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1. Introduction 
 

The need for accurate numerical modelling in marine electromagnetics is increasing. 
Naval applications as well as hydrocarbon prospecting, where low frequency 
electromagnetics fields are used, are effectively designed and analysed by numerical 
computations taking into account the three-dimensional (3D) behaviour of the 
environment. Hence, it is important to develop fast and efficient computer codes for this 
purpose. 

Many sub-bottom and bathymetry structures in marine electromagnetics can 
mathematically be modelled as a set of 3D inhomogeneities embedded in a horizontally 
stratified medium. This type of geometry is well suited for integral equation (IE) methods 
where the time consuming computational part is limited to the inhomogeneities [1-6]. 
The IE-method is inherently divided into several independent steps, making it ideal for 
parallelization.  

Modern computer technology with lots of fast internal memory, allows for solving 
large problems where the inhomogeneities are discretised in tens of thousands of cells. 
However, a direct inversion of the coefficient matrix for the resulting linear system of 
equations is in practice impossible. Therefore, the feasible way to go is to apply iterative 
solvers like the CGMRES algorithm [7]. The convergence properties of several iterative 
solvers are investigated in [4]. It is shown that the convergence speed is significantly 
improved if the original integral equation is rewritten to a contracted form where the 
Green’s operator has an 2L - norm lesser than one. 

The electric Green’s function for a layered marine environment behaves very much 
like a Dirac-δ  function due to the strong attenuation of the electric field, [5]. Hence, the 
extended Born approximation of the integral equation provides a fast and accurate 
solution. This is demonstrated in [5] where the extended Born solution is used as the 
initial guess to an iterative conjugate gradient algorithm. The extended Born 
approximation is also used as a preconditioner to the original integral equation. 

The extended Born approximation is also applied in [6] where 3D bathymetry 
variations are studied with respect to the influence on the electric field compared to a 
plane sea-floor. The Green’s functions are efficiently computed by the Nlayer code [8] in 
which adaptive complex wave number integration quadratures are used for the 
Sommerfelt integrals. The embedded inhomogeneities are discretised in cells where the 
electric field is assumed constant. This yields a fast and efficient code, called EMrad, 
particularly suitable for inhomogeneities lying in layers with conductivity values higher 
than 0.1 S/m.  

The EMrad code is used in [9] for numerical modelling of measured electric field data 
generated from a controlled dipole source in a shallow marine environment. The effects 
on the electric field due to the non-planar bathymetry are studied.  

In this paper, the IE method in the EMrad code is extended. A further enhanced IE 
method is proposed by combining the contracted integral equation suggested in [4] with 
the regularisation method outlined in [5]. The resulting preconditioned system of 
equations is then solved by the iterative CGMRES algorithm. A numerical example 
demonstrates the convergence of the electric field solution as a function of the cell size. A 
comparison of this solution with the extended Born solution is also made.  
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2. Problem formulation 
 

Consider the marine environment model in figure 1. It consists of a horizontally 
stratified background where a local three-dimensional inhomogeneity V is embedded 
across several layers. The layers as well as the inhomogeneity are non-magnetic and the 
conductivities are denoted by bσ  in the background stratification and by bσσσ +∆=  in 
the inhomogeneity. The electromagnetic field at r is generated by a dipole source in any 
of the layers with harmonic time dependence tie ω− , i.e. the electromagnetic fields are 
calculated in the frequency domain.  

 

 
Figure 1. The three-dimensional model of the marine environment consisting 
of an inhomogeneity with arbitrary conductivity in a stratified background.  
 
The electromagnetic fields in this model can be represented as the sum of the 

background and anomalous fields according to 
 

)()()(),()()( rBrBrBrErErE abab +=+=  (1) 
 

where the background fields )(rEb and )(rBb  are generated by the dipole source in the 
layered distribution of conductivity bσ . These fields are computed by the Nlayer code. 
The anomalous fields are produced by the conductivity change σ∆ .  

Assuming low frequencies, the following standard integral representations for the 
anomalous fields can be derived from the Maxwells equations, c.f. [10]: 
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∫ ′′⋅′′∆=
V

e
a dV )()(),()()( rrErrGrrE σ  (2) 

∫ ′′⋅′′∆=
V

m
a dV )()(),()()( 0 rrErrGrrB σµ . (3) 

 
The effect from the surrounding environment on these fields is implicitly incorporated in 
the electric, ),( rrG ′e , and magnetic, ),( rrG ′m , Green’s functions. They are 
mathematically tensors of the second order i.e. 33× matrices where the columns are 
normalised electric and magnetic fields, respectively, at the field point r  from three 
mutually perpendicular electric dipoles atr′ . The first column corresponds to a dipole in 
the x-direction, while the second and third correspond to dipoles in the y- and z-
directions, respectively. The free space magnetic permeability is denoted by 0µ . 

The unknown electric field )(rE ′  within the volume V can be calculated from the 
integral equation obtained when the field point r  is moved into the inhomogeneityV .  
Unfortunately, this integral equation has the 2L - norm of its Green’s operator lesser than 
one only for certain conductivity distributions, which means that an iterative solution of 
the resulting system of equations may not always converge. However, this problem is 
circumvented by utilising a so called contracted integral equation, which always has its 
norm lesser than one for any conductivity distribution. In this case, the contracted integral 
equation is obtained as, c.f. [4]: 
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where 
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In environments where the conductivities bσ  are relatively high, the electric Green’s 

function behaves very much like a Dirac-δ  function due to the strong attenuation of the 
electric field. The fact that low frequencies are considered makes the electric Green’s 
function even more like a Dirac-δ  function. Hence, the integral equation (4) can be 
approximated as 
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Equation (6) is the extended Born approximation of the integral equation (4). It is easily 
solved as a 33× linear system for any field point r in the volumeV . The solution is 
formally written as 
 

1
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a
. (9)  

 
The extended Born solution of the electric field in any point outside V is obtained from 
(1)-(3) by using the solution in (9). A more accurate solution can be computed by 
discretising (4) and solving the resulting linear system of equations iteratively. 
 
 
3. Numerical solution of the integral equation 
 

In order to solve the integral equation (4) numerically, the volume V  is discretised 
into N rectangular cells with horizontal side length a and vertical side length c. The 
electric field and the conductivity in each individual cell are assumed constant. Their 
values are taken at the grid point at the centre of the cell. Hence, the following linear 
system of equations, with 3N unknown electric field values at the grid points, is obtained:  
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The integral of the electric Green’s function over each cell is approximated as the 

value of the Green’s function at the grid point times the volume of the cell when jl ≠ . In 
the case when the source and the field points of the Green’s function coincide, a principal 
value integral over the sub-volume jV  has to be performed due to the singular behaviour 
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of the Green’s function when the integration pointr′ approaches the grid point g
jr . Taking 

into account the symmetry and anti-symmetry of the integrand with respect to the grid 
point, an adaptive Gauss-Legendre quadrature can be used for a fast numerical 
convergence.  

To improve the efficiency of solving (10) by the iterative CGMRES algorithm, the 
system of linear equations is multiplied by the extended Born matrix )( g

lrP  from the left 
hand side. This operation reduces the condition number of the coefficient matrix. It also 
almost results in the solution of the unknown )(~ grE j values when the extended Born 
solution is a good approximation of the true solution. Hence, the regularised version of 
(10) becomes: 
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The volume integrals )( g

lrA  in )( g
lrP are discretised according to 
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Some of the properties of the present IE-method are demonstrated below in the next 
section. 
 
 
 
4. A numerical example 
 

The environmental model for the numerical example is shown in figure 2. A 
20300300 ×× m rectangular block of rock is standing on an infinite half-space of rock 

with a conductivity of 0.001 S/m. The block goes through a sediment layer of clay with a 
conductivity of 0.3 S/m and a thickness of 10 m. On top of that, there is a 40 m thick sea-
water layer having a conductivity of 0.7 S/m. A horizontal electric dipole source in the x-
direction is centred above the block at a height of 1000 km above the sea surface to 
model a vertically propagating plane wave of 3 Hz coming in from the ionosphere. The 
resulting electric field is calculated at points along a line parallel to the x-axis and starting 
from the centre of the block 23 m below the sea-surface. Hence, the incident field is 
polarised in the x-direction along this line.  
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Figure 2.  The geometry of the shallow water marine environment model.  
 

The effect on the horizontal electric field component due to the 3D bathymetry and 
sub-bottom structure is shown in figures 3 and 4. The real and imaginary parts have been 
calculated with various discretisations of the inhomogeneity. As a reference,  
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Figure 3. The real part of the horizontal electric field component along the sensor line. 
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the horizontal background electric field )(rEb is plotted. The total field approached the 
values of this field in the limit where the field points go toward infinity along the sensor 
line.   

It is clearly seen that the anomalous field converges slower with respect to the cell 
size when the field points are right above the inhomogeneity. The side lengths a and c of 
the cell need to be as short as 5 m in order to get a satisfactory solution at the field points 
having the x-coordinate between 0 and 150 m. Note that the distance to inhomogeneity is 
only 7 m in this region. Further out, i.e. when x>150 m, a good convergence is obtained 
with a coarser discretisation because of the rapidly increasing distance between the field 
points and the anomaly.  

In this example, the finest discretisation has side lengths of 2.5 m. This yields 345600 
unknown electric field components to solve for. A threshold value of 0.005 is used, 
which means that only those elements in the coefficient matrix exceeding values higher 
than 0.5 % of the highest diagonal value will be retained. The highest value in the 
coefficient matrix always occurs in the diagonal. Hence, the number of coefficient 
elements used in the system of linear equations is reduced to 22136924 in this 
computational example. In fact, the reduction makes it possible to run the EMrad code on 
an ordinary PC and still be able to solve such large problems.  

For all the discretisations, the number of iterations in the CGMRES algorithm does 
not exceed 10. It goes from 7 in the coarsest discretisation up to 10 in the finest. The fast 
convergence is partly due to the fact that the extended Born solution is really good as 
seen in the figures 3 and 4. The 2L - norm property of the contracted integral is also a 
necessary condition for this fast convergence.    
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Figure 4. The imaginary part of the horizontal electric field component along the sensor 
line. 
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5. Conclusions 
 

A fast regularised IE-method based on a contracted integral equation is developed in 
this paper. The extended Born approximation is used for the regularisation and its 
solution serves as the initial guess in a CGMRES algorithm. It is demonstrated in a 
numerical example that the anomaly electric field solution converges rapidly with respect 
to both the number of CGMRES iterations and the size of the cells in the discretisation. 
The distance between a field point and the inhomogeneity is critical for the appropriate 
choice of the cell size. It can be concluded that the side lengths a and c, should not be 
longer than this distance. A non-uniform discretisation, i.e. different cell sizes, is suitable 
for efficient and memory saving calculations. The implementation in the new EMrad 
code is adapted for that. 

Finally, this new EMrad code using the above IE-method is currently being validated 
against the COMMEMI test examples reported on in [11]. The numerical example in [12] 
will also be used for validation in order to compare the EMrad code with the presented 
finite difference code. The validation results will be reported on next year. 
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