to always be true then there is no selection, and if all
elements are selected for the resulting tuple then there is no projection. The result is the
pure cartesian product.

9 An example

To illustrate the use of Visual ΣQL some examples will be given. The examples can be
seen as part of a simple scenario where the fundamental problem is to find different ve-
hicles along or on a riverside express way passing an electrical power plant. There is
also a second express way in the vicinity of the area of interest that is not interconnected
to the other one. In this scenario there has been some incident directed towards the pow-
er plant. The user of the query language is trying to find, identify and track vehicles on
the riverside express way where the vehicles may be engaged in further hostile activities
directed towards the power plant. To monitor the area a set of ground based sensors
have been deployed along the express way, that e.g. can read the license plates of the
vehicles or from a top view can determine a set of other attributes such as speed and
direction.
Query 1: Find all vehicles close to the power plant near in time of the incident.
The AOI corresponds to a relatively small area around the power plant and the IOI is
the day of the incident. The visual representation of this query can be found in figure 7.
The output of this query is saved by the user for further usage. The user also labels this
information suspect vehicles.

Figure 7 Finding suspect vehicles around the power plant (query #1).
The rational of this query is to try to identify all vehicles that have been in the area at
the time of the incident and, which for this reason may be considered suspicious
Query 2: Find similar vehicles on the riverside freeway. (figure 8)
Here the AOI is covering a much larger area and the IOI could be the same as before.
This query is visualized in figure 8. Here the term similar is determined by means of the
object ontology. This and other analogous concepts are also discussed further in [9].
This query is motivated by the needs to find also other vehicles that may be connected
to the vehicles that originally were found suspicious.

Vehicle power-plant

Distance < 2 km 12-18

Figure 8 Find similar vehicles on the riverside freeway (query #2).

10 Conclusions

In this work the visual user interface of the query language ΣQL has been discussed to-
gether with some of its basic characteristics. The query language allows queries of spa-
tial/temporal type where the input data are generated by sensors of various types. The
applications here will be focusing on ground based targets (objects) that basically may
be vehicles in a geographical context. The sensors may be both airborne and ground
based. Data from these sensors are generally of heterogeneous type. The query system
can handle uncertainties due to the sensor system and since multiple sensors may cover
the area of interest a method for sensor data fusion has been developed and integrated.
The set of possible spatial/temporal queries is complete from a traditional theoretical
viewpoint. Particularly, the queries may be concerned with information that in time and
space may be both absolute and relative. Relations from such queries are normally de-
termined by means of a set of predefined operators.
A simple demonstrator of Visual ΣQL has been implemented and is gradually extended.
Currently, five different sensor types have been integrated to the system among these
are laser-radar, IR-camera and a CCD-camera but also an unattended ground based sen-
sor network. In order to be able to handle more complicated and dynamic situations
where quite large amounts of data must be handled the query processor will be hooked
up to a simulation system.
Future research will focus on user tests of the visual user interface and on the adaptation
of the query system to Internet applications. The approach taken for the selection of the
sensor data in cases where the sensors are distributed on different platforms attached to
the Internet will be based on sets of intelligent agents.

Vehicle Road

Road.type =
‘freeway’

River

Suspect vehicles

Similar

The focus of our current work is on how to specify queries. Future research also needs
to find a satisfying solution on how to present the result of those queries. That solution
has to solve the problem of displaying results that differ in time and location, and where
uncertainties are present in all aspects of the result.

References

1. Abdelmoty, A. and El-Geresy, B., Qualitative Tools to Support Visual Querying in Large
Spatial Databases, Proceedings of the workshop of Visual Language and Computing, Mi-
ami, Florida, September 24-26, 2003, pp 300-305.

2. Ahlqvist, O., Keukelaar, J. and Oukbir, K., Rough and fuzzy geographical data integra-
tion. International Journal of Geographical Information Science, 14(5):475-496, 2000.

3. Allen, J. F., Maintaining knowledge about temporal intervals, Communications of the
ACM, vol. 26, no. 11, pp 832-843.

4. Blaser, A. D. and Egenhofer, M. J., Visual tool for querying geographic databases, Pro-
ceedings of the Workshop on Advanced Visual Interfaces, 2000, p 211-216

5. Bonhomme, C., Aufaure, M.-A. and Trépied, C., Metaphors for Visual Querying of Spa-
tio-Temporal Databases, Advances in Visual Information Systems. 4th International Con-
ference, VISUAL 2000. Proceedings (Lecture Notes in Computer Science Vol.1929),
2000, p 140-53

6. Chang, S.-K., The sentient map, Journal of Visual Languages and Computing, Vol 11, No.
4, August 2000, pp 455-474.

7. Chang, S.-K. and Jungert, E., Query Languages for Multimedia Search, In Principals of
Visual Information Retrieval, M.S. Lew (Ed.), Springer Verlag, Berlin, 2001, pp 199-217.

8. Chang, S.-K., Costagliola, G., Jungert, E., Multi-sensor Information Fusion by query Re-
finement, Recent Advances in Visual information Systems, Lecture Notes in Computer
Science, 2314, Springer Verlag, 2002, pp 1-11.

9. Chang, S.K., Jungert, E. Iterative Information Fusion using a Reasoner for Objects with
Uninformative Belief Values, Proceedings of the seventh International Conference on In-
formation Fusion, Stockholm, Sweden, June 30 - July 3, 2004.

10. Chang, S.-K., Costagliola, G., Jungert, E. and Orciuoli, F., Querying Distributed Multime-
dia Databases and Data Sources for Sensor Data Fusion, accepted for publication in the
journal of IEEE transaction on Multimedia, 2004.

11. Chittaro, L. and Combi, C., Visualizing queries on databases of temporal histories: new
metaphors and their evaluation, Data & Knowledge Engineering, v 44, n 2, Feb. 2003, p
239-64

12. Dionisio, J.D.N. and Cardenas, A.F., MQuery: a visual query language for multimedia,
timeline and simulation data, Journal of Visual Languages and Computing, v 7, n 4, Dec.
1996, p 377-401

13. Egenhofer, M., Deriving the combination of binary topological relations, Journal of Vis-
ual languages and Computing, Vol 5, pp 133-49.

14. Erwig, M. and Schneider, M., Spatio-temporal predicates, IEEE Transactions on Knowl-
edge and Data Engineering, v 14, n 4, July/August, 2002, p 881-901

15. Fernandes, S., Schiel, U. and Catarci, T., Visual query operators for temporal databases,
Proceedings of the International Workshop on Temporal Representation and Reasoning,
1997, p 46-53

16. Handbook of Multisensor Data Fusion, D. L. Hall & J. Llinas (Eds.), CRC Press, New
York, 2001.

17. Hibino, S. and Rundsteiner, E. A., User Interface Evaluation of a Direct Manipulation
Temporal Visual Query Language, Proceedings ACM Multimedia 97, Seattle, WA, USA,
9-13 Nov. 1997, p 99-107.

18. Hils, D., "Visual Languages and Computing Survey: Data Flow Visual Programming Lan-
guages", Journal of Visual Languages and Computing, vol.3, 1992, pp.69-101.

19. Hirzalla, N. and Karmouch, A., Multimedia query user interface, Canadian Conference on
Electrical and Computer Engineering, v 1, 1995, p 590-593.

20. Horney, T., Ahlberg, J., Jungert, E., Folkesson, M., Silvervarg, K., Lantz, F., Franssson,
J., Grönwall, C., Klasén, L., Ulvklo, M., An Information Sustem for target recognition,
Proceedings of the SPIE conference on defense and security, Orlando, Florida, April 12-
16, 2004.

21. Horney, T., Design of an ontological knowledge structure for a query language for multi-
ple data sources, FOI, scientific report, May 2002, FOI-R--0498--SE.

22. Horney, T., Jungert, E., Folkesson, M., An Ontology Controlled Data Fusion Process for
Query Language, Proceedings of the International Conference on Information Fusion
2003 (Fusion’03), Cairns, Australia, July 8-11.

23. Lehmann, F. and Cohn, A. G., The eggyolk reliability hierarchy: Semantic data integra-
tion using sorts with prototypes. Proceedings of the third international conference on In-
formation and knowledge management, ACM Press, 1995, pp 272-279.

24. Malan, K., Marsden, G. and Blake, E., Visual query tools for uncertain spatio-temporal
data, Proceedings of the ACM International Multimedia Conference and Exhibition, n IV,
2001, p 522-524.

25. Silvervarg, K. and Jungert, E. Aspects of a visual user interface for spatial/temporal que-
ries, Proceedings of the nineth International Conference on Distributed Multimedia Sys-
tems, Miami, Florida, September 24--26, 2003, pp 287-293.

26. Silvervarg, K. and Jungert, E., Visual specification of spatial/temporal queries in a sensor
data independent information system, Proceedings of the tenth International Conference
on Distributed Multimedia Systems, San Francisco, California, September 8-10, 2004, pp
263-268.

27. Ullman, J., Principles of Database and Knowledge - Base Systems, Volume 1. Computer
science press, Rockville, 1988.

FOI-R--1787--SE
Appendix D

Uncertain topological relations for mobile point objects in terrain

Distributed multimedia Systems (DMS’05), Banff, Canada, Sept. 5-7, 2005.

Silvervarg, K., Jungert, E.
83

ABSTRACT
This paper proposes a simplified solution to how uncer-
tainties in relations can be handled when concerned with
relatively small, mobile objects, for instance vehicles, in a
spatial temporal database system. Incompleteness, incon-
sistency, vagueness, imprecision, and error both in the sen-
sor data and from the processing of that data result in
uncertainties. These uncertainties can be handled by
assigning broad boundaries to the objects. There are mod-
els for how to handle broad boundaries of spatial object in
the general case, but in this special case a lot of those rela-
tions are not applicable. Thus a simplified way to manage
topological relations with respect to moving artifacts in the
terrain is proposed. A solution for how to treat relative
positioning between these objects is also proposed.

1. INTRODUCTION
Sensor data are gradually used more as input to a large
variety of systems. Examples of such systems are com-
mand and control systems for both military and civilian
purposes. In the latter case the applications focus may be
concerned with emergency management systems. Other
examples are robotics, safety and security systems. In
many of these systems query languages are required.
When designing query languages for sensor data sources a
number of problems occur. These problems relates in part
to the types of sensors used but also to those cases when
multiple sensors are used to collect data more or less
simultaneously. In the latter case methods for sensor data
fusion will be required. As a consequence, query lan-
guages for multiple sensor data sources must be designed
to fuse sensor data. The fusion techniques may be of dif-
ferent types. An example of a query language with an inte-
grated sensor data facility is discussed in [6]. A particular
problem that occurs in conjunction with the use of sensor
data is the uncertainty in the data. The data uncertainties
can be of different types, e.g. incompleteness, inconsis-
tency, vagueness, imprecision. Basically, uncertainties in
sensor data are generally due to imperfections in the sen-
sors and in the sensor data analysis. These uncertainties
must be handled properly by the query language. However,
the way the uncertainties should be handled depends to a
large extent on the class or classes of problems the queries

should be applied to. The uncertainties have, in particular,
effects on the queries applied to the spatial relations that
occur between extended geographical object [3] or on spa-
tial relations between man-made objects or man-made
objects and extended objects where the latter can be part of
the background context. A general approach to handle the
uncertainties in these problems is to represent the object
with what sometimes is called a broad boundary. The
object thus has an uncertainty component that depends on
extension and position. This representation includes an
interior of the objects that definitively belong to the objects.
The broad boundaries, on the other hand, include parts that
are part of the object and parts that are not. Consequently,
the broad boundary mirrors the uncertainties of the object.
This way of representing the uncertainties are in many
ways related to the theory of rough set [8]. Since the degree
of uncertainty in sensor data primarily depends on the type
of sensor this means that different sensors under different
circumstance deliver uncertainties of different character,
which has consequences on how the query language should
handle the actual uncertainties. The solution to this problem
will be further discussed subsequently in this paper for
small man-made objects in relation to larger objects that are
part of the background. The background is here sometimes
called the context.

The general structure of this work can be described as
follows. Chapter 2 introduces the objectives. Chapter 3
gives a brief overview of the query-system that is used.
Chapters 4, 5 and 6 describe different issues concerning
topological relations. Chapter 7 describes other relations
that can be applied to mobile point objects. This is followed
by the conclusions and directions for future work in chapter
8.

2. OBJECTIVES
The main objective of the work discussed in this here is to,
by default; consider existing uncertainties in input data.
The input data used in the query language discussed here
are basically coming from various kinds of sensors. The
sensors are generally of image generating types, such as IR,
and laser-radar. The uncertainties in these sensors are for
the most part due to imperfections in the sensors. As a con-
sequence, when a query is applied to multiple sensors the
uncertainties of each sensor must be taken into account
when the query answers are determined and before the
answers are delivered to the users. In earlier work the

Uncertain topological relations for mobile point objects in terrain

Karin Silvervarg, Erland Jungert
Swedish Defence Research Agency

karin@foi.se, jungert@foi.se

uncertainties were just concerned with how certain the
answer is with respect to the requested object type(s). This
is by no means sufficient since the sensor data uncertain-
ties will have consequences on other aspects of the queries
as well. Among those aspects can uncertainty in position
and speed of various entities be mentioned; where these
aspects generally are called status variables as they quite
often are subject to changes contrary to ordinary
attributes. The focus of this work is to consider how these
uncertainties affect a number of relations that will occur
between the entities. These relations are generally of spa-
tial type that concern man-made and background objects.

3. QL
The query language that we use is called QL [1]. The
system [7] is divided into a visual user interface, a query
processor and the sensor nodes to which the sensor data
sources are attached. The query processor includes a
knowledge system that operates in conjunction with an
ontology. The purpose of this knowledge system is to sup-
port automatic selection of the sensors and sensor data
algorithms for the data analysis that together deliver the
information used to respond to a query. In a first set-up
of the query processor the actual sensors have been a digi-
tal-camera, an infrared camera and a laser radar. However,
the system is not limited to these three sensor types; oth-
ers can, on demand, be attached as well. The sensor nodes
include also means for target recognition. For this purpose
a database containing a library of target models is attached
to the QL-processor. The target models stored in this
library are used by the image analysis processes to recog-
nize objects found in the sensor data inquired by the users.
A meta-database containing the available information that
has been registered by the sensors is also attached to the
query processor. The query system includes, contrary to
conventional query languages, a sensor data fusion mod-
ule. The purpose of this module is primarily to fuse infor-
mation extracted from the sensor data, which correspond
to sub query results. These data emanate generally from
multiple sensors whose sensor data altogether are of heter-
ogeneous type.

The visual user interface is designed to allow both
simple and complex queries of spatio/temporal type. The
user indicates the area of interest (AOI) in a map and the
actual time interval of the query and finally, through a part
of the underlying ontology, determines the requested
object type or types. In this approach of the query lan-
guage basically just vehicles are requested. These vehicles
can be selected through the visualization of the ontology.

For the time being, complex queries concern vehicles
and different types of spatial and temporal relationships
that may occur between the vehicles and between vehicles
and background information [9]. Background information
generally means geoinformation. The most important spa-
tial relationships are topological relations, directions and

distances. Queries that allow the combination of spatial
and temporal conditions are possible as well. The queried
objects are found in sensor data and include sets of
attribute and status values. Associated with the object
information is also a belief value, which indicates how
much the system believes that a certain object is of a spe-
cific type. Thus a belief value is a quantification of the
uncertainty associated with the sensors and the sensor data
they produce. Consequently, the belief values serve a pur-
pose but are by no means useful when determining which
relations that may exist between the objects. Due to the
uncertainties in the sensor data, these relations include
uncertainties, which must be considered when the system
responds to the queries. The expressions used are nor-
mally found in where-clauses in traditionally text oriented
query languages contrary to the situation here where the
interface is purely visual.

4. TOPOLOGICAL RELATIONS
Topological relations concerns the way in which two geo-
metrical objects can relate to each other in two dimen-
sions. In [4], Egenhofer identifies eight atomic topological
relations for areas disjoint contains, inside, equals, meet,
covers, coveredBy, and overlap, see figure 1. These rela-
tions assume that the exact sizes of the surfaces are
known.

Figure 1. The eight topological relations. Contain/inside and covers/
coveredBy are respectively two cases since it depends on which area is
surrounding which.

When uncertainties are introduced these relations are
not sufficient since the exact positions of the edges of the
surfaces are not known. One way to handle this is to add a
broad boundary [2]. Then the center of the area signifies
the absolutely certain minimum area and the outer bound-
ary signifies for instance the 80% certainty for the area.
The resulting topological relations of the areas with broad
boundaries are not eight but 44 or 52 [3] if we allow holes
in the areas. However, in the work described here this
number has been considerably reduced due the object

disjoint contains/inside equals

meet covers/coveredBy overlap

types that are subject to the study, that is in this case some
obvious simplifications have been made, which will be
discussed further subsequently.

5. TOPOLOGICAL RELATIONS BETWEEN
POINT OBJECTS

In our system the focus is on mobile objects acquired
from sensor data. Mobile objects can have uncertainties
concerning both the size of the objects and their locations.
These uncertainties could be handled with broad bound-
aries. A consequence of limiting ourselves to mobile
objects is that the uncertainties in size are limited, as well.
If we are able to identify the type of the objects, for exam-
ple, car or truck, then the uncertainty in size becomes
even more limited. The magnitude of the uncertainty in
size is negligible compared to the possible uncertainty in
position. Even the size of the objects can be neglected
compared to the usual size of the uncertainty in position.
Consequently, we can approximate the mobile object with
only an area that equals the uncertainty in position. The
topological relations between two areas are limited for the
eight basic relations described in figure 1, but we should
consider that since we are taking about mobile objects
they cannot in practice overlap, not even a little. Thus the
relations contains, inside, equals, covers, coveredBy, and
overlap have no equivalence in reality for this type of
objects and may for this reason be excluded. Mobile
objects may only by close to each other. This is called the
proximity, which is equivalent to the topological relations
meet, contains, inside, equals, covers, coveredBy, and
overlap, or they can be distant which corresponds to the
relation disjoint. Thus these eight relations can be reduced
to just two, see figure 2.

Figure 2. The only two relevant topological relations when concerned
with mobile artifacts related to mobile artifacts.

6. TOPOLOGICAL RELATIONS BETWEEN POINT
AND BACKGROUND OBJECTS

As was described in chapter 5 mobile objects with uncer-
tain positions can be approximated with an area corre-
sponding to the uncertainty in the position. Background
objects, for instance forests, lakes, cities, on the other
hand are better approximated with an area including a
broad boundary. The kernel of the area corresponds to the
part of that with certainty belongs to the object and the
broad boundary corresponds to the uncertainty part. As
described in section 4, the number of possible topological
relations between two simple areas is eight according to
Egenhofer [4]. If the areas have broad boundaries the
number of possible relations is 44 according to Clemen-
tini et al [2].

Another aspect to take into consideration is that since
the boundaries of the areas are based on uncertainty it
does not seem to be realistic to include a relation that
requires the borders to coincide exactly, like the classical
relation meet, see figure 1.

Figure 3. The nine topological relations between a simple area and an
area with a broad boundary when the areas do not contain any holes.

The possible topological relations between an object
with a simple area and an object with an area with a broad
boundary can be expected to be a subset of the 44 rela-
tions given some limitations. These limitations can be
formulated by two simple rules:
1. The point object is a simple area, while the back-

ground object has an area surrounded by a broad
boundary.

distant proximity

outside

inside

probably inside

probably outside

possibly inside/possibly outside

2. The borders of the objects never coincide exactly.
When reviewing the 44 relations and removing all

variants that break at least one of these two rules the
results is the nine topological variations. Since the simple
area is only an approximation of a point object it can
never cover or overlap, etc. Thus the relations have been
grouped into five groups; inside, probably inside, possibly
inside/possibly outside, probably outside and outside, see
figure 3. In effect the result is only 4 possible relations.

In [3] Clementini et al introduced relations between
two area objects with broad boundaries that may have
holes as well. This gives an additional eight relations.
When evaluating those relations we add one rule to our
set:
3. The point object may not have a hole in its area.

The review of these eight relations result in three
remaining relations that are applicable to our case. All
three of these relations can be put into the existing group
possibly inside/possibly outside, see figure 4.

Figure 4. The three additional topological relations between a simple
area and an area with a broad boundary containing holes.

7. OTHER POINT OBJECT RELATIONS
Determination of the position of an object based on one or
more sensor data sources will always be associated with
some types of uncertainty, thus we can never be sure that
the given coordinate values are correct. For this reason, a
measure of the uncertainty must be available. Usually, for
each given position the area of uncertainty is normally
represented with an ellipse that sometimes is generalized
into a circle. The size and shape of this area depends gen-
erally on the sensor type. However, in a query language,
which has to respond quickly to the various queries such
uncertainty areas are unpractical. For this reason the areas
of uncertainty must be replaced with something more effi-
cient. In this work, we have chosen to describe the loca-
tion uncertainty of a point object by a rhombus. This is
motivated not just by its usefulness as a descriptive struc-

ture of the position uncertainty but also because it is a
convenient way to determine object relations of the types
that are discussed in this work. Furthermore, it is also
useful, for the determination of directions between a pair
of objects, where the secondary rhombus can be found in
relationship to the primary one, as the area where the
direction cannot be sufficiently correct settled may be
vary depending on the uncertain location. The use of such
a structure for determination of directions is quite com-
mon and variations of it have been used during a long
time. Figure 5 shows the orientation of the rhombus and
its directional structure relative to a local coordinate sys-
tem. In 5a the directions are global (north, ...) while in fig-
ure 5b the direction are just local (in_front_of, ...) to the
object. The area covered by the rhombus is called the
proximity of the object. Observe also, for instance, that
here the direction of a point between north and northeast
is described by the interval [north, northeast] or alterna-
tively if the interval is open as]north, northeast[. Again
this way of describing direction is due to the presence of
uncertainties. Thus it cannot be said that the direction of
an object is just north, no matter if the given coordinates
says so. Instead, again because of the uncertainty of the
position, it is]northwest, northeast[. Consequently. if the
direction of an object relative another one should be deter-
mined then the corresponding directional interval should
be determined. However, if the object or at least a part of
it falls inside the proximity then the direction cannot be
determined and for the distance we can just say that the
distance between the two objects are very close. This is
simply expressed by saying that the objects are in the
proximity of each other.

The area of proximity is described by its four corner
points by means of its local coordinate system:

(,0)(0,)(-)(0,-)

It is also easy to see that

 = | x| + | y|

determines the edge of the proximity area.

Here is depends on the maximum positional error,
i.e.:

A consequence of this is that the rhombus is some-
what larger than the actual area of uncertainty but this is
negligible since the difference does not contribute much
to the positional error. After all, other types of uncertainty
areas are approximations as well.

possibly inside/possibly outside

maxerror 2=

Figure 5. The rhombus proximity representing an object location and its
area of uncertainty including also the directions outside that area for both
global and local directions.

Determination of the direction of an object relative to
another object, both with uncertain positions, is quite triv-
ial and does not require any heavy calculations and can be

illustrated by the following cases in terms of rules. An
object in the open interval between north and north-east is
delimited by the rhombus, the y-axis and the ne-line, i.e.:

If | x| + | y| > and | x| > 0 and | y| > | x| then] n,
ne [

If instead the interval is closed we get

If | x| + | y| >= and | x| > 0 and | y| >= | x| then
[n, ne]

For an object with the direction north of the result is
delimited with the edge of the rhombus and the nw and
the ne lines, i.e.

If | x| + | y| > and | y| > | x| and then] nw, ne [

A final illustration is an object inside or on the edge
of the proximity which is described by

If | x| + | y| <= then proximity
The methods for determination of the relations

between two objects with uncertain positions can now be
introduced. This can be illustrated by the two cases in fig-
ure 6. The case to the left in the figure shows two objects,
A and B, where the areas of uncertainty are overlapping.
The conclusion of this is that object B is in the proximity
of A. In the right alternative there is no overlap, which
indicates that B is outside A and that the direction of B
relative A is [n, e]. Clearly, the inverse relations are in
both case equivalents.

Figure 6. Some possible relations between the objects A and B; (a) B is
in the proximity of A; (b) B is outside the proximity of A and B is [n, e]
of A.

lf rf

r

b

rb

l

lb

f

nw ne

e

s

se

w

sw

n

(a)

(b)

nw ne

e

s

se

w

sw

n

nw ne

e

s

se

w

sw

n

A
B

(a) (b)

nw ne

e

s

se

w

sw

n

nw ne

e

s

se

w

sw

A

B

This methodology can be used for determination of
qualitative distances as well. The set of qualitative dis-
tance measures proposed here is {proximity, close, dis-
tant}. This set can, of course, be extended but for the time
being it is sufficiently adequate. The qualitative distance
structure is illustrated in figure 7. The close and distant
distances can be determined from the following rules:

If | x| + | y| >= and | x| + | y| < K then close

If | x| + | y| > K then distant

where K is a constant that is application dependent.
Proximity is determined from the rule introduced earlier in
this section.

Figure 7. The qualitative distance structure for point objects.

8. CONCLUSIONS
In this paper a solution for how to handle mobile objects
detected by sensors has been presented. The focus has
concerned with how to handle uncertainties caused by the
sensors that affect the reasoning about those objects.
Firstly, mobile objects can be approximated with an area
equivalent just to the uncertainty in position. A conse-
quence of this is that management of mobile artifacts with
uncertain positions differ from how areas with uncertain
boundaries should be treated. Finally a way of reasoning
qualitatively about relations between such objects has
been proposed.

In the paper the uncertainty areas of the point objects
are approximated with a circle or a rhombus. In many
cases that is a good approximation, but for some sensors
that is not a sufficiently good approximation. Future work
will include looking into how this work can be general-
ized to include sensors with more irregular uncertainty
areas as well.

Another research topic that has not yet been explored
is how to handle uncertainties over time. Apart from
affecting relations like before and after it might also influ-
ence the relative position if the two objects were not
detected at the same time.

9. REFERENCES
1. Chang, S.-K., Costagliola, G., Jungert, E and F. Orci-

uoli, Querying Distributed Multimedia Databases
Data Sources in Information Fusion Applications,
IEEE Trans. on Multimedia, Vol. 6, No. 5, October
2004, 687-702.

2. Clementini, E. and Di Felice, P., Approximate Topo-
logical Relations, International Journal of Approxi-
mate Reasoning, v 16, n 2, February, 1997, p 173-204.

3. Clementini, E. and Di Felice, P., A spatial model for
complex objects with a broad boundary supporting
queries on uncertain data, Data and Knowledge Engi-
neering, vol. 37, pp. 285-305, 2001.

4. Egenhofer, M., Deriving the combination of binary
topological relations, Journal of Visual languages and
Computing, Vol 5, pp 133-49.

5. Hall, D. L. and Llinas, J. (Eds.), Handbook of Multi-
sensor Data Fusion, CRC Press, New York, 2001.

6. Horney,T. , Jungert, E., Folkesson, M., An Ontology
Controlled Data Fusion Process for Query Language,
Proceedings of the International Conference on Infor-
mation Fusion 2003 (Fusion’03), Cairns, Australia,
July 8-11.

7. Horney, T., Ahlberg, J., Jungert, E., Folkesson, M., Sil-
vervarg, K., Lantz, F., Franssson, J., Grönwall, C.,
Klasén, L., Ulvklo, M., An Information Sustem for tar-
get recognition, Proceedings of the SPIE conference
on defense and security, Orlando, Florida, April 12-16,
2004.

8. Pawlak, Z., Rough sets, International Journal of Com-
puter and Information Sciences, 11(5):341-356, 1982.

9. Silvervarg, K. and Jungert, E., Visual specification of
spatial/temporal queries in a sensor data independent
information system, Proceedings of the tenth Interna-
tional Conference on Distributed Multimedia Systems,
San Francisco, California, September 8-10, 2004, pp
263-268.

10.Worboys, M. F., GIS - A Computing Perspective, Tay-
lor & Francis, london, 1995, pp 99-100.

nw ne

e

s

se

w

sw

n distant

close

proximity

FOI-R--1787--SE

FOI-R--1787--SE
Appendix E

An Ontology Controlled Data Fusion Process for a Query Language

Information Fusion, Cairnes, Australia, July 8-11, 2003.

Horney,T. , Jungert, E., Folkesson, M.
91

Proceedings of the Int. Conf. on Information Fusion (Fusion’03), Cairnes, Australia, July 8-10, 2003.
An Ontology Controlled Data Fusion Process for a
Query Language

Tobias Horney, Erland Jungert, Martin Folkesson
Swedish Defence Research Agency (FOI)
Box 1165, SE–581 11 Linköping, Sweden

{tobho, jungert, marfol}@foi.se
Abstract - Query languages designed for acquisition of
data from multiple sensor data sources where the data
generally are of heterogeneous type requires a number of
internal functionality that is not available in traditional
query languages. The required functionality can, for
instance, be a method for multi-sensor data fusion,
methods for query optimization and refinement. A further
required technique relates to the problem of selecting
sensors that efficiently can respond to the various queries
without laying the responsibility of the sensor management
on the users. The approach taken in this work has been to
introduce an ontological knowledge-based system that can
support selection of both sensors and object recognition
algorithms as well as the control of the sensor data fusion
process.

Keywords: Ontology, data fusion, query language.

1 Introduction

Information systems attached to various types of heteroge-
neous data sources, which mainly consist of multiple sen-
sors are required in many different applications that will be
integrated into command and control systems. Applica-
tions can be both of military and civilian type and example
of the latter may be emergency management where func-
tionality for information fusion, i.e. basically for situation
and impact assessments, are required. From a user’s per-
spective this kind of systems will become very complex
and consequently tools to control the sensor environment
and, in the end, to support decision-making will be needed
as well. These aspects can, however, be viewed as two
sides of the same coin where the decision support tool is
facing the end-user while the means for controlling the
internal environment must be integrated into the system to
control all aspects of the management of the sensors and
the sensor data. In the latter case a controversy is apparent
in that the question will arise whether the end-users of a
multi-sensor system should be able to directly view the
sensor data or whether they should just be able to overlook
abstract high-level information extracted by the system in
the query process. A solution to this problem is a system
design characterized by the latter aspect, i.e. a system
where the sensor raw-data will be hidden from the user.

This is motivated by the complexity of the system, to mini-
mize the heavy workload of the end-users and to allow the
users to make their decisions under less stressful condi-
tions. Another aspect of importance is that the users may
lack capabilities for analysis of sensor data images. An
approach to overcome these issues may be described as
sensor data independence. To establish sensor data inde-
pendence two characteristics must be fulfilled, first the sys-
tem must be able to select a sensor while considering e.g.
the present weather and light conditions. Secondly, a
proper recognition algorithm must be chosen as well, i.e.
an algorithm that supports an efficient recognition of the
requested targets under the existing conditions. Finally,
means to control the sensor data fusion process and to
determine the interconnections between the controlling
part and the fusion process must be established. A system
designed to support all these characteristics will need a
structure that on the basis of the requested targets is able to
pick the most appropriate sensor(s) and recognition algo-
rithm(s) and access, analyze and eventually fuse the infor-
mation gathered from the sensors. In the work described
here an ontological knowledge-based system has been
developed to enforce sensor data independence and to con-
trol the sensor data fusion process. Finally, the ontological
system is integrated into a query language called ΣQL [1],
[2] particularly designed for acquisition of target informa-
tion from heterogeneous data sources. The work on the
ontological knowledge-based system was originally car-
ried out as a master thesis [3].

Work combining the use of ontologies with information
fusion in various ways is still a relatively new research
topic and for this reason not much work has been done.
Among the work that has been done, so far, the most com-
mon focus seems to be concerned with the use of ontolo-
gies for determination of the input from sensors and other
types of heterogeneous input data sources. For example, in
[4] it is demonstrated how an ontology can be used on sim-
ulated sensor data input for automatic recognition of vari-
ous types of symbolic targets while synthesizing the
recognition algorithm automatically at run-time. In [5] a
generic and extensible prototype platform for intelligence
fusion is presented. The fusion process is designed as an
algebra of fusion operations and the data and knowledge
semantics are given explicitly by an input ontology

together with descriptive models of the ontological con-
cepts. Ontology-based programming using the NUT lan-
guage is presented in [6]. A specification method and
problem-solving technique is demonstrated by an example.
[7] describes the use of an ontology in a system that is
facilitating data, information and knowledge to dynamic
end-users. Finally, work combining the use of ontologies
in connection with query languages can be found in [8].

The structure of this paper is the following: Section 2 pre-
sents the problem. Section 3 gives a brief overview of the
host system, i.e. the query language. In section 4, the envi-
ronment of the ontological knowledge-based system,
including the knowledge structure i.e. the ontology itself,
is discussed. Section 5 presents the taken multi-sensor data
fusion method and in section 6 the complete data fusion
process is discussed together with some important issues
involved in this process. In section 7, the conclusions and
future research is presented.

2 Problem description

Among the requirements in query languages generality is
probably the most important and basic one. Establishing
generality is consequently a fundamental task in the query
language design process. Query languages for multi-sensor
data are in this regard no exception. The problem of devel-
oping a sufficiently general query language for sensor data
in which sensor data fusion plays a vital role involves a
number of design issues of which two will be further dis-
cussed in this work. The background of these two aspects
can be found in the users’ work situation, which in particu-
lar becomes very complicated in sensor oriented systems.
This work situation is for the most part very intense and
where the users have designated tasks that may have to be
finished in a very short time. For this reason the workload
of the users must be delimited by eliminating such tasks
that are not involved with the tasks primarily assigned to
the users. Among these tasks are selection of sensors, the
analysis/interpretation of sensor data and multi-sensor data
fusion of particular importance. From a user’s perspective
the elimination of these tasks eventually will permit the
design of a much more general query interface that will
allow a more focused and problem oriented usage. Thus,
the problem addressed here can be formulated as follows:

How can, in a query language for sensor data,
tasks concerned with the selection of sensors,
analysis of sensor data and control of the multi-
sensor data fusion process automatically be car-
ried out without user involvement?

The approach taken here to solve this problem is mainly
based on the use of an ontological knowledge-based sys-
tem that takes care of the selection of sensors and recogni-
tion algorithms for analysis of the sensor data. This
concept is subsequently called sensor data independence
[9] and is related to what is called data independence [10]
in traditional database theory. Sensor data independence is
an important feature of ΣQL but will not be discussed fur-
ther in this work. Nevertheless, the ontological approach
has a number of other consequences that must be taken

into consideration as well. Since many sensors are slow in
collecting data from large areas, means to speed up the
turn around process must be developed; this is generally
called query refinement [11]. Furthermore, aspects of
uncertainty in sensor data must be considered. These latter
aspects are of concern for the data fusion control process
and will be discussed further in section 6.

Figure 1: The information flow of ΣQL.

3 ΣQL - an overview

User queries applied to ΣQL will as a consequence of the
sensor data independence concept be based on terms that
for the most parts are familiar to the users. Clearly, this is
due to the fact that they do not have to include any sensor
information. The user concepts that need to be identified
are (1) the area of interest (AOI), (2) the time interval of
interest (IOI) and (3) the object type that will be subject to
the search in the query. These three concepts are the most
important ones that must be determined in order to get a
response to a query. Sometimes object attribute values and
object relations must be part of the query as well. The
design of a useful graphical user interface is currently
going on. Two basic query classes exist, i.e. queries
applied to historical data and real time sequentially
repeated queries that go on over long periods of time dur-
ing which the various sensor types may vary as a conse-
quence of changing conditions like weather and light.
Currently, a fairly simple prototype of ΣQL can be run.

The basic functionality of the query language can be seen
in figure 1. A query is inserted by the user and then the
input is fed in to the dependency tree generator which in

Ontological

Multi

Dependency tree
generation

Query
execution

Generate
GV, LV, OV

Build/refine

no

yes

Query input

Result

knowledge
base

level
view
database

query

no

yes

SDT empty Fuse data

size(SDT)≤1

dialogue with the ontological knowledge structure gener-
ates a set of nodes in the dependency tree and as long as
there are nodes in this tree new subqueries can be built
(one for each of the selected sensors), refined and executed
in the query processor. Once the subqueries have been exe-
cuted instances are created in the multilevel view database
to support query refinement in a subsequent step, meaning
a new set of dependency tree nodes are generated which in
turn means that new subqueries will be executed and possi-
bly further refined. This goes on until the dependency tree
becomes empty, i.e. when there is no more sensor data
available to process. In the final step data fusion is carried
out, if applicable, and then the process terminates which is
further discussed in [11].

A view is a symbolic representation, i.e. a mapping, of
some part of the world in some resolution. Currently, there
are three views defined; the global, local and object views.
Those views describe the object structure (object view),
the object in a small object surrounding (local view) and
the object position in relation to other objects (global
view). The multi-level view database is where all the sym-
bolic information about objects, object surroundings etc. is
stored. More details about the multi-level view database
can be found in [11].

A serious question is how a user should interpret the fused
result of a query. The approach taken here has been to
associate a belief value to each result from the various sen-
sors that are being used in a query. A final belief value is
eventually determined by the fusion process, which also is
forwarded to the user as a part of the query result. All
belief values are normalized and a high value means that
the user may have a high belief or confidence in the result.
This is an important aspect of the system that has been
introduced to, if possible, give the user a high degree of
trust in the query result as well as in the query system as
such. A fundamental problem associated with this idea is
how to calibrate the belief values. This work is going on
and is subject to further studies.

4 The Ontological Knowledge-
based system

The knowledge represented in the ontological knowledge
base is modelled in a hierarchical manner known as the
ontology. All concepts in the universe of discourse, the
interesting properties of the concepts and the important
relations between the concepts are modelled. The hierar-
chy has the ultimately general concept called Thing at the
top. All other concepts inherit directly or indirectly from
Thing. This means that Everything is a thing. The hierar-
chy is organized so that more specialized concepts appear
further down the inheritance chain. The concepts of this
ontology are divided into three main parts. One part mod-
els everything that can be sensed by the sensors and every-
thing that can be recognized by the recognition algorithms
or cued by the cueing algorithms. The second part models
the characteristics of the sensors and the recognition and
cueing algorithms. The third and last part models all the
conditions that have an impact on the appropriateness of
the sensors and recognition/cueing algorithms. When the

ontological structure has been created it is populated with
instances. For example, in figure 2, the Tank concept is
shown. Different tanks can be added to the ontology as
instances of that concept. When instances are added to an
ontology the ontology becomes a knowledge base. In real-
ity, there is a fine line between where the ontology ends
and the knowledge base begins [12]. Here, the ontology
filled with instances is called the ontological knowledge
base, or simply the knowledge base.

4.1 Things to be Sensed and Recognized

The “Things to be Sensed and Recognized” part of the
ontology models everything that can be sensed by the sen-
sors and everything that can be recognized by the recogni-
tion algorithms or cued by the cueing algorithms. It is
represented in the ontology, see figure 2, by the ThingTo-
BeSensed concept and subconcepts. Two subbranches
exist: PropertyToBeSensed and RecognizableObject. The
ThingToBeSensed concept has the relation HasAppropri-
ateSA describing which combinations of sensors and algo-
rithms (SA) are appropriate for finding the
ThingToBeSensed. This is an important relation for the
AFFAS algorithm, see section 4.5, which is the algorithm
designed to determine which sensors and which cueing and
recognition algorithms to be applied in a certain query.
Note that relations are inherited, so a relation that exists in
ThingToBeSensed also exists in all concepts that inherit
from ThingToBeSensed.

The subbranch PropertyToBeSensed models the attributes
(e.g. colour) that the recognizable objects might have. Rep-
resenting object properties separately enables specific SAs
to be applied to determine specific attributes, not only to
determine recognizable objects. This is represented in the
ontology by the PropertyToBeSensed concept.

Figure 2: Ontology overview, the knowledge structure.

The second subbranch of ThingToBeSensed is Recogniz-
ableObject which models the objects that can be recog-
nized by the recognition algorithms or cued by the cueing
algorithms. Notice that every recognizable object (RO) has
the relation HasAppropriateSA because every RO inherits
from ThingToBeSensed. Recognizable objects are further

Thing

Algorithm

Sensor
Platform

Sensor ThingTo
BeSensed

View MetaData
Condition

External
Condition

Discrete
StrengthValue

Recognition
Algorithm

Cueing
Algorithm

 SA

Weather
Condition

Light
Condition

PropertyTo
BeSensed

Recognizable
Object

 Mobile
Object

Immobile
Object

Vehicle

Combat
Vehicle

 Truck Bus Car

 IFV Tank

Terrain Building

 Road River VegetationLandform

 Hill Ditch

House Tent

1

2 3

4 5

1 - CarriesSensor (1 1..*)

2 - HasAlgorithm (1 1)

3 - HasSensor (1 1)

4 - HasAppropriateSA (1 0..*)

5 - HasDiscreteStrengthValue (1 2..*)

divided into mobile and immobile objects. The ontology is
populated with vehicles that are taxonomically located
under MobileObject. Immobile objects are objects that
cannot move. Important such objects are different kinds of
terrain objects and buildings.

The Vegetation concept is used for modelling the condition
terrain background. Therefore Vegetation not only fits into
the ThingsToBeSensed part of the ontology but also to the
Conditions part because it models a condition that is con-
sidered in the AFFAS algorithm.

4.2 Sensor and Algorithm
Characteristics

The “Sensor and Algorithm Characteristics” part of the
ontology models the characteristics of the sensors and the
recognition and cueing algorithms.
This part includes the concepts

- Sensor platform
- Sensor
- Algorithm (incl. subconcepts)
- SA

The SensorPlatform concept models the available sensor
platforms. This concept is also used for modeling the con-
dition sensor platform, where the type of the platform is
taken into consideration. Therefore SensorPlatform not
only fits into the Sensor and Algorithm Characteristics
part of the ontology but it also fits into the Conditions part
because it models a condition that is considered in the
AFFAS algorithm. The SensorPlatform concept has the
relation CarriesSensor describing which sensors the plat-
form carries.

The Sensor concept is used for modelling sensors. Cur-
rently, the following sensors are modelled: CCD (digital
camera), IR (infrared camera) and LR (laser radar).
Algorithms are used for extracting information from the
sensor data collected by the sensors. The most important
types of algorithms are recognition algorithms and cueing
algorithms. Other types of algorithms working on sensor
data might very well be modelled. That is why the general
Algorithm concept is included. The RecognitionAlgorithm
concept models the recognition algorithms used for recog-
nizing different types of things in sensor data and the Cue-
ingAlgorithm concept models the cueing algorithms used
to decrease the size of the region of interest for the recog-
nition algorithms, thereby pointing out potential target
objects.

SA is an important concept since it models the combination
of sensors and algorithms. A combination is modelled by
the two relations HasSensor and HasAlgorithm. The Has-
Sensor relation connects the SA to a Sensor and the HasAl-
gorithm relation connects it to an Algorithm. The SA
concept is introduced because there is a many-to-many
relation between the Sensor and Algorithm concepts. To
model this, an SA is created in the ontological knowledge
base for every sensor and algorithm combination that
works together.

4.3 Conditions

The “Conditions” part of the ontology models the condi-
tions that have an impact on the appropriateness of the sen-
sors and the recognition/cueing algorithms. The conditions
are state conditions describing the state of something, for
example how rainy it is. Each of the existing conditions
will only be briefly discussed here. The concepts that make
up this part are

- View
- MetaDataCondition
- ExternalCondition (incl. subconcepts)
- DiscreteStrengthValue (not a condition in itself)

A view is a symbolic representation of a part of the world
in some resolution. The view concept is modelled in the
ontology by View.

The metadata conditions are represented in the ontology by
the MetaDataCondition concept. Metadata means data
about data, and in this case we are interested in the quality
of the data and also what sensor platform that captured the
data. If no data exists from a certain sensor in a certain area
at a certain point in time the data quality is defined as zero
for that sensor in that area at that point in time.

External conditions are represented in the ontology by the
ExternalCondition concept. External conditions are
weather conditions (WeatherCondition concept) and light
condition (LightCondition concept). This concept has the
relation HasDiscreteStrengthValue that provides the con-
nection between external conditions and the corresponding
discrete strength values.

Discrete strength value is represented in the ontology by
the DiscreteStrengthValue concept. All conditions have
specific values at any given time and place. A discrete
range of permitted values has been defined for each condi-
tion. For example, Rain might have the following permit-
ted values: {Dry, Gentle, Heavy}. The
DiscreteStrengthValue concept models all discrete strength
values for all external conditions. The HasDis-
creteStrengthValue relation provides the connection
between external conditions and the corresponding dis-
crete strength values.

Terrain background is modelled using the Vegetation con-
cept in the ThingsToBeSensed part of the ontology. This is
because all types of vegetation known by the system are
modelled using that concept, and that is exactly what the
terrain background condition is designed to take into con-
sideration. Hence, this condition uses the instances of the
Vegetation concept to make up its range of permitted val-
ues. Examples of terrain backgrounds are sand and water.

4.4 Relations

Relations are used to model how the concepts in the ontol-
ogy are related to each other. It is important to note that
relations are inherited, meaning that if concept B inherits
concept A and concept A has a relation to C, then concept
B automatically has that relation to C as well. An example
of relation inheritance is that the Tank concept has the
HasAppropriateSA relation because it is inherited from the

ThingToBeSensed concept where that relation is defined.

In the context of ontologies a relation is always defined to
be a connection from a certain concept to another concept,
e.g. the HasSensor relation is defined to be a connection
from the SA concept to the Sensor concept. Of course there
is an inverse relation saying that a Sensor is part of an SA.
However, this is not explicitly defined, because the inverse
relation is not needed here. The following relations are
defined:

- HasAlgorithm from SA to Algorithm
- HasSensor from SA to Sensor
- CarriesSensor from SensorPlatform to Sensor
- HasAppropriateSA from ThingToBeSensed to SA
- HasDiscreteStrengthValue from ExternalCondi-

tion to DiscreteStrengthValue
The relations are shown in the ontology overview in figure
2. More details can be found in [3].

4.5 Appropriate sensors and algorithms

The ontological knowledge base has been designed to help
answering such questions as which sensor data to use
under certain circumstances. Also of importance is which
recognition and cueing algorithm(s) that should be applied.
An algorithm that performs these selections using the onto-
logical knowledge base has been developed. That is, it uses
the knowledge in the ontological knowledge base in con-
junction with the knowledge base rules (see section 4.5.2)
to determine which sensors and recognition/cueing algo-
rithms are the most appropriate under the given circum-
stances, i.e. the actual ΣQL query, the metadata conditions,
the external conditions and the terrain background. The
algorithm is called Algorithm For Finding Appropriate SAs
(AFFAS) and is described in detail in [3]. A short overview
of AFFAS is presented in the next section.

4.5.1 Overview of AFFAS

A short description of the four steps of the algorithm is
provided below.
Step 1
A list of appropriate SAs is created, with respect only to
the type of thing to be sensed. Each SA has an appropriate-
ness value (Ap) connected to it.
Step 2
The following things are considered:

- Meta data conditions
- Type of sensor platform
- Data quality

This step alters the appropriateness values of the SAs from
step 1 with respect to the information in the metadata.
Step 3
The following things are considered:

- Weather conditions
- Light condition
- View
- Terrain background

This step creates the impact factors describing how strong
the impacts from the current external conditions, the view
and the terrain background are. This is done for each sen-
sor and algorithm in the SAs in the result from step 2.

Step 4
The results from step 2 and step 3 are weighted together.
This step alters the Ap values of the SAs in the result from
step 2 according to the result from step 3. In the list created
in this step, the SAs are prioritized according to the
weighted appropriateness values.

4.5.2 Knowledge Base Rules

In the process of deciding upon appropriate sensors and
algorithms it is necessary to have rules describing under
which conditions certain sensors and algorithms are appro-
priate. The rules that are used to decide how the impact
factors impact the sensors and recognition/cueing algo-
rithms in the SAs can be written in the following form:

"If an impact factor x has the discrete strength value y then
the impact on the sensor/algorithm z is impact strength
value v"

Example 1:
"If the impact factor Rain has the discrete strength value
Gentle then the impact on recognition algorithm Buildin-
gAlgorithm is impact strength value Little"

Example 2:
"If the impact factor View has the discrete strength value
Local then the impact on the sensor Standard CCD Sen-
sor is impact strength value None"

A complete set of rules is needed for the system to function
properly. Definitions of impact factor, discrete strength
value and impact strength value are presented in [3]. The
definitions are quite straight-forward.

5 The sensor data fusion method

In the system described above fusion will take place in
mainly two different steps, separated by a query refine-
ment. Although logically separated in the process, one and
the same reasoning should permeate both fusion
approaches. In case a query response is made up by only
one set of data in either step, fusion is ruled out.

The first step concerns fusion of attribute data. These data
come from the set of algorithms chosen by the ontology for
the specific situation. The fused attribute data serve as a
unified input to the recognition algorithms. Although esti-
mation and recognition are logically distinct, it is possible
to think of using the same algorithm for both cases. The
time stamps on sensor data can be considered an attribute
among others, so that data association is inherent in this
process. The output of this step, together with the chosen
object types, can be seen as one or more hypotheses that
have to be tried by the recognition algorithms.

No attribute fusion method has yet been implemented.
Some kind of clustering method seems to be needed. Such
a method should be used to identify distinct hypotheses in
a space made up by the given attributes including time.

The clusters could then be represented either by one of its
data points, or some mean of its data points. Choosing the
former avoids the problem of combining attribute values
from different algorithms. Such a combination needs infor-
mation on which combinations of attribute values that are
allowed. Should two attribute values not be consistent for
any object in the model library (see section 6.3.3) they
must be assigned to two different hypotheses. Alterna-
tively, the situation could be interpreted as the detection of
a model that is not stored in the model library. Whether the
latter should be allowed or not must be subject to further
research.

Still, combining attribute values from different algorithms
might be exactly what needs to be done in order to exploit
the advantages of fusion. This is most likely the case when
the algorithms are incapable of estimating all attributes.

The second data fusion step concerns the output from the
recognition algorithms, which consists of an object type
with corresponding attribute data and a belief value.

From a system view the second data fusion step should not
be critical, i.e. two slightly different approaches should not
result in two entirely different fusion results. The role of
fusion is here instead regarded as the one of combining
partial results in a relatively fast way. This favours a simple
approach. Furthermore, we concentrate on recognition
results that have high belief values. Low belief values can
origin from quite a few reasons, such as noise, bad input
(hypothesis) etc. High belief values are simply, and for nat-
ural reasons, rare, and therefore believed to correspond to a
good/correct hypothesis.

Picking the overall best recognition result would make the
system sensitive to bad belief value calibration between the
different recognition algorithms. Therefore, summing
belief values over object types is first performed. Since one
or more hypotheses have been tried more times than other,
mean beliefs are calculated. In the current implementation
rms values are used, which favours good recognition.
Hopefully, at this point there is a significant spread in
belief for different object types. The winning type is cho-
sen, then the hypotheses corresponding to the best recogni-
tion for that object type is taken as final result of the
fusion. The approach can be seen as a combination of
weighted, exact plurality voting and a selection rule [13].
Note that the set of attribute values in each hypothesis are
not manipulated here, but considered as completely
enclosed in the hypothesis.

The division of fusion into two steps relies on the assump-
tion that attribute estimation truly can be separated from
recognition. The recognition algorithms must have at least
some degree of freedom, in order to obtain results - belief
values and refined attribute data - that can be considered
independent. However, using mean values in the second
fusion step should make the final result robust to
unwanted, systematic correlation between results from cer-
tain recognition algorithms. Also, a clustering method in
the first fusion step would be robust to unwanted correla-
tions in query responses from different attribute estimation
algorithms.

6 The data fusion control process

The actual execution of a query, that is, everything per-
formed between the reception of a query entered by the
user and the presentation of the query result, is performed
in a process controlled by the ontology; this includes the
control of the data fusion process as well.

6.1 Overview

There are two basic levels in the data fusion control pro-
cess. The first level is the cueing level where the area of
interest (AOI) can be large and the time interval of interest
(IOI) can be long. Cueing in this sense means finding
potential target objects (the ones searched for in the query)
and pointing out the positions of these potential targets so
that the recognition algorithms, possibly using other types
of sensor data than was used in the cueing, can classify
and/or identify targets at those positions.

The second level is the recognition level where the recog-
nition process takes place. This process is performed in
two major steps where the first step involves estimating the
attributes of potential targets and the second step involves
matching the potential targets against certain models
selected from a library of models. Since the system allows
for multiple algorithms to perform attribute estimation as
well as model matching it is necessary to perform data
fusion to get a common understanding about the target
object attribute values as well as the target object classifi-
cation/identification. Therefore data fusion takes place
both after attribute estimation and after model matching,
see figure 3.

When recognition has been carried out it is time to create
an answer to the query. This is done by evaluating the logi-
cal expressions enforced in the query by the user.

The concept of query refinement was introduced in [11].
Query refinement means executing the query in an iterative
manner where the query itself is refined in each step. Using
cueing to point out potential targets so that recognition
algorithms only need to work on selected pieces of sensor
data is one way of refining a query. Another type of query
refinement is when attribute estimation is performed to
reduce the search space for the model matching algo-
rithms. An example of this can be that an attribute estima-
tion algorithm estimates the size and the orientation of a
potential target, for example by using laser radar data. The
orientation information is then used by the model matching
algorithms, independently from the type of sensor data
they work on, to make an initial assumption about how to
rotate the model from the library when trying to match it
against the sensor data. This can reduce the search space
and thereby the execution time. A third type of query
refinement is performed using the object size estimations
when selecting models from the model library. All models
with a size too different from the size estimations are
excluded from the matching process, thereby reducing the
search space since fewer models are required.

There are certain dependencies in the system. Those

dependencies are dealt with using the sensor dependency
tree. An example of a dependency is that all cueing and
recognition algorithms require sensor data of proper type
at the given place and time. Another example is that all
recognition algorithms (i.e. attribute estimation and model
matching algorithms) require cueing.

Figure 3: Data flow on the recognition level.

6.2 The cueing level

The cueing level of the target recognition process involves
finding potential target objects and pointing out the posi-
tions (in spatial and temporal terms) of those objects so
that the recognition algorithms working at the recognition
level need only to work on sensor data from those spatial/
temporal positions.

The first step is to select which sensor data and which cue-
ing algorithm(s) to use, which is done by the AFFAS algo-
rithm. The next step is to perform the actual cueing by
executing the selected algorithms using the selected sensor
data. The cueing algorithms work on data gathered inside
AOI during IOI. AOI can be large and IOI can be a long
period of time. The cueing task is to produce one small

area of interest and one small IOI (possibly a point in time)
for each potential target. After cueing, the system will per-
form recognition in each combination of AOI and IOI pro-
duced by the cueing algorithms. That means, if multiple
cueing algorithms are executed the final cueing result will
be the union of the results from the algorithms executed.

6.3 The recognition level

The recognition level of the target recognition process
involves classification and possibly identification of the
potential targets pointed out by the cueing algorithms. This
is done as described in figure 3.

Sensor data and recognition algorithms are first selected
that is done by the AFFAS algorithm. In the second step
attribute estimation is performed by the selected recogni-
tion algorithms that can estimate attributes. If multiple
attribute estimation algorithms have been executed data
fusion is carried out. In the next step a selection of models
from the model library is accessed and the selected recog-
nition algorithms that can perform matching are executed.
If multiple matching algorithms were executed data fusion
is performed on the match results. In the last step the logi-
cal expressions enforced in the query by the user are evalu-
ated and a final result is constructed.

6.3.1 Attribute estimation

In the attribute estimation step the selected attribute esti-
mation algorithms tries to estimate certain attributes of a
potential target found by the cueing process. Estimations
of attribute values are calculated by extracting information
from the sensor data. Multiple attribute estimation algo-
rithms can be executed in parallel if required.

In the current prototype system only one attribute estima-
tion algorithm is used so far, even though further estima-
tion algorithms are under development. The one used in
the current prototype works on laser radar data and esti-
mates the length, width and height of the possible targets.

6.3.2 Fusion of attribute estimations

If multiple attribute estimation algorithms are executed or
if multiple sensor data are used to determine the attribute
values data fusion will be performed to create a final
attribute estimation of each attribute. The attributes esti-
mated by the different algorithms, possibly from different
kinds of sensor data, can be partially disjunct, that is, some
attributes may be estimated by several algorithms whereas
others may be estimated by only one algorithm.

6.3.3 Selection of models for matching

When attribute estimation has been carried out the attribute
estimations are used to reduce the number of target object
models that need to be accessed from the model library and
against which the matching algorithms will match. Each
model in the library is a CAD-model with textures and/or
other kinds of a priori knowledge that can be used by the

Selection of sensor data
and algorithms for
attribute estimation

RA1 RA2 RAn

Attribute
estimation

result

Attribute
estimation

result

Attribute
estimation

result

Data fusion
on estimated

attribute values

Selection of sensor data
and algorithms for

model matching. Also
selection of models
to match against.

RA1 RA2 RAn

Model match
result

Model match
result

Model match
result

Data fusion
on results from
model matching

Fused match
result

...

...

...

...

Attribute
estimation

Data
fusion

Model
matching

Data
fusion

Fused attribute
estimation result

matching algorithms when matching against extracted fea-
tures in the sensor data. Appropriate attributes to use as
discriminating factors can for example be the length, the
width and the height of the object, i.e. if estimation of such
attributes can be performed.

If no attribute estimation has been performed, for example
because there are no sensor data available, then it is impos-
sible to make a selection this way and thus other means
must be developed to take care of the model selection.

6.3.4 Model matching

By using the attribute estimations as start values in the iter-
ations of the matching process the model matching algo-
rithms can efficiently perform the actual matching and
produce a belief value for each model. Multiple matching
algorithms can be executed in parallel using the same or
different estimated attributes, working on the same or dif-
ferent sensor data types.

In the current prototype system four different model
matching algorithms are used; one for laser radar data, two
for IR data and one for IR and/or CCD data. Algorithms
for further sensor data types are under way.

6.3.5 Fusion of model match results

If multiple model matching algorithms were executed data
fusion is performed.

6.4 Query evaluation

When the matching process has been finished it is time to
produce an answer to the query. This is done by evaluating
the logical expressions enforced in the query by the user
using the fused match result including the fused attribute
estimations as input data. That is, the earlier steps in the
process have created high level information about the
objects asked for in the query inside AOI during IOI. Any
query requirements on certain attribute values, number of
target objects, spatial relations between objects etc. are
now handled by the query processor. In the current proto-
type a very simple query processor is implemented which
is only able to process simple types of queries. However, in
the near future a new query processor, which is able to pro-
cess more advanced queries, will be implemented.

7 Conclusions and future research

In this work, an ontology together with its knowledge-
based system intended as a controller of the fusion process
in the query language ΣQL has been described and dis-
cussed. The main purpose of the ontological knowledge
base has been to permit sensor data independence that gen-
erally can be seen as a method that permits the users to
focus on their own work without being bothered with tech-
nical aspects that generally require knowledge about vari-
ous types of sensors and sensor data. The fusion control
mechanism determines, under the control of the ontologi-

cal system, what to fuse and when to do it in conjunction
with an approach to query refinement developed to
improve the quality of the query output, but also to reduce
the turn-around time required to respond to a query.

Future research on where the ontological knowledge base
can be used relates to applications which will require rea-
soning to determine more complex information and knowl-
edge than can be done by a query language. Examples of
such applications are data mining, generation of common
operational pictures but also situation analysis. In the latter
case, the idea is to demonstrate how an ontology can be
used in the higher levels of information fusion.

References

[1] Chang, S.-K., Costagliola, G., Jungert, E. and Orciuoli, F.,
Querying Distributed Multimedia Databases and Data
Sources for Sensor Data Fusion, accepted for publication
in the journal of IEEE transaction on Multimedia, 2003.

[2] Chang, S.-K. and Jungert, E., Query Languages for
Multimedia Search, In Principals of Visual Information
Retrieval, M.S. Lew (Ed.), Springer Verlag, Berlin, 2001,
pp 199-217.

[3] Horney, T., Design of an ontological knowledge structure
for a query language for multiple data sources, LiTH-IDA-
Ex-02/22, Department of Computer and Information
Science, Linköping University, Sweden, March 2002.

[4] Kokar, M. M. and Wang, J., Using Ontologies for
Recognition: An Example, Proceedings of the 5th
International Conference on Information Fusion,
Annapolis, Maryland, July 2002, pp 1324-1330.

[5] Royer, V. and Challine, J-F., A Platform for Interoperable
Fusion Models, Proceedings of the 3rd International
Conference on Information Fusion, France, July 2000.

[6] Kotkas, V., Penjam, J. and Tyugu, E., Ontology-based
design of surveillance systems with NUT, Proceedings of
the 3rd International Conference on Information Fusion,
France, July 2000.

[7] Capraro, G. T., Berdan, G. B., Berra, P. B., Spina, J. and
Liuzzi, R. A., An architecture for providing Information
Anytime, Anywhere and on Any Device - An Ontological
Approach, Proceedings of the 5th International Conference
on Information Fusion, Annapolis, Maryland, July 2002,
pp 1331-1338.

[8] Mena, E. and Illarramendi, A., Ontology-based query
processing for global information systems, Kluwer
Academic Press, Boston, 2001.

[9] Jungert, E., Silvervarg, K. and Horney, T., Ontology driven
sensor independence in a query supported C2-system,
Proceedings of the NATO workshop on Massive Military
Data Fusion and Visualization: Users Talk with
Developers, Halden, Norway, September 2002.

[10] Ullman, J. D., Principles of Database and Knowledge-base
Systems, Computer Science Press, Rockville, Maryland,
1988.

[11] Chang, S.-K., Costagliola, G. and Jungert, E. (2002),
Multi-Sensor Information Fusion by Query Refinement,
Proceedings of the 5th International Conference on Visual
Information Systems, Taiwan, March 2002.

[12] Noy, N. F. and McGuinness, D. L., Ontology Development
101: A Guide to Creating Your First Ontology, KSL 01-05,
Stanford University, 2001.

[13] Parhami, B., Voting algorithms, IEEE Transactions on
Reliability, Vol. 43, No. 4, December 1994.

FOI-R--1787--SE

FOI-R--1787--SE
Appendix F

Iterative Information Fusion using a Reasoner for Objects with Uninforma-
tive Belief Values

Information Fusion, Stockhom Sweden, June 28- July 1, 2004.

Chang, S.-K., Jungert, E.
101

Iterative Information Fusion using a Reasoner for
Objects with Uninformative Belief Values

S. K. Chang1 and Erland Jungert2
1Dept. of Computer Science, University of Pittsburgh, USA (chang@cs.pitt.edu)

2Swedish Defence Research Agency (FOI), Sweden (jungert@foi.se)
Abstract - Abstract: We describe an approach for
iterative information fusion using a context-
dependent Reasoner called Pequliar. The system
basically consists of a query processor with fusion
capability and a Reasoner with learning capability.
The query processor first performs a query to
produce some initial results. If the initial results are
uninformative, then the Reasoner guided by the user
creates a more elaborate query by means of some rule
and returns the query to the query processor that
executes it and returns a more informative answer.
Rules may be initially specified by the user and
subsequently learned by the Reasoner. Examples of
iterative queries are drawn from multi-sensor
information fusion applications.

1 Introduction

Reasoning about data of uncertain type is necessary
in a growing number of complex applications and
especially for such applications where the basic data
sources correspond to sensors of multiple type and
where the generated data are of heterogeneous type.
Data from such sensor sources are always associated
with some level of uncertainty. To gain acceptable
result from the analysis of data from multiple sensors
multiple sensor data fusion is required [9]. For this
reason, information, that for the most part is of
spatial and temporal type need to be acquired from
the sensors. It has been shown, e.g. in [4], that this
can be made by means of a specifies query language.
Subsequently it will be demonstrated how the output
from the query language can be used as input to a
spatial/temporal reasoning tool that can resolve the
uncertainty problems. Basically, the Reasoner creates
a more elaborate query by means of some rule and
returns the query to the query processor that executes
it and returns a more expanded answer. The Reasoner
described in this paper is called Pequliar and can be
described as a post-query-language-reasoner. The
name “Pequliar” is an acronym for P(ost)+e
+QU(ery) L(anguage)+iar+R(easoner).

Pequliar can be seen as a Reasoner for objects
determined through queries in a query language. In

particular, the query language used is ΣQL [2], [4].
This query language has the ability to respond to
queries where the input data sources are sensors that
generate images and where the data is of uncertain
type. More specifically, in ΣQL these uncertainties
are associated with belief values that must be subject
to further interpretation either by the user or as here
by the Reasoner. Since we are here talking about
multiple sensor data sources as input to the query
language, it must be possible to fuse the information
from the various sensors prior to the usage in the
Reasoner; a capability that is available in ΣQL. The
eventual output from Pequliar, that is rule driven,
should help the user to get a better understanding of
the external environment subject to the analysis
carried out by the complete system. The query
language and the Reasoner is developed to support a
number of applications, such as data mining of
primarily unstructured data [11], and for higher levels
of information fusion, i.e. situation and impact
analysis [9], [5].

As the object information is associated with various
kinds of uncertainties and as the object information
from a single sensor may or may not correspond to
the same objects as acquired from other sensors this
will have an impact on how sensor data fusion is
carried out. To make it possible for the user to
interpret the uncertainty level of an identified object
the query language must somehow produce a measure
of the actual uncertainty level that can be associated
with the object information. In ΣQL this measure is
called a belief value. However, this does not always
create a result that is simple to interpret. One way to
overcome this problem is, as already has been
mentioned, to apply the query output to a Reasoner
and to combine it with various types of background
information that for the most part is context
dependent, i.e. if the objects to be reasoned about
correspond to vehicles then most likely the
background information is geographical.
Furthermore, this will also include information about
the past behavior of the vehicles as well as the
behavior of other objects. Besides being rule driven
the reasoning process also requires information from

Proceedings of the Int. Conf. on Information Fusion (FUSIO’05) June 30-July 2, 2004, Stocholm, Sweden
an ontology. Results from the Reasoner can, however,
be handled in various ways, that is, if the result is
feasible it is returned to the user, if not there must be
a request sent to the sensors for more information
followed by a rerun of the query. Besides this,
background information may be accessed from other
sources like geo-databases. Basically, Pequliar will
take care of the query results that may be difficult to
interpret without considering the background
information. Consequently the Reasoner must also
include some element of fusion since data from new
data sources are integrated into the process. In
Pequliar metadata is a necessary means for
determination of the background information that
will be needed in the reasoning process.

We describe an approach for iterative information
fusion using a context-dependent Reasoner called
Pequliar. Section 2 discusses the system design. The
system basically consists of a query processor with
fusion capability and a Reasoner with learning
capability. As described in Section 3, the query
processor first performs a query to produce some
initial results. If the initial results are uninformative,
then the Reasoner guided by the user creates a more
elaborate query by means of some rule and returns
the query to the query processor. The query processor
executes it and returns a more informative answer.
Rules may be initially specified by the user, and
successful rules are learned by the Reasoner. Section
4 discusses reasoning issues. Section 5 and Section 6
present iterative information fusion based upon
examples drawn from multi-sensor information
fusion applications. Further research issues are
discussed in Section 7.

2 System Design

2.1 System Overview

The system basically consists of a query processor
with fusion capability and a Reasoner with learning
capability. The query processor first performs a query
to produce some initial results. If the initial results
are uninformative then the Reasoner guided by the
user creates a more elaborate query by means of some
rule and returns the query to the query processor. The
query processor executes it and returns a more
informative answer. Rules may be initially specified
by the user and subsequently learned by the
Reasoner.

The name of the Reasoner - Pequliar - is obviously
related to the word “peculiar”. This word “peculiar”
has several different meanings and in the context of
this paper means “one of a kind”, “singular” or “to be
an object with uncertain and/or uninformative belief
values”. The system is therefore intended to handle
objects that are one-of-a-kind, singular, or with
uncertain and/or uninformative belief values. To
accomplish this, any information peculiar to an object
in the application domain must be stored in the
ontology, and any information peculiar to spatial/

temporal reasoning must be stored in the rule base,
see Figure 1.

2.2 Iterative Query Construction

Each user’s query is considered a compound query
that can be constructed in several iterations. In each
iteration, the user constructs an elementary query,
which is essentially a quintuple: <Object, Source,
Time, Space, Direction>. Using query operators the
elementary queries can be composed into a nested
query in ΣQL. The composition rule is implicit, and
the user does not need to know the underlying query
language ΣQL for the nested query. What is required
is an understanding of the meaning of different query
operators. The main purpose of the user interface is
therefore to provide a visual interface for the user to
compose compound queries from elementary queries
using query operators. A preliminary study of the
user interface can be found in [10].

2.3 The Query Processor

The result of a ΣQL-query is generally the object
types requested by the user including also the
attribute and status values of these objects, if
requested. Example of attributes are color, size etc.
while the status of an object generally corresponds to
such characteristics as position, orientation or speed
etc. The difference between an attribute and a status
value is basically that an attribute is not subject to
change in the short range of time, that is, the color of
a vehicle may change but not within the time frame of
concern to the user. Status values may change within
a very short time frame that may be less than seconds;
consider for instance position and speed.

Common to all the information returned by ΣQL is
that the type attribute is associated with a belief
value. Other attributes and status values may have
belief values associated to them as well but this is
less common. For the most part, such belief values
are given to indicate to what extent the result of a
query can be believed. In the most general case the
belief values are just given for the object types and
from each type of sensor data and eventually there is
also a belief value given as a result of the fusion
process that takes place for the majority of the
queries; this is due to the use of multiple sensor data
sources. Cases when fusion is excluded may occur
just for simple and trivial queries.

Other information from the query processor that
might be of concern for the Reasoner are for instance
the quality of the data in the area of interest given by
the user. To determine the source data quality for a
certain area of interest the corresponding meta-data
will be required. This must, however, be subject to
further research.

Proceedings of the Int. Conf. on Information Fusion (FUSIO’05) June 30-July 2, 2004, Stocholm, Sweden
Figure 1. The diagram.

2.4 Iterative Information Fusion by
Belief Value Adjustment

New, and hopefully more informative, belief values
will be achieved through a reasoning step in Pequliar
that includes generation of new and more elaborate
query that will be executed subsequently. Input to
this reasoning step is mainly the output, that may
include the dependency tree information, from the
query processor, the context information and meta-
data. Secondary to this is the applicable ontological
information. The meta-data is used to select the
portion of the context information that corresponds to
the area of interest (AOI). Once the Reasoner has
come to a conclusion in its process a new and
elaborate query is created and executed.

3 The Pequliar Reasoner

The Reasoner accepts the output from the Query
Processor, and either selects a reasoning rule by itself
or by input from the user. The output of the query
processor is a collection of entities that are the results
of query processing, such as “trucks” recognized by
the Query Processor. The Reasoner selects an
applicable rule from the following space S, which is
the Cartesean product of the sub-spaces including
sources, objects to be recognized, attributes of
objects, time, location and spatial/temporal/semantic
relations. In other words,

S = Source x Object x Attributes x Time x Location x
Relations

For example, the Reasoner may need to pick a rule
that is applicable to a different source, to recognize a
certain type of objects with attributes in certain
range, in a certain time interval, for objects in a
certain spatial location, and satisfying certain
relations. The Reasoner searchers the rule base to
select an applicable rule. The rule could be a query
template, which is then substantiated and sent back to
the Query Processor. If the Reasoner cannot select a
rule by itself, either because the rule base is not yet
populated or because the space S is not properly
defined, the Reasoner can accept input from the user.
The next time, such rules constructed by the user is
remembered, forming part of the scenario.

4 Some Reasoning Issues

The Pequliar Reasoner should be able to carry out a
number of different tasks related to a number of
different applications that generally are of spatial
and/or of temporal character. Applications where the
Reasoner may be invoked to support to the users may,
for example, include:

• tracking of objects,
• solution of the association problem,
• aggregation of objects,
• prediction of future object behavior in space and

over time,
• determination of complex object relationships,
• high level information fusion, e.g. situation

analysis.

Determination of the result of these operations is
carried out by the Reasoner by means of the learned
rules in combination with the meta-data and the
available context information. In this way new and
more comprehensive queries, of which some may be
recursive, can be created from templates in the rule-
base. These queries are then executed in the ΣQL
query processor. This may lead to a situation that
requires a second invocation of the Reasoner that
takes place after the comprehensive query have been
processed. In this way the Reasoner will be able to
learn from the generation of the elaborate queries.
However, in the above more comprehensive
applications it may not be sufficient to just run a
comprehensive query but also to take a step further
and perform higher level information fusion, e.g.
situation analysis but this is outside the scoop of this
work and must be subject to further research efforts.

ΣQL

Post query language

Query

Onto-Pattern

Sensor Data Input

logy

Meta
Data-

Fusion

LearnerReasoner

Q-proc

Sensor Data
Analysis

Refined query

Data

Output

Data-
base

Source
Database base

reasoner (Pequliar)

Proceedings of the Int. Conf. on Information Fusion (FUSIO’05) June 30-July 2, 2004, Stocholm, Sweden
Figure 2. Data sources, task groups and their relations
as part of the ontology, to be used for context

sensitive object assessment in the Pequliar system.

4.1 Context Sensitive Object
Assessment
The background or proper context in which an object
may occur and that is subject to a query in ΣQL can
be seen as a data source used to enhance the outcome
of the query. This was similarly discussed in [3]
where the local and the global views were introduced
as means for query refinement. Here the two views
are jointly called Context Source. An illustration of
the use of Context Source to enhance a query result is
given in the type I task query example, see section
5.1, where basically the Global View is used to
determine whether there are any objects in the
proximity of an already retrieved object. As the
number of types of queries extends other sources are
required as well, which is illustrated in Figure 2.

Query input includes information delivered by the
users including such information as area-of-interest,

(time) interval of interest and requested object types.
In this source, AOI may be used to determine the
extension of the context source. Second to this the
Meta Data source is used to determine whether there
are any data available from any source in Perception
Source that correspond to AOI and where Perception
Source corresponds to, e.g. data from a sensor. The
latter type of sources can be seen as primary sources
that are always used as query input. The Dependency
Tree that is generated internally to each query can
also be used as a data source in cases where queries
about query result are of concern. This is illustrated
by the task III query type, section 5.3, that asks for
pre-fusion sub-results that may be of extreme type.
Finally, the result of any given query can be used in
an iterative query; this is illustrated by the task I
query type. Altogether, the concept of Data Source
becomes much more complex when applied to
iterative queries generated either in dialogue with or
automatically by Pequliar. Although this may cause
difficulties in composing iterative queries it also
extends the number of possible queries, which in
turn, makes ΣQL much more adaptive to complex
problems related to, for instance, the higher orders of
information fusion, i.e. situation and impact analysis
and for this reason it becomes possible to talk about
context sensitive object assessment where context
refers not just to the proper context but to all the data
sources given in Figure 2. The structure in Figure 2 is
an extension to the ontology described in [6], which
is related to work discussed in [7], [8] that in both
cases discuss work where the aim is to develop
ontologies for situation awareness. Context Source,
refers to the actual geographical background while
Perception Source refers to the sensor data sources.
Dependency tree is the partial query result from a
particular sensor data source. The remaining data
sources are self-explanatory.

4.2 Deriving Query Patterns from
Query Paths

As mentioned above, the user formulate a query by
composing compound queries from elementary
queries using query operators. But the problem is that
for a compound query, this may make the query
building time consuming and boring. An approach to
speed up this process is proposed based upon two
concepts: query path and query pattern. A query path
p is a sequence of queries (Q0, Q1, Q2, ……, Qn) in
the iterative query formulation process. Basically a
query path shows the track of an interactive query
construction from Q0 to Qn. In each step, a query
operator and an elementary query are applied on the
previous one. While a query pattern is generalized
from query paths, some constant values in the queries
may be marked as variables to indicate that these
values are exchangeable while doing a pattern
matching. Query patterns are important because they
could cover most of the frequently used queries and
make them simple. In our approach, a set of query
patterns Spattern is stored and maintained during the
query processing. At the initial state, there are no
query patterns in Spattern. When one query is finished,

Query input

Meta Data

Perception
Source

Dependency
Tree

Context
Source

Query Output

Local View

Global View

Data
Source

TGP/DS

Taskgroup
Pattern

Task
group

laserradar

CCD

...

Proceedings of the Int. Conf. on Information Fusion (FUSIO’05) June 30-July 2, 2004, Stocholm, Sweden
the query path will be shown and user is asked to
choose the variables and input a linguistic tag for it.
A new query pattern is generated and added to
Spattern. In query formulation, the query patterns are
retrieved dynamically and then selected by the user.
Therefore the Pequliar Reasoner can learn new
patterns, and use the patterns to provide short cuts for
the user to formulate queries.

5 Tasks for Information Fusion

In what follows we describe the typical tasks for
information fusion, which can be grouped into three
types. The reasoning process as carried out here
depends on whether the belief values that are output
from any user query has got a value that is
uninformative. Three different types of tasks queries
have been identified. The first type is concerned with
how to improve the result of the original query by
considering other aspects of the sensor data sources
such as for instance similarity among requested
objects but also proximity between the objects. The
second type is merely concerned with how to
associate different object instances with each other
while the third group concerns queries that need to
inspect the dependency tree from the last user query.
All these three task types are related in that they will
result in new elaborate queries that are part of the
iterative information fusion process that also includes
learning of rules in that process. Here we also
demonstrate the three task types with some relevant
examples of elaborate ΣQL queries.

5.1 Type I Tasks

These tasks require the generation of new and
elaborate ΣQL queries that basically depends on
certain conditions among the spatial objects normal
found in sensor data.

1) Are there any other objects in the proximity of the
retrieved object that are of similar or of equal type
as the retrieved object?
Proximity refers to the AOI and similarity to the
ontology; the Reasoner creates new elaborate
queries from the templates.

2) Have there been any other objects in the proximity
of the retrieved object that are of similar or of
equal type as the retrieved object?
The Reasoner creates new elaborate queries from
the templates.

3) Is the present background (context) information of
proper type relative to the type of the retrieved
object?
Context refers to the geographical background in
the AOI and the Reasoner creates new elaborate
queries from the templates.

4) Has this object type been previously observed in
this background context?
This query is similar to 3 but require involvement
of earlier output instances from ΣQL, i.e. the IOI
must be involved as well.

5) Is it possible that the quality of the background

information may have influenced the query result?
For instance is there any missing data in AOI. This
could be determined from a particular ΣQL query.
For a lot of missing data the risks for not finding a
particular object increases.

6) Is the retrieved object partly hidden by some other
object that is part of the context?
The context refers to the local background that
must be in high resolution. This allows the
Reasoner to create a new elaborate query.

7) Are there any other object types in the proximity
of the retrieved object that may have any impact of
some kind on the found object?
This query is similar to task type 6 but here the
object may have a location that is too close to some
other object which will have some more or less
serious consequences on the primary object

5.2 Type II Tasks

These task type requires generally the invocation of a
particular function that basically is concerned with
the resolution of the association problem that may
occur in single cases, that is between a pair of
registered objects, or as a part of a tracking task,
including a time sequence of the registered objects.

8) Can the retrieved object be associated to an earlier
single observation?
This query type requires the solution of the
association problem.

9) Can the retrieved object be part of an existing
track.
This task type is a recursive variation of query
type 8 that includes the application of the
association problem but will not be further
elaborated here.

5.3 Type III Tasks

This task type requires only investigation of the
result of the various sub-queries of user defined
queries, that corresponds, in most cases, to an
inspection of the content of the dependency tree

10) Did any sensor (data sources) contribute to the
result in any extreme way?
This refers to the single belief values from the
various sensor related sub-queries; only a check
of the dependency tree is required.

11) Did the result of some of the sensors (data
sources) contradict each other?
Does not require any new ΣQL query; only an
inspection of the dependency tree.

12) Which sensors (data sources) where used to
answer the query?
Does not require any new ΣQL query; only an
inspection of the dependency tree.

13) Are there any attributes or status values of the
retrieved object that in particular could have
diverted the outcome of the primary query.
This means that the attribute did not in any case
contribute to the query result; contrary it could

Proceedings of the Int. Conf. on Information Fusion (FUSIO’05) June 30-July 2, 2004, Stocholm, Sweden
have contributed to another outcome of the query.

6 Examples of Iterative Queries

In this section a set of iterative queries generated by
the Reasoner will be shown. These queries are
examples of the three task types introduced in Section
5. Most of these queries require two iterations
although it is possible to refine query formulation
into three or even four iterations, depending upon
how the query formulation is done by the user. In the
query examples relation refer to topological relations
between a pair of spatial objects of which AOI is also
considered being a spatial object.

Example 1: The following ΣQL query corresponds to
Query 1 of Task Type 1. Initially, the user tries to find
“trucks” in a certain area of interest. This
corresponds to the light grey colored ΣQL query. If
the results are uninformative, the user may guide the
Reasoner to apply a more elaborate query as shown
below. After the elaborate query is processed, the
user is satisfied with the results. He can then tell the
Reasoner to remember the rule under a certain user-
assigned task description, such as “objects similar to
trucks”.

Query: Are there any other objects in the proximity of
the retrieved object that are of similar or of equal
type as the retrieved object?

Select objectk.type, objectk.position, objectj.type
cluster * alias objectk
from PerceptionSource
where relation(AOI, objectk) = ‘inside’

and objectk.type = ‘truck’
and objectj.t = objectk.t
and distance(objectk, objectj) < δ
and similar(objectk, objectj)
and objectj in

Select objecti.type, objecti.position
cluster * alias objecti
from PerceptionSource
where relation(AOI, objecti) = ‘inside’

and objecti.t = tgiven
and objecti.type = ‘truck’

Example 2: The following ΣQL query corresponds to
Query 2 of Task Type I. As in the previous example,
initially the user tries to find “trucks” in a certain
area of interest. This corresponds to the light grey
colored ΣQL query. The user may then decide to
guide the Reasoner to apply a more elaborate query
as shown below to find similar objects in previous
time periods. After the elaborate query is processed,
the user is satisfied with the results. He can then tell
the Reasoner to remember the rule under a certain
user-assigned task description, such as “objects
similar to trucks in previous time periods”.

Query: Have there been any other objects in the

proximity of the retrieved object that are of similar or
of equal type as the retrieved object?

Select objectk.type, objectk.position, objectk.t,
objectj.type, objectj.position

cluster * alias objectk
from PerceptionSource
where relation(AOI, objectk) = ‘inside’

and distance(objectk.position,objectj.position)
< δ

and similar(objectk.type, objectj.type)
and tstart < objecti.t < objectk.t
and objectj in

Select objecti.type, objecti.position
cluster * alias objecti
from PerceptionSource
where relation(AOI, objecti) = ‘inside’

 and objecti.t = tgiven
 and objecti.type = ‘truck’

Example 3: task type I query 3

Query: Is the present background (context)
information of proper type relative to the type of the
retrieved object?

Select objectj. type,objectj.position,objectp.type
cluster * alias objectp
from ContextSource
where relation(objectp, objectj) = ‘inside’

and properbackground(objectp.type,
objectj.type)

and objectj in
Select objecti.type, objecti.position
cluster * alias objecti
from PerceptionSource
where relation(AOI, objecti) = ‘inside’

and objecti.t = tgiven
and objecti.type = ‘bus’

Example 4: task type I query 4

Query: Has this object type been previously observed
in this background context?

Select objectp.type, objecti.type,
objecti.position

cluster * alias objectp
from ContextSource
where objectj.type = objectp.type

and objecti.type = objectk.type
and tstart < objecti.t < objectk.t
and objecti in

Select objectm.type, objectm.t,
objectm.position

cluster * alias objectm
from PerceptionSource
where relation(AOI, objectm) =

‘inside’
and tstart < objectm.t < tgiven
and objectm.type = ‘bus’

and objectj in
Select objectl.type

Proceedings of the Int. Conf. on Information Fusion (FUSIO’05) June 30-July 2, 2004, Stocholm, Sweden
cluster * alias objectl
from ContextSource
where relation(AOL, objectl) =

‘partlyoverlap’
and objectk in

Select objedctn.type,
objectn.position

cluster * alias objectn
from PerceptionSource
where

and relation(AOI, objectn) =
‘overlap’

and objectn.t = tgiven
and objectn.type = ‘bus’

Example 5: task type query 5

Query: Is it possible that the quality of the
background information may have influenced the
query result?

Select objectp.sensor
cluster * alias objectp
from PerceptionSource
where relation(objectp.background, objectj) =

‘inside’
and missingdata(objectp.background) > 50

/* more than 50% of the background data
may be missing */

and objectp.t = tgiven
and objectj in

Select objecti.type, objecti.position
cluster * alias objecti
from PerceptionSource
where relation(AOI, objecti) = ‘inside’

and objecti.t = tgiven
and objecti.type = ‘bus’

Example 6: task type I query 6

Query: Is the retrieved object partly hidden by some
other object that is part of the context?

Select objectp.type, objectp.position,
objectj.type, objectj.position

cluster * alias objectp
from ContextSource
where relation(AOI, objectp) = ‘partlyoverlap’

and ((objectp.type = ‘terrain-feature’)
or (objectp.type = ‘building’)
or (objectp.type = ‘natural-object))

and ((relation(objectp, objectj) =
‘partlyoverlap’)

or (relation(objectp, objectj) = ‘beside’))
and objectp.t = objectj.t
and objectj in

Select type
cluster * alias objecti
from PerceptionSource
where relation(AOI, objecti) = ‘inside’

and objecti.t = tgiven
and objecti.type = ‘bus’

Example 7: task type I query 7

Query: Are there any other object types in the
proximity of the retrieved object that may have any
impact of some kind on the found object?

Select objectk.type, objectk.position,
objectj.type, objectj.position

cluster * alias objectk
from PerceptionSource
where relation(AOI, objectk) = ‘inside’

and distance(objectk.position,
objectj.position) < δ

and objectk.type = ‘dog’
and non-coexistant(objectk, objectj)
and objectk.t = objectj.t
and objectj in

Select objecti.type
cluster * alias objecti
from PerceptionSource
where relation(AOI, objecti) = ‘inside’

and objecti.type = ‘cat’
and objecti.t = tgiven

Example 8: task type II query 8

Query: Can the retrieved object be associated to an
earlier single observation?

Select objectk.type, objectk.t, objectk.position,
objectj.type, objectj.t, objectj.position

cluster * alias objectk
from PerceptionSource
where relation(AOI, objectk) = ‘inside’

and distance(objectk.position,
objectj.position) < δ

and tstart < objectk.t < objectj.t
and associate(objectk, objectj)
and objectj in

Select objecti.type, objecti.position
cluster * alias objecti
from PerceptionSource
where relation(AOI, objecti) = ‘inside’

and objecti.t = tgiven
and objecti.type = ‘truck’

Example 10: task type III query 10

Query: Did any sensor (data source) contribute to the
result in any extreme way?

Select objectk.type, objectk.sensor,
objectk.belief-value, objectk.position

cluster * alias objectk
from DependencyTree
where qualitative-difference

(objectk.belief-value,
objectj.belief-value) = ‘large’

and objectk.position = objectj.position
and objectk.type = objectj.type
and objectk.t = objectj.t
and objectj in

Select objecti.type, objecti.position

Proceedings of the Int. Conf. on Information Fusion (FUSIO’05) June 30-July 2, 2004, Stocholm, Sweden
cluster * alias objecti
from PerceptionSource
where relation(AOI, objecti) = ‘inside’

and objecti.t = tgiven
and objecti.type = ‘truck’

Example 11: task type III query 11

Query: Did the final result contradict the result from
any of the sensors (data sources)?

Select objectk.type, objectk.sensor,
objectj.type, objectj.position

cluster * alias objectk
from DependencyTree
where objectk.position = objectj.position
 and objectk.type ≠ objectj.type
 and objectk.t = objectj.t
 and objectj in

Select objecti.type, objecti.position
cluster * alias objecti
from PerceptionSource
where relation(AOI, objecti) = ‘inside’

and objecti.t = tgiven
and objecti.type = ‘truck’

Example 12: task type III query 12

Query: Which sensors (Perception Sources) where
used to answer the query?

Select objectk.sensor
cluster * alias objectk
from DependencyTree
 where objectk.position = objectj.position
 and objectk.type = objectj.type
 and objectk.t = objectj.t
 and objectj in

Select type
cluster * alias objecti
from PerceptionSource
where relation(AOI, objecti) = ‘inside’

and objecti.t = tgiven
and objecti.type = ‘truck’

7 Discussion

In this work a reasoning system for objects with
unimformative belief values has been introduced. The
Reasoner can be viewed as a post query language
processor, since the input to the Reasoner is the
output from ΣQL a query language, primarily,
developed for data from multiple sensors. An
important characteristic of ΣQL is that it allows
sensor data fusion and includes an ontology that
allows application of queries in a sensor data
independence way, that is a user does not have to
know which sensors that are involved when a query is
answered. In particular, to allow the extension of the
queries the query processor has been extended with
respect to the data sources. This is mirrored by the
ontology that demonstrates how the context
information as well as the dependency tree

information can be used as input to the refined
queries. This is done in the same manner as the
perception sources, which were introduced in the
original approach to ΣQL, are used. The extended
query technique is, finally, demonstrated with a
number of elaborate queries that demonstrates the
technique with three different task type queries that
correspond to pattern that can be determined by the
Reasoner or alternative by the user. This illustrates
how the Reasoner eventually can learn how to
automatically apply the more elaborate queries.

In connection to this work there are also other means
that need to be studied further, such as generation of
even more elaborate queries to support applications
related to, e.g. spatial data mining.

References:
[1] Chang, S.-K. and Jungert, E.: Human and system
directed fusion of multimedia and multimodal information
using the σ-tree data model. Proceedings of the 2nd
International conference on Visual information systems,
San Diego, CA, December 15-17 (1997) 21-28.
[2] S.-K. Chang, G. Costagliola, E. Jungert, Spatial/
Temporal Query Processing for Information Fusion
Applications, Advances in Visual Information Systems, R.
Laurini (Ed.), Lecture Notes in Computer Science 1929,
Springer Verlag, Berlin, 2000, pp 127-139.
[3] S.-K. Chang, G. Costagliola, E. Jungert, Multisensor
Information Fusion by Query Refinement, Recent advances
in Visual information systems, S.-K. Chang, Z. Chen, S.-Y.
Lee (Eds.), Lecture Notes in Computer Science 2314,
Springer Verlag, Berlin, 2002, pp 1-11.
[4] S. K. Chang, E. Jungert and G. Costagliola, “Queryng
Distributed Multimedia Databases and Data Sources for
Sensor Data Fusion”, to appear in IEEE Transactions on
Multimedia, 2004.
[5] [Handbook of Multisensor Data Fusion, D. L. Hall, J.
Llinas (Eds.), CRC Press, London, 2001.
[6]] Horney, T., Jungert, E., Folkesson, M., An Ontology
Controlled Data Fusion Process for Query Language,
Proceedings of the International Conference on Information
Fusion 2003 (Fusion’03), Cairns, Australia, July 8-11.
[7] Matheus, C. J., Kokar, M., Baclawski, K., A Core
Ontology for Situation Awareness,Proceedings of the
International Conference on Information Fusion 2003
(Fusion’03), Cairns, Australia, July 8-11.
[8] McGuinness, D. L., Ontologies for Information
Fusion, Proceedings of the International Conference on
Information Fusion 2003 (Fusion’03), Cairns, Australia,
July 8-11, pp 650-657.
[9] E. Waltz and J. Llinas, Multi-sensor data fusion,
Artect House, Boston, 1990.

[10] K. Silvervarg, E. Jungert, Aspects of a visual
user interface for spatial/temporal queries,
proceedings of the 9th international conference on
Distributed Multimedia Systems, Miami, September
24-26, 2003,pp 287-293.

[11] S. Chawla, S. Shekhar, W.-L. Wu, U. Ozesmi,
Modeling spatial Dependencies for mining geospatial
data: An introduction, H. Miller, J. Han (Eds.),
Geographic Data Mining and Knowledge Discovery
(GKD), Taylor and Francis, 1999.

FOI-R--1787--SE

FOI-R--1787--SE
Appendix G

A Fusion Framework for coarse-to-fine Target Recognition

Förelagd Defense and Security Symposium, March 29-31, 2005, Orlando, Florida, USA

Folkesson, M., Grönwall, C., Jungert, E.
111

A Fusion Framework for coarse-to-fine Target Recognition

Martin Folkesson Christina Grönwall Erland Jungert
Swedish Defence Research Agency (FOI) Swedish Defence Research Agency (FOI) Swedish Defence Research Agency (FOI)

Box 1165 Box 1165 Box 1165
581 11 Linköping 581 11 Linköping 581 11 Linköping

martin.folkesson@foi.se christina.gronwall@foi.se erland.r.a.jungert@foi.se

Abstract – A fusion framework in a query based information
system is presented. The system is designed for querying multi-
media data bases, and here applied to target recognition using
heterogeneous data sources. The recognition process is coarse-
to-fine, with an initial attribute estimation step and a following
matching step. Several sensor types and algorithms are involved
in each of these two steps. Fusion is performed after both steps.
An independence of the matching results, on the origin of the es-
timation results, is observed. This is the basic idea of the fusion
framework. Its aim is to increase the overall performance in target
recognition. An implementation of the system is described.

Keywords: Fusion, information system, target recognition, query
language, attribute, knowledge system

1 Introduction

The system described in this paper is based on querying
multimedia data bases. Results on such queries may then
consist of several partial results, originating from different
sets of data. To obtain a total result for the query, the partial
results need to be fused. If the separate results come from
processes that are divided into two steps, data can be fused
also at an intermediate level. This is done in this applica-
tion of our system, and illustrated in fig. 1. The intermedi-
ate fusion step allows information to be shared between the
different processes. This potentially increases the overall
performance of the system. The intermediate fusion unfor-
tunately also introduces a risk of data incest. Data incest is
present when dependent data sources are assumed to be in-
dependent. An example of data incest between two sensors
is given in [1]. In the application of this paper, the risk of
data incest is avoided.

1.1 Related work

Traditionally, the role of fusion in different automatic tar-
get classification/recognition systems has been to combine
results that has emerged from independent processes. For
example, Tseng et. al. [2] examplifies such an approach.
However, lower-level fusion of heterogenous data in ATR
systems has been approached recently, see e.g.[3]. In [4],
a comparison between fusion on different levels is per-
formed. Strategies for dealing with incomplete data has
been adressed in connection with clustering problems, see
[5], [6].

Fig. 1: Left: Fusion is applied to separate, partial outputs.
Right: If the separate processes are divided into two steps,
an intermediate data fusion step, potentatially increasing
the overall performance, can be added.

2 Preliminaries

The system is here designed for recognition of ground tar-
gets, mainly military vehicles. Various types of electro-
optical sensors are used for the recognition part. The recog-
nition is divided hierarchically into two steps. The first step
estimates attributes of a detected target. The second step
is the actual recognition, which is performed by match-
ing the data against target models. The model matching is
very time-consuming compared to the attribute estimation.
Feeding a matching algorithm with estimates of attributes
reduces its work load significantly. Hence the introduction
of attribute estimation.

The intermediate fusion step is introduced to fuse data
from different attribute estimation processes. It has the po-
tential of reducing the total number of matching processes
that needs to be performed in the matching step. Also, if
the matching processes fail, or are considered too time-
consuming in a stressed situation, the fused attribute esti-
mations could be taken as output from the system.

Our recognition process is now a sequence of four steps;
attribute estimation, attibute fusion, model matching and
model match fusion, see fig. 2.

To complete the information system presented here con-
tains not only query processing, a visual user interface
(VUI), and fusion, but also algorithms for attribute esti-
mation and model matching, respectively. Also, an intelli-
gent mechanism for choosing appropriate algorithms for the
two steps, in a given situation, is needed. This mechanism
must also be able to select sensors for collecting data, if
this needs to be done before recognition. In our system this

Fig. 2: The recognition is divided into attribute estimation
and model matching, each followed by a fusion step.

mechanism is a knowledge-based system (KBS), central in
the application. It has access to meta data about stored sen-
sor data. An overview of the system is found in fig. 3. The
different parts will be further described in section 3.

Fig. 3: An overview of the information system when ap-
plied to target recognition.

2.1 Query execution

As the user queries the system, he/she is supposed to spec-
ify 1) which types of targets he/she is interested in, 2) in
which area, and 3) during which interval in time. Then, a
detection algorithm is applied to the relevant data. Each of
the detected, possible targets then induces a refined query,
where the regions of interest are small areas around each
detected target. The set of refined queries are then further
refined, by the attribute estimation. After the estimation,
the queries include information on target dimensions, ori-
entations, etc.

The next step is to select target models compatible with
the attribute estimates of each query. Each query is thus
again refined and possibly degenerated, into several queries,
one for each compatible target model. Each of the resulting
queries then continues to the matching step, to be evaluated
against the data. A schematic of the refinement steps of a
query is seen in fig. 4. In the steps where queries possibly
degenerate, a degeneration into two queries has here been
chosen. Note that the fusion steps have been omitted in
fig. 4.

2.2 Problem description

The fusion challenge is to fuse output from the algorithms
performing attribute estimation and model matching, re-
spectively. The aim is to increase the overall chance of
recognising the target, and reduce the work for the match-
ing algorithms.

For each of the two processes, several algorithms are
generally working in parallell. A certain algorithm could

Fig. 4: The three main refinement levels, as a query is pro-
cessed. In the first and third step, the query can degenerate
into two (as in the figure) or more queries. In the model
matching, the queries are finally evaluated. Note that the
fusion steps have been omitted in the figure.

be applied to different sets of data. Thus, the fact that cor-
relations of different types might be present has to be kept
in mind.

Another complication is that different combinations of
algorithms and data estimate different sets of attributes.
Each produced set of attribute estimates is generally incom-
plete. Typically, some sensors are not capable of estimating
certain attributes. For example, heat radiation from a vehi-
cle with a running engine does not show in visible light im-
ages. Thus, whether the vehicle’s engine is running or not,
cannot be detected in visible light (unless exhaust fumes
show).

3 The implemented Target Recognition
System

This section presents the most relevant parts of the imple-
mented system, see fig. 3. A more thorough description of
the system as a whole is given in [7] and [8]. Some parts of
the system have been ignored here, others combined under
the same heading. References to papers devoted to the sep-
arate parts are given in corresponding subsections below.

3.1 User interaction — the query language ΣQL

The user interaction framework consists of a query proces-
sor and a VUI — Visual User Interface. The query lan-
guage used to process the query is however also the frame-
work of the entire system. In this section, the query lan-
guage is therefore given some special attention. For a de-
scription of the VUI, see [9].

The query language discussed in this work is called ΣQL

[10],[11]. Originally, ΣQL was developed as a query lan-
guage for querying of one single sensor image at a time.
However, later it has evolved into a query language for mul-
tiple sensor data sources, and capable of sensor data fusion
and sensor data independence (see below). The various
sensors may be of different types and generate heteroge-
neous sensor data images. For this reason a large number
of algorithms for sensor data analysis must be available and
administered by the system.

It is required that selection of sensors and algorithms
must be carried out automatically, and for this reason means
for such selection must be available. In ΣQL this is con-
trolled by the KBS, which is briefly described in section
3.2. The reason for the automatic selection is to allow sen-
sor data independence. In a system, sensor data indepen-
dence denotes independence between the low-level sensor
data processing and the high-level user interaction. Sensor
data independence is motivated for several reasons. One is
to allow the user to concentrate on the work at hand, without
any knowledge of the sensors and their data types. Another
motivation is to make repetitive queries possible without
interference from the users. Repetitive queries are queries
the system repeateadly poses to itself. Triggering of such
repetition is called for when i.e. light and weather condi-
tions change during the period of time defined by the user
(see 2.1). Each time the query is automatically repeated, the
selection of data sources is performed all over again. The
system thus has a way of adapting to changing conditions.

The basic functionality of ΣQL can be described as fol-
lows: The query inserted by the user is forwarded to the
dependency tree generator, which in a dialogue with the
KBS generates a set of nodes in the dependency tree. As
long as there are nodes in this tree new sub queries can be
built (one for each of the selected sensors), refined and ex-
ecuted by the query processor. Once the sub queries have
been executed, instances are created in the multilevel view
database [12], to support query refinement in a subsequent
step. As new sets of dependency tree nodes are generated
new sub queries can be executed and their results refined.
This goes on until the dependency tree becomes empty, i.e.
when there is no more sensor data available to process.

3.2 KBS and meta data

The KBS selects data sources and algorithms, both for
the attribute estimation and for the matching. Meta data,
describing which kinds of sensor data are available from
which areas during which periods in time, are used to make
sure that only relevant data sources are selected. In the same
manner, only algorithms which can be applied to available
data are selected. Several factors and conditions are hereby
considered, both internal to the system, and external, such
as weather conditions. The KBS also selects models based
on the attribute estimates, i.e. it translates sets of attribute
estimates into sets of models compatible with the estimates.
The KBS can be seen as the center of the system in this ap-
plication. and is described further in [13].

3.3 Sensor data

We consider three fundamentally different types of sensor
data; 2D images from visual and IR camera, 3D point scat-
ter from laser radar and sequences of range images from a
gated viewing sensor (a type of laser radar). Three sensors,
one longwave infrared (LWIR) sensor, one scanning laser
radar operating in the near infrared (NIR), and one visual
CCD-camera, were mounted on an airborne platform. The
laser radar system’s scanning constitutes a zigzag pattern
on the ground. The resulting data is in point scatter format,

containing 3D position (x, y, z) and reflected intensity (r)
in each sample, i.e., the data is an unordered set of samples
(x, y, z, r). The sensor systems and the data collection is
further described in [8].

These sensor data are heterogeneous concerning dimen-
sions of the target (2D or 3D registration), format (matrix
format or irregular sampling), the resolution of the target
(i.e, samples/m2), the texture of the target (three different
wavelengths registrating different phenomena), the possi-
bility to track moving targets (the laser radars are scanning
and thus not suitable) and views of the target (down-looking
or horizontally).

3.4 Algorithms

Recall that the target recognition process is performed in
four steps; attribute estimation, attribute fusion, model
matching and model match fusion, see fig 2. There are
two attribute estimation algorithms working on four types
of sensor data. Typical attributes are position, orientation,
length, width, height, speed, and temperature. Each esti-
mated attribute is given with an estimated standard devia-
tion, corresponding to the noise level in data and the perfor-
mance of the algorithm.

The system contains five model matching algorithms
working on five types of sensor data. In the model matching
step the common target model library is used, where each
model is described by its 3D structure (facet/wire frame
models) and appearance (visual or thermal textures). Based
on the operator’s query and the estimated attributes, a set
of target models are selected for the matching process. The
output is a quantitative degree of match between the model
and the sensor data pointed out by the query. This quantita-
tive measure is called confidence value (cv). To be able to
compare cv:s, the cv is normalised to a value between 0 and
1, where 1 means perfect match. The normalisation is based
on matching results of important target data sets. Note how-
ever that no exact definition of the cv can be given. The way
of obtaining a cv can be different for different combinations
of data and algorithm.

4 Fusion approaches
This section presents and motivates the fusion framework
for the two fusion steps, see fig 2. The methods themselves
are rudimentary and should be considered parts of a frame-
work rather than algorithmic contributions.

4.1 Fusion of attribute estimates

For the first process step, the coarse estimation of attributes,
the fusion approach assumes that the sets of estimates are
naturally grouped in attribute space. This corresponds to a
discretisation of possible initial interpretations of the data.
To motivate this assumption, consider a set of estimates of
a target’s orientation on the ground. Values are likely to be
grouped around two directions that differ by π rads. Fur-
thermore, consider a situation where the target has a large
cubic-shaped rock just behind it. One or more estimates of
the target’s length might then include the rock. Again, two
distinct groups of values would be formed. Combinations

of such estimates for orientation and length are then also
distinct. Only one combination corresponds to the correct
interpretation of the image data.

Since some attributes of a target normally changes over
time, like its orientation on the ground, it is required that
data from different sources are aligned in time. If not, an
association problem, which is not adressed in this paper,
has to be solved beforehand.

The fusion approach chosen is simply to identify distinct
interpretations/groups of sets of estimates. We loop over
the sets and identify groups of compatible sets. Two sets
are considered compatible iff, for each attribute, their re-
spective estimates, including estimated deviation, are non-
disjunct. For a set of attributes {ai}, estimated by algo-
rithms j1 and j2, this is written

∀ i; [âi,j1 − σ̂ai,j1
, âi,j1 + σ̂ai,j1

]

∩ [âi,j2 − σ̂ai,j2
, âi,j2 + σ̂ai,j2

] 6= ∅,

⇒ (âj1 , âj2) compatible (1)

Here, âj1 and âj2 denote the arrays of attribute estimates
provided by the two algorithms, respectively, and σ̂j1 and
σ̂j2 are the corresponding arrays of estimated standard de-
viations. Compatible sets of estimates are considered qual-
itatively equivalent interpretations of the data.

If an array of estimates is incomplete, the lacking esti-
mates are set to 0, with infinite deviation, obtaining the in-
terval [−∞,∞]. This interval is compatible with every true
estimate for that attribute. The criterion of compatibility
is thus weak for arrays of estimates with a high degree of
incompleteness.

When different groups of estimates are identified, we
seek to represent each group with a single set of estimates,
in clustering often called a prototype. Here, we calculate
the group mean estimate for each attribute. These mean
values are then combined into a prototype for the group.
Only true estimates are considered. An example for a group
with two sets of estimates, containg four attributes, is given
below.

Sets of estimates:









â1,j1 ± σ̂a1,j1

â2,j1 ± σ̂a2,j1

−∞,∞
â4,j1 ± σ̂a4,j1

















−∞,∞
â2,j2 ± σ̂a2,j2

â3,j2 ± σ̂a3,j2

â4,j2 ± σ̂a4,j2









Prototype:













â1,j1 ± σ̂a1,j1

â2,j1
+â2,j2

2
±

√

σ̂2
a2,j1

+σ̂2
a2,j2

2

â3,j2 ± σ̂a3,j2

â4,j1
+â4,j2

2
±

√

σ̂2
a4,j1

+σ̂2
a4,j2

2













4.2 Fusion of matching results

Each prototype consist of estimates of attributes of two cat-
egories. Those attributes concerning the target’s properties
are constants, like ’size’. On the other hand, those attributes

concerning its state are variables, like ’orientation’. The
KBS checks which modelled targets are compatible with
the estimated properties. Each such model is then combined
with the estimated state. The model replaces the estimates
of properties. For each matching, the matching algorithm
is given a specific target model and estimates of state at-
tributes, instead of estimates describing both target proper-
ties and target state.

We call each combination of target model and state at-
tributes a hypothesis. A hypothesis is an ultimately refined
query, see section 2.1. Thus, each prototype governs one or
more hypotheses, via the target model selection (see fig. 4).

The KBS sends each hypothesis to its chosen set of al-
gorithms (and data), for evaluation/refinement by match-
ing. The important observation to be made here is that each
matching process is independent of the origin of the hy-
pothesis. In other words: Given a certain hypothesis, with
certain estimated attribute values, it does not matter which
data sources were used to obtain the values. The quantified
match result — the cv — will not depend on the origin of
the estimates in the hypothesis. Thus, there should be no
risk of data incest in this framework.

Each match result is an evaluation of a certain model, in
a certain state, made by a certain combination of data and
algorithm. The algorithm locally optimises the cv by re-
fining the state attribute estimates. It is assumed that this
refining is small, so that different refined states from the
same hypothesis are compatible, hence considered qualita-
tively equivalent (see section 4.1). Thus, when considering
the obtained set of cv:s, we can make inference over each
of these three “dimensions”; match model, state and data-
algorithm-combination. Compare the situation to sorting
of objects in a data base, based on values of their different
attributes.

The method currently used is to simply select the best
match result for each model, regardless of state, and present
to the user. This is motivated by the assumption that the
user is primarily interested in the type of the target, rather
than its state. The choice to select the best match results for
each model, instead of calculating e.g. means, is motivated
two-foldly:

• As stated above, correlations between data and
algorithms are unknown, thus mean values could be
misleading.

• High cv:s are in a sense, more trusteable than low.
Low could be explained not only by a bad (wrong) hy-
pothesis, but alternatively by noise. High cv:s should
be more rare, hence more significant.

The selected match results are sorted by descending cv

before presentation. Also, the user could choose to thresh-
old low cv results out, upon querying the system.

Supplying the user with a list of match results, instead of
a single one, can also be two-foldly motivated:

• Similar situations has shown that it can be cruicially
important to be informed about uncertainties in

classification/recognition results, see [14].

• The user can make a relative interpretation of the cv:s,
which should be easier than interpreting a single value
(see section 6.2).

4.2.1 Correlations

This section considers possible correlations between cv:s,
and further motivates the choice of the simple match fusion
method presented above.

As a certain algorithm could handle different data sets,
one can not assume that cv:s obtained in different data are
independent. In the same way, a certain set of data could
be accessed by more than one algorithm. Hence one can
not assume that cv:s obtained by different algorithms are
independent. Furthermore, algorithms themselves could be
systematically correlated. This might also be the case for
sensors and their correponding data sets.

All possible correlations of the above can not be inves-
tigated in advance, and built into a match fusion method.
This is due to the fact that the system is intended to flexibly
add new data sources and algorithms, and combine them
into data-algorithm-combinations in runtime. This is done
without investigations of correlations and without update of
the match fusion method. Instead, it is believed that fusion
methods should be as robust aginst possible correlations as
possible.

5 Example

In this section, we will describe in detail how a query is
processed until a final answer is given to the user. The IR
and 3D data from the airborne system, described in section
3.3, are used. The 3D data is treated both in its raw for-
mat (3D point scatter and NIR reflectance data) and trans-
formed to a digital elevation model (DEM). Thus, we have
four different types of sensor data. Below we will analyse
the information retrieval concerning three vehicles placed
in open terrain.

Assume that the user enters the query “Report all main
battle tanks (MBTs) present in the one kilometer wide area
around the position (500, 500)”, where the specified area
covers targets A, B, and C. Since all tanks in the tar-
get model library are within the dimensions 7.4±0.52 ×
3.6±0.2 meters, these values are inserted into the query.
The query is then sent to the detection algorithm, which re-
turns three queries, one for each detected target in the area,
see table 1. The three queries are each sent to the four avail-
able sensor nodes (3D, DEM, NIR, and LWIR) for attribute
estimation. Twelve queries are returned from the attribute
estimation, see table 2.

The results from the attribute estimation are then sub-
ject to attribute fusion. The set of attributes, see Table 2,
is analysed using equation (1). The fusion of the attribute
estimates to prototypes is processed as below:

1. All attribute estimates regarding target A are consis-
tent and fused to one prototype of a target being ap-
proximately 6.78×3.78 meters in size.

2. All attribute estimates regarding target B are consistent
and fused to one prototype of a target being approxi-
mately 7.50×2.79 meters in size.

3. Two attribute estimates regarding target C (LWIR and
DEM) are consistent and fused to one prototype.

4. The 3D attribute estimate regarding target C cannot
be grouped with any other attribute estimate and thus
forms a separate prototype.

Thus, the result from attribute fusion is four prototypes,
see Table 3. Note this reduction in complexity. These pro-
totypes are returned to the KBS. Only one of the prototypes,
describing target A, is consistent with the MBT class. All
target models consistent with this prototype are extracted
from the target model library, and for each extracted model,
a query is sent to the model matching step. In this particu-
lar case, two models (representing two different MBTs) are
found. Since both LWIR data and 3D data are available,
two model matching algorithms are invoked.

From the model matching four evaluated hypotheses
are returned. Some results are shown in Table 4. With
the model match fusion currently used the hypotheses are
grouped per target type. The hypothesis are sorted for each
model on confidence value and the query with the highest
confidence value for each model is stored. In this example,
one query for the T72 model and one for the Leclerc model
is stored, see Table 5. These are returned to the user as the
final result. The two suggestions, with corresponding cv:s,
are hence the decision support given to the user.

Table 1: The input query for detection and the output queries. Empty fields are omitted (sensor, type, confidence value,
height, speed and temperature).

Field Input Target A Target B Target C

Class MBT MBT MBT MBT
Position (500, 500)±500 (560, 400)±20 (620, 460)±20 (590, 440)±20
Orientation (deg) 0–360 0–360 0–360 0–360
Length (m) 6.88–7.92 6.88–7.92 6.88–7.92 6.88–7.92
Width (m) 3.40–3.80 3.40–3.80 3.40–3.80 3.40–3.80

Table 2: Result of attribute estimation.
Target Sensor data Estimated Estimated Estimated
True class orientation length width
True Dimensions (deg.) (m) (m)

A 3D 316.1±2.3 6.34±0.82 3.49±1.02
MBT (T72) DEM 317.1±4.1 6.74±0.58 3.70±0.58
7.13×3.52 m NIR 317.2±4.9 7.00±0.70 4.00±0.70

LWIR 314.9±4.1 6.99±0.56 3.92±0.56

B 3D 335.2±2.0 7.30±0.69 2.64±0.83
Anti-tank gun DEM 335.4±3.1 7.45±0.44 2.72±0.44
7.42×2.78 m NIR 336.0±4.3 7.65±0.61 2.88±0.61

LWIR 333.4±3.5 7.60±0.48 2.92±0.48

C 3D 306.3±2.0 7.64±0.80 2.38±0.96
Truck DEM 305.6±6.5 7.97±0.92 2.58±0.92
8.40×2.50 m NIR Fail Fail Fail

LWIR 307.0±3.9 7.95±0.54 2.57±0.54

Table 3: The queries representing the four prototype after attribute fusion. The fields type, confidence value, height, speed
and temperature are omitted.

Field Target A Target B Target C Target C

Sensor All All 3D DEM/LWIR
Class MBT MBT MBT MBT
Position (562.6, 399.3)±0.3 (619.8, 458.8)±0.3 (591.1, 437.1)±∞ (591.4, 437.3)±0.5
Orientation (deg.) 314.8–318.4 333.2–336.9 304.3–308.3 301.1–310.9
Length (m) 6.43–7.16 7.12–7.89 6.84–8.44 7.41–8.49
Width (m) 3.36–4.28 2.44–3.16 1.42–3.34 2.03–3.11

Table 4: The four hypothesis, input values, and resulting cv are shown. The fields class, position, length, width, height,
speed and temperature are omitted.

Sensor 3D LWIR 3D LWIR
Type T72 T72 Leclerc Leclerc
Orientation (deg.) 314.8–318.4 314.8–318.4 314.8–318.4 314.8–318.4
CV 0.92 0.96 0.59 0.65

Table 5: The queries representing the two hypotheses after model match fusion. The fields height, speed and temperature
are omitted.

Field Hypothesis 1 Hypothesis 2

Sensor LWIR LWIR
Class MBT MBT
Type T72 Leclerc
CV 0.96 0.65
Position (562.6, 399.3)±0.3 (562.6, 399.3)±0.3
Orientation (deg.) 314.8–318.4 314.8–318.4
Length (m) 6.43–7.16 6.43–7.16
Width (m) 3.36–4.28 3.36–4.28

6 Discussion

This paper has described a fusion framework in a informa-
tion system that is applied to coarse-to-fine target recogni-
tion. An implementation of the system was described. The
fusion framework utilises the independence of each match-
ing result on the origin of the data sent to matching. Also,
it avoids possible unwanted correlations in results from dif-
ferent matchings, by not calculating e.g. mean values. Nev-
ertheless, the fusion methods are rudimentary. Several is-
sues remain more ore less unadressed, and call for future
work. Such issues are discussed in subsequent sections.

6.1 Incompleteness

When a model matching algorithm produces a cv, it locally
optimises and refines the attributes estimating the target’s
state. If the hypothesis is incomplete, so that one or more
of these attributes have not been estimated, the matching al-
gorithm has to estimate it from scratch. For example, if the
matching algorithm receives no estimate on the target’s ori-
entation, it needs to estimate it. This means that two match-
ing algorithms that receive the same incomplete hypothesis
risk to estimate the lacking attribute in different ways. For
the orientation on the ground, for instance, one would guess
that mainly two different orientations would be represented
(see section 4.1).

Thus, incompleteness of a hypothesis could mean that
two refined sets of attribute values, originating from that
hypothesis, are incompatible. Treating the states as equiva-
lent in the match fusion would then be wrong. Filtering of
match results could unvoluntarily exclude wanted results.

In the first fusion step, the fusing of coarse attribute esti-
mates, the method combines values from different sets into
the prototype. This makes the risk of an incomplete pro-
totype smaller. On the other hand, there is a risk that esti-
mates from different sets turn out to be incompatible, when
combined into the prototype. Note that the term ’incom-
patible’ is here used for different attributes. It means that if
no target can comply with a certain combination of attribute
values, that combination of attribute values is incompatible.
To avoid the risk of an incompatible prototype, the proto-
type could alternatively be constructed by choosing one of
the sets in the group (according to some strategy). The high
risk of incompleteness is however then brought back.

If a high degree of incompleteness in hypotheses is de-
tected before matching, the matching could possibly be per-
formed as a preliminary matching. The result from this
matching could then be used both as a preliminary result
sent to the user, and as a basis for better hypotheses. The
matching would then be rerun, eventually governing the fi-
nal result.

6.2 The cv:s

The generatings of cv’s are invisible to the fusion meth-
ods. It is assumed that the values are calibrated so that two
equivalently good matches between target data and model,
from two different combinations of data and algorithms,

yield the same cv. In the implemented system this has how-
ever shown to be a non-trivial issue. Should a certain al-
gorithm systematically produce higher cv’s than all other
algorithms, it might be overrepresented in the total result.
This should be avoided by a fusion method that is robust
against bad calibration. Treating the combinations of data
and algorithms as individual classifiers, each with a “vote”,
seems close at hand. This is however complicated by the
unknown correlations between different combinations of
data and algorithms, see section 4.2.1.

A definition of how cv should be interpreted is also hard
to give. If the output is a list of match results, the distribu-
tion of cv’s is assumed to supply the user with information
enough. If however only one match result is in the output,
the user is forced to interpret a single value. There are two
obvious possible interpretations, evidential and probabilis-
tic, respectively. Only knowing that the cv is a ’degree of
fit’, it seems as if an evidential interpretation is the most
suitable for high cv’s. This would read out something like
’heavy support’. A probalistic interpretation would read
out ’likely’. This would be a bit misleading, since more
than one model might obtain a high cv, especially if target
models are similar. For low cv’s, however, a probabilistic
interpretation — ’unlikely’— seems natural. The evidential
interpretation would now be the misleading one. It would
read out something like ’some support’, since evidence is
always supportive. However, a categorisation of obtained
cv’s into ’high’ and ’low’ is generally not straight-forward,
which further complicates the task.

7 Conclusions

The two-step nature of the target recognition process opens
the possibility to an attribute fusion step imbedded in the
process. Thanks to the quantitative matching, the attribute
fusion step can here be added without risk of data incest.
The purpose of this attribute data fusion step is to cap-
ture different, distinct initial interpretations of the data, and
make it possible to inference over these.

Further work needs to be done on the problem of incom-
pleteness. Rules for handling situations when prototypes
are incomplete needs to be tested with respect to computa-
tional feasibility etc.

The second fusion step is a sorting which should be made
according to user preferences. Ideally, the user ends up with
a list of cv’s that reveals the truth about the target. However,
more work is needed to ensure that the result is a valuable
desicion support also in the extreme situations - when the
resulting list of cv’s is very large, or contains only one item.

Evaluation of the system has been held back by lack of
data. In the future, simulated data is expected. Evaluation
should then preferrably be made with true end users — to
investigate whether a list of match results is an appropriate
level of decision support or not.

References

[1] Egils Sviestins. A synergetic partnership. Swedish Jour-
nal of Military Technology (Militärteknisk Tidskrift) (in
Swedish), (1):14–19, 2003.

[2] B-L. Tseng, C-Y. Lin, D. Zhang, and J.R. Smith. Improved
text overlay detection in videos using a fusion-based classi-
fier. In Proc. of the 2003 Int. Conf. on Multimedia and Expo,
pages 473–476, Baltimore, MD, USA, 6–9 July 2003.

[3] G. Powell, D. Marshall, R. Milliken, and K. Markham. Data
fusion of flir and ladar in autonomous weapons systems. In
Proc. of the 6th Intl. Conference on Information Fusion;
’Fusion -03’, pages 350–357, Cairns, Australia, 8–11 July
2003.

[4] A.M. D’Costa and A.M. Sayed. Data versus decision fu-
sion for classification in sensor networks. In Proc. of the 6th
Intl. Conference on Information Fusion; ’Fusion -03’, pages
350–357, Cairns, Australia, 8–11 July 2003.

[5] Richard J. Hathaway and James C. Bezdek. Fuzzy c-means
clustering of incomplete data. IEEE. Trans. on Systems, Man
and Cybernetics — Part B:Cybernetics, 31:735–744, 2001.

[6] Mats Bengtsson and Johan Schubert. Fusion of incomplete
and fragmented data. Technical Report FOI-R–0047–SE,
Command and Control Systems Dept, Swedish Defence Re-
search Agency (FOI), Linköping, Sweden, 2001.

[7] Erland Jungert and Christina Grönwall (eds.). From sen-
sors to decision — towards improved situation awareness in
a network centric defence. Technical Report FOI-R–1041–
SE, Command and Control Systems Dept, Swedish Defence
Research Agency (FOI), Linköping, Sweden, 2003.

[8] Jörgen Ahlberg and Tobias Horney. An information system
for target recognition. In Proc. of SPIE Defense and Secu-
rity Symposium 2004; Multisensor, Multisource Information
Fusion: Architectures, Algorithms and Applications, pages
163–175, Orlando, FL, USA, 12–16 April 2004.

[9] Karin Silvervarg and Erland Jungert. Visual specification
of spatial/temporal queries in a sensor data independent in-
formation system. In Proc. of the 10th Int. Conf. on Dis-
tributed Multimedia Systems, pages 263–268, San Francisco,
CA, USA, 8–10 September 2004.

[10] Shi-Kuo Chang, Gennaro Costagliola, Erland Jungert, and
Francesco Orciuoli. Querying distributed multimedia
databases and data sources for sensor data fusion. IEEE
Trans. on Multimedia, 6(5):687–702, 2004.

[11] Shi-Kuo Chang and Erland Jungert. Query languages for
multimedia search. In Michael S. Lew, editor, Principles of
Visual Information Retrieval, pages 199–217, Springer Ver-
lag, Berlin, Germany, 2001.

[12] Shi-Kuo Chang, Gennaro Costagliola, and Erland Jungert.
Multi-sensor information fusion by query refinement. In S-
K. Chang, Zen Chen, and Suh-Yen Lee, editors, Recent Ad-
vances in Visual information Systems, volume LNCS 2314,
pages 687–702, Hsin Chu, Taiwan, March 2002. Springer
Verlag, Berlin, Germany, 2002.

[13] Tobias Horney, Erland Jungert, and Martin Folkesson. An
ontology controlled data fusion process for a query lan-
guage. In Proc. of the 6th Intl. Conference on Information
Fusion; ’Fusion -03’, pages 530–537, Cairns, Australia, 8–
11 July 2003.

[14] S. Banbury, S. Selcon, M. Endsley, T. Gorton, and K. Tat-
lock. Being certain about uncertainty: how the representa-
tion of system reliability affects pilot decision making. In
Proc. of the Human Factors and Ergonomics Society 42nd
annual Meeting, pages 36–39, Chicago, IL, USA, 5–9 Octo-
ber 1998.

FOI-R--1787--SE

FOI-R--1787--SE
Appendix H

Agent architecture for a query language in NVD-Environment

(in Swedish), FOI-memo 1025, September, 2004.

Horney, T., Jungert, E.
121

2004-09-29 FOI Memo 1025

Agentarkitektur för frågespråk i NBF-miljö
Tobias Horney och Erland Jungert
Inst. för data- och informationsfusion
Avd. Ledningssystem
FOI, Linköping

Introduktion
I en nätverksbaserad värld med en stor mängd sammankopplade plattformar och sensorer
behövs ett ledningssystem som på ett bra sätt kan ta tillvara all information i nätet för att
kunna presentera en konsistent och väl anpassad (”filtrerad”) lägesbild till olika
användare, allt från soldaten i fält till högsta militära ledningen. För att stötta användaren
i hanteringen av all denna information har ett frågebaserat informationssystem utvecklats.
Frågespråket heter SQL och finns beskrivet i [1, 2].

Problemet som behandlas i detta memo är hur frågespråket SQL automatiskt kan hitta
lämpliga datakällor på nätet och hur systemet kan få åtkomst till data från dessa källor.

Bakgrund
Uppkopplade på nätet finns diverse plattformar som kan vara allt från en soldat till en
UAV, ett markgående spaningsfordon, ett fartyg på havet eller en fast monterad stolpe på
vilken man kan montera en eller flera sensorer. Sensorer kan i sin tur vara allt från
ögonen eller öronen på en soldat till en radar eller en elektrooptisk sensor i en UAV.

Hela konceptet mappas enkelt från den militära världen till exempelvis civila
katastrofsituationer där en konsistent lägesbild av ett område önskas.

 I figur 1 ges en schematisk beskrivning av hur informationsflödet från sensor till
användare kan se ut.

Figur 1. Schematisk beskrivning av informationsflöde från sensor till användare.

Sensorer sitter på plattformar och levererar sensordata. Med sensordata menas i detta
sammanhang data från en sensor innan någon måldetektion har genomförts. Exempel på

Fysiska
objekt

Plattform

Sensor 2

Sensor 1

Sensor-
modell

Signal-
behandling

Fusion FusionSensordata Observation Obs/Spår ...

Styrning/Återkoppling

2004-09-29 FOI Memo 1025

sensordata är således en IR-bild, en radarplott, en SAR-bild och en punktskur från en
laserradar.

Sensordata i sig är inte mycket värda. För att få ut något värde ur sensordata måste man
extrahera information ur datamängden, exempelvis genom måldetektion. Med
måldetektion menas här att ma n i sensordata försöker detektera ett eller flera ob jekt som
man är intresserad av att presentera i lä gesbilden. Objekten man försöker detektera kan
vara exempelvis trupper, fordon eller geografiska formationer. Måldetektion kan göras
automatiserat med datorbaserad signalbehandling eller manuellt (den mänskliga hjärnan
är duktig på exempelvis detektion av fordon i bilddata). Att kombinera datorns och
människans förmågor är naturligtvis också möjligt. Måldetektioner kallas här
observationer. En observation är alltså något som observerats i sensordata. En
observation har ett eller flera attribut, exempelvis position, hastighet och objekttyp på det
som observerats. Det är viktigt att förstå och på ett robust och tillförlitligt sätt hantera alla
de osäkerheter som alltid finns i en observation.

Ofta är sensorn som levererar data och måldetektionen hårt kopplade, exempelvis i fallet
där sensorn är det mänskliga ögat och måldetektionen görs i den mänskliga hjärnan, eller
i fallet där radarplottar bara finns internt i radarsystemet och målspår är det som
radarsystemet levererar.

Nu är inte problemet löst ens när man nått så långt att man har observationer på allt man
vill visa i sin lägesbild. För att bygga en bra lägesbild utifrån alla observationer krävs en
lång rad steg där information förfinas, vägs ihop och utvärderas, dvs fusioneras. Den
fusionerade informationen måste sedan presenteras på ett lämpligt sätt för att användaren
av det ledningssystem där lägesbilden presenteras ska kunna tillgodogöra sig
informationen på ett så bra sätt som möjligt. Om ingen filtrering görs, utan all
information som finns tillgänglig trycks ut till användaren, är risken stor att han kommer
drabbas av alldeles för mycket information. Det sätt vi använder för att ge användaren
tillgång till den lägesbild han behöver i olika situationer är att ge honom möjlighet att
kunna ställa frågor till systemet, exempelvis ”Visa alla terränggående fordon som
passerat genom område x under tidsintervallet y”.

Problem
Användaren av ett informationssystem ska inte behöva bry sig om vilka plattformar,
sensorer och databaser som finns tillgängliga för att besvara hans fråga. Systemet ska
istället automatiskt hitta lämpliga datakällor (sensorer, databaser, etc) med den
information som behövs för att besvara frågan.

Statusläge
Arbete med hur ett system kan välja lämpliga sensordata och lämpliga algoritmer för att
bearbeta dessa sensordata för att besvara en specifik fråga från användaren har gjorts
tidigare [3, 4].

2004-09-29 FOI Memo 1025

I detta memo beskrivs en ansats för en annan del av problemet, nämligen hur systemet
automatiskt kan hitta datakällor på nätet och hur systemet kan få åtkomst till data från
dessa källor (sensorer etc).

Ansats
För att lösa problemet föreslås en arkitektur baserad på intelligenta agenter, med två typer
av agenter. Den första typen är en resursallokeringsagent och den andra en
dataåtkomstagent.

Intelligent agent, vad är det?
Agenter är autonoma enheter som kan ses som att de uppfattar sin omgivning genom
sensorer och agerar via effektorer. Agenter är i praktiken datorprogram som exekverar i
någon beräkningsenhet. Att säga att de är autonoma betyder i någon utsträckning att de
har kontroll över sitt beteende och kan agera utan inblandning från människor eller andra
system. Agenter uppnår mål eller utför uppgifter för att uppfylla de mål de designats för.
Generellt sett kan dessa mål och uppgifter vara kompletterande eller i konflikt med
varandra. Att de är intelligenta betyder att de uppfyller sina mål och utför sina uppgifter
så att några givna prestandamått optimeras. [5]

Varför använda intelligenta agenter?
Nedan presenteras några argument för att använda intelligenta agenter [5].

Effektivitet
Agenter kan arbeta asynkront och parallellt och detta kan resultera i förbättrad total
prestanda (såvida overheaden som uppkommer pga koordination mellan agenterna inte
kostar mer än man tjänar).

Robusthet
Om en agent misslyckas betyder inte det nödvändigtvis att hela systemet blir värdelöst,
eftersom andra agenter i systemet kan överta dess uppgifter.

Skalbarhet
Systemet kan anpassas till ett större problem genom att addera fler agenter utan att detta
nödvändigtvis påverkar de andra agenterna negativt.

Kostnad
Det kan vara mycket mer kostnadseffektivt än ett centraliserat system, eftersom det sätts
ihop av små delsystem med låg kostnad per enhet.

Systemutveckling och återanvändbarhet
En agentbaserad arkitektur medger att enskilda agenter kan utvecklas separat av olika
specialister och att hela systemet kan testas och underhållas lättare. Dessutom kan det
vara möjligt att konfigurera om och återanvända agenter i o lika applikationer och
scenarier.

2004-09-29 FOI Memo 1025

Agenter
I detta avsnitt beskrivs de agenter som föreslås. Först ges dock en övergripande
beskrivning av systemet de är tänkta att verka i.

Systemets funktionalitet och struktur
I figur 2 ges en schematisk beskrivning av strukturen för systemet agenterna är tänkta att
verka i.

Figur 2. Schematisk beskrivning av systemets struktur.

För att få hög robusthet krävs att systemet är distribuerat och att viktig information finns
lagrad på flera ställen i nätet (redundans). Eftersom mängden sensordata i ett sådant här
system är mycket stor krävs att data behandlas så nära källan som möjligt och att förädlad
information kommuniceras mellan de olika noderna i nätet. Naturligtvis kan man tänka
sig situationer där man exempelvis vill tanka ner rå sensordata från en flygande plattform,
men detta måste vara undantagsfall. Alla delar i systemet bör uppträda så autonomt som
möjligt så att kommunikationen kan hållas nere, eftersom bandbredden på olika
kommunikationslänkar kommer att vara begränsad, men kanske ännu viktigare i många
fall är att utgående kommunikation röjer en plattforms närvaro.

Det gäller alltså att på ett intelligent sätt kommunicera så lite information som möjligt vid
så få och lämpliga tidpunkter som möjligt. Intelligenta agenter lämpar sig väl för denna

2004-09-29 FOI Memo 1025

typ av autonomt uppträdande. Exempelvis kan de förhandla med andra agenter (som har
andra mål än agenten själv) om vad som är lämpligt att göra i olika situationer.

En schematisk beskrivning av hur en fråga från en användare leder till att agenter skapas
finns i figur 3.

Figur 3. Schematisk beskrivning av hur en fråga leder till att agenter skapas.

Resursallokeringsagent
När en användare ställer en fråga skapas en resursallokeringsagent. Denna agent är sedan
ansvarig för att leta upp och hålla reda på de resurser som behövs för att besvara frågan
över tiden. Resurser som agenten letar upp och håller reda på är sensordata, algoritmer
för behandling av sensordata (måldetektionsalgoritmer etc), observationer och målspår
som kan behövas för att besvara frågan. Dessa resurser finns tillgängliga antingen i
databaser eller i sensorplattformar, men är i båda fallen åtkomliga via nätet.

Det är resursallokeringsagentens uppgift att avgöra vilka resurser som är lämpliga för att
besvara den givna frågan. En mycket viktig del i detta är att resursallokeringsagenten
måste ha tillgång till information om resurserna (s.k. meta-data), bla. information om
vilket område sensordata täcker och vid vilken tidpunkt den samlats in. Antingen måste
alla sensorer leverera meta-data (täckningsinformation m.m.) hela tiden till en databas
med meta-data, eller får agenten fråga alla sensorresurser på nätet vem som har data för
det område och det tidsintervall som frågan gäller och sedan från sensorresurserna som
har lämpliga data svara. Den förra tekniken kan kallas ”meta-data push” och den senare
”meta-data pull”.

Det är inte bara sensordata resursallokeringsagenten letar efter utan även förädlad
information såsom observationer och målspår av efterfrågade objekt. Dessa kan finnas
lagrade i databaser eller hämtas online från plattformar.

2004-09-29 FOI Memo 1025

Resursallokeringsagenten ska dessutom leta upp lämpliga måldetektionsalgoritmer som
kan användas på de sensordata som hittats. Vilka måldetektionsalgoritmer som är
lämpliga och därför ska letas upp väljs med hjälp av det ontologiska kunskapssystem som
tidigare utvecklats [3, 4]. Genom att distribuera ut lämpliga delar av det ontologiska
kunskapssystemet till olika noder i nätet kan en fråga exekveras på ett distribuerat sätt
efterhand som agenten hittar lämpliga resurser. Algoritmerna kan lagras lokalt i
informationssystemet eller någon annanstans på nätet, exempelvis i
sensordatabearbetningsnoder, där algoritmerna kan exekveras. Genom att ha många
sådana noder kan algoritmerna exekveras på ett distribuerat sätt, gärna så nära datakällan
som möjligt. Man kan med fördel ha en sensordatabearbetningsnod i en sensorbärande
plattform.

Eftersom resursallokeringsagenten är ansvarig för att hålla koll på lämpliga resurser för
att besvara frågan över tiden måste den fortsätta leva och leta resurser så länge frågan är
aktiv. En fråga kan mycket väl behandla tidsintervall som sträcker sig in i framtiden,
exempelvis ”Visa alla stridsvagnar i område x från en timme bakåt i tiden och två timmar
framåt i tiden”. I en sådan fråga kommer agenten fortsätta leta efter resurser för att
besvara frågan i två timmar.

Det är även möjligt att låta agenten försöka få tag i lämpliga resurser genom att
exempelvis styra sensorer av lämplig typ till det intressanta området, dvs man kan låta
agenten sköta sensorstyrning. Låter man många agenter ”tävla” om de tillgängliga
resurserna på ett intelligent sätt kan man använda detta för att hantera resurserna på ett
lämpligt sett (s.k. sensorstyrning) för at t optimera den globala lägesbilden. Denna
möjlighet med resursallokeringsagenten är ännu ej utredd, men stor potential torde finnas.
Det arbete som hittills gjort är fokuserat på att låta resursallokeringsagenten hitta lämplig
information och hålla redan på den.

Dataåtkomstsagent
När resursallokeringsagenten har allokerat resurser för att besvara frågan skapas en
dataåtkomstagent för varje sensordata-, observations- och målspårsresurs.

Om resursen är sensordata kommer dataåtkomstagenten ta med sig information om vilka
algoritmer som ska appliceras för att få lämpliga observationer. En lämplig
sensordatabearbetningsnod väljs (en bearbetningsnod med lämpliga prestanda och ledig
beräkningskraft så nära datakällan som möjligt) av agenten och algoritmerna appliceras
på aktuella data. Agenten vet hur den ska komma åt sensordata och hur den ska applicera
algoritmerna i bearbetningsnoden. Agenten tar sedan resultatet (observationerna) och
levererar dessa till informationssystemet där vidare bearbetning (fusion,
resultatpresentation etc) kan ske. Man kan även tänka sig algoritmer som skapar målspår
utifrån sekvenser av sensordata (istället för observationer). Om detta sker levererar
agenten målspåren till informationsystemet, se mer i stycket om målspår nedan.

Om resursen är en observation levererar agenten denna observation direkt till
informationssystemet för vidare bearbetning.

2004-09-29 FOI Memo 1025

Om resursen är ett målspår levererar agenten målspårsuppdateringar till
informationssystemet under den tid som frågan är aktiv. Dataåtkomstagenterna lever
alltså kvar så länge frågan och målspåret lever, därefter upphör de att existera.

Slutsats
Intelligenta agenter lämpar sig tillsynes väl för att på ett robust och intelligent sätt kunna
hitta och få åtkomst till lämpliga resurser på nätet i det framtida nätverksbaserade
försvaret. Med hjälp av agenterna kan frågor från användaren av ett informationssystem
exekveras på ett distribuerat sätt. Detta är bra ur både beräknings- och
robusthetssynpunkt.

Tillgång till data om sensordata (meta-data), bla. täckningsområden för insamlad data är
en nyckelfråga för att resurserna i nätet ska kunna utnyttjas på ett bra sätt.

En agentbaserad arkitektur medger att enskilda agenter kan utvecklas separat av olika
specialister och att hela systemet kan testas och underhållas lättare. Dessutom kan det
vara möjligt att konfigurera om och återanvända agenter i o lika applikationer och
scenarier.

Koppling till tjänstekonceptet
Användningen av intelligenta agenter mallar in mycket väl i tjänstekonceptet. Olika typer
av tjänster på olika nivåer finns tillgängliga i nätet. Tjänsterna har väldefinierade
tjänstegränsytor som används av agenterna för att komma åt tjänsterna.

Referenser
[1] E. Jungert, C. Grönwall et al., “From sensors to Decision – Towards

improved situation awareness in a network centric defence”, FOI-R--1041--SE,
FOI Linköping, december 2003.

[2] S.-K. Chang, G. Costagliola, E. Jungert, F. Orciuoli, “Querying

Distributed Multimedia Databases and Data Sources for Sensor Data
Fusion”, accepted for publication in the journal of IEEE transaction on
Multimedia, 2004.

[3] T. Horney, “Design of an ontological knowledge structure for a query language

for multiple data sources”, FOI-R—0498—SE, FOI Linköping, maj 2002.

[4] T. Horney, E. Jungert, and M. Folkesson, “An Ontology Controlled Data Fusion

Process for Query Language,” Proceedings of the International Conference on
Information Fusion, Cairns, Australien, juli 2003.

 [5] G. Weiss (ed), ”Multiagent Systems – A Modern Approach to Distributed

Artificial Intelligence”, The MIT Press, Cambridge, Massachusetts, London,
England, 2000.

FOI-R--1787--SE
Appendix I

Determination of Terrain Features in a Terrain Model from Laser Radar
Data

3-D reconstruction from airborne laserscanner and InSAR data, Dresden, Germany, October 8-

10, 2003.

Lantz, F., Jungert, E., Sjövall, M
129

DETERMINATION OF TERRAIN FEATURES IN A TERRAIN MODEL FROM LASER RADAR DATA

Fredrik Lantz, Erland Jungert, Mats Sjövall
Swedish Defence Research Agency (FOI)
Box 1165, S-581 11 Linköping, Sweden

tel +46 13 37800, fax +46 13 378050
{jungert, flantz}@foi.se

COMMISSION III, WG 3

KEY WORDS: Digital terrain model, laser radar data, terrain features, symbolic structures, matching

ABSTRACT:

Determination of terrain data features in a high resolution terrain data model are required in a large variety of applications where visu-
alization is an important aspect. This is a complex problem because a terrain model is generally a mapping of the reality into a contin-
uous 3D surface model of arbitrary shape, requiring an extremely large amount of data especially when a high resolution is required.
Data from such a terrain data model need to be efficiently stored, maintained and visualized. Furthermore reduction of the stored data
without loss of relevant information is required. In this work a terrain model that allows the determination of various terrain features
through symbolic filters is proposed. The filters are compositions of symbolic surface elements. It will be demonstrated how these fil-
ters can be used to obtain objects and object features for visualization and other purposes.
1 INTRODUCTION

Development of digital terrain models has for a long time been
subject to extensive research efforts, see e.g. (Maguire 1991).
The driving force behind these efforts is a large number of appli-
cations, e.g. visualization of the terrain in three dimensions,
determination of the line of sight or the areas covered by specific
sensors. Two main data structures for representation of digital
terrain models can be found. The first one is the gridded model,
which is favorable because it is regular but may require the stor-
age of too many dense data point if a high resolution is required.
At the other extreme we have the TIN model (triangulated irreg-
ular network) for which a fairly large number of approaches has
been proposed. The advantage of this structure is that it requires
a smaller number of data points than the grid structure given the
same resolution. The irregular structure requires more complex
algorithms both in generation and analysis and it may occasion-
ally result in inefficient storage structures as well. When the pur-
pose of the terrain model is not only to allow visualization or
data analysis but also to query data represented at a very high
resolution neither of these two structures is useful. The grid
structure, because it will require too many data points and the
TIN model because of the complexity of the irregular structure.
Besides, neither of these two structures are well suited to appli-
cations where matching is an important and necessary ingredi-
ent. Consequently, another approach must be taken when such
operations are required.

The long term goal in this work is to design a query language
based on a type of query-by-example technique that should be
able to work on three dimensional data ranging from a very high
resolution (≤ 0.5 m) and up to a resolution of, say, 30 m. The
upper limit is here determined from the observation that objects
with a size of a couple of hundred meters in extension corre-
spond to the maximum size of the requested objects in our appli-
cations. The data used here for creation of the terrain model is
registered by a scanning airborne laser-radar called TopEye
(property of TopEye AB, Sweden). The terrain model can be
described as a hybrid between a grid structure and a triangle
structure and can simply be described as a regular grid structure
augmented with a number of significant irregular data points and
lines. The atomic parts of this structure are called a tile. Each
such elementary structure can be triangulated in isolation.
Another advantage is that these tiles can be stored in a database
in accordance to a relatively simple structure (Lantz 2000;Elm-
qvist 2001b) from which data can be efficiently accessed. A fur-
ther advantage is that the data structure will allow the generation

of a high-resolution terrain model with less data points than an
ordinary grid structure for the same resolution; this has been
demonstrated in (Lantz 2000). The main advantage of this struc-
ture is that it can be transformed into a symbolic structure, which
efficiently will allow various types of matching processes. Oper-
ations that can be supported by such a structure are e.g. detection
of changes over time (change detection) in the terrain and detec-
tion of specific terrain objects/features defined by the users as
well as a combination of the two. This work is primarily con-
cerned with the development of a symbolic representation of the
terrain model which will be demonstrated for an application
where the purpose is to determine the position/existence of user
defined objects; this will be illustrated with a number of exam-
ples. Apart from being an appropriate structure for querying, the
structure can also be used as an index for a height model and
should, as such, be seen as a complement to a height model and
not as a replacement. The symbolic structure can also be used
for determination of drivable terrain which is outside the scope
of this work.

Some related work concerned with techniques for querying ter-
rain data for various features and objects can be found in the lit-
erature. Although at this time no symbolic query structure has
been found. Despite this, some of the given approaches are quite
interesting. In (Bradly 1999) Bradley presents a high-resolution
terrain database for a gridded representation covering parts of
Mars and where data should be stored in a relational database
system. Queries can be written in SQL. The main purpose is to
explore the planet and for that reason a fairly large number of
terrain features have been determined. Clematis et al. (Clematis
1998) describes a technique for parallel fuzzy queries applied to
a spatial data model. A 3D-query space for GIS is described by
Fritsch and Schmidt (Fritsch 1994). Their system includes digi-
tal terrain data described in terms of a conceptual model called a
NIAM-diagram and by also using the entity-relationship model
these diagrams can be used to describe occurring object relations
in a powerful way. Queries can be formulated in standard SQL.
The database is not limited to just terrain data, other types of
geo-information is integrated as well. The terrain database
includes gridded data and a type of hybrid TIN-structure.

2 THE PROBLEM DOMAIN

The main purpose of this work has been to use laser radar data in
developing a technique for symbolic description of the terrain
and to create a structure with the following characteristics:

- The symbolic terrain elements used for description of the ter-
rain should correspond to a classification of a tile.

This problem corresponds to identifying the members of a class
of surface structures, where each member belongs to a particular
category. These members can be interpreted in a symbolic way
and they will subsequently be called symbolic tiles. Furthermore

- The symbolic tiles should also be used for identification of dif-
ferent terrain objects or features. This process is carried out
by defining a set of symbolic filters. Each such filter should
correspond to a composition of a set of connected symbolic
tiles. To determine the requested objects a suitable and effi-
cient search strategy must be provided as well.

Examples of objects that should be possible to determine by
means of the filters are, e.g. ditches and fields for landing of heli-
copters. However, the latter type requires also information about
various types of land cover classes such as lakes or forests since
a helicopter cannot land on areas covered by such object classes.
The terrain must also be available in different resolution levels,
which however, will not be discussed further in this paper. As
already mentioned, the eventual query language must allow que-
ries where the filters, which may be represented in multiple reso-
lutions, will be used for determination of more or less arbitrary
three dimensional terrain objects. The method should thus be
applicable to the search for objects of all sizes.

3 SPATIAL CATEGORIES

3.1 The tiles

In order to determine the spatial categories of the terrain, the
original sensor data is pre-processed to eliminate non-terrain
data, e.g. trees and buildings (Elmqvist 2001a). The pre-process-
ing step produces a surface defined on a rectangular grid with 0.5
m between grid points. Formally, given a compact and connected

domain , a finite number of points

and a function f: ,

is called the sampled

surface corresponding to f. The purpose of this section can
loosely be stated as to find a more suitable surface representa-
tion, that can be substituted for in subsequent spatial
reasoning tasks, e.g. filtering for detection and visualization of
certain terrain objects.

The first step in creating such a surface representation is to parti-
tion the domain into sub regions and to define a class of sub
functions with non-zero only support on those sub regions. Let

be a regular partition of into square

regions with sides 2 m and let be any set of

functions : where

• fj is continuous

•

• fj(x,y)=0

A pair is called a tile and the set of all tiles over is

T. A surface model consisting of tiles will be determined by sub-

stituting every (sampled) sub surface
, j=1,...,n by a particu-

lar tile, chosen from a carefully selected set. The definition of
that set will be presented in the following sections.

3.2 Overview of the process

The next step is to define a number of categories of tiles, i.e. the
spatial categories. A spatial category is a set of tiles with similar
features, e.g. with similar inclination or with edges at similar
locations. The definition of the categories is carried out in three
steps. Firstly, a set of representative tiles is deter-

mined. Secondly, a suitable distance metric dist: +
for comparing the similarity of the tiles is needed. Finally, a cat-
egory [r], can be defined, using the metric dist, as the
set of all tiles that are more similar to r than to any other

. In practise, the categories are never calculated, only
their representatives. After definition of the categories, every
representative (and thus every category) is given a partially sym-
bolic interpretation by a unique string, called a symbolic tile.
Formally, this is done by a Symbolic Interpretation mapping
SI: +, where A={0,...,8},

B={0,1,2} and = {(uj,vj)}, is the set of centre points of ,

j=1,...,n. A sub surface is compared with every representa-

tive on by first subtracting the mean of f over and

then using a discrete counterpart of the above distance metric.
The best match rk is selected and is substituted by the string

s such that SI(rk)=s.

3.3 Defining the representatives

The complete, formal definition of the representatives is beyond
the scope of this work. Instead, an informal but more easily
accessible presentation will be given. Three different representa-
tions are necessary to achieve a sufficiently accurate surface
model. The types respectively describe sub-surfaces using:

1. Two linear functions with non-zero support on
separate parts of the square, but where their
composition is continuous.

2. One single linear function.
3. A function with a single extreme point in a

specified location.

Figure 1. The 16 allowed partitions of a square region.

To describe the first type, consider the 16 partitions of any
square into two parts shown in figure 1. Every representative

of this type is completely determined by one of these defining
partitions, together with a certain combination of linear func-
tions and . In this work, there are nine such combinations

for each partition. The functions and are chosen such

that their composition is continuous and the sub surface associ-
ated with a part has a direction of the inclination (in the xy-
plane) among those shown in figure 2. Only three directions are
allowed for a partition, zero inclination and the two opposite

Ω ℜ
2

⊆
P xi yi,(){ } Ω⊆= P ℜ→

ψ P f(,) xi yi, f xi yi(,)(,) xi yi(,) P∈{ }=

ψ P f,()

Γ γ1 … γn,,{ }= Ω

FΓ f 1 …, f n{ , }=

f j ℜ
2

ℜ→

f j x y,() xd yd

ℜ2
∫ 0=

x y,()∀ γ j∉

γ j f j,() Ω

ψ j x y f x y,(), ,() x y,() γ j P∩∈{ }=

REP T⊆
T T× ℜ→

r REP∈

k REP∈

REP M Γ A× B× A× A ℜ××→
M Γ γ j

ψ j

γ j P∩ γ j

ψ j

γ j

g j h j
g j h j

inclinations that are perpendicular to the direction of the parti-
tion edge. The allowed directions for two partitions are shown in
figure 3. The representatives can be quite similar, only differing
in the location of the edge that partitions the square. In fact, all
representatives of this type can be seen as variations of the basic
category forms, shown in figure 4, rotated and translated to “fit”
the partition. The second type of representative can be seen as a
sub type of the first. This can be seen by considering the case
where the two functions have exactly the same partial deriva-
tives, e.g. as for the top left tile in figure 3. Note that some repre-
sentatives are given by more than one partition, e.g. the flat
square is given by every partition.

Figure 2. The allowed values for the partial derivatives for a sub
function, displayed as vectors seen from the centre of the square.
Also shown are the names of the points defining an inclination

and a partition (at the head of the arrow).

Figure 3. The allowed representatives for two partitions. An
arrow indicates the inclination direction for that part. No arrow

means the part is flat.

A common terrain feature that is poorly approximated by the
above defined representatives is extreme points at other locations
than the corners. Therefore ten additional representatives, five
minima and five maxima, are allowed with extreme points at the
middle of the four borders of the square and at the middle point
of the entire square. All together this makes 115 different cate-
gories; 96 of type 1, 9 of type 2 and 10 of type 3.

3.4 The categories

A general distance metric for comparing similarity between tiles
is:

.

This metric will determine different categories depending on
which norm that is used. For the examples in the following sec-
tions, the norm used is the integral over absolute value.

At last, the category determined by can be defined as
[r] = .

As mentioned above, there is no need to calculate the categories,
but only the representatives. The calculation of which category a
certain belong to can be carried out straightforwardly by

computing the distance to every representative tile. One impor-
tant exception to this rule is the representative with partial deriv-
atives all zero, i.e. the totally flat representative. To compensate
for the fact that tiles with uninteresting, small height differences
will be given undue consideration, all sub surfaces with norm
below some pre-determined threshold will be considered a mem-
ber of the flat category.

3.5 A symbolic interpretation

The symbolic interpretation SI is a composition of five sub map-
pings, Position: , Inclination: , Featur-

estate: , Featureorientation: and
Norm: +. Position is defined as Position(, fi)=

(ui,vi) and . Featureorientation is an

encoding of the partition of the tile in the case the tile is of type
1. A particular partition is identified by the pair (a,b) of points on
the border of the square that it divides. The points are named as
shown in figure 3. For a tile of type 3, Featureorientation map the
tile to (a,a) if a is the location of the extreme point. For type 2,
the encoding is irrelevant. Inclination is an encoding of the aver-
age inclination direction of the tile. As in the case of Featureori-
entation, the set A is used to identify an inclination direction.
Naturally, if two sub regions are inclined in opposite directions
the average inclination is zero. Featurestate encode a deviation
from Inclination and is used to differentiate between tiles with
the same average inclination. The deviation can be positive, 1,
negative, 2 or zero, 0. In figure 4 the top row corresponds to fea-
turestate(r) = 1 and the bottom row to 2.

Figure 4. Basic category forms.

4 FILTER STRUCTURES

4.1 Finding segments

The filter matching technique is linear and the filters correspond
to a sequence of connected symbolic tiles describing the feature
that will be subject to the search. The search is carried out by
applying the filters across the given area of interest (AOI), i.e.
the given terrain model, to find the requested terrain features.
The approach taken here is to use the specific and characteristic
cross-sections, which exist for all terrain formations. For
instance, a hill has always slopes going either upwards or down-
wards depending on the position of the viewer. Thus any cross-
section of a hill can first be described with an upward directed
slope followed by a slope directed downwards. A ditch can be
described with an opposite structure. At a conceptual level the
cross-section of a terrain formation consist of a start segment, a
possible middle segment and an end segment, see figure 5.

Figure 5. The filter structure to be applied to the cross-section of
a ditch

The filter can be of different size depending on the type and size
of the requested terrain feature. Consequently, the search strat-
egy must be sufficiently flexible to accommodate these demands.
It turns out that a two level search strategy is the most appropri-
ate. The simplest high level search, i.e. tile indexing can be
based on row-ordering (Worboys 1995). This type of search
algorithm explores the tile structure row by row, from top to bot-

1

234

5

6 7 8

0

γ j k j,() γ l kl,(), T∈

dist γ j k,
j

() γ l kl,(),() k j k j⁄() kl kl⁄()–=

r REP∈
k k T∈ rl REP∈()∀() dist k r,() dist k rl,()≤()()∧{ }

ψ j

REP M Γ→ REP A→
REP B→ REP A A×→
REP ℜ→ γ i

Norm γ i f i,() f i=

tom, and column by column, from left to right, see figure 6.

Figure 6. All possible search directions of a 4 x 4 filter (a) and
the orthogonal search directions of a simplified search (b).

Figure 7. Approximate orientation of long thin objects (bold
lines at the edge of the object). Filters applied in two directions

(grey boxes) will find objects in all orientations.

By applying the simplified search in horizontal and vertical
directions the two filters will find the objects corresponding to
all possible orientations. Intuitively it seems like two more filters
may be necessary to find the diagonal cases but as can be seen in
figure 7, this is not the case. Some minor problems may arise
when the simplified search is used. The filters cannot be given a
width equal to the maximum width of the terrain formation if the
terrain structure has an orientation that is diagonal. The width of
the filter must in such a case be somewhat larger than the actual
terrain formation. An approximation that is certain to find the
formations in these cases is the sum of the width of the horizon-
tal and the vertical filters, i.e. a choice that resembles the triangle
inequality. Another obvious consideration in the search is that
the filters should not be applied such that any part goes outside
the edge of the AOI.

As a result of the first matching step a large number of segments
will be found. To find out which of these segments that are part
of the feature that is searched for adjacent segments must first be
connected. To complete this process, two different approaches
have been developed.

Figure 8. Illustration of the vertical segment search.

4.2 Connecting segments

To connect adjacent segments into objects a search is applied
from top to bottom and from left to right. Segments found in step
1 (section 4.1) are connected only if the segments horizontally or
vertically overlap each other as can be seen in figure 8 where the
white segments will be connected into two different object. The

position of the shaded segment prohibits further connections.

4.3 Edges and inclination connections

The algorithm described above is not concerned with the under-
lying symbolic structure; it operates only on the tiles filtered out
in stage 1. A more powerful technique is to take the details of the
shape of the filtered tiles into account. To do this we first have to
find adjacent tiles which are chosen with respect to some given
constraints in the search process. To find tiles that we consider to
belong to the same feature, we must also determine whether dif-
ferent existing edges and inclinations proceed into the neighbor-
ing tiles. In the case of a tile with both an inclination and an edge
the edge takes precedence over the inclination. In each step of
the search process a check is made to make sure that the current
edge matches the previous edge. To expect an exact match of the
edges is in most cases unrealistic so a tolerance of +/- 45 degrees
will be allowed. If the check is successful the search direction
will be strictly determined by the direction of the edge. Only one
search direction will be chosen unless the edge divides the tile
asymmetrically, in which case there are two search directions.
The chosen directions are depending on the angle of the edge. A
case where the tile contains an edge is illustrated in figure 9 by a
category with an edge running from point “5” to point “8” as
specified in figure 1. Some special cases exist here which are dis-
cussed further in (Sjövall 2002).

Figure 9. Illustration of the search method in the edge
connection algorithm.

5 FILTER SPECIFICATION

The filters are specified in a plain text file that is parsed by a
Java-program and applied to the symbolic tile data file. Each
segment will first be searched for horizontally then all categories
in the filter-specification are rotated 90 degrees and the search
continues vertically. All filter lengths and widths are specified in
terms of multiples of symbolic tiles. A filter segment as defined
in section 4 starts with a beginsegment statement and ends with
an endsegment. Everything between these statements represents
the string that is to be searched for. An optional parameter for
the segment is invert that will invert the whole segment, i.e. a
positive state will become a negative state etc. This can, for
instance, be used to quickly transform a ditch-filter into a ridge-
filter and vice-versa. The fact that all segments need to be
applied both vertically and horizontally requires special atten-
tion. Thus the statements horizontal and vertical specifies the
actual search directions.

A segment may contain several sub segments surrounded by
beginsubsegment and endsubsegment. The beginsubsegment
statement takes three parameters. The first two are mandatory:
minimum length and maximum length, which is the number of
consecutive symbolic tiles that should used in this sub-segment.
The third is the optional keyword exclude which means that this
sub segment should not be part of the final segment although it
still has to match. The sub segments may also contain the state-
ment maxerrors that has a parameter that is the allowed maxi-

Exhaustive search
(a)

Simplified search
(b)

c

(a) Horisontal (b) Vertical

(c) Diagonal type 1 (d) Diagonal type 2

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

34 2

1

876

5

1

2

15

8

3

5

4

8

4

5

mum number of not matched tiles. If this is not specified, no
errors are allowed. The sub segments contain a set of allowed
symbolic tiles which are specified with the statements
begincategory and endcategory. A symbolic tile is specified by
the statements inclination, state and orientation. The keyword
not is used to tell which values that are not be permitted. The
keyword any will allow all possible values.

After the segment-specifications, the post-processing algorithms
can be specified. The statement connect will connect tiles using
the algorithm specified as the first parameter. Allowed algo-
rithms are edge and segment. Parameters two to five is mini-
mum/maximum length and width of the final object. These
parameters are required but by using a value of -1 the checks can
be disabled. If the segment algorithm is used a maximum error
can be set as an additional parameter. The edge algorithm is
implemented as a recursive algorithm which could lead to prob-
lems if the recursion depth is too great. Although this should not
happen unless a filter is specified for very large objects, in which
case the resolution of the tiles should be chosen differently. The
segment algorithm first searches from top to bottom followed by
a search from left to right. This means that the algorithm only
handles objects that are laid out in a straight line. Objects that
changes direction and are curved will not be found. The state-
ment h-and-v uses the logical-AND algorithm to combine hori-
zontal and vertical segments. This statement does not require
any parameters.The statement findrectangle will find rectangles
of a specified size. The first parameter is the width, the second
the height and the third set the allowed relative error. An exam-
ple of a filter with just a single sub segment is

beginsegment /*Start the segment*/
 invert /*Invert the segment, i.e.

 the real inclinations to be
searched for is 2, 3 and 4.*/

 beginsubsegment 1 3
/*Start a subsegment with a

minimum length of 1 and a
maximum length of 3.*/

 begincategory /*Start category*/
inclinations 6,7 and 8

/* Allow inclina-
tions 6,7 and 8*/

 state any /*Allow any state*/
 orientation not 14 15 16

/*Allow all orientations
except 14, 15 and 16.*/

 endcategory
 endsubsegment
endsegment
connect edge 10 -1 -1 -1

/*Connect categories using
the edge-algorithm and a
minimum length of 10*/

The complete segment will have a possible length of 1 to 3 cate-
gories (the minimum and maximum length of the subsegment.

Figure 10. Categories allowed in the ditch-segment.

6 SOME ILLUSTRATIONS

A number of filter types for different features have been devel-
oped and tested. Among them can filters for determination of
ditches, ridges, hill tops, ponds and flat (sub)- areas including
roads be mentioned. We will here give some illustrations of the
application of these filters including some of the short-comings.

Figure 11. The result of the application of the ditch filter to the
test area(left).The final result of the ditch filter as completed

with the edge-connect algorithm (right).

6.1 Ditches

This filter finds narrow ditches and is also very tolerant to
changes in direction of the ditch. The specification contains three
different segment-types:

• The first is a single flat tile with a negative edge (i.e. all
orientations except extreme points), see figure 5 at right.

• The second is a segment with a down-slope, flat and up-
slope structure. This part finds segments that are part of a
ditch that has a northeast-southwest orientation. Figure
10 shows all possible tiles for each sub segment and since
the north-south (3 to 7) edge as well as the inclinations 1
and 5 are part of the start and end sub-segment, segments
with a north-south direction will also be found, see figure
5 at left.

• The third segment is similar to the second, only the dif-
ference in the orientation, which is northwest-southeast.

Figure 12. The small stream in real-life.

These three segment types are sufficient to find ditches oriented
in all directions since the filters are also rotated 90 degrees. The
minimum width of a ditch-segment is one tile and the maximum
width is three tiles. Figure 11 shows to the left the result of the
segment filter where a lot of false hit segments occur as well.

The segments are then connected using the connect-edge algo-
rithm with a minimum allowed length of 10 (i.e. 10x2 meters).
This will remove most of the smaller object hits that may not
correspond to ditches. The results can be seen at right in figure
11 where three ditches can be seen. Two of these are in reality
ditches along a road and the third a small stream, see figure 12.

15

6

4 3

7

2

8

Middle−segment End−segment Start−segment Middle−segment End−segment

Any orientation

Any State

Any orientation

Start−segment

Any State

Figure 13. The result of the road-filter

6.2 Roads

The principle of the road filter is to find segments that start and
end with a tile that is not flat and with several flat tiles in
between. The enclosing categories should not be part of the seg-
ment; this is done by applying the exclude parameter in the
beginsubsegment statement to the non-flat categories. The only
segments that will remain are those including just flat tiles.
These segments become connected by using the connect-seg-
ment algorithm. A minimum length of 10 is used with an
allowed error frequency of 20%. The filter is applied to the com-
plete data set and the result is shown in figure 13. Several shorter
and isolated road segments can be seen in several places and is
most likely flat areas where houses were removed by the ground-
segmentation. However, this should not be considered a serious
problem since it is possible to mark these areas in the removal
process. Furthermore, the connect segment algorithm does not
handle changes in the direction of the elevation well, thus some
parts of the roads are missing here and there.

Figure 14. The blob segment and its cross-section at left.The
resulting pond using the blob-filter to the right.

Figure 15. Using the minimum threshold for the ditch-filter.
Compared to figure 11, one more terrain object appear at lower

right.

6.3 Blobs

This filter will find a smaller blob-like object, e.g. a pond. This is
done by looking at the cross-section which ideally will look like
the illustration in figure 14. Since a long flat segment is bound to
have errors in it, a certain error tolerance is used. To make sure
the object is “closed” the cross-section has to be found both hor-
izontally and vertically by using the post-processing filter h-and-
v. The edge-connection algorithm is then applied to allow a min-
imum length and width of 15 tiles. The final result can be seen in
figure 14.

6.4 Objects with different inclinations

The above described technique of finding terrain objects identi-
fied by their cross sections can not distinguish between tiles with
different magnitude of inclination. Nevertheless, the symbolic
tiles carry all necessary information to do so in the norm of a
tile. In the current version, the previously mentioned filters can
be added by a minimum threshold value used to set all tiles with
a norm below the threshold as flat. The threshold can be changed
dynamically as specified by a user request. The consequence of
using a different threshold when searching for ditches can be
seen in figure 15, where a curb is detected. This represents a sig-
nificant improvement over the results in. (Jungert 2002) where
cross sections with as small height differences as, in this case,
1.5 dm could not be detected.

7 CONCLUSIONS AND FUTURE WORK

In this work, techniques that can be used for identification of dif-
ferent types of terrain object features have been described. The
technique can be split into two different steps where the first step
concerns development of a method for the description of the ter-
rain by means of symbolic tiles. The second step includes meth-
ods for determination and connection of non-attached segments.

Future work must include improvement of the filters and further
types of terrain-objects must be possible to identify as well. By
using the formal filter-specification it is possible to more ade-
quately and correctly describe the terrain-objects which will be
the foundation for further work on the development of a query-
language.

REFERENCES

D. J. Maguire, M. F. Goodchild and D. W. Rind (Eds.), 1991, Ge-
ographical Information Systems, Longman Scientific and Tech-
nical, London, vol. 1, pp. 269-297.
F. Lantz, E. Jungert, 2000, Dual aspects of a Multi-Resolution
Grid-Based Terrain Data Model with Supplementary Irregular
Data Points, In: Proceedings of the 3rd International Conference
on Information Fusion, Paris, France, July 10-13.
J. Bradley, 1999, An Efficient Modularized Database Structure
for a High-resolution Column-gridded Mars Global Terrain Da-
tabase, Journal of Software - Practice and Experience, vol. 29, no
5, pp. 437-456.
A. Clematis, A. Coda, M. Spagnuolo, S. Spinollo, T. Sloan, 1998,
Parallelising Fuzzy Queries for Spatial Data Modelling on a Cray
T3D, In: Proc. of the 4th Int. Workshop on Applied Parallel Com-
puting, Large Scale Scientific and Industrial Problems
(PARA’98), pp. 76-81.
D. Fritsch, D. Schmidt, 1994, DTM integration and three-dimen-
sional query spaces in geographic information systems, In: Pro-
ceedings of the SPIE - The International Society for Optical
Engineering vol. 2357, pt 1, pp. 235-242.
M. Elmqvist, 2001a, Ground Estimation of Laser Radar Data us-
ing Active Shape Models. In: OEEPE workshop on Airborne La-
ser-scanning and Interferometric SAR for Detailed Digital
Elevation Models, Stockholm, Sweden.
M. Worboys, 1995, GIS A Computing Perspective, Taylor and
Francis, London.
 M. Elmqvist, E. Jungert, F. Lantz, Å. Persson, U. Söderman,
2001b, Terrain Modelling and Analysis Using Laser Scanner Da-
ta, In: Proceedings of the Workshop on Land Surface Mapping
and Characterization Using Laser Altimetry, Annapolis, Mary-
land, October 22-24.
M. Sjövall, 2002, Object and feature recognition in a Digital Ter-
rain Modell, Master thesis, University of Linköping, Sweden,
LITH-IDA-Ex-02/16.
E. Jungert, F. Lantz, M. Sjövall,2002, Determination of Terrain
Features in a Terrain Data Model Using Symbolic Filters, In:
Proc of the 8th int conf on Distributed Multimedia Systems, San
Francisco, CA, Sept 26-28, pp. 664-667.

FOI-R--1787--SE

FOI-R--1787--SE
Appendix J

Context Fusion for Driveability Analysis

Information Fusion, Philadelphia, PA, July 25-29, 2005.

Lantz, F., S. Edlund, Jungert, E.
137

Context Fusion for Driveability Analysis

Fredrik Lantz, Susanne Edlund, Erland Jungert
FOI (Swedish Defence Research Agency)

Box 1165, S-%81 11 Linköping, Sweden
{flantz, jungert}@foi.se
Abstract - Driveability analysis is a quite complex
problem that for its solution depends on several
factors. One of these factors concerns the type of
vehicle for which a drive-way should be determined.
Besides this, the terrain structure, the type of
vegetation but also the ground type and its conditions
play important roles. Driveability analysis will
consequently include analysis of primarily
geographical information and the outcome of this
analysis can be used to support decision making in
command and control systems. However, quite often
the required geographical information is represented
in a resolution that is either too low and/or is
represented with a high degree of uncertainty that
cannot be neglected. In this work, an approach to
driveability analysis is presented in which
geographical information is regarded as context
information that eventually is fused to generate
paths, that may be drivable for certain types of
vehicles. This information is fused by means of a
knowledge-based technique that determines the
driveability from a set of qualitative driveability
impact factors.

1 Introduction

Driveability analysis (also called trafficability
analysis) of terrain and geographical data offers an
important technique for decision support for all kinds
of movements in the terrain. This type of analysis is
needed for the judgement of possible movements of
targets (target tracking) and for the planning of future
movements. An important data source for such an
analysis is a digital terrain model [1], [2], which in
this case is a high resolution digital terrain model
generated from laser radar. In [2] is a method for
finding essential terrain objects such as ditches and
ridges described. The geographical data are generally
represented as map data that in order to become
useful need to be in a high resolution. Parts of this
work has earlier been described in [3].

The research on driveability has been subject to
fairly intense studies e.g. Donlon and Forbus [4] have
developed a domain theory for trafficability to
partition regions according to some criterion. They
discuss both complex factor overlay and combined

obstacle overlay as a means to do this. A complex
factor overlay partitions regions according to the type
of terrain and combine them into areas of
homogenous characteristics. A combined obstacle
overlay characterizes the terrain according to its
effect on the vehicular movement. Bonasso [5]
presents a trafficability theory using first-order
predicate calculus to enable reasoning about
trafficable paths without the need for a detailed
terrain model where only a limited set of qualitative
values are used, which e.g. allows a desert to have the
value SOFT given to a rigidity attribute, and FREE to
a forest density attribute. Much existing work on
trafficability has focused on real-time applications,
mainly path planning for unmanned ground vehicles
(UGVs), which move in unknown areas [6], [7], [8],
[9], [10] and [11]. In the work by Johnson et. al. [12]
and Kruse et. al. [13] hyperspectral or multispectral
data are used to classify areas according to their
surface composition, but with limited success. Kruse
et. al. improve the usefulness of their approach by
using data fusion to identify areas which e.g. have
both high clay content and high slopes. Another
fusion oriented approach is given by Glinton et al.
[16]. Sapounas et. al. [15] use an object-oriented
approach and cost functions to calculate bounding
regions and shortest paths. The cost functions
represent the effect of the terrain on the travel speed.
Finally, Slocum et al. presents an approach based on
a trafficability engine [14].

The rest of this paper is organized as follows. In
section 2 context fusion is defined. This section
includes also a definition of the problem addressed in
this paper. A discussion of existing driveability
impact factors is discussed in section 3. The digital
terrain model used is described in section 4.
Driveability analysis, basically including the used
measures of driveability and the final cost function
with its impact factors is discussed in section 5.
Finally some results are presented in section 6
followed by the conclusions and some further
research topics in section 7.

2 Context Fusion

The main objective of this work is to develop a
method for driveability analysis that determines

whether a certain path through a terrain area is
possible to travel given a certain type of vehicle. The
result of this analysis should be visualized on a map
where the driveability is highlighted. To be useful in
real-world applications information from a large
number of sources is required. The focus in this
work, however, is concerned with the overall method
and basic structure of driveability. Still, in addition
to the digital high resolution data model other
geographical information is used as well, e.g. forest
data including the density of the forest. Finally,
information about the vehicle is used, both with
respect to its properties (e.g. if it has wheels or
tracks, its weight etc.), and its capabilities (e.g. how
steep slopes it can climb). This problem turns out to
be complex where the various types of information
must be fused and presented to enable generation of
complete driveability maps. Here context information
refers to the geographical background information as
well as the terrain elevation data model. The different
sources of context information needs to be fused with
the vehicle information to solve the problem.

The approach to data fusion taken in this work
refers to fusion of the context information. To carry
out this, the impact factors of all the various types of
context information must first be determined and
then, finally, the driveability cost is determined
through a cost function. The impact factor of a
particular context data type refers to the factors in the
context that impact driveabilty.

3 Driveability impact factors

Driveability is a complicated matter which does
not lend itself to simple solutions. It is affected by
many factors, including the vehicle type, soil,
weather, slope, etc. Although outside the scope of
this work, a particular problem is to collect all the
required information and represent it in a reasonably
high resolution. Driveability is path dependent. It
may e.g. be possible to drive down a slope, but not
the other way around. Most terrain features cannot be
regarded in isolation. Below are some examples:

- A road barrier, a large stone, or a tree can
only be seen as obstacles if it is impossible
to drive around them.

- A wide ditch may be seen as an obstacle to a
driver who must cross it, but not to a driver
who can drive inside or around it, or use a
bridge.

- A single tree may not be an obstacle, but a
dense forest can be a great impediment.

- A slope may not be too steep, but if the soil
rigidity is too yielding it may be an obstacle.
Vice versa, a mud field may be driveable on
a plane area, but not at a slope.

- A ditch may not be driveable if it is filled
with water, nor if trees or other obstacles are
present in its proximity.

- Vegetation and crops have an impact on the
driveability of soils. E.g., grass and grain
often improve the driveability, while
vineyards decrease it.

There are also other features, which are not
intuitively possible to represent in a geometric
model, but which may still affect the driveability. For
example surface roughness or vegetation may
decrease the speed, damage the vehicle, or bring it to
a stop. Both stickiness and sinking soil properties
affect the driveability, but possibly in different ways.
Sometimes the effect is not strictly physical. Mine
fields and radar installations may be examples of
non-terrain features which decrease the wish to drive
through such areas, whereas a forest may be a good
place to hide. Strictly speaking, these aspects should
instead be dealt with in threat analysis, although they
still deserve to be mentioned in this context.

Many terrain features change their properties over
time. Forests are growing denser and higher, rivers
are bending, etc. During a war bridges, roads, etc.,
may be destroyed.

Weather properties may affect the terrain
properties, thereby affecting the driveability. For
example, soil rigidity is weather dependent. During a
dry period a mud field may turn into a passable field.
A cold winter may turn a river, that is otherwise
impossible to pass, into a frozen road. However, it is
not sufficient to know what the weather is like right
now; historical values must be taken into account as
well. The lake will not be frozen simply because the
temperature falls below -10˚ C right now; it must
have been cold enough for a longer period. Hard
winds or floods may also affect the driveability.

Example of vehicle properties include width,
length, height, override diameter, maximum gap to
traverse, ground clearance, maximum step, maximum
gradient, maximum tilt, specific ground pressure, and
maximum straddle. Properties such as maximum
speed is not of any direct interest to the driveability
reasoning performed in this work, although it can be
used as a basis for driveability calculations [15].
Sometimes the terrain features and the vehicles
interact in unexpected ways. E.g., even if a vehicle
can override small trees, the resulting pileup of
vegetation may be a too great obstacle for it to pass.
This effect is greater for wheeled vehicles than for
tanks [17]. The properties are also not constant for
the same feature. A ditch or a road, etc., may for
instance grow wider, or fork, which is due to changes
across the space.

To start with, it may not be necessary to know the
exact value of a property. It may be enough to use
qualitative values (e.g. width is equal to large), which
can later be transformed into a real value, as is
suggested by Bonasso [5], or by an interval as will be
suggested in this paper. As a consequence of the
complexity of the problem, the complexity must be
reduced with respect to basic assumptions and
simplifications, which will be discussed further
subsequently.

4 Digital terrain model

The data used for creation of the 3D terrain model is
registered by a scanning airborne laser-radar called Top-

Eye1. Uncertainties of the terrain elevation is in this case
mainly dependant on the sampling density, which varies
depending on flight elevation and speed. The data used in
this work has an average density between 0.3 and 0.4 m. In
order to detect significant terrain features, the original sen-
sor data is firstly pre-processed to eliminate non-terrain
data, e.g. trees and buildings. The pre-processing step pro-
duces a surface defined on a rectangular grid with 0.5 m
between grid points.

As a first step, the surface is partitioned regularly into
tiles, which is a sub surface that covers a square with sides
2 m. The set of tiles is called T. These tiles are sorted into a
number of categories of tiles, the spatial categories. A spa-
tial category is a set of tiles with similar features, e.g. with
similar inclination or with edges at similar locations. The
categories is defined by using a set of representative tiles

. Three different types of representative tiles are
necessary to achieve a sufficiently accurate surface model.
The most important of which can be described by rotations
and translations of the basic category forms, shown in fig-
ure 4. For further characterization see [2]. A distance met-
ric dist: + for comparing the similarity of a
tile to a representative is defined. A category [r],
is defined, using the metric dist, as the set of all tiles that
are more similar to r than to any other .

Figure 1: Basic category forms.

Every category corresponds to a unique string, called a
symbolic tile. A tile is compared with every representative
and are substituted by the corresponding string. The tiles
can be stored in a database in accordance to a relatively
simple structure [1], [18] from which data can be effi-
ciently accessed.

4.1 Finding and connecting segments

A filter correspond to a particular sequence of con-
nected symbolic tiles describing the feature that will be
subject to the search. The approach taken here is to use the
specific and characteristic cross-sections, which exist for
all terrain formations. For instance, a cross-section of a hill
can first be described with an upward directed slope fol-
lowed by a slope directed downwards. At a conceptual
level the cross-section of a terrain formation consist of a
start segment, a possible middle segment and an end seg-
ment, see figure 2. The filters can be of different sizes
depending on the requested terrain feature. Conse-
quently, the search strategy must be sufficiently flex-
ible to accommodate these demands.

It turns out that a two level search strategy is the
most appropriate.As a result of the first matching step
a large number of segments will be found. To find out

Figure 2: The filter structure to be applied to the cross-
section of a ditch.

which of these segments that are part of the feature,
adjacent segments of similar cross-sections must first
be connected.Segments found in step 1 are connected
only if the segments midpoints are sufficiently close
and if the orientation of the cross-section segment is
similar enough. Some methods for doing so is
described in [2].

The filters are specified in a plain text file that is parsed
by a Java-program and applied to the symbolic tile data file.
A number of filter types for different features have been
developed and tested. Among them can filters for determi-
nation of ditches, ridges, hill tops and flat areas including
roads be mentioned.

At the same time as determining whether an object is
present or not, an initial estimate of feature area and some
impact factors can be calculated. In particular, slope angles
of slopes, convexities and concavities, as well as elevation
difference and width of concavities, fig 3. Apart from serv-
ing as impact factors for the driveability analysis, these
values are used for post-detection refutation of features to
exclude small and shallow features of negligible influence.
Algorithms for acquiring better estimates of impact factors
are under development, some possibilities are given in [3].

Figure 3: Method to get an initial estimate of feature
width. a) The feature. b) Horizontal width. c) Vertical
Width. d) Calculating feature width from horizontal

and vertical width.

4.2 Geographic data

The major source of data besides the 3D-data is the
real-estate map, which contains data about the
geographic classification of the covered area in scale
1:10000. These data are organized in overlays, where
each overlay represents a certain geo-class, e.g.
buildings and ground classifications are found in
different overlays. Apart from providing the
driveability analysis with necessary data, the map
provides a highly structured representation of an area
of interest (AOI), which is adequate for user
presentation and interaction. Consequently, when
fusing the map data with other sources it is desirable
to keep most map structures that are consistent with
the more recently collected data. Although small, the1. A property of TopEye AB, Sweden

REP T⊆

T REP× ℜ→
r REP∈

k REP∈

a) b) c)

d)

l

ll w
vhyp

data uncertainty due to imperfections in the
collection process can not be disregarded when
fusion with other high-resolution sources is at hand.
More importantly, generalizations due to
aggregation, simplification, smoothing, exaggeration,
displacement etc., [19], are typically made with
consequences for the locational accuracy that is
difficult to assess. Problems concerning the relative
positions of the terrain features versus the map
features inevitably arises, producing apparent
contradictions. When serving as a basis to driveabilty
analysis, another problem concerns the very rough,
sometimes none, estimate given for most impact
factors, e.g. the width of roads or the density of trees
in a forest. In the absence of such values either
defaults must be used or experienced users must be
consulted for more specific estimates.

Even though the map is a general and important
source of geo-class data there may be other sources
of such data. For example [18], provides a way to
locate roads, buildings and individual trees by using
the elevation and intensity returns of the laser radar.
Such data will improve the accuracy of some
locational estimates as well as provide the
driveability analysis with some of the otherwise
absent values of impact factors, but will not be
considered further in this paper.

5 Driveability Analysis

Driveability is a measure of the possibility of a certain
vehicle to follow a path p = (p1,p2) from the start p1 to the
end p2. There are off course infinitely many such paths
between p1 and p2 and there are infinitely many start and
end points in a given AOI. Using a finite, but high resolu-
tion of 0.5 m still makes the analysis prohibitively expen-
sive in computational terms. To reduce the computational
complexity, as well as to lay a foundation for user interac-
tion and spatial reasoning, another approach is suggested.
Instead of viewing the AOI as an image, the AOI shall be
viewed as a set of objects. These objects have attributes
and belong to different classes. Consequently, in order to
be able to calculate the driveability for a given AOI, a
commitment to which objects, classes and attributes the
driveability analysis recognizes has to be made. The
objects of concern in this application will be called terrain
objects (TO). The complete enumeration of the entities
that constitute the terrain objects in this application differs
depending on the available data sources and their implicit
ontology. Any physical map entity that has a spatial exten-
sion, including roads, buildings, fences and similar line
objects that direct influence driveability must be consid-
ered terrain objects. Every 3D terrain feature is also a ter-
rain object. In analogy with the map, the result of applying
a certain filter to the laser-radar data defines a separate
overlay for each different filter. The terrain objects from
different overlays must then be fused to construct a rele-
vant basis for a driveability analysis, i.e. a driveability seg-
mentation. The requirements of such terrain object fusion
will be discussed below. Fusioned terrain objects will be
called compound terrain objects (CTO).

A suitable driveability segmentation provides a com-

plete segmentation of the AOI, where each CTO belong to
three different types of classes. The types of classes are 3D
classes, cover classes and obstacle classes.

• 3D-classes = {Concave, Convex, Slope, Flat,
Concave&Slope, Convex&Slope, Undetermined}

• Cover-classes = {Water, Mash, GroundVegetation,
OpenGround, Road}

• Obstacle-classes = {Building, Forest, NoObstacle,
DenseUrbanArea, Remains, LineObstacle}

Evidently, the Cover-classes and the Obstacle-classes
contain (essentially) a subset of the classes available from
the map. These classes are the necessary and sufficient
classes to express the map data complexity in the current
version of the driveability analysis. Each classification
influences which calculations that are necessary and that
which makes sense at all. The classes also differ in their
default properties, in the way they are influenced by
weather and their compactness. Furthermore, the obstacle
classes can be both elements that are considered single
entities (Building, LineObstacle) and elements, which are
considered aggregations of smaller obstacles (Forest,
DenseUrbanArea, Remains). Building, LineObstacle and
DenseUrbanArea are compact objects, whereas Forest and
Remains are not. The 3D-class “Undetermined” must be
included as the terrain feature filtering can not be
expected, as the map, to provide a complete segmentation
of the AOI.

5.1 Path selection

Driveability, as defined above, is a concept that is
meaningless without a path to refer to. In this work, the
focus is on the analysis of meaningfully, i.e. qualitatively,
different paths that are representative of an AOI. A path is
qualitatively different than another path if it traverses a dif-
ferent CTO or if the traversal of a certain CTO is made in a
qualitatively different way. The qualitatively different
ways of traversing a CTO depends on its classifications.
For instance, it is only meaningful to differentiate between
paths going from A to B and from B to A if the area is
sloping substantially. Also, it is only meaningful to con-
sider “leaping” over an object if it is a concavity, not if it is
a convexity. In this paper, however, the same type of paths
are considered for every CTO. In fact, the paths are identi-
fied with traversal directions. The possible directions are D
= {E,NE,N,NW,W,SW,S,SE}, representing travelling east,
north-east etc.

The directions D can also be considered default paths
that should be used for the 3D class Undetermined, i.e. if
the CTO is labelled Undetermined, the qualitatively differ-
ent paths traversing the CTO are members of D.

5.2 Requirements of Terrain Object
Fusion

As mentioned, the data can be viewed as organized by a
set of overlays, where each overlay contains a partial seg-
mentation of the AOI. The fusion task at hand is to provide
the driveability analysis with a complete, non-conflicting
segmentation of the AOI, where all areas are CTOs. An

approach to constructing a driveability segmentation
would be to simply intersect all overlays [4]. The problems
that arise due to uncertainties and generalizations in the
data, changes in the terrain and the fact that when some
classifications coexist at a location a conflict is at hand.
Examples of conflicts are CTOs classified as roads with
crossing convexities or as concavity and water. These
types of conflicts must be detected and resolved if the
desired segmentations are to be achieved. As such, the ter-
rain object fusion problem includes association, change
detection and decision fusion problems commonly encoun-
tered in spatial data fusion [20]. An important consider-
ation in this context is that the desired representation is not
a driveability segmentation where the location of the
objects from several sources are combined to give a more
accurate locational estimate. Rather, the map representa-
tion should be kept for the earlier mentioned reasons. In
particular, topological relations between TOs are of impor-
tance in the driveability segmentation. Even if not conflict-
ing, without proper consideration, the driveability
segmentation may consist of unnecessary many, small
CTOs which defeat the entire idea of reducing the AOI
into a manageable number of homogeneous entities. In the
current version, the map are assumed to be correct and
accurate in all aspects. If a conflict with 3D-data occurs,
the map has precedence.

5.3 Impact Factor Attributes

Apart from determining which class of TO that are
present at a certain location, some attributes, i.e. the impact
factors, of the objects must be estimated as well. In this
case convexity gap width, maximum slope angle, minimum
cover rigidity, obstacle rigidity, maximum obstacle rigidity
and minimum obstacle distance. The intended physical
interpretation is indicated in table 1. Rigidity is used as a
collection term for material properties, [5]. The corre-
sponding attributes for the vehicles are gap capability,
slope up capability, slope down capability, ground pres-
sure, force limit and vehicle width. The use of maximum
slope angle, minimum cover rigidity, maximum obstacle
rigidity and minimum obstacle distance is connected to the
fact that the slopes, covers and aggregated objects have
different values at different parts of the single path under
consideration. However, the value that determine the
driveability of the path is the most disadvantageous value
of the encountered values at any part of the path. A path
between A and B going through a solid rock obstacle is not
drivable not withstanding how easy the path part until
encountering the rock may be.

5.4 Impact Factor Variation

As described earlier, driveability depends on a complex
set of factors, many of which are difficult to assess and for
which data is frequently missing. The actual formulation
of the conditions that must be met for driveability is, how-
ever, not difficult to express once the particular case is
determined. If it is the case that the path is going down a
slope, through open ground and no obstacles are present,
the slope angle must be compared with the vehicle capac-
ity in this regard and the rigidity of the ground must be
compared with the pressure to the ground exhorted by the
vehicle. The result is true or false and the driveability is
thus determined. This conclusion is only appropriate if the
CTO is completely uniform over the entire object in all
properties, e.g. the object has the same maximum slope
angle for all paths of the considered class. Clearly this is
rarely the case. This is a case of spatial variation for path s
at individual TOs. Also, the performance characteristics of
the vehicles of the same type is not uniform, i.e. type varia-
tion exists. Apart from the type variation, the vehicle
capacity is dependent on, for instance, the carried load and
the maintenance of the vehicle, i.e. temporal variation
exists. Type and temporal variation is typically a result of
the query of driveability not being specific enough, i.e. the
query is put in terms of the driveability of a certain type of
vehicle at some unspecified time instant.

In order to accommodate for the variations exhibited
by terrain objects, as well as by the vehicles, an extension
to the approach must be considered. Instead, consider the
attributes to be variational quantities, i.e. the attribute
value is different at different parts of the CTO. For
instance, the concavity gap width varies somewhat at dif-
ferent locations and the maximum slope angle varies at dif-
ferent parts of a slope. In this work, variation will be
described by an interval, [a,b], for every impact factor.
This is equivalent to saying that considering different parts
of the CTO, the minimum value of the impact factor is a
and the maximum value is b. The variation of the maxi-
mum obstacle rigidity and the minimum obstacle distance
connected with the aggregated classes are mainly con-
nected to the fact that there are different types of smaller
objects in the area and that the obstacle rigidity and obsta-
cle distances varies between objects.

The variations described above can not, in general, be
considered to describe the uncertainty of the true value of
an impact factor. An estimate of the true width of a ditch at
a certain location can be subject to uncertainty depending
on the resolution of the data etc., but this is not what is
described by an impact factor interval [a,b]. Neither should
that interval be interpreted as saying that the probability of

Table 1:
Impact Factor Interpretation
convexity gap width Obvious.
maximum slope angle The maximum angle of

slope for all parts of a sin-
gle path.

minimum cover rigidity The surface ability to
withstand pressure from
above. Measured in pres-

sure units.
obstacle rigidity The obstacle ability to

withstand force when
being driven into. Meas-

ured in force units.

maximum obstacle rigidity The ability to withstand
force when being driven
into. Relevant for CTOs
belonging to aggregated

obstacle classes.
minimum obstacle distance Relevant for CTOs

belonging to aggregated
obstacle classes.

Table 1:
Impact Factor Interpretation

the width at different locations is uniformly distributed
over the interval. As already mentioned, the driveability is
a measure of the possibility of travelling a certain path.
Hence, it is not concerned with the length of the path, or,
given a random choice of paths or vehicles, with the proba-
bility of success or with average performance. The choices
are not random, but made by skilled operators. Therefore,
the statistics of random choices are uninteresting, only
possibilities are needed.

Still, a confidence measure that reflects the accuracy of
the data and of the estimation process is useful to provide
operators with an idea of the robustness of the analysis.
Deciding that the variation of a width of a ditch is [a,b]
from measuring two locations of a 100 m long ditch would
clearly justify low confidence in such a description. For
the 3D data, the confidence is essentially connected to the
density/resolution of data after the ground filtering step,
the properties of the ground filtering process and the age of
the data. Currently, no measure of confidence is calcu-
lated, but all data necessary to do so is available.

Expert users or default reasoning can often provide a
qualitative value for an impact factor or a vehicle capacity
as an approximation. These qualitative values can be inter-
preted as intervals as well, i.e. using the value SOFT for a
rigidity attribute can be interpreted as saying that the rig-
idly is in some interval [a,b]. Using this interpretation, the
same theory can be used regardless of the source of the
estimates. Hence, the absence of specific estimates as well
as unspecifically made queries and variation in individuals
can be modelled using interval valued variables.

5.5 Impact Conditions

As already mentioned, the conditions that need to be
evaluated to determine driveability are not complicated.
Due to the interpretation of impact factors and vehicle
capacities as varying, the evaluation of the conditions are,
however, not evident. As mentioned, the variation of vehi-
cle capacities are both class variation and temporal varia-
tion, i.e. the entity for which driveability is determined is a
generic instance of a certain class of vehicles and the deter-
mination is valid in some normal, possibly temporally
changing, but wide range of conditions. In accordance with
the above terminology, the conditions to evaluate are
called impact conditions and the resulting values are called
impact costs. An impact condition is a conjunction of rela-
tions between impact factors and vehicle capacities of the
type:

(impact factori relation vehicle capacityi).
The only relations needed are “<=” and “>=”. The possible
relations between two intervals [a,b] and [c,d] are 13 as
described in [21]. In this case, six out of these can be given
distinct interpretations regarding driveability, see figure 3
for the relation “<=”, u as an impact factor and v as a vehi-
cle capacity. The interpretations of these interval relations
are, in decreasing order of driveability:

1. All vehicles can pass at every location of the CTO.
2. Some vehicles can pass at every location, but some

vehicles only at some locations of the CTO.
3. All vehicles can pass at some locations and none can

pass at all locations of the CTO.
4. Some vehicles can pass at every location, some vehi-

cles only at some locations and some vehicles can not pass

at any location of the CTO.
5. Some vehicles can pass at some locations and some

at no locations of the CTO.
6. No vehicle can pass at any location of the CTO.
Evaluating a single impact condition thus gives an

impact cost in {1, 2, 3, 4, 5, 6}. Combining the values of
impact costs from conjunctions of impact conditions are
done by taking the maximum of the values from the indi-
vidual conditions. The currently used CTO classifications
and the impact conditions that are evaluated can be seen in
table 2. The last entry in the table is a conjunction of the
second and fifth entries.

Figure 4: The interpretation of “u<=v” when
considering u and v as intervals.

For any of the traversal directions D currently under
consideration, the correspondence of that direction with a
certain way to traverse the CTO must be determined, e.g.
whether the direction corresponds to going down or up a
slope. This is solved by approximating the orientations of
the TOs as one of the directions in D. The 3D-class “Unde-
termined” must be included for the areas where no uniform
feature can be determined by the filtering process. A CTO
belonging to this class has e.g. different slope angles asso-
ciated for the 8 directions in D.

3D class cover
class

obstacle
class

way of
travers-

ing

impact condition

Concave Any NoObsta-
cle

across (gap width <= gap
capability)

Con-
vex,
Con-
cave,
Con-
vex&Sl
ope,
Con-
cave&Sl
ope

Any NoObsta-
cle

on sur-
face

(maximum slope
angle <= slope up

capability) & (maxi-
mum slope angle <=
slope down capabil-

ity) & (minimum
surface rigidity >=

pressure)

Slope Any NoObsta-
cle

on sur-
face

(maximum slope
angle <= slope up/
down capability) &
(minimum surface
rigidity >= ground

pressure)

u
v

u
v

u
v

u
v

u
v

u
v

1 2

3 4

5 6

Table 2: Some of the impact conditions for certain CTO
classifications.

6 Results

An experimental tool for driveabilty analysis has
been developed. Two types of vehicles has been used
in the experiments so far. One wheeled troop carrier
and one tank. The capacities of these vehicles are
sometimes very difficult to obtain. This fact can be
modelled by using a qualitative approximation. The
value of a driveability analysis is off course
dependent on the estimation accuracy of vehicle
capacity but, as shown in for instance [4] and [5],
qualitatively valued approximations can still be

valuable.
Figure 5: The driveability of a carrier. The direction

of highest impact cost is selected for display.

As examples of driveability, a square AOI of sides
200 m is given in figures 5, 6 and 7. The area

contains a road and some open areas in connection
with these. The road is colored green in the figures
because of its low driveability cost. Following the
road on each side is ditches. Other concavities and
slopes can also be seen. Visualization of the
driveability is handled by color coding of the tiles
belonging to the terrain objects. In this case impact
costs = 6 are colored red and impact costs = 1 are
colored green. All other impact costs are white.

Figure 6: The driveability of the carrier in direction
north-east.

Figure 7: The driveability of a tank. The direction of
highest impact cost is selected for display.

7 Conclusions and Further Work

Many data sources are necessary if successful
driveability determination shall be possible. In
particular, 3D data in high resolution is important to
determine terrain features and their attributes. Fusion
of context sources and vehicle information is
required to enable adequate analysis of the properties
of the context in which the vehicles move, i.e.
context fusion is needed. Requirements on data
sources and processes are described. A formulation of

Any Any Building,
LineOb-

stacle

through
obstacles

(obstacle rigidity <=
vehicle force limit)

Flat Any Aggre-
gated

on sur-
face and/

or
through

obstacles

(maximum obstacle
rigidity <= vehicle
force) & (minimum
obstacle distance >=

vehicle width)
Not Flat Any Aggre-

gated
on sur-

face and/
or

through
obstacles

(maximum obstacle
rigidity <= vehicle
force) & (minimum
obstacle distance >=

vehicle width) &
(maximum slope
angle <= slope up

capability) & (maxi-
mum slope angle <=
slope down capabil-

ity) & (minimum
surface rigidity >=
ground pressure)

3D class cover
class

obstacle
class

way of
travers-

ing

impact condition

driveability analysis in terms of terrain objects,
impact factors and impact conditions is presented.
The suggested method accounts for the dependence
on both path and vehicle characteristics. Most terrain
features and vehicles exhibits variation that can not
be neglected. An approach to handling this
phenomenon is presented. Handling confidence
measures in the estimate of such variational qualities
is still to be resolved. A prime candidate for
locational uncertainty representation in this context is
rough set theory, which is increasingly popular in
handling geographic information.

References
[1] Lantz, F., Jungert E., Dual aspects of multi-
resolution grid-based terrain data model with
supplementary irregular data points, Proceedings of
the 3rd International Conference on Information
Fusion (Fusion’2000), Paris, France, July 10-13,
2000.

[2] Lantz, F., Jungert, E., Sjövall, M.,
Determination of Terrain Features in a Terrain Model
from Laser Radar Data, Proceedings of the ISPRS
Working Group III/3 Workshop on #-D
Reconstruction from Airborne Laser scanner and
InSAR Data, Dresden, Germany, October 8-10, 2003.

[3] Edlund, S., Driveability analysis using a digital
terrain model and map data, LITH-IDA-EX-04/031-
SE, Linköpings Universitet, Linköping, Sweden,
Mars, 2004. Also available as Technical Report, FOI-
R--1242--SE, Department of Data and Information
Fusion, Linköping, Sweden, May, 2004.

[4] Donlon, J. J., Forbus, K. D., Using a geographic
Information System for qualitative spatial reasoning
about trafficability, Proceedings of the on Qualitative
Reasoning (QR’99), Volume 4364, 1999.

[5] Bonasso, R. P., Towards a naive theory of
trafficability, Proceeding of the Annual Conference
on AI Systems in Government, 1989.

[6] Broten, G. S., Digney, B. L., Perception for
learned trafficability models, Proceedings of the
SPIE, volume 4715, 2002.

[7] Chaturvedi, P., Sung, E., Malcolm, A. A.,
Ibañez Guzmán, J., Real-time identification of
drivable areas in a semi-structured terrain for an
autonomous ground vehicle, Proceedings of the SPIE,
volume 4364, 2001.

[8] Digney, B. L., Learned trafficability models,
Proceedings of SPIE, volume 4364, 2001.

[9] Ducksbury, P. G., Driveable region
segmentation using a Pearl Bayes network, In IEE
Colloquium on Image Processing for Transport
Applications, Digist No. 1993/236, 1993.

[10] Grunes, A., Sherlock, J. F., Texture
segmentation of defining drivable regions,
Proceedings of the British Machine Vision
conference (BMV’90), 1990.

[11] Jasiobedzki, P., Detecting drivable floor
regions, Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems, 1995.

[12] Johnson, A. J., Windesheim, E., Brockhaus, J.,
Hyperspectral imagery for trafficability analysis,
Proceedings of the IEEE Aerospace Conference,
1998.

[13] Kruse, F. A., Boardman, J. W., Lefkoff, A. B.,
Extraction of compositional information for
trafficability mapping for hyperspectral data, In
Algorithms for Multispectral, Hyperspectral and
Ultraspectral Imagery IV, 2000.

[14] Slocum, K. R., Surdu J. R., Sullivan, J., Rudak,
M., Colvin N., Gates, C., Trafficability Analysis
Engine, Cross Talk, The Journal of Defense Software
Engineering, June 2003, pp 28-30.

[15] Sapounas, D., Kreitzberg, T., Johnson, M. L.,
Terrain trafficability model, In Military, Government
and Aerospace Simulation, Proceedings of the 1996
Simulation Multi Conference, 1996.

[16] Glinton, R., Grindle, C., Giampapa, J., Lewis,
M., Owens, S., Sycara, K., Terrain-based information
fusion and inference, Proceedings of the 7th
International Conference on Information Fusion
(Fusion’04), Stockholm, Sweden, June 28-July 1,
2004.

[17] Department of the Army, FM 5-33, US Army
Field Manual, Terrain Analysis, URL http://
www.global sequrity.org/military/library/policy/
army/fm/5-33/default.htm, July 1990.

[18] Elmqvist, Jungert, Lantz, Persson, Söderman,
Terrain Modelling and Analysis Using Laser Scanner
Data, Proceedings of the Workshop on Land Surface
Mapping and Characterization Using Laser
Altimetry, Annapolis, Maryland, October 22-24,
2001.

[19] Dunkars, M.,Multiple representation databases
for topographic information, Ph.D. Thesis TRITA-
INFRA 04-036, Royal Institute of Technology,
Stockholm, Sweden, December, 2004.

[20] Waltz, E., The principles and Practice of Image
and Spatial Data Fusion in Handbook of Multisensor
data fusion, Hall, D., Llinas, J., (Eds), CRC Press
LLC, Boca Raton, Florida, USA, 2001.

[21] Allen, J., F., Maintaining knowledge about
temporal intervals, Communications of the ACM 26,
pp. 832-843, 1983.

FOI-R--1787--SE

FOI-R--1787--SE
Appendix K

Towards a Query Assisted Tool for Situation Assessment

Information Fusion, Annapolis, MD, July, 2002.

Fransson, J., Jungert, E.
147

Towards a Query Assisted Tool for Situation
Assessment

Jörgen Fransson, Erland Jungert
Swedish Defence Research Agency (FOI)
Box 1165, SE–581 11 Linköping, Sweden

{jorfra, jungert}@lin.foa.se

Abstract - Abstract: A critical problem when designing
systems to support interpretation of real-world situations
is how to handle possible alternative world views. This is
especially true in situation assessment (SA) where the
complexity of the task often requires many diverse meth-
ods to be used. If combined in an ad-hoc way, there is lit-
tle or no chance of finding alternative solutions in a
structured and reliable way. To overcome this problem a
novel framework for SA, capable of exploring alternative
interpretations in cooperation with a user is proposed.
The specific problem addressed in this framework is com-
pilation of a tactical ground picture in a situation with
sensor observations that are highly discontinuous in
space and time. To assist the users a query language for
multiple heterogeneous data sources is attached to the
framework. The query language includes methods for tar-
get recognition and for fusion of the acquired information.
Terrain information in both high and low resolution will
also be available. Finally, it will be demonstrated how
information acquired from the query language can be
used to support the analysis in the situation assessment
process with the aid of the proposed framework.

Keywords: Situation modelling, situation analysis,
evolutionary algorithms, decision support, command and
control system, query languages, information fusion.

1 Introduction

A critical problem when designing systems to support
interpretation of real-world situations is how to handle
alternatives. This is especially true in military applica-
tions, where many types of uncertainties exist and the cost
of mis-interpretation can be very high. Implementation
approaches in the area of Situation Assessment (SA) are
often patchworks of different methods such as rule-based
deduction, clustering, neural network classification, etc.
The use of such diverse methods may be necessary due to
the complexity of the task, but combined in an ad-hoc
way it becomes very difficult to consider alternative solu-
tions. Therefore, in this work a novel framework for SA
capable of exploring alternative interpretations in cooper-

ation with an operator is proposed.

The specific problem under consideration in this paper is
that of tactical ground picture (TGP) compilation, which
in the longer perspective will be extended to cover a
broader range of SA tasks. In order to design a framework
for high-level user support of this task, there is a need to
define what the important problem characteristics are and
what consequences they should have on the framework
level. Since TGP compilation is both a very complex and
in some aspects not a well-defined problem, there has to
be assumptions made on different levels.

Query languages are traditionally instruments for access-
ing information from various types of databases. Lately,
there has been a growing interest for the use of query lan-
guages for acquisition of information generated by multi-
ple sensors. Data from multiple sensors are generally of
heterogeneous type. Consequently, a query language for
multiple data sources where the data are generated by dif-
ferent types of sensors must include, not only, methods
for target recognition but methods for fusion of the
acquired information are required as well. An approach to
such a query language, called σql that can be used for rec-
ognition of ground targets such as vehicles can be used as
a tool for this purpose. Beside this, there is also a need for
acquisition of ground data including terrain information in
both high and low resolution. This work will also demon-
strate how sensor data can be used for the determination
of terrain models to support the analysis in the situation
assessment process through a specific query technique. It
will thus in this work be demonstrated how these two
query techniques together can be used to assist the users
in the situation assessment process.

This work is organized as follows. In section 2 the objec-
tives the work are presented and in section 3 the charac-
teristics of the TGP compilation problem and the
consequences for framework design is discussed. In sec-
tion 4 the situation assessment system introduced includ-
ing also the two query language approaches integrated to
support the SA process. The proposed framework for situ-
ation assessment is presented in section 5 and finally in
section 6 the conclusions and the future research are dis-
cussed.

2 Objectives

Computer based SA in a ground scenario is a very com-
plex problem with several layers, each of which has unre-
solved problems. We have two objectives at this stage.
The first one is to design a general information system for
SA which supplies the necessary basic information, i.e
detected targets, terrain information, etc. This is based on
query languages to achieve the flexibility needed to han-
dle different types of tasks and user needs. The second
objective is to design a framework for high-level user sup-
port, where a basically autonomous problem-solving
capacity is coupled with mechanisms for man-machine
cooperation.

3 Problem discussion

Data- and information fusion in support of SA in military
ground situations is a complex area where relatively little
progress has been made. In view of these difficulties the
somewhat more limited task of TGP compilation is cho-
sen as a starting point. Both share the basic problem of
limited information due to imperfect sensing functions, i.e
all targets are not visible (detected) all the time. There are
also common problems in determining and formalize the
knowledge there is about expected capacity, behavior and
organization of military units. The notion of a TGP usu-
ally means some form of description of the current status
and history of enemy forces; where they are, where they
have been and their type. This description can be of dif-
ferent levels of detail. Traditionally it has been prepared
as a graphical overlay on a map, where it usually, as far as
possible, refers to known organizational units, readily
depicted with military symbols. The process by which
intelligence analysts manually compiles a TGP is
described in military handbooks as part of military doc-
trines.

3.1 The problem approach

The main task for TGP compilation in this work is defined
to be that of object correlation. By this we mean associa-
tion of observations originating from the same entity, i.e a
vehicle, a group of vehicles or a military unit. If aggrega-
tion and subsequent classification of groups of entities
into units is performed, it is only of supportive nature.
This may seem somewhat surprising as the task of corre-
lation often is viewed as a supporting, lower level task. A
somewhat philosophical motivation for this is the follow-
ing. Suppose that we had ”perfect” sensors which could
detect, track and classify individual vehicles. In such a
case it could be argued that classification of military units
would only be of secondary importance; the most relevant
information would be found in a presentation of the
objects with good visualization techniques. This would
imply that the primary reason for aggregation and subse-
quent classification of military units is that we do not have
these perfect sensors. With more and better sensor infor-
mation the possibilities of object correlation will increase.
By not having the goal of hierarchical aggregation and
classification of military units there is also less depen-
dence on that type of a priori knowledge. A further argu-
ment is that by setting correlation in the foreground, the

task of TGP compilation can be seen as a generalization
of the concept of group tracking.

In this framework the input to the TGP compilation comes
from a subsystem for target recognition, which includes
multisensor data fusion capabilities, including tracking.
This means that local classification and correlation of
individual objects has been performed. To understand the
nature of the correlation task faced at the higher level the
following assumption is introduced:

Assumption 1: Fragmented sensor observations are the
key characteristic of the problem

This is a fundamental assumption of this approach. We
assume that situations where the sensor coverage is highly
discontinuous in time and space is the single most impor-
tant characteristic of the problem. While some degree of
fragmentation almost always can be expected, we here
push this issue to the limit. There is a growing interest in
relatively inexpensive, expendable sensors and sensor
platforms, e.g ground sensor nets, micro-UAV’s, recon-
naissance grenades, etc. It seems very likely that distrib-
uted use of such systems will result in highly fragmented
TGPs. Even in the case of more traditional sensor sys-
tems, the ability to handle fragmentation, resulting from
such things as terrain masking, limited coverage, etc., will
be a key issue.

The primary interest here lies in small scale scenarios. A
typical example could be the following. A battalion-sized
mechanized unit is advancing, both on- and off road. A
few sensor systems make some observations of parts of
the unit over a significant time-span. Sensor systems
could, for instance, be a UAV - with different combina-
tions of radar, infrared- and laser-imaging sensors - and
acoustic ground sensors at a few selected places. The non-
continuous observations give rise to hard correlation
problems, e.g ”Do the group of vehicles observed at road-
junction X belong to the same group as was observed 10
minutes before in area Y?”. Typical questions are about
numbers and types of vehicles in the observation area.
TGP compilation in a mini-scenario such as this bears
some resemblance to the task of group tracking, [9], [10],
[11]. One similarity is the task of correlating observations
of a group of objects. There are however at least two
important differences. The first one is that correlation in
TGP compilation, due to the larger time-gaps, must be
based on (or augmented with) other types of domain
knowledge and factors than the kinematic models which
typically dominate in group tracking (although there are
exceptions here).

It is outside the scope of this paper to make an analysis of
what domain knowledge that can be used for TGP compi-
lation of the type defined above. We do however envisage
the use of the following general areas. The concept of
group similarity is central. What makes this a very diffi-
cult problem area is that we must account for the possibil-
ity of partial observations of groups. In special
circumstances, i.e flat, open terrain with high detection
rates, this may be less of a problem. But in general, the
effects of terrain masking, limitations in detection pro-
cesses, sensor field-of-view limitations, etc., make partial
observations a thing to be expected. An example of a
bayesian model for handling partial observation of a
group is given in [20]. The problem is not only in mathe-

matical models, but also in the data needed. For instance,
to take terrain masking into account there must be a ter-
rain database with high resolution available, detection
rates must come from somewhere, etc. Models of terrain
trafficability and vehicle/unit speed is obviously needed.
In the area of military unit behavior our intent is to strive
for as simple models as possible; more of “rational behav-
ior” rather than military doctrines.

3.2 Framework design issues

Designing a system to support a user requires consider-
ation not only of the problem and its technological solu-
tion, but also of human factors. An interesting discussion
of this can be found in [19], where a triad model is pro-
posed that establishes the relationship between task, tech-
nology and human in the design of systems that support
human decision making. The starting point is an analysis
of task characteristics and the constraints imposed from
the environment. Possibilities and limitations should then
be identified both in the technology-task and the human-
task relation. It is then in the trade-off spectrum of identi-
fied requirements on both technology and human that the
roles of man and machine are defined.

3.2.1 Key factors in TGP problem
characteristics

The problem characteristics as discussed in 3.1 is based
on the assumption of fragmented sensor observations.
Partly based on that assumption, the following assump-
tion can also be made:

Assumption 2: The existence of relevant alternative
interpretations is not uncommon.

The ambiguities created due to fragmentation, in combi-
nation with uncertainties in the knowledge applied to
make an interpretation, can generally result in more than
one plausible interpretation. The assumption is that these
plausible interpretations are enough different (from the
user perspective) that we can speak of different interpreta-
tions rather than a single interpretation with minor uncer-
tainties.

Assumption 3: The domain knowledge is often uncertain
in a hard-to-quantify way.

This especially applies to domain knowledge in the area
of military doctrines.

3.2.2 Key factors in problem solving technology
in relation to the TGP problem

Assumption 4: The combinatorial explosion caused by
uncertain correlations and aggregations make exhaustive
search impossible.

This is an assumption only for very small situations, oth-
erwise it is a fact.

3.2.3 Key factors in user needs and capabilities
in relation to the TGP problem

Assumption 5: The user must somehow gain an overview
of plausible alternative interpretations.

The notion of alternatives is central to the military deci-
sion making process. It is therefore not enough to find a
single very plausible interpretation, if not other possibili-
ties has been checked and rejected.

Assumption 6: The relevance of differences between
alternative interpretations is context- and task dependent
in such a way that human control is needed.

This means that if we have a system that searches for
alternative interpretations, the user must somehow be able
to influence the underlying definition of “relevant alterna-
tive interpretation”. This has to do both with computa-
tional priorities (the “Focus of attention”) and with the
user needs of not getting overwhelmed with unimportant
alternatives.

Assumption 7: The user has domain knowledge at least
part of which is not represented in the system.

Assumption 8: The user has superior judgement com-
pared with the system.

These two general assumptions holds for almost any real-
world decision support system with an experienced user.

Assumption 9: The user has enough time available to be
able to interact with the system.

While the time available for analysis has task dependent
limits, we do not think that this is the most critical prob-
lem.

There are several important consequences for framework
design that can be derived from these assumptions. One of
the most fundamental is that some form of overview of
plausible alternative solutions must be given to the user.
This is a direct consequence of assumption 4, but it is also
motivated by the other assumptions. If the domain knowl-
edge was more statistical in nature, it might be possible to
rely on the system to make the most optimal interpreta-
tion. The opposite is a system where only one solution is
given. In such a case it is more of a autonomous problem
solving system, where the users domain knowledge and
intuition is of less use.

Another important consequence is that the user must be
able to influence the search for solutions. The most obvi-
ous reason is that the limited computing resources avail-
able must be used in the most efficient way. In the end it
is only the user who can decide where it is relevant to
search. The more autonomous the system is, the greater
the risk is that it will spend its time searching among
alternative solutions where the differences are irrelevant
to the user. It also has to do with superior judgement, and
sometimes domain knowledge, on part of the user. In case
of conflicts between the opinions of the user and the sys-
tem, there must be mechanisms which allows the user not
only to override the conclusions of the system, but also to
make the system revise its own reasoning with the new
pieces of information in consideration. There must be

mechanisms that allows cooperative problem solving
between man and machine.

If user judgement and domain knowledge is to be used
effectively, the proposed solutions must be as transparent
as possible to the user, preferably down to knowledge
base level. This is because the user in case of conflicting
views with the system must have a chance of pinpointing
the reasons for this. For this to be of any value, the user
must also have mechanisms to control the systems knowl-
edgebase. If the user decides that a specific part of the
systems knowledge base leads to wrong conclusions, in
general or in a specific context, there must be mechanisms
that allows modification (or at least blockading) of that
piece of the knowledge base. An example of this could be
if the actual behavior of military units deviates heavily
from (expected) doctrine.

3.3 Alternative interpretations

The notion of alternative interpretations is central to the
proposed framework. The general aim is to explore plau-
sible interpretations, which is a kind of learning process.

Definition: Alternative interpretations are a set of solu-
tions to the interpretation optimization problem, where
the pairwize differences are great enough according to
some specified metric.

From a practical point of view, what is of interest is to
find and present a limited set of plausible solutions which
in some way are representative of the interpretative possi-
bilities. There is a trade-off here between degree of plau-
sibility and originality. Even if there is no precise
definition of this, we can at least state that solutions must
be different enough from one another to be of interest.
The solution difference metric and the threshold for rele-
vant differences must be problem dependent. In the case
of TGP compilation, it depends on the perceived situation,
user task, etc. Generally, what information the user is
interested in should be reflected in the difference metric.
It could for example be the overall number of vehicles
present, organizational structure, etc. Ideally, the user
should be able to dynamically shift this kind of focus. It
should be a user tool for exploration.

In order to choose or develop techniques that makes it
possible to find alternative solutions in an optimization
problem, there is a need to understand the reasons to why
the alternatives exist, i.e why the user could be interested
in solutions other than the “optimal” one found by the
optimization process. There can of course be many differ-
ent reasons for this. In interpretation applications, and
especially military ones, there is a need to take all possi-
bilities of high enough plausibility into consideration to
be able to make an optimal decision for some action.
Another reason is imprecision in the optimization model,
which means that a near-optimal solution may be the best
one in reality. A third case is when there are several fac-
tors in the optimization model which are either hard to
combine in an objective way, or of uncertain quality. If
summed up in a single optimization objective in an ad hoc
way there is a risk of losing interesting solutions because
of the factors being integrated in a “wrong” way or
because one or more factors being misleading.

In TGP compilation, all these reasons seems to be appli-
cable. One important aspect is that it can be expected that
the user has domain knowledge which is not present in the
optimization model. Another aspect is that there are very
different kind of factors which may be considered. On one
side there is concrete evidence from sensors. On the other
side there are different kind of a priori knowledge (or
expectations/assumptions) of vehicle and unit behavior,
organizational structure, etc. Much of this knowledge is
non-statistical and hard to quantify in a meaningful way.
If these different factors are combined to a single optimi-
zation objective, information is lost. The risk is that some
piece of knowledge turns out to be misleading. It could
for example be that the observed units are not organized
or do not behave according to the expected doctrine.

4 Situation assessment system

The system described here is primarily intended for situa-
tion assessment. To support this type of operations two
different types of query systems will be integrated. The
first one is concerned with acquisition of vehicles from
multiple heterogeneous data sources, i.e. basically sen-
sors. As in all systems with multiple sensor data input
sensor data fusion is needed here as well to gain more reli-
able results from the query process. Other information of
importance to support the situation assessment process is
terrain data; basically for determination of various kinds
of terrain features, trafficability, change detection etc. To
support these requirements a particular query system with
the ability to fulfill such requests is being designed.

Input data to the SA module will be delivered from the
query systems and is consequently not an entirely auto-
matic process. Instead data are first collected by a set of
sensors that may vary in type depending on availability
and the application at hand. Once data have been col-
lected by the sensors they will be transformed into a uni-
fied structure and objects of interest will be identified
together with their most important attributes such as type,
size etc. Besides, status information concerning, for
instance, the object location, orientation and speed are
determined. Such information as, for instance type, is
always associated with some degree of uncertainty and for
this reason a confidence value that mirrors the actual level
of uncertainty must be associated with the targets. The
information acquired from the various types of sensor
data will be delivered to a database and stored for future
use. Laser-radar data is used for generation of the terrain
data model, which can be represented in a very high reso-
lution.

4.1 The system structure

The structure of the situation assessment system can be
seen in figure 1. The two query systems will both be
reached from the graphical user interface. Queries for
both query languages will be given in terms of a high
level language and will include such aspects as type of
vehicle or various aggregated units, area of interest and
time interval of interest as well as attribute and status
variables of interest. The queries may also include various
constraints with regards to the attributes of interest. The
queries are in a first step translated into a medium level

representation that in the next step will be transformed
into a structure that can be used as input to the query
interpreters. The former step is performed by the query
decoder and involves reduction of the occurring high-
level concepts or terms into low-level terms that are more
suitable for the queries. Examples of such transformations
are to determine the number and types of vehicles
included in a specific unit, i.e. if the user query is con-
cerned with a special unit then it is transformed into a
specification including type and number of the vehicles;
this specification is then used by the query system to
answer the query, e.g. to determine whether these types of
vehicles are present in the data and how many. The result
of the queries may then be transformed by one or more of
the information fusion agents, depending on the type of
the query. The two query approaches will be discussed
further subsequently while the methods used by the SA
module will be discussed in section 5. Other special pur-
pose modules may also be integrated into the SA system,
for instance, a module for threat analysis can be integrated
here if there is a need. The structure of this system is
related to the JDL process architecture as described in e.g.
[1].

Figure 1: The structure of the situation assessment
system.

4.2 The ΣQL query language

The query language, ΣQL, described in e.g. [2][3]and [5]
can be seen as a tool for the handling of spatial/temporal
information for sensor-based information fusion, because
most sensors are generating spatial information in a tem-
poral sequential manner. A query language of this type
must be able to handle large volumes of data because
most sensors can generate large quantities of data within
very short periods of time. Another aspect to consider is
that user queries may include data from more than one
sensor, which consequently will lead to complex query
structures, because the use of data from more than one
sensor may require fusion of multiple sensor information.
The strength of the query structure is its simplicity: the
query language is based upon a single operator type, i.e.
the σ−operator. Another advantage of the concept is the
natural and simple mapping of ΣQL-structures into an
SQL-like query language. However, the SQL-like query
language is primarily useful just in theoretical investiga-
tions, while the σ−query language is easy to implement

and also a step towards a user-friendly visual query lan-
guage.

The σ−query language can be seen as tool that is applied
to a data source corresponding to a multidimensional
space. This source, R, is also called a universe. Each
query is made up by a sequence of σ-operators that prima-
rily should allow operations on a sensor-data-independent
level, i.e. the acquired sensor data should be transformed
into an information structure at a high abstraction level
that is sensor independent. To accomplish this, the queries
should be expressed in terms of operator sequences where
the operators carry out the transformations stepwise. Basi-
cally, the operators reduce the dimensions of the multi-
dimensional search space to which each new operator is
applied with respect to the dimensions in focus of the
query. The reduced search space is subsequently called a
cluster. Thus, as new operators are applied, the clusters
become more and more refined until eventually a final
cluster is returned and this cluster corresponds to the
answer of the applied query.

An illustration of the query language could be a video
sequence, i.e. the universe R, from which a limited set of
frames can be extracted. The σ-operators correspond to a
select-command in SQL. Thus if we are interested in three
frames at different predetermined times, t1, t2, and t3,
along the time axis, this will correspond to the σ-operator
σt (t1 , t2 , t3), which means that the three frames should
be selected from the time axis of the universe R. In the
SQL-like language the ΣQL query is expressed as:

SELECT t
CLUSTER t1, t2, t3
FROM R

A new keyword "CLUSTER" is introduced, so that the
parameters for the σ−operator can be listed. The word
"CLUSTER" indicates that objects belonging to the same
cluster must share some common characteristics (such as
having a value of the value set of the same time parame-
ter).

The dual representation of the ΣQL language means that a
query can be formulated as an SQL-like query [2] or as a
sequence of generic operators (the σ-operators introduced
above). Translation from one representation to the other is
straightforward. However, the main purpose of the opera-
tor sequences is to serve as an intermediate representation
between the graphical user interface and the query inter-
preter.

The purpose of the concept of sensor data independence
that was introduced above is to simplify the use of the
system and to let the system take the responsibility of
deciding which sensor and which sensor data analysis
algorithm that should be applied under given circum-
stances as a response to a particular query. To support this
activity an ontological knowledge base system [4] has
been developed. This is a step towards general tech-
niques to generate/refine queries based upon incom-
plete knowledge about the real world. However, the
knowledge stored in the ontology differs from
knowledge in other domains in that it includes not
just object knowledge but sensor and sensor data
control knowledge as well. An important conse-
quence of the ontological knowledge base is that it

ΣQL

Aggregation

Situation
analysis

GUI

Decoder
Response
interpreter

τQL

Query
Guidelines

Result

Information
fusion
agents

Information
fusion
controller

permits refinement and optimization of the queries
since external information, such as weather and light
conditions, can be maintained by the ontology as
well.

A general and most important aspect of any query system
but in particular in sensor data fusion systems, is the con-
fidence in the query result, which must be acknowledged
by the user. This is due to the fact that data acquired from
sensors are always mapping the reality with some level of
uncertainty. The uncertainties are due to technical imper-
fections in the sensors. Generally, these uncertainties can
be represented with some kind of confidence value that
may be normalized, i.e. they are given values within the
interval [0,1]. Confidence values of this type should be
interpreted as the confidence a user may have in a query
result. This way of representing uncertainties in the data
becomes even more necessary in the sensor data fusion
process. Consequently, when evaluating the result from a
query applied to data from multiple sensors the confi-
dence value corresponding to the uncertainties of the
fused result is required. This kind of confidence structure
is used in ΣQL to support the user in interpreting the
query result.

4.3 Terrain data query support

The situation assessment process should be concerned not
just with vehicle information, their type and class mem-
bership as well as their status and attribute information.
Terrain information is also needed to complete the SA
process. For instance, determination of whether a particu-
lar part of the terrain is drivable is important and in prac-
tice this means that existing obstacles, such as ditches,
must be determined. Here as well, a query language is
required to support these demands. The query language,
called τql [6], uses both a traditional terrain structure and
a symbolic terrain representation, which are generated
from ladar data. This terrain structure is represented in a
very high resolution. The motivation for symbolic terrain
structure is due to the observation that when terrain mod-
els in very high resolution are used, the number of data
points tend to become extremely large which is very
unpractical. Thus execution times tend to become very
long. To handle this problem there is a need for a consid-
erable reduction of the stored data. Basically, in this work
this has been accomplished by development of a terrain
model based on a grid structure that is combined with a
set significant irregular data points [7]. This combined
structure allows the terrain model to be represented in a
resolution that reduces the number of stored data points
with a bout 80 to 90% without loss of any considerable
amount of information. The resolution of the terrain
model is approximately 0.5 m.

The symbolic terrain data model can be viewed as a set of
tiles where each tile is spanned up by the four corners of
the grid structure including also the significant irregular
data points. Consequently, each tile describes a part of the
terrain in a characteristic way that is symbolically inter-
preted. Thus, each tile corresponds to a mapping of the
terrain, which reduces the original data even further. The
symbolic tiles are called categories and 115 such tile cate-
gories have been identified. To identify a certain terrain
feature, e.g. a ditch, a filtering technique has been devel-
oped. The filters are made up by a set of symbolic tiles

that are organized as a linear sequence that forms a seg-
ment. This segment, or filter, is matched against the tile
structure. The matching process is performed both hori-
zontally and vertically. The filter matching work is part of
a recent masterwork [8], which is a step towards the
development of a query language for terrain data, which is
subject to on-going research.

5 A framework for support of
tactical ground picture compilation

The general purpose of the proposed framework, see fig 2,
is to allow flexible man-machine co-operation in the inter-
pretation of sensor observations from a military situation,
when viewed as a combinatorial optimization problem.
The main feature of the framework is that it supports the
exploration of alternative interpretations
.

Figure 2: The framework for support of tactical ground
picture compilation.

5.1 Search and optimization methods

The framework supports two types of optimization, both
of which generates multiple solutions in some way. Multi
Modal Optimization (MMO) [16], is concerned with opti-
mization where the search space exhibits many local
optima. The meta-heuristic here is that these local optima
are interesting alternative solutions to the user if they are
of good enough quality. There is a trade-off between solu-
tion quality and solution uniqueness. The other optimiza-
tion technique is Multi Objective Optimization (MOO).
Most real-world optimization problems has several

Basic
Elements Basic unoptimized

ground picture

EA-based search and
optimization engine

Result

Solution evaluation

know-
ledge
base

Knowledge-base
for generation of
local hypothesis

Limited set of

. . . .
selec-
tion

GUI

Query
System

alternative solutions

incommensurable and often conflicting objectives. MOO
is concerned with the task of optimization with several
objectives simultaneously. In single-objective optimiza-
tion approaches such tasks can be handled by combining
all objectives into a new objective according to some for-
mula, e.g a weighted sum. The problem with such
approach is that it can be difficult to combine different
types of objectives in a quantitative way. In MOO objec-
tives are kept separate. The optimization process then
searches for solutions which are pareto-optimal. These
solutions are optimal in the sense that no other solutions
are superior to them when all objectives are considered.
Some good overviews are given in [13] and [15].

Both MMO and MOO are implemented within the general
paradigm of Evolutionary Algorithms (EA). This is an
umbrella term used to describe computerized problem
solving systems which use computational models of some
of the known mechanisms of evolution as key elements in
their design and implementation. Basic characteristics are
that they maintain a population of tentative solutions to
the problem to be solved, and that the population evolves
according to rules which simulates evolution. A typical
EA-loop consists of mutation, selection and recombina-
tion. Mutation means application of a local search opera-
tor to a solution. Selection is the equivalent of “survival of
the fittest”. Recombination means generating a new solu-
tion from two existing solutions, where the new one
inherits properties from both “parents”. EAs belong to the
class of randomized search algorithms, but are often
mixed with other methods to create hybrid systems. An
introduction to the basic ideas of EA can be found in [12].
The paradigm of EA suits both MOO and MMO, partly
because it works in parallel on a population of solutions,
partly because of its inherent flexibility [14].

5.2 Framework structure

The central building-block of the framework is an EA-
based search and optimization engine. It has a population
of solutions to the TGP problem, which evolves in an on-
going loop of mutation, selection and recombination. The
detected objects (including a track history) are a static
background common to all solutions. A solution is repre-
sented as a set of hypothesized aggregations and correla-
tions which links the detected objects in a consistent way.
Mutation in this context means modifying (adding/remov-
ing/substituting) one of these hypothesis.
The techniques of MMO and MOO are treated as different
modes of the optimization process, sharing the same basic
solution structure. The optimization is an ongoing process
where the user at any moment can inspect the most inter-
esting solutions and change the focus of the continued
search/optimization by changing optimization mode and/
or their parameters.

The building blocks for the optimization process are
stored in the basic unoptimized ground picture database.
Here we have 1) the data from the multisensor data fusion
system which has been requested by the user, i.e detected
targets and tracks within a time and space frame 2) aggre-
gation and correlation hypothesis. The hypothesis may be,
and generally are, in conflict with each other. The main
task of the basic unoptimized ground picture database is
to feed the optimization engine with search alternatives,
but it should also be visually inspectable by the users.

The aggregation and correlation hypothesis are generated
in the knowledgebased system for local hypothesis gener-
ation. It is here possible to have multiple independent
knowledge sources that generate hypothesis independent
of each other, as there is no consistency requirement.
Each hypothesis is given an estimated confidence value to
enable the search and optimization process to implement
different strategies, e.g to search among the most plausi-
ble alternatives first in order to quickly generate a solu-
tion.

Solutions in the search and optimization process are eval-
uated by a separate subsystem for solution evaluation.
Solutions are evaluated in a hierarchical manner, from
individual aggregations and correlations up to tracks of
aggregated entities, groups of tracks, and finally the
whole solution. To enable multiobjective optimization,
the solutions are evaluated with multiple criteria. The two
basic criteria are “plausibility in relation to sensor obser-
vations” and “plausibility in relation to expected behav-
ior/doctrine”. There is flexibility to define new, more
specialized criteria.

The output of the search and optimization process is a
limited set of solutions presented graphically to the user.
They are intended to give an overview of different inter-
pretations (i.e different TGP). By choosing optimization
mode and its parameters, the user should be able to effect
the criteria by which these solutions are selected.

5.3 Research issues

A user-defined solution distance metric is a high priority
research issue. Another primary concern is about compu-
tational complexity. Both multi modal and multi objective
optimization have high computational cost, and there is
much research going on how to improve the efficiency of
these. There has however been successful applications
even in the case of combinatorial optimization. The con-
cern about computational efficiency also applies to the
evaluation of solutions. Another area which needs
research is solution representations and corresponding
evolutionary operators. There are a number of representa-
tions and operators for different kinds of combinatorial
optimizations in the literature; the most applicable one in
this context being that of set partitioning [18]. An open
research issue of great importance, which is quite applica-
tion specific, is how to design evolutionary operators so
that both aggregation and correlation can be combined in
the same solution structure.

5.4 Framework properties

Of the demands discussed in 3.2, it is the notion of explo-
ration of alternatives which has been given most explicit
attention. The challenge is both to do this in an efficient
way and to get alternative solutions that are reasonably
representative of the inherent possibilities. User influence
over search is to be achieved by selecting optimization
mode and by a user defined similarity metric. Transparent
solutions can in principle be achieved by storing partial
results from the solution evaluation process in the solu-
tions. Some of this is needed for the MOO method. How
to achieve user control of applied domain knowledge is

unclear, but simple blockage of parts of the knowledge is
trivial with the intended modularity.

There are also other potential advantages with the pro-
posed framework, largely attributable to the used para-
digm of EA. The modularization of the problem solving
process gives great flexibility to integrate other methods
in the framework. For instance, if there is a solution gen-
erated by some other method, it can in principle be
directly inserted into the population of the EA search
machinery, as long as the solution structure is the same.
Likewise, it is straightforward to use multiple methods for
generation of local hypothesis, as there is no need for con-
sistency.

6 Conclusions and future work

In this work a system for situation assessment has been
proposed. The approach taken includes, in order to assist
the end-users in their working processes, two different
query systems. The first of these is designed to recognize
various types of ground vehicles registered by multiple
sensors, in a sensor data independent way. The second
query system is more specialized and is primarily used for
visualization of high resolution terrain data models and
for determination of terrain features of importance, e.g.
for trafficability and generally to support the situation
assessment process with necessary terrain knowledge.
The situation assessment system is augmented with a
framework for generation of TGP. An important issue in
this framework is the ability to identify alternative inter-
pretations of a situation, which should be done with the
user in an active role.

The system proposed here is still in its infancy and a lot of
work remains to be done; nevertheless the result so far is
promising. The most substantial contributions to the sys-
tem and its framework are currently demonstrated by the
two query systems, although more work is required here
as well, for instance integration of other sensor types.

References
[1]“Handbook of Multisensor data fusion”, D. L. Hall, J.
S. Llinas (Eds.), CRC Press, Boca Raton, Florida, 2001.
[2]S.-K. Chang, E. Jungert, “Query Languages for Multi-
media Search”, Principles of Visual Information
Retrieval, M. S. Lew (ed.), Advances in Pattern Recogni-
tion, Springer Verlag, Berlin, 2001, pp 199-217.
[3]S. K. Chang, G. Costagliola and E. Jungert, “Querying
Multimedia Data Sources and Databases”, Proceedings of

the 3rd International Conference on Visual Information
Systems (Visual’99), Amsterdam, The Netherlands, June
2-4, 1999.
[4]S.-K. Chang, G. Costagliola, E. Jungert, "Multi-Sensor
Information Fusion by Query Refinement", Proceedings
of the 5th International Conference on Visual Information
Systems (VISUAL 2002), Hsin Chu, Taiwan, March 11-
13, 2002.
[5]S. K. Chang and E. Jungert, “A Spatial/temporal query
language for multiple data sources in a heterogeneous
information system environment”, The International Jour-

nal of Cooperative Information Systems (IJCIS), vol. 7,
Nos 2 & 3, 1998, pp 167-186.
[6]M. Elmqvist, E. Jungert et al., “Terrain Modelling and
Analysis using Laser Scanner Data”, Proceedings of Con-
ference on Land Surface Mapping and Characterization
using Laser Altimetry, Annapolis, MD, USA, October 22-
24, 2001, 219-226, published by Dept. of Geography,
University of Maryland, MD, 2001.
[7]F. Lantz and E. Jungert, ”Dual Aspects of a Multi-Res-
olution Grid-Based Terrain Data Model with Supplemen-

tary Irregular Data Points”, Proceedings of the 3rd Int.
Conf. on Information fusion, Paris, July 0-13, 2000.
[8]Mats Sjövall, “Object and Feature Recognition in a
Digital Terrain Model”, Master Report, University of
Linköping, LiTH-IDA-Ex-02/N
[9]T. Kirubarajan, et. al., “Ground Target Tracking with
Variable Structure IMM Estimator”, IEEE Transactions
on Aerospace and Electronics Systems, Vol. 36, No 1,
January 2000.
[10]D. J. Salmond and N. J. Gordon, “Group Tracking
with Limited Sensor Resolution and Finite Field of
View”, Proceedings of SPIE, Vol 4048,Signal and Data
Processing of Small Targets 2000, April 2000.
[11]M. Lodaya, R. Bottone, “Moving Target Tracking
Using Multiple Sensors”, Proceedings of SPIE, Vol
4048,Signal and Data Processing of Small Targets 2000,
April 2000.
[12]D. E. Goldberg, “Genetic Algorithms in Search, Opti-
mization & Machine Learning”, Addison Wesley, 1989.
[13]C. A. C. Coello, “A comprehensive Survey of Evolu-
tionary-Based Multiobjective Optimization Techniques”,
Knowledge and Information Systems. An International
Journal, 1(3):269-308, August 1999.
[14]E. Zitzler, “Evolutionary Algorithms for Multiobjec-
tive Optimization: Methods and Applications”, PhD the-
sis, Swiss Federal Institute of Technology (ETH), Zurich,
Switzerland, November 1999.
[15]J.Teghem, “Multiobjective Combinatorial Optimiza-
tion”, In PPSN/SAB Workshop on Multiobjective Prob-
lem Solving From Nature (MPSN), Paris, France,
September 2000.
[16]B. Sareni and L. Krähenbühl, “Fitness Sharing and
Niching Methods Revisited”, IEEE Transactions on Evo-
lutionary Computation, Vol. 2, No 3, September 1998.
[17]M. Ehrgott and X. Gandibleux, “An Annotaded Bibli-
ography of Multi-objective Combinatorial Optimiza-
tion”, Technical Report 62/2000, Fachbereich
Mathematik, Universitat Kaiserslautern, Germany, 2000.
[18]E. Falkenauer, “Genetic Algorithms and Grouping
Problems”, New York: Wiley, 1998.
[19]S.Paradis, R. Breton and J. Roy, “Data Fusion in Sup-
port of Dynamic Human Decision Making”, Proceedings
of the Second International Conference on Information
Fusion (FUSION 1999), Las Vegas, USA, 1999.
[20]J. K. Johnsson and R. D. Chaney, “Recursive Compo-
sition Inference for Force Aggregation”, Proceedings of
the Second International Conference on Information
Fusion (FUSION 1999), Las Vegas, USA, 1999.

Utgivare Rapportnummer, ISRN Klassificering

FOI - Totalförsvarets forskningsinstitut FOI-R--1787--SE Användarrapport
Forskningsområde

4. Ledning, informationsteknik och sensorer

Månad, år Projektnummer

September 2005 E7089
Delområde

42 Spaningssensorer

Delområde 2

Ledningssystem
Box 1165
581 11 Linköping

Författare/redaktör Projektledare
Erland Jungert Erland Jungert

Martin Folkesson Godkänd av
Jörgen Fransson Martin Rantzer
Tobias Horney Uppdragsgivare/kundbeteckning
Fredrik Lantz Försvarsmakten

Karin Silvervarg Tekniskt och/eller vetenskapligt ansvarig
 Erland Jungert

Rapportens titel

Ett frågebaserat beslutsstödssystem för nätverksbaserade ledningssystem

Sammanfattning

Olika typer av beslutsstödssystem för militära och krisrelaterade tillämpningar måste finnas
tillgängliga för integration i nätverksbaserade ledningssystem. Dessa beslutsstöd måste i de
flesta fall kunna utnyttjas för att samla in, analysera, fusionera, hantera, lagra och i slutligen
visualisera information hämtade från en mängd olika typer av sensorer. Den på detta sätt
insamlade och bearbetade informationen skall väsentligen ge användarna stöd i deras
beslutsfattande. I moderna ledningssystem är dessa beslutsstöd oftast tjänsteorienterade.
Speciella krav på generalitet, användbarhet och flexibilitet måste också ställas på dessa
beslutsstöd. I detta arbete beskrivs ett frågebaserat och tjänsteorienterat informationssystem
anpassat till nätverksbaserade ledningssystemtillämpningar, främst för markspanings-
uppgifter med utnyttjande av sensordata. Andra väsentliga egenskaper i detta tjänstebaserade
system är sensorinteroperabilitet och sensordataoberoende.

Nyckelord

frågespråk, situations analys, digital terräng model, framkomlighet,interoperabilitet, sensordataoberoende, tjänster

Övriga bibliografiska uppgifter Språk Svenska

ISSN 1650-1942 Antal sidor: 120 s.

Distribution enligt missiv Pris: Enligt prislista

Issuing organization Report number, ISRN Report type

FOI – Swedish Defence Research Agency FOI-R--1787--SE User report

Programme Areas

4. C4ISTAR
Month year Project no.

September 2005 E7089
Subcategories

42 Above water Surveillance, Target acquistion
and Reconnaissance

Subcategories 2

Ledningssystem
Box 1165
581 11 Linköping

Author/s (editor/s) Project manager
Erland Jungert Erland Jungert
Martin Folkesson Approved by
Jörgen Fransson Martin Rantzer

Tobias Horney Sponsoring agency
Fredrik Lantz Swedish Defence

Karin Silvervarg Scientifically and technically responsible
 Erland Jungert
Report title (In translation)

A query based decision support system for net -based command and control systems, services

Abstract

Different types of decision support systems for military as well as crisis management related applications must be
available for integration in network based command and control systems. These decision support tools must in
most cases be possible to use for collection, fusion, handling, storage and finally also for visualization of information
from a large number of sensor data sources. The information collected and manipulated in any of these ways
should primarily support the end-users in their decision making activities. In modern command and control systems
this type of decision support tools will essentially be service oriented. Special requirements concerning generality,
usability and flexibility must be determined for these services as well. In this work is a query based and service
oriented information system adopted to network based command and control applications, primarily for ground
target reconnaissance using sensor data input, described. Other important properties in this service based system
are sensor interoperability and sensor data independence.

Keywords

Query language, Situation analysis, digital terrain model, driveability, interoperability, data independence

Further bibliographic information Language Swedish

ISSN 1650-1942 Pages 120 p.

 Price acc. to pricelist

	slut-rapp-2.pdf
	4. Informationssystemet
	4.1 Frågespråket
	4.1.5 Arkitektur
	Figur 9. Beskrivning av informationsflöde från sensor till användare.

	FOI-R--1787--SE.pdf
	slut-rapp-2.pdf
	4. Informationssystemet
	4.1 Frågespråket
	4.1.5 Arkitektur
	Figur 9. Beskrivning av informationsflöde från sensor till användare.

	slut-rapp-appendixdel.pdf
	Särtryck av utvalda publikationer
	Appendix A

	An Information System for Target Recognition
	SPIE, Aerosense, Orlando, FA, April 12-16, 2004.
	Horney, T., Ahlberg, J., Jungert, E., Folkesson, M., Silvervarg, K., Lantz, F., Franssson, J., Grönwall, C., Klasén, L., Ulvklo, M.
	Appendix B

	Querying Distributed Multimedia Databases and Data Sources for Sensor Data Fusion
	IEEE Transactions on Multimedia, Vol. 06, No 5, Oct. 2004.
	Chang, S.-K., Costagliola, G., Jungert, E and F. Orciuoli
	Appendix C

	A Visual Query Language for Uncertain Spatial and Temporal data
	Visual Information System, Amsterdam, July 5, 2005.
	Silvervarg, K., Jungert, E.
	Appendix D

	Uncertain topological relations for mobile point objects in terrain
	Distributed multimedia Systems (DMS’05), Banff, Canada, Sept. 5-7, 2005.
	Silvervarg, K., Jungert, E.
	Appendix E

	An Ontology Controlled Data Fusion Process for a Query Language
	Information Fusion, Cairnes, Australia, July 8-11, 2003.
	Horney,T. , Jungert, E., Folkesson, M.
	Appendix F

	Iterative Information Fusion using a Reasoner for Objects with Uninformative Belief Values
	Information Fusion, Stockhom Sweden, June 28- July 1, 2004.
	Chang, S.-K., Jungert, E.
	Appendix G

	A Fusion Framework for coarse-to-fine Target Recognition
	Förelagd Defense and Security Symposium, March 29-31, 2005, Orlando, Florida, USA
	Folkesson, M., Grönwall, C., Jungert, E.
	Appendix H

	Agent architecture for a query language in NVD-Environment
	(in Swedish), FOI-memo 1025, September, 2004.
	Horney, T., Jungert, E.
	Appendix I

	Determination of Terrain Features in a Terrain Model from Laser Radar Data
	3-D reconstruction from airborne laserscanner and InSAR data, Dresden, Germany, October 8- 10, 2003.
	Lantz, F., Jungert, E., Sjövall, M
	Appendix J

	Context Fusion for Driveability Analysis
	Information Fusion, Philadelphia, PA, July 25-29, 2005.
	Lantz, F., S. Edlund, Jungert, E.
	Appendix K

	Towards a Query Assisted Tool for Situation Assessment
	Information Fusion, Annapolis, MD, July, 2002.
	Fransson, J., Jungert, E.
	33
	34
	35
	49
	67
	83
	91
	101
	111
	121
	129
	137
	147

	sigma01335476.pdf
	toc
	Querying Distributed Multimedia Databases and Data Sources for S
	Shi-Kuo Chang, Fellow, IEEE, Gennaro Costagliola, Member, IEEE,
	I. I NTRODUCTION
	II. B ACKGROUND AND R ELATED R ESEARCH
	III. T HE D UAL R EPRESENTATION OF THE $\Sigma{\rm QL}$ Q UERY L

	Fig.€1. Example of extracting three time slices from a source.
	IV. O PERATOR C LASSES
	A. σ -Operators
	B. ϕ -Operators

	V. S ENSOR D ATA F USION

	TABLE€I E XAMPLE OF B ASIC S PATIAL S TATE V ALUES AND T HEIR B
	Fig.€2. (a) Flow of the sensor data fusion process for two singl

	Fig.€3. (a) Laser radar image of a parking lot with a moving car
	Fig.€4. (a) Flow of the sensor data fusion process for the video
	Fig.€5. System architecture for sensor data fusion.
	VI. S YSTEM A RCHITECTURE FOR S ENSOR D ATA F USION
	Fig.€6. Hierarchy of dimensions.

	VII. D ATA M ODEL

	Fig.€7. RSI of a short video clip illustrating the spatial/tempo
	VIII. $\Sigma{\rm QL}$ L ANGUAGE

	Fig.€8. Graph view of the RSI shown in Fig.€7 .
	Fig.€9. Alternative hierarchy of dimensions to represent a video
	Fig.€10. Another possible hierarchy of dimensions for representi
	Query 1: Extract all the video frame columns containing entities

	Fig.€11. Simplified video clip.
	Fig.€12. Extracting all the video frame columns.
	Query 2: Extract all the video frame columns containing an entit

	Fig.€13. Extracting all the video frame columns containing an en
	Fig.€14. Possible hierarchy of dimensions for the web.
	IX. S ENSOR D ATA F USION U SING THE M ERGE O PERATION

	Fig.€15. Dimension hierarchy template for relational databases.
	Fig.€16. Dimension hierarchy for VIDEO.
	X. D ETECTING M OVING O BJECTS IN A V IDEO

	Fig.€17. Hierarchy dimension generated by the show_state algorit
	XI. B ELIEF V ALUES

	Fig.€18. Example of video_piece.
	Fig.€19. Output of Query 3 (parts colored in gray are not to be
	XII. D ISCUSSION
	J. Baumann et al., Mole concepts of a mobile agent system, World
	C. Baumer, Grasshopper a universal agent platform based on MASIF
	K. Chakrabarti, K. Porkaew, and S. Mehrotra, Efficient query ref
	S. K. Chang and E. Jungert, Symbolic Projection for Image Inform
	S. K. Chang, G. Costagliola, and E. Jungert, Multi-sensor inform
	S. K. Chang and E. Jungert, A spatial/temporal query language fo
	C.-Y. Chong, S. Mori, K.-C. Chang, and W. H. Baker, Architecture
	G. Grafe, Query evaluation techniques for large databases, ACM C
	F. V. Jensen, An Introduction to Bayesian Networks . New York: S
	E. Jungert, A data fusion concept for a query language for multi
	E. Jungert, U. Söderman, S. Ahlberg, P. Hörling, F. Lantz, and G
	L. A. Klein, A boolean algebra approach to multiple sensor votin
	H. Kosch, M. Doller, and L. Boszormenyi, Content-based indexing
	D. B. Lange and M. Oshima, Programming and Deploying Java Mobile
	S. Y. Lee and F. J. Hsu, Spatial reasoning and similarity retrie
	J. R. Parker, Multiple sensors, voting methods and target value
	M. Stonebraker, Implementation of integrity constraints and view
	B. Vélez, R. Weiss, M. A. Sheldon, and D. K. Gifford, Fast and e
	E. Waltz and J. Llinas, Multisensor Data Fusion . Boston, MA: Ar
	F. E. White, Managing data fusion systems in joint and coalition

	F. E. Yager, F. E. Fedrizzi, and F. E. Kacprzyk, Eds., Advances
	S. K. Chang, G. Costagliola, and E. Jungert, Multi-sensor inform
	T. Horney, E. Jungert, and M. Folkesson, An ontology controlled

	vis2005.pdf
	A Visual Query Language for Uncertain Spatial and Temporal data
	Karin Silvervarg, Erland Jungert
	FOI, (Swedish Defence Research Agency)
	Box 1165, S-581 11 Linköping, Sweden
	Abstract. Query languages for sensor data will have similarities with traditional query languages but will also have diverging p...
	1 Introduction

	Query languages intended for multiple sensor data sources and other types of external data sources such as text messages differ ...
	Other problems that appear concern the selection of the data sources. Sensor technologies are constantly developing and for this...
	The work discussed here, which is an extension of [26], is focusing on a visual user interface of a query language for multiple ...
	A large number of applications for query languages for sensor data fusion can be foreseen. Among these are applications where th...
	In this paper we only look at the problems concerned with specifying the query. How to present the result of the query is also an important problem, but that is a different problem, and we will not discuss that further in this paper.
	Among the related works that should be pointed out are the work by Abdelmoty and El- Geresy [1], who have designed a system for ...
	This paper is structured as follows. In section 2 the problem definition is presented and discussed. After this follows a presen...
	2 Problem definition

	The main focus of the query language described in this work is concerned with moving ground based objects that correspond to var...
	Given the above background the main problem in this work has been to develop a visual user interface for a query language where spatial/temporal queries are in focus.
	Generally, a set of elements can be associated with the queries. These elements relates to where?, when? and what?, that is wher...
	A further problem is associated with the visualization of the query results. To be considered in connection to this are again th...
	3 The query language, SQL

	The query language discussed in this work is called SQL [1], [10], [7]. Originally, SQL was developed as a query language for qu...
	It is required that selection of sensors and algorithms must be carried out autonomously and for this reason means for such sele...
	This query language allows classification of objects not only from the sensor data sources; it also allows cuing (detection) of ...
	The basic functionality of the query language can be described as follows. A query is inserted by the user and then the input is...
	Sensor data fusion [22] is another property of SQL. It is quite unique and does not occur in traditional query systems. The moti...
	A serious question is how to interpret the fused result of a query. The approach taken here has been to associate a belief value...
	Figure 1 Simple selection of AOI, IOI and object type.
	4 Basic Query elements

	From a logical representation of SQL we have developed a visual language, called Visual SQL [25][26]. The basic questions to be ...
	The user interface is built up around a work area and palettes. The work area is the space where the object types and the relati...
	Objects correspond to all kinds of object types that can be found by the sensors although in our application ground vehicles are...
	As all objects are assumed to be linked to various relations there has to be ways to specify the details of the query. Once the ...
	The user can select the relations from a palette. The relations are also visualized as boxes, where the possible relation is ill...
	Figure 2 The user has selected the object-types vehicle and road, and the relation inside.
	Objects and relations are connected to each other with arrows. Everything passed between a pair of such “boxes” is represented a...
	Figure 3 a. A relation where one of the tuples has more than one element and where the result contains only a part of all possible elements. b. Settings of that relation.
	If an input tuple contains more than one element the user has to define which of the elements in the tuple that is part of the r...
	The query language also includes some set operations, i.e. union, intersection and set difference. They are treated similarly to...
	Intersection is a bit different from union, because in intersection only a single element in each of the input tuples is chosen,...
	Set difference is similar to intersection in the aspect that only one element in the participating tuples are selected. Contrary...
	On all relations the not operator can be applied. Usually this means that all results for which the relation would be true is no...
	Figure 4 Not applied to the inside relation.
	All types of relations can not be applied to all types of objects, for instance, it is normally meaningless to apply a color com...
	No relation is in any way selected to be the result of the query. Instead all “boxes” can be seen as the results or partial resu...
	5 Spatial queries

	In [13], Egenhofer identifies eight atomic topological relations disjunct, meet, equal, inside, coveredBy, contains, covers, and...
	All relations require different properties with respect to the objects to which they relate. For instance, inFrontOf requires th...
	All of the mentioned spatial relations are binary. Sometimes there is a need to relate an object to a fixed point or area and fo...
	6 Temporal queries

	The classical work on temporal relations has been done by Allen [3]. He has defined 13 binary relations that concerns relating t...
	Figure 5 Visualization of Allen’s 13 temporal relations.
	In analogy to spatial queries there is also a need for relating objects to fixed points in time or time intervals. Thus the func...
	Determination of tracks is a quite common task in most sensor data systems. To produce tracks by means of a query language from ...
	The objects that are related by the temporal relations, just like the spatial relations, require certain properties. While the s...
	7 Uncertainties

	As have been pointed, out sensor data are always associated with uncertainties that depends not only on the limitations in the s...
	All spatial relations should be possible to apply in a mode where uncertainties will be considered. This is visually distinguish...
	Uncertainties in time are treated similarly. All relations have an uncertain mode, which is visualized by replacing the squares ...
	Figure 6 The relations before and start, where consideration will be taken to the uncertainties in the data when evaluating the relation.
	The result of applying not to a relation that account for uncertainties is a bit different from when it does not. Usually, the c...
	So far, no complete implementation of this part of the system exists. However, the actual implementation of the evaluation of re...
	8 Completeness

	The visual query language should be at least as powerful as the relational algebra. The operators of the relational algebra are union, set difference, projection, selection and cartesian product [27].
	Union, is the set of tuples that are in R or S or both. Union in the relation algebra can only be applied to relations of the sa...
	The set difference of R and S contains those tuples in R which are not also in S. Set difference just like union is implemented directly in Visual SQL.
	The subset of R that contains all tuples that satisfies a given logical formula is a selection of R; this is the equivalent of selecting some of the rows in a table. In this visual query language this is carried out by the relations.
	The idea behind projection is to remove some elements/components from a relation. If a relation is seen as a table then projecti...
	The cartesian product of R and S is the set of all tuples whose components forms a tuple in R and a tuple in S. Our binary relat...
	9 An example

	To illustrate the use of Visual SQL some examples will be given. The examples can be seen as part of a simple scenario where the...
	Query 1: Find all vehicles close to the power plant near in time of the incident.
	The AOI corresponds to a relatively small area around the power plant and the IOI is the day of the incident. The visual represe...
	Figure 7 Finding suspect vehicles around the power plant (query #1).
	The rational of this query is to try to identify all vehicles that have been in the area at the time of the incident and, which for this reason may be considered suspicious
	Query 2: Find similar vehicles on the riverside freeway. (figure 8)
	Here the AOI is covering a much larger area and the IOI could be the same as before. This query is visualized in figure 8. Here ...
	This query is motivated by the needs to find also other vehicles that may be connected to the vehicles that originally were found suspicious.
	Figure 8 Find similar vehicles on the riverside freeway (query #2).
	10 Conclusions

	In this work the visual user interface of the query language SQL has been discussed together with some of its basic characterist...
	A simple demonstrator of Visual SQL has been implemented and is gradually extended. Currently, five different sensor types have ...
	Future research will focus on user tests of the visual user interface and on the adaptation of the query system to Internet appl...
	The focus of our current work is on how to specify queries. Future research also needs to find a satisfying solution on how to p...
	References
	1. Abdelmoty, A. and El-Geresy, B., Qualitative Tools to Support Visual Querying in Large Spatial Databases, Proceedings of the workshop of Visual Language and Computing, Miami, Florida, September 24-26, 2003, pp 300-305.
	2. Ahlqvist, O., Keukelaar, J. and Oukbir, K., Rough and fuzzy geographical data integration. International Journal of Geographical Information Science, 14(5):475-496, 2000.
	3. Allen, J. F., Maintaining knowledge about temporal intervals, Communications of the ACM, vol. 26, no. 11, pp 832-843.
	4. Blaser, A. D. and Egenhofer, M. J., Visual tool for querying geographic databases, Proceedings of the Workshop on Advanced Visual Interfaces, 2000, p 211-216
	5. Bonhomme, C., Aufaure, M.-A. and Trépied, C., Metaphors for Visual Querying of Spatio-Temporal Databases, Advances in Visual ...
	6. Chang, S.-K., The sentient map, Journal of Visual Languages and Computing, Vol 11, No. 4, August 2000, pp 455-474.
	7. Chang, S.-K. and Jungert, E., Query Languages for Multimedia Search, In Principals of Visual Information Retrieval, M.S. Lew (Ed.), Springer Verlag, Berlin, 2001, pp 199-217.
	8. Chang, S.-K., Costagliola, G., Jungert, E., Multi-sensor Information Fusion by query Refinement, Recent Advances in Visual information Systems, Lecture Notes in Computer Science, 2314, Springer Verlag, 2002, pp 1-11.
	9. Chang, S.K., Jungert, E. Iterative Information Fusion using a Reasoner for Objects with Uninformative Belief Values, Proceedings of the seventh International Conference on Information Fusion, Stockholm, Sweden, June 30 - July 3, 2004.
	10. Chang, S.-K., Costagliola, G., Jungert, E. and Orciuoli, F., Querying Distributed Multimedia Databases and Data Sources for Sensor Data Fusion, accepted for publication in the journal of IEEE transaction on Multimedia, 2004.
	11. Chittaro, L. and Combi, C., Visualizing queries on databases of temporal histories: new metaphors and their evaluation, Data & Knowledge Engineering, v 44, n 2, Feb. 2003, p 239-64
	12. Dionisio, J.D.N. and Cardenas, A.F., MQuery: a visual query language for multimedia, timeline and simulation data, Journal of Visual Languages and Computing, v 7, n 4, Dec. 1996, p 377-401
	13. Egenhofer, M., Deriving the combination of binary topological relations, Journal of Visual languages and Computing, Vol 5, pp 133-49.
	14. Erwig, M. and Schneider, M., Spatio-temporal predicates, IEEE Transactions on Knowledge and Data Engineering, v 14, n 4, July/August, 2002, p 881-901
	15. Fernandes, S., Schiel, U. and Catarci, T., Visual query operators for temporal databases, Proceedings of the International Workshop on Temporal Representation and Reasoning, 1997, p 46-53
	16. Handbook of Multisensor Data Fusion, D. L. Hall & J. Llinas (Eds.), CRC Press, New York, 2001.
	17. Hibino, S. and Rundsteiner, E. A., User Interface Evaluation of a Direct Manipulation Temporal Visual Query Language, Proceedings ACM Multimedia 97, Seattle, WA, USA, 9-13 Nov. 1997, p 99-107.
	18. Hils, D., "Visual Languages and Computing Survey: Data Flow Visual Programming Languages", Journal of Visual Languages and Computing, vol.3, 1992, pp.69-101.
	19. Hirzalla, N. and Karmouch, A., Multimedia query user interface, Canadian Conference on Electrical and Computer Engineering, v 1, 1995, p 590-593.
	20. Horney, T., Ahlberg, J., Jungert, E., Folkesson, M., Silvervarg, K., Lantz, F., Franssson, J., Grönwall, C., Klasén, L., Ulv...
	21. Horney, T., Design of an ontological knowledge structure for a query language for multiple data sources, FOI, scientific report, May 2002, FOI-R--0498--SE.
	22. Horney, T., Jungert, E., Folkesson, M., An Ontology Controlled Data Fusion Process for Query Language, Proceedings of the International Conference on Information Fusion 2003 (Fusion’03), Cairns, Australia, July 8-11.
	23. Lehmann, F. and Cohn, A. G., The eggyolk reliability hierarchy: Semantic data integration using sorts with prototypes. Proceedings of the third international conference on Information and knowledge management, ACM Press, 1995, pp 272-279.
	24. Malan, K., Marsden, G. and Blake, E., Visual query tools for uncertain spatio-temporal data, Proceedings of the ACM International Multimedia Conference and Exhibition, n IV, 2001, p 522-524.
	25. Silvervarg, K. and Jungert, E. Aspects of a visual user interface for spatial/temporal queries, Proceedings of the nineth International Conference on Distributed Multimedia Systems, Miami, Florida, September 24--26, 2003, pp 287-293.
	26. Silvervarg, K. and Jungert, E., Visual specification of spatial/temporal queries in a sensor data independent information sy...
	27. Ullman, J., Principles of Database and Knowledge - Base Systems, Volume 1. Computer science press, Rockville, 1988.

	fusion-03.pdf
	An Ontology Controlled Data Fusion Process for a
	Query Language
	Tobias Horney, Erland Jungert, Martin Folkesson
	Swedish Defence Research Agency (FOI)
	Box 1165, SE-581 11 Linköping, Sweden
	{tobho, jungert, marfol}@foi.se
	Abstract - Query languages designed for acquisition of data from multiple sensor data sources where the data generally are of he...
	Keywords: Ontology, data fusion, query language.
	1 Introduction
	Information systems attached to various types of heterogeneous data sources, which mainly consist of multiple sensors are requir...
	Work combining the use of ontologies with information fusion in various ways is still a relatively new research topic and for th...
	The structure of this paper is the following: Section 2 presents the problem. Section 3 gives a brief overview of the host syste...
	2 Problem description
	Among the requirements in query languages generality is probably the most important and basic one. Establishing generality is co...
	The approach taken here to solve this problem is mainly based on the use of an ontological knowledge-based system that takes car...
	Figure 1: The information flow of SQL.
	3 SQL - an overview
	User queries applied to SQL will as a consequence of the sensor data independence concept be based on terms that for the most pa...
	The basic functionality of the query language can be seen in figure 1. A query is inserted by the user and then the input is fed...
	A view is a symbolic representation, i.e. a mapping, of some part of the world in some resolution. Currently, there are three vi...
	A serious question is how a user should interpret the fused result of a query. The approach taken here has been to associate a b...
	4 The Ontological Knowledge- based system
	The knowledge represented in the ontological knowledge base is modelled in a hierarchical manner known as the ontology. All conc...
	4.1 Things to be Sensed and Recognized

	The “Things to be Sensed and Recognized” part of the ontology models everything that can be sensed by the sensors and everything...
	The subbranch PropertyToBeSensed models the attributes (e.g. colour) that the recognizable objects might have. Representing obje...
	Figure 2: Ontology overview, the knowledge structure.
	The second subbranch of ThingToBeSensed is RecognizableObject which models the objects that can be recognized by the recognition...
	The Vegetation concept is used for modelling the condition terrain background. Therefore Vegetation not only fits into the Thing...
	4.2 Sensor and Algorithm Characteristics

	The “Sensor and Algorithm Characteristics” part of the ontology models the characteristics of the sensors and the recognition and cueing algorithms.
	This part includes the concepts
	The SensorPlatform concept models the available sensor platforms. This concept is also used for modeling the condition sensor pl...
	The Sensor concept is used for modelling sensors. Currently, the following sensors are modelled: CCD (digital camera), IR (infrared camera) and LR (laser radar).
	Algorithms are used for extracting information from the sensor data collected by the sensors. The most important types of algori...
	SA is an important concept since it models the combination of sensors and algorithms. A combination is modelled by the two relat...
	4.3 Conditions

	The “Conditions” part of the ontology models the conditions that have an impact on the appropriateness of the sensors and the re...
	- View
	A view is a symbolic representation of a part of the world in some resolution. The view concept is modelled in the ontology by View.
	The metadata conditions are represented in the ontology by the MetaDataCondition concept. Metadata means data about data, and in...
	External conditions are represented in the ontology by the ExternalCondition concept. External conditions are weather conditions...
	Discrete strength value is represented in the ontology by the DiscreteStrengthValue concept. All conditions have specific values...
	Terrain background is modelled using the Vegetation concept in the ThingsToBeSensed part of the ontology. This is because all ty...
	4.4 Relations

	Relations are used to model how the concepts in the ontology are related to each other. It is important to note that relations a...
	In the context of ontologies a relation is always defined to be a connection from a certain concept to another concept, e.g. the...
	- HasAlgorithm from SA to Algorithm
	- HasSensor from SA to Sensor
	- CarriesSensor from SensorPlatform to Sensor
	- HasAppropriateSA from ThingToBeSensed to SA
	- HasDiscreteStrengthValue from ExternalCondition to DiscreteStrengthValue
	The relations are shown in the ontology overview in figure 2. More details can be found in [3].
	4.5 Appropriate sensors and algorithms

	The ontological knowledge base has been designed to help answering such questions as which sensor data to use under certain circ...
	A short description of the four steps of the algorithm is provided below.
	Step 1
	A list of appropriate SAs is created, with respect only to the type of thing to be sensed. Each SA has an appropriateness value (Ap) connected to it.
	Step 2
	The following things are considered:
	This step alters the appropriateness values of the SAs from step 1 with respect to the information in the metadata.
	Step 3
	The following things are considered:
	This step creates the impact factors describing how strong the impacts from the current external conditions, the view and the terrain background are. This is done for each sensor and algorithm in the SAs in the result from step 2.
	Step 4
	The results from step 2 and step 3 are weighted together. This step alters the Ap values of the SAs in the result from step 2 ac...
	In the process of deciding upon appropriate sensors and algorithms it is necessary to have rules describing under which conditio...
	"If an impact factor x has the discrete strength value y then the impact on the sensor/algorithm z is impact strength value v"
	Example 1:
	"If the impact factor Rain has the discrete strength value Gentle then the impact on recognition algorithm BuildingAlgorithm is impact strength value Little"
	Example 2:
	"If the impact factor View has the discrete strength value Local then the impact on the sensor Standard CCD Sensor is impact strength value None"
	A complete set of rules is needed for the system to function properly. Definitions of impact factor, discrete strength value and impact strength value are presented in [3]. The definitions are quite straight-forward.
	5 The sensor data fusion method
	In the system described above fusion will take place in mainly two different steps, separated by a query refinement. Although lo...
	The first step concerns fusion of attribute data. These data come from the set of algorithms chosen by the ontology for the spec...
	No attribute fusion method has yet been implemented. Some kind of clustering method seems to be needed. Such a method should be ...
	Still, combining attribute values from different algorithms might be exactly what needs to be done in order to exploit the advantages of fusion. This is most likely the case when the algorithms are incapable of estimating all attributes.
	The second data fusion step concerns the output from the recognition algorithms, which consists of an object type with corresponding attribute data and a belief value.
	From a system view the second data fusion step should not be critical, i.e. two slightly different approaches should not result ...
	Picking the overall best recognition result would make the system sensitive to bad belief value calibration between the differen...
	The division of fusion into two steps relies on the assumption that attribute estimation truly can be separated from recognition...
	6 The data fusion control process
	The actual execution of a query, that is, everything performed between the reception of a query entered by the user and the pres...
	6.1 Overview

	There are two basic levels in the data fusion control process. The first level is the cueing level where the area of interest (A...
	The second level is the recognition level where the recognition process takes place. This process is performed in two major step...
	When recognition has been carried out it is time to create an answer to the query. This is done by evaluating the logical expressions enforced in the query by the user.
	The concept of query refinement was introduced in [11]. Query refinement means executing the query in an iterative manner where ...
	There are certain dependencies in the system. Those dependencies are dealt with using the sensor dependency tree. An example of ...
	Figure 3: Data flow on the recognition level.
	6.2 The cueing level

	The cueing level of the target recognition process involves finding potential target objects and pointing out the positions (in ...
	The first step is to select which sensor data and which cueing algorithm(s) to use, which is done by the AFFAS algorithm. The ne...
	6.3 The recognition level

	The recognition level of the target recognition process involves classification and possibly identification of the potential targets pointed out by the cueing algorithms. This is done as described in figure 3.
	Sensor data and recognition algorithms are first selected that is done by the AFFAS algorithm. In the second step attribute esti...
	In the attribute estimation step the selected attribute estimation algorithms tries to estimate certain attributes of a potentia...
	In the current prototype system only one attribute estimation algorithm is used so far, even though further estimation algorithm...
	If multiple attribute estimation algorithms are executed or if multiple sensor data are used to determine the attribute values d...
	When attribute estimation has been carried out the attribute estimations are used to reduce the number of target object models t...
	If no attribute estimation has been performed, for example because there are no sensor data available, then it is impossible to make a selection this way and thus other means must be developed to take care of the model selection.
	By using the attribute estimations as start values in the iterations of the matching process the model matching algorithms can e...
	In the current prototype system four different model matching algorithms are used; one for laser radar data, two for IR data and one for IR and/or CCD data. Algorithms for further sensor data types are under way.
	If multiple model matching algorithms were executed data fusion is performed.
	6.4 Query evaluation

	When the matching process has been finished it is time to produce an answer to the query. This is done by evaluating the logical...
	7 Conclusions and future research
	In this work, an ontology together with its knowledge- based system intended as a controller of the fusion process in the query ...
	Future research on where the ontological knowledge base can be used relates to applications which will require reasoning to dete...
	References
	[1] Chang, S.-K., Costagliola, G., Jungert, E. and Orciuoli, F., Querying Distributed Multimedia Databases and Data Sources for Sensor Data Fusion, accepted for publication in the journal of IEEE transaction on Multimedia, 2003.
	[2] Chang, S.-K. and Jungert, E., Query Languages for Multimedia Search, In Principals of Visual Information Retrieval, M.S. Lew (Ed.), Springer Verlag, Berlin, 2001, pp 199-217.
	[3] Horney, T., Design of an ontological knowledge structure for a query language for multiple data sources, LiTH-IDA- Ex-02/22, Department of Computer and Information Science, Linköping University, Sweden, March 2002.
	[4] Kokar, M. M. and Wang, J., Using Ontologies for Recognition: An Example, Proceedings of the 5th International Conference on Information Fusion, Annapolis, Maryland, July 2002, pp 1324-1330.
	[5] Royer, V. and Challine, J-F., A Platform for Interoperable Fusion Models, Proceedings of the 3rd International Conference on Information Fusion, France, July 2000.
	[6] Kotkas, V., Penjam, J. and Tyugu, E., Ontology-based design of surveillance systems with NUT, Proceedings of the 3rd International Conference on Information Fusion, France, July 2000.
	[7] Capraro, G. T., Berdan, G. B., Berra, P. B., Spina, J. and Liuzzi, R. A., An architecture for providing Information Anytime,...
	[8] Mena, E. and Illarramendi, A., Ontology-based query processing for global information systems, Kluwer Academic Press, Boston, 2001.
	[9] Jungert, E., Silvervarg, K. and Horney, T., Ontology driven sensor independence in a query supported C2-system, Proceedings ...
	[10] Ullman, J. D., Principles of Database and Knowledge-base Systems, Computer Science Press, Rockville, Maryland, 1988.
	[11] Chang, S.-K., Costagliola, G. and Jungert, E. (2002), Multi-Sensor Information Fusion by Query Refinement, Proceedings of the 5th International Conference on Visual Information Systems, Taiwan, March 2002.
	[12] Noy, N. F. and McGuinness, D. L., Ontology Development 101: A Guide to Creating Your First Ontology, KSL 01-05, Stanford University, 2001.
	[13] Parhami, B., Voting algorithms, IEEE Transactions on Reliability, Vol. 43, No. 4, December 1994.

	fusion04.pdf
	Iterative Information Fusion using a Reasoner for Objects with Uninformative Belief Values
	1 Introduction
	2 System Design
	2.1 System Overview
	2.2 Iterative Query Construction
	2.3 The Query Processor
	2.4 Iterative Information Fusion by Belief Value Adjustment

	3 The Pequliar Reasoner
	4 Some Reasoning Issues
	4.1 Context Sensitive Object Assessment
	4.2 Deriving Query Patterns from Query Paths

	5 Tasks for Information Fusion
	5.1 Type I Tasks
	5.2 Type II Tasks
	5.3 Type III Tasks

	6 Examples of Iterative Queries
	7 Discussion
	References:

	Dresden03.pdf
	1 Introduction
	2 The problem domain
	3 Spatial categories
	3.1 The tiles
	3.2 Overview of the process
	3.3 Defining the representatives
	Figure 1. The 16 allowed partitions of a square region.
	Figure 2. The allowed values for the partial derivatives for a sub function, displayed as vectors seen from the centre of the square. Also shown are the names of the points defining an inclination and a partition (at the head of the arrow).
	Figure 3. The allowed representatives for two partitions. An arrow indicates the inclination direction for that part. No arrow means the part is flat.

	3.4 The categories
	3.5 A symbolic interpretation
	Figure 4. Basic category forms.

	4 Filter structures
	4.1 Finding segments
	Figure 5. The filter structure to be applied to the cross-section of a ditch
	Figure 6. All possible search directions of a 4 x 4 filter (a) and the orthogonal search directions of a simplified search (b).
	Figure 7. Approximate orientation of long thin objects (bold lines at the edge of the object). Filters applied in two directions (grey boxes) will find objects in all orientations.
	Figure 8. Illustration of the vertical segment search.

	4.2 Connecting segments
	4.3 Edges and inclination connections
	Figure 9. Illustration of the search method in the edge connection algorithm.

	5 Filter specification
	Figure 10. Categories allowed in the ditch-segment.

	6 Some illustrations
	Figure 11. The result of the application of the ditch filter to the test area(left).The final result of the ditch filter as completed with the edge-connect algorithm (right).
	6.1 Ditches
	Figure 12. The small stream in real-life.
	Figure 13. The result of the road-filter

	6.2 Roads
	Figure 14. The blob segment and its cross-section at left.The resulting pond using the blob-filter to the right.
	Figure 15. Using the minimum threshold for the ditch-filter. Compared to figure 11, one more terrain object appear at lower right.

	6.3 Blobs
	6.4 Objects with different inclinations

	7 Conclusions and future work
	References
	Determination of Terrain Features in a Terrain Model from laser radar data
	Commission III, WG 3
	ABSTRACT:

	fusion05.pdf
	Context Fusion for Driveability Analysis
	Fredrik Lantz, Susanne Edlund, Erland Jungert
	FOI (Swedish Defence Research Agency)
	Box 1165, S-%81 11 Linköping, Sweden
	{flantz, jungert}@foi.se
	Abstract - Driveability analysis is a quite complex problem that for its solution depends on several factors. One of these facto...
	1 Introduction
	Driveability analysis (also called trafficability analysis) of terrain and geographical data offers an important technique for d...
	The research on driveability has been subject to fairly intense studies e.g. Donlon and Forbus [4] have developed a domain theor...
	The rest of this paper is organized as follows. In section 2 context fusion is defined. This section includes also a definition ...
	2 Context Fusion
	The main objective of this work is to develop a method for driveability analysis that determines whether a certain path through ...
	The approach to data fusion taken in this work refers to fusion of the context information. To carry out this, the impact factor...
	3 Driveability impact factors
	Driveability is a complicated matter which does not lend itself to simple solutions. It is affected by many factors, including t...
	- A road barrier, a large stone, or a tree can only be seen as obstacles if it is impossible to drive around them.
	- A wide ditch may be seen as an obstacle to a driver who must cross it, but not to a driver who can drive inside or around it, or use a bridge.
	- A single tree may not be an obstacle, but a dense forest can be a great impediment.
	- A slope may not be too steep, but if the soil rigidity is too yielding it may be an obstacle. Vice versa, a mud field may be driveable on a plane area, but not at a slope.
	- A ditch may not be driveable if it is filled with water, nor if trees or other obstacles are present in its proximity.
	- Vegetation and crops have an impact on the driveability of soils. E.g., grass and grain often improve the driveability, while vineyards decrease it.
	There are also other features, which are not intuitively possible to represent in a geometric model, but which may still affect ...
	Many terrain features change their properties over time. Forests are growing denser and higher, rivers are bending, etc. During a war bridges, roads, etc., may be destroyed.
	Weather properties may affect the terrain properties, thereby affecting the driveability. For example, soil rigidity is weather ...
	Example of vehicle properties include width, length, height, override diameter, maximum gap to traverse, ground clearance, maxim...
	To start with, it may not be necessary to know the exact value of a property. It may be enough to use qualitative values (e.g. w...
	4 Digital terrain model
	The data used for creation of the 3D terrain model is registered by a scanning airborne laser-radar called TopEye. Uncertainties...
	Figure 1 : Basic category forms.
	4.1 Finding and connecting segments

	A filter correspond to a particular sequence of connected symbolic tiles describing the feature that will be subject to the sear...
	It turns out that a two level search strategy is the most appropriate.As a result of the first matching step a large number of segments will be found. To find out
	Figure 2: The filter structure to be applied to the cross- section of a ditch.
	which of these segments that are part of the feature, adjacent segments of similar cross-sections must first be connected.Segmen...
	The filters are specified in a plain text file that is parsed by a Java-program and applied to the symbolic tile data file.
	A number of filter types for different features have been developed and tested. Among them can filters for determination of ditches, ridges, hill tops and flat areas including roads be mentioned.
	Figure 3 : Method to get an initial estimate of feature width. a) The feature. b) Horizontal width. c) Vertical Width. d) Calculating feature width from horizontal and vertical width.
	4.2 Geographic data

	The major source of data besides the 3D-data is the real-estate map, which contains data about the geographic classification of ...
	Even though the map is a general and important source of geo-class data there may be other sources of such data. For example [18...
	5 Driveability Analysis
	Driveability is a measure of the possibility of a certain vehicle to follow a path p = (p1,p2) from the start p1 to the end p2. ...
	. 3D-classes = {Concave, Convex, Slope, Flat, Concave&Slope, Convex&Slope, Undetermined}
	. Cover-classes = {Water, Mash, GroundVegetation, OpenGround, Road}
	. Obstacle-classes = {Building, Forest, NoObstacle, DenseUrbanArea, Remains, LineObstacle}
	Evidently, the Cover-classes and the Obstacle-classes contain (essentially) a subset of the classes available from the map. Thes...
	5.1 Path selection

	Driveability, as defined above, is a concept that is meaningless without a path to refer to. In this work, the focus is on the a...
	5.2 Requirements of Terrain Object Fusion

	As mentioned, the data can be viewed as organized by a set of overlays, where each overlay contains a partial segmentation of th...
	5.3 Impact Factor Attributes

	Table 1:
	Impact Factor
	Interpretation
	convexity gap width
	Obvious.
	maximum slope angle
	The maximum angle of slope for all parts of a single path.
	minimum cover rigidity
	The surface ability to withstand pressure from above. Measured in pressure units.
	obstacle rigidity
	The obstacle ability to withstand force when being driven into. Measured in force units.
	maximum obstacle rigidity
	The ability to withstand force when being driven into. Relevant for CTOs belonging to aggregated obstacle classes.
	minimum obstacle distance
	Relevant for CTOs belonging to aggregated obstacle classes.
	5.4 Impact Factor Variation

	As described earlier, driveability depends on a complex set of factors, many of which are difficult to assess and for which data...
	5.5 Impact Conditions

	Figure 4 : The interpretation of “u<=v” when considering u and v as intervals.
	For any of the traversal directions D currently under consideration, the correspondence of that direction with a certain way to ...
	3D class
	cover class
	obstacle class
	way of traversing
	impact condition
	Concave
	Any
	NoObstacle
	across
	(gap width <= gap capability)
	Convex, Concave, Convex&Sl ope, Concave&Sl ope
	Any
	NoObstacle
	on surface
	(maximum slope angle <= slope up capability) & (maximum slope angle <= slope down capability) & (minimum surface rigidity >= pressure)
	Slope
	Any
	NoObstacle
	on surface
	(maximum slope angle <= slope up/ down capability) & (minimum surface rigidity >= ground pressure)
	Any
	Any
	Building, LineObstacle
	through obstacles
	(obstacle rigidity <= vehicle force limit)
	Flat
	Any
	Aggregated
	on surface and/ or through obstacles
	(maximum obstacle rigidity <= vehicle force) & (minimum obstacle distance >= vehicle width)
	Not Flat
	Any
	Aggregated
	on surface and/ or through obstacles
	(maximum obstacle rigidity <= vehicle force) & (minimum obstacle distance >= vehicle width) & (maximum slope angle <= slope up capability) & (maximum slope angle <= slope down capability) & (minimum surface rigidity >= ground pressure)
	Table 2 : Some of the impact conditions for certain CTO classifications.
	6 Results
	An experimental tool for driveabilty analysis has been developed. Two types of vehicles has been used in the experiments so far....
	Figure 5 : The driveability of a carrier. The direction of highest impact cost is selected for display.
	As examples of driveability, a square AOI of sides 200 m is given in figures 5, 6 and 7. The area contains a road and some open ...
	Figure 6 : The driveability of the carrier in direction north-east.
	Figure 7 : The driveability of a tank. The direction of highest impact cost is selected for display.
	7 Conclusions and Further Work
	Many data sources are necessary if successful driveability determination shall be possible. In particular, 3D data in high resol...
	References
	[1] Lantz, F., Jungert E., Dual aspects of multi- resolution grid-based terrain data model with supplementary irregular data points, Proceedings of the 3rd International Conference on Information Fusion (Fusion’2000), Paris, France, July 10-13, 2000.
	[2] Lantz, F., Jungert, E., Sjövall, M., Determination of Terrain Features in a Terrain Model from Laser Radar Data, Proceedings...
	[3] Edlund, S., Driveability analysis using a digital terrain model and map data, LITH-IDA-EX-04/031- SE, Linköpings Universitet...
	[4] Donlon, J. J., Forbus, K. D., Using a geographic Information System for qualitative spatial reasoning about trafficability, Proceedings of the on Qualitative Reasoning (QR’99), Volume 4364, 1999.
	[5] Bonasso, R. P., Towards a naive theory of trafficability, Proceeding of the Annual Conference on AI Systems in Government, 1989.
	[6] Broten, G. S., Digney, B. L., Perception for learned trafficability models, Proceedings of the SPIE, volume 4715, 2002.
	[7] Chaturvedi, P., Sung, E., Malcolm, A. A., Ibañez Guzmán, J., Real-time identification of drivable areas in a semi-structured terrain for an autonomous ground vehicle, Proceedings of the SPIE, volume 4364, 2001.
	[8] Digney, B. L., Learned trafficability models, Proceedings of SPIE, volume 4364, 2001.
	[9] Ducksbury, P. G., Driveable region segmentation using a Pearl Bayes network, In IEE Colloquium on Image Processing for Transport Applications, Digist No. 1993/236, 1993.
	[10] Grunes, A., Sherlock, J. F., Texture segmentation of defining drivable regions, Proceedings of the British Machine Vision conference (BMV’90), 1990.
	[11] Jasiobedzki, P., Detecting drivable floor regions, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 1995.
	[12] Johnson, A. J., Windesheim, E., Brockhaus, J., Hyperspectral imagery for trafficability analysis, Proceedings of the IEEE Aerospace Conference, 1998.
	[13] Kruse, F. A., Boardman, J. W., Lefkoff, A. B., Extraction of compositional information for trafficability mapping for hyperspectral data, In Algorithms for Multispectral, Hyperspectral and Ultraspectral Imagery IV, 2000.
	[14] Slocum, K. R., Surdu J. R., Sullivan, J., Rudak, M., Colvin N., Gates, C., Trafficability Analysis Engine, Cross Talk, The Journal of Defense Software Engineering, June 2003, pp 28-30.
	[15] Sapounas, D., Kreitzberg, T., Johnson, M. L., Terrain trafficability model, In Military, Government and Aerospace Simulation, Proceedings of the 1996 Simulation Multi Conference, 1996.
	[16] Glinton, R., Grindle, C., Giampapa, J., Lewis, M., Owens, S., Sycara, K., Terrain-based information fusion and inference, Proceedings of the 7th International Conference on Information Fusion (Fusion’04), Stockholm, Sweden, June 28-July 1, 2004.
	[17] Department of the Army, FM 5-33, US Army Field Manual, Terrain Analysis, URL http:// www.global sequrity.org/military/library/policy/ army/fm/5-33/default.htm, July 1990.
	[18] Elmqvist, Jungert, Lantz, Persson, Söderman, Terrain Modelling and Analysis Using Laser Scanner Data, Proceedings of the Workshop on Land Surface Mapping and Characterization Using Laser Altimetry, Annapolis, Maryland, October 22-24, 2001.
	[19] Dunkars, M.,Multiple representation databases for topographic information, Ph.D. Thesis TRITA- INFRA 04-036, Royal Institute of Technology, Stockholm, Sweden, December, 2004.
	[20] Waltz, E., The principles and Practice of Image and Spatial Data Fusion in Handbook of Multisensor data fusion, Hall, D., Llinas, J., (Eds), CRC Press LLC, Boca Raton, Florida, USA, 2001.
	[21] Allen, J., F., Maintaining knowledge about temporal intervals, Communications of the ACM 26, pp. 832-843, 1983.

	slut-rapp-2.pdf
	4. Informationssystemet
	4.1 Frågespråket
	4.1.5 Arkitektur
	Figur 9. Beskrivning av informationsflöde från sensor till användare.

	slut-rapp-2.pdf
	4. Informationssystemet
	4.1 Frågespråket
	4.1.5 Arkitektur
	Figur 9. Beskrivning av informationsflöde från sensor till användare.

	p_40: 40
	p_41: 41
	p_42: 42
	p_43: 43
	p_44: 44
	p_45: 45

