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An Accuracy Evaluation of Unstructured

Node-Centred Finite Volume Methods

Magnus Svärd∗, Jing Gong†and Jan Nordström,‡

December 14, 2005

Abstract

Node-centred edge-based finite volume approximations are very

common in computational fluid dynamics since they are assumed to

run on structured, unstructured and even on mixed grids.

We analyse the accuracy properties of both first and second deriva-

tive approximations and conclude that these schemes can not be used

on arbitrary grids as is often assumed. For the Euler equations first-

order accuracy can be obtained if care is taken when constructing

the grid. For the Navier-Stokes equations, the grid restrictions are

so severe that these finite volume schemes have little advantage over

structured finite difference schemes. Our theoretical results are veri-

fied through extensive computations.

1 Introduction

Finite volume approximations are widely used in computational fluid dy-
namics (CFD). There are several different variations of finite volume ap-
proximations and one of the more popular is the node-centred edge-based
approximation. (See [1–14].) One reason for its popularity is the simple
data structures associated with this scheme which make aerodynamic com-
putations very efficient. Another is that it is assumed to run on grids made
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Figure 1: A typical CFD finite volume grid for a wing.

up of any type of elements, such as quadrilaterals or triangles in two space
dimensions or tetrahedrons, prisms etc in three dimensions. Not only is the
scheme assumed to yield at least first-order accuracy on all these element
types but it is also assumed that a grid may mix element types. Such a grid
is seen in Fig. 1. (See [15] and also [13, 16, 17] for more hybrid grids.) This
property was called grid transparency in [1] and it is a crucial property since
it greatly simplifies the task of grid generation.

In a sequence of previous articles [8, 9, 18], the present authors have
investigated the accuracy and stability of the edge-based finite volume ap-
proximation for both hyperbolic and parabolic problems. In this paper we
focus on accuracy questions for Cauchy problems. We review and extend the
analysis of the previous papers to give a coherent view of the accuracy of the
edge-based finite volume approximation.

Often, it is assumed that by only including the Laplacian part of the
viscous terms, a good approximation for the Navier-Stokes equations is ob-
tained and that makes it possible to construct a compact discretisation for
the viscous terms.

We will consider the scalar advection-diffusion equation as a model for
the Navier-Stokes equations,

ut + aux + buy = ǫ(uxx + uyy). (1)

This equation contains the most important terms appearing in the Navier-
Stokes equations and if (1) is accurately approximated, the same is true for
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the Navier-Stokes equations.
The contents of this report are divided as follows; in Section 2 we will

present the edge-based finite volume approximations; then follow Section 3
and 4 containing accuracy studies for the Laplacian approximation and the
advection equation respectively. Finally, conclusions are drawn in Section 5.

2 The Finite Volume Approximation

We begin by stressing that neither of the schemes derived below are due
to the present authors but rather standard schemes used in CFD (c.f. [1]-
[13],[18],[19]).

Following the derivation in [8], we begin with one advective term and
consider equation (1) with b = ǫ = 0. The finite volume approximation is
derived from the weak form of the equation,

∫∫
Vi

utdxdy + a

∫∫
Vi

uxdxdy = 0. (2)

Before we proceed to approximate (2) we introduce some notation. The
discrete solution will be defined at a grid vertex (c.f Fig. 2). (That defines
a node-centred scheme.) Let ri denote a grid point and let Vi be an n-
sided polygon with sides dsin. Vi is defined as the volume inside the dual
grid around ri. The dual grid is in turn defined as the straight lines drawn
between the centres of mass of the cells with ri as a vertex and the midpoints
of the edges from ri, see Fig. 2. Further, dsin is defined as the sum of the
length of the “centre of mass-midpoint-centre of mass” lines passing over one
edge (see Fig. 2). We will denote the measure of the volume Vi , although it
is a slight abuse of notation since the volume itself is also denoted Vi.

Further, let (uN)in denote the outward pointing derivative normal to dsin.
Let rin = |ri − rn|. Finally, let Ni denote the set of indices of points being
neighbours to ri.

3
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Figure 2: A generic 2D grid. Solid lines are the grid lines and dashed lines
corresponds to the dual grid.

Now we return to equation (2). The integration is carried out over a dual
volume of size Vi for point ri (Fig. 2).

∫∫
Vi

ut dxdy + a

∮
∂Vi

u dy = 0 (3)

Along each dsin we approximate the solution by (un + ui)/2, where un and
ui are the discrete solution values at rn and ri. We obtain,

Vi(ui)t + a
∑
n∈Ni

ui + un

2
∆yn = 0, (4)

where the sum ranges over all neighbours to ui and ∆yn is the difference in
y along dsin. A similar approximation is obtained for the y-derivative.

On a rectangular grid with a smooth mapping to a Cartesian grid, the
first derivative approximation in (4) can be proven second-order accurate
using Taylor expansions. It is also possible to prove first-order accuracy on
an unstructured triangular grid (see Appendix I). This is an upper bound of
the error and on highly regular grids the error may even be second-order.

As mentioned in the introduction, a common approximative model for
the viscous terms used in computations with the Navier-Stokes equations is
to only include the Laplacian. Following the derivation in [9], assume that
a = b = 0 and ǫ = 1 in equation (1) and integrate over the domain Vi. We
obtain,

∫
Vi

utdv =

∫
∂Vi

∂u

∂N
ds, (5)
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where Gauss’ theorem is used. N denotes the outward pointing unit normal
vector such that ∂u

∂N
= uN = ∇u ·N . A straightforward approximation of (5)

would be,

Vi(ut)i =
∑
n∈Ni

(uN)indsin. (6)

The normal derivative to dsin ((uN)in), is approximated by a central differ-
ence along that edge and we obtain for an interior point ri,

Vi(ut)i =
∑
n∈Ni

un − ui

rni
dsin. (7)

Using Taylor expansions this approximation can be shown second-order ac-
curate on Cartesian grids.

3 Accuracy of Laplacian on unstructured grids

In [9] the approximation (7) of the Laplacian was studied and a stable imple-
mentation of the boundary conditions was derived and several computations
were made for the wave equation utt = ∆u in two space dimensions. A
grid convergence study was made and the results are shown in Fig. 3 for a
Cartesian mesh. Second-order accuracy is obtained in this case.
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Figure 3: Grid convergence in l2, for the wave equation on a Cartesian mesh.
The dashed reference line represents second-order of accuracy.

Next, we tested the scheme on a triangulated Cartesian grid (see Fig. 4).
As this kind of grid is refined, the convergence results are poor as seen in Fig.
4. The reason for the bad grid convergence will be analysed in the following
subsection.
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Figure 4: Left: A triangulated Cartesian mesh. Right: l2-convergence on a
triangulated Cartesian mesh.

Remark A triangulated Cartesian grid is not truly an unstructured grid.
But it is a good model of an unstructured grid and if the scheme is incon-
sistent on such a grid it will not be consistent on an arbitrary unstructured
grid.

3.1 Consistency Analysis

We will analyse consistency for the centre point of the grid in Fig. 5. The
scheme (7) leads to,

V1(u1)t =
7∑

i=2

ui − u1

ri1

dsi1, (8)

where V1 = h2 is the area inside the dashed line. By Taylor expansions we
obtain for the edge r21.

u2 − u1√
2h

=
u1 + hux + huy + 1

2
(h2uxx + 2h2uxy + h2uyy) − u1 + O(h3)√

2h
,

where the derivatives are taken at point 1. A similar derivation for edge r51

leads to,

u2 − u1√
2h

ds12 +
u5 − u1√

2h
ds15 =

h2uxx + 2h2uxy + h2uyy + O(h3)

3
.

In the same manner we obtain for points edges r31, r41, r61 and r71.

u3 − u1

h
ds13 +

u6 − u1

h
ds16 =

√
5

3
(h2uxx + O(h3)),

u7 − u1

h
ds17 +

u4 − u1

h
ds14 =

√
5

3
(h2uyy + O(h3)).
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Summing up, using (8) and V1 = h2 yield,

(u1)t =
1 +

√
5

3
∆u +

2

3
uxy + O(h),

i.e. an O(1) error. This is stated in theorem 3.1.

Theorem 3.1 On a general grid the approximation (7) of (1), with a = b =
0 and ǫ = 1, is inconsistent.
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Figure 5: A triangular grid where the dual grid is the dashed line, b = h
√

5/3
and a = h

√
2/3.

The theorem does not imply inconsistency on all grids. It is easily seen in
the above analysis that if the scheme consists of equilateral polygons, consis-
tency is recovered. This is verified with computations on a grid with equilat-
eral triangles. Again, the wave equation is considered and a grid refinement
is performed. In this case the domain as well as the cells are equilateral
triangles and the grid convergence corroborates second-order accuracy. (See
Fig. 6.)
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Figure 6: Left: A mesh with equilateral triangles. Right: Convergence for the
wave equation with mesh consisting of equilateral triangles. The reference
line represents second-order of accuracy.

It has been shown that the scheme works satisfactory on Cartesian as well
as equilateral triangular grids which are both equilateral polygons. In fact,
the scheme will work on grids consisting of any type of equilateral polygons.
In the case of equilateral triangles the domain was also chosen to be a triangle.
It is not possible to alter the shape of the cell triangles near the boundary
since that would introduce errors of order 1.

The triangulated Cartesian grid used in Fig. 5 resulted in an inconsis-
tent scheme. In the equilateral triangular case the scheme coincides with a
mass lumped finite element scheme. To show the differences between finite
volume and finite element schemes we derive the mass lumped finite element
approximation of Laplace equation, with linear basis functions applied to the
grid in Fig. 5 and obtain,

h2(u1)t = −v4 − v3 + 4u1 − u7 − u6.

The left hand side, h2(u1)t, is the result of the mass lumping and is precisely
equal to V1(u1)t obtained with the finite volume technique. However, the
right hand side coincides with the ordinary finite difference scheme on the
corresponding Cartesian grid. Compared to the finite volume case, different
weights on all the neighbouring points are obtained and especially the cross
derivative contribution is cancelled since u5 and u2 do not enter the scheme.

Remark We use the wave equation in our numerical computations, since
it is a less forgiving equation. However, also for the heat equation on a
triangulated Cartesian grid, the convergence levels out (see Fig. 7).
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Figure 7: Convergence for the heat equation on a triangulated Cartesian
grid.

3.2 A Different Finite Volume Approximation

To further explore the finite volume discretisations of viscous terms we will
briefly discuss a discretisation proposed in [7] and also used in [6]. This
discretisation allows for the computation of all viscous terms in the Navier-
Stokes equations but it is not compact as the Laplace approximation previ-
ously discussed. The scheme is basically an application of the edge-based first
derivative approximation (4) twice. In [7] it is observed that this scheme does
not take into account the closest neighbours possibly yielding poor smoothing
properties. (Compare the second derivative approximation that is obtained
by applying a centred finite difference scheme twice.) Accordingly, they pro-
pose an augmented form that also uses the neighbours.

We will analyse consistency of the first derivative applied twice without
this augmentation to see whether this can be used as an approximation of
the Laplacian on more general grids. It certainly has the disadvantage that
it is wider and thus not as computationally efficient. Recalling that Ni is the
neighbours of the point indexed i and denoting by (ux)i the approximation
of the x-derivative at the same point we have that,

(ux)i =
1

Vi

∑
j∈Ni

uj + ui

2
∆yj , (9)

where ∆yj is the difference (with sign) in the y direction going anti-clockwise
along dsij. If approximation (9) is carried out for point 1 in Fig. 5, we would
obtain with V1 = h2,

(ux)1 =
1

V1

∑
j∈N1

uj + u1

2
∆yj = ux(x1, y1) + O(h2). (10)
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Further, if the grid in Fig. 5 is extended in all directions we obtain second
order approximations similar to equation (10) of (ux)i at all the points 2−7.

Next, applying (9) for point 1 again, yields a first-order approximation of
(uxx)i.

(uxx)1 =
1

V1

∑
j∈N1

(ux)j + (ux)1 + O(h2)

2
∆yj = u(x1, y1)xx + O(h) (11)

However, if the grid is not extended precisely as in Fig. 5, for example
if the location of the points 2 and 5 are slightly disturbed or perhaps the
diagonal between 1 and 5 is replaced by a diagonal between 4 and 6, a term
of the form huxy will enter the Taylor expansion of (10). As an example,
consider point 1 with the proposed diagonal altered. (Compare also to Fig.
4 where the orientaion of the diagonals are somewhat arbitrary.). Then,

(ux)1 = ux(x1, y1) + const · huxy + O(h2). (12)

Hence, we have shown that a first-order error may occur in the first derivative
approximation. Then, suppose that (ux)5 has an error of the form (12). Then
(ux)i, i ∈ {2, 3, 4, 6, 7} in Fig. 5 are approximated to second-order and (ux)5

only to first-order. Applying (9) again to compute (uxx)1 yields,

(uxx)1 =
1

V1

∑
j∈N1

(ux)j + (ux)1 + O(h)

2
∆yj = u(x1, y1)xx + O(1). (13)

Note that since (ux)5 = ux(x5, y5) + O(h) is the only first order term there
is no other term that can cancel that error. Multiplying by ∆y5

V1

∼ 1

h
, yields

an error of O(1). This example shows that unless the grid has a high degree
of regularity the scheme becomes inconsistent. The above considerations can
be summarised in the following theorem.

Theorem 3.2 On a general grid, the application of the first derivative ap-
proximation (9) twice to approximate a second derivative results in an incon-
sistent scheme.

Remark Note that the above theorem does not imply that the scheme is
inconsistent on all grids. As shown above, with certain restrictions imposed
on the grid, the scheme is consistent.

As mentioned above, in [7] they propose an augmented form of the above
approximation. However, the augmentation assumes implicitly that the
above approximation is consistent. Thus, the same restriction of possible
grids applies to their scheme as well.
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3.3 Construction of a compact Laplacian

We have now studied two common ways to compute the Laplacian on un-
structured meshes and they were both inconsistent on unstructured meshes.
Is it possible to construct a consistent and compact Laplacian in the finite
volume framework? The basic idea is to approximate ∂u

∂n
along the face of a

control volume. One approximation for each edge. Furthermore, the gradient
of u along an edge should be added to one point and with the opposite sign to
the other point connecting to the same edge. In order to achieve that and to
keep a computational efficiency, the gradient approximation uses only points
that are “known” to both points at an edge. By known we mean that they
connect via an edge. In a two-dimensional triangular grid, 4 points can be
used to approximate the gradient at each edge. This can be done in various
different ways, all relying on a first derivative approximation that can only
be first-order accurate on a general grid. (As has been mentioned before and
also shown in Appendix I.) We obtain,

(∆u)i ≃
1

Vi

∑
n∈Ni

((uN)in + O(∆r))dsin, (14)

where ∆r is a measure of the maximum size of the edges. Unless, a cancella-
tion of errors occur in the summation we will end up with a first-order error.
Since, all the gradient approximations only know about the closest neighbour
it is unlikely that a cancellation will occur unless the grid is highly regular
which is precisely what we have observed.

Yet another way of viewing the construction of a Laplacian approximation
is the following. The approximation could be stated as,

(∆u)i ≃ ciui +
∑
n∈Ni

cnun (15)

where cn are constants. If m edges connects point i we have m + 1 unknown
constants cn to determine in order to achieve a consistent approximation.
Firstly, we also demand that the gradients at each edge have the opposite
sign for both the points at that edge, i.e. n constraints. Secondly, if the ap-
proximation is first-order accurate it must exactly differentiate the function,
u = x2 + y2 +xy +x+ y + constant, i.e. 6 more constraints. In total we have
5 more constraints than unknowns and we have to rely on symmetry in the
grid to fulfil all constraints.
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4 The advection equation on mixed grids

We have already mentioned that the first derivative approximations do re-
sult in at least first-order accuracy on unstructured triangular grids (see [8]
and Appendix I). However, as the previous section reveals, finite volume ap-
proximations of the Laplacian are not consistent on all grids, though they are
assumed to be in real life computations. Hence, we go on studying a common
technique used in CFD when constructing grids. That is to use structured
grids in boundary layers which is changed to triangular grids outside bound-
ary layers which more easily adapts to complex geometries. Throughout, this
section we will assume that ǫ = 0 in equation (1).

4.1 Consistency analysis of interface

In this case we begin by analysing the first derivative approximation at an
interface between unstructured triangles and quadrilaterals. In particular, we
consider the finite volume approximation at an interface between arbitrary
unstructured triangles triangular and a Cartesian grid. (See Fig. 8)
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5

Figure 8: An interface between triangles and squares. The dashed line marks
the dual grid.

We assume that the side of the squares have length h. This interface
is smooth and we can derive the expected order of accuracy at the point
c. The standard way of deriving order of accuracy is to make use of Taylor
expansions. However, that becomes very complicated when unstructured
triangles are considered. Instead, we will consider the two approximations
obtained if the grid is split along the interface. Then we formally need to
specify uc on both sides using boundary conditions, but in this case uc is
given by the other side. First consider the finite volume approximation on
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the control volume related to 1−2− c−5. Denote the corresponding control
volume V C

c . (Note that the boundary of V C
c partly coincides with 2− c− 5)

The approximation (4) becomes,

V C
c (uc)t =

u1 + uc

2
h + uc(−h) (16)

where c is a boundary point and the flux through the boundary is approx-
imated by uc. This is a consistent treatment of the boundary (see [8]) and
the scheme is consistent.

The finite volume approximation (4) on the triangles becomes,

V t
c (uc)t =

5∑
i=2

ui + uc

2
∆yi + uch, (17)

where V t
c is the corresponding control volume related to c − 2 − 3 − 4 − 5.

(Again, it partly coincides with 2−c−5 where it precisely matches V C
c .) This

is also a consistent approximation according to [8]. Note that, V t
c +V C

c = Vc.
Hence, the sum of the two approximations is,

Vc(uc)x =
5∑

i=2

ui + uc

2
∆yi +

u1 + uc

2
h =

5∑
i=1

ui + uc

2
∆yi. (18)

Note that, (18) is the same finite volume approximation at uc as if the scheme
had been applied directly ignoring the interface. Since it is constructed from
two first-order approximations the sum is also at least first-order.

Since the finite volume approximation on a smooth quadrilaleral grid is
also second-order accurate we conclude that the above reasoning applies to
an interface between any smooth equilateral grid and triangles.

In order to derive the global order of accuracy we will use some theory
from [8]. Consider the equation ut = ux + F (x) with a finite volume dis-
cretisation vt = Dv + F where v denotes the vector with components vi. D
is the resulting matrix obtained by the finite volume discretisation, and F
is a forcing function. According to [8] there is an energy estimate such that
‖v‖ ≤ constant(‖f‖ + ‖g‖ + ‖F‖) where f, g denotes the initial data and
boundary data. ‖·‖ is the discrete l2-norm (in two space dimensions) defined
by,

‖a‖2 =
∑

i

a2
i Vi. (19)

Then the error equation is,

et = De + T, (20)

13



where e = u − v and T is the truncation error. Note the e has zero initial
and boundary data.

To derive the global order of accuracy we consider a hybrid grid with N2

points in two space dimensions and a typical grid size O(h) = O(1/N). The
number of interface points is O(N) and Vi ∼ h2. Then from (20) we have
‖e‖ ≤ constant‖T‖, i.e. the size of ‖e‖ is proportional to the size of ‖T‖. If
we assume that the triangular grid is highly symmetric such that the local
order of accuracy is 2 and the order of accuracy at the interface is 1 (as shown
above) we obtain,

‖T‖2 =
∑

T 2
i Vi ∼ (O(N)O(h2) + O(N2)O(h4))O(h2) = O(h3). (21)

Hence ‖e‖ ∼ ‖T‖ ∼ O(h1.5), i.e. the order of accuracy is 1.5. (If the accuracy
on the triangular part is only first order the global order order of accuracy
will be 1.)

Next, consider the interface in Fig. 9.
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Figure 9: An interface between triangles and squares. The dashed line marks
the dual grid.

If we assume that a grid refinement would keep the topology we obtain
from Taylor expansions with the sides of the squares have length h. Then
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Vc = 5

6
h2 and,

u1 = uc + hux +
h2

2
uxx + O(h2),

u2 = uc − huy +
h2

2
uyy + O(h2),

u3 = uc − hux − huy +
h2

2
(uyy + uxx + 2uxy) + O(h2),

u4 = uc − hux +
h2

2
uxx + O(h2),

u5 = uc + huy +
h2

2
uyy + O(h2),

The finite volume approximation (4) becomes,

Vcut(xc, yc) =
uc + u1

2
h +

uc + u2

2

h

6
+

uc + u3

2

(−h)

3
+

uc + u4

2

(−5h)

6
=

Vcux(xc, yc) +
h2

12
uy(xc, yc) + O(h3). (22)

Shifting the diagonal in Fig. 9 will not improve things. In either case, we
have an O(1) error at c.

If we assume that we have an interface with a number of corners like the
one above. With two space dimensions and a total number of points O(N2)
there are O(N) corner points with an O(1) error. Again,we consider the
error equation and use the energy estimate derived in [8] to conclude that
‖e‖ ∼ ‖T‖. To determine the size of the truncation error, assume that the
order of accuracy away from corners is 1, i.e Ti ∼ O(h) = O(1/N) at those
points.

‖T‖2 =
∑

i

T 2
i h2 ∼ O(h2)(O(N)O(1)2 + O(N2)O(1/N)2) = O(h). (23)

Then ‖T‖ ∼ O(h1/2) ∼ e, i.e the order of accuracy is 0.5.

Theorem 4.1 Consider a hybrid mesh composed of unstructured triangles
and smooth quadrilaterals with a non-smooth interface. Then the approxi-
mation (4) of (1) with b = ǫ = 0 is inconsistent at the interface and the
global order of accuracy reduces to 0.5.

Note that throughout this article we consider a model problem with two
space dimensions and we assume implicitly in Theorem 4.1 that an interface
is one-dimensional. In general we consider an interface to be a d−1 surface in
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q Ntot qi Nb qtot interface type
2 N2 1 N 1.5 smooth,2D
1 N2 1 N 1 smooth,2D
2 N2 0 N 0.5 non-smooth,line,2D
2 N2 0 1 1 non-smooth,point,2D
2 N3 1 N2 1.5 smooth,3D
1 N3 1 N2 1 smooth,3D
2 N3 0 N2 0.5 non-smooth,plane,3D
2 N3 0 N 1 non-smooth,line,3D
2 N3 0 1 1.5 non-smooth,point,3D

Table 1: Order of accuracy for hybrid meshes. q is the lowest order of
accuracy of the scheme away from the interface. Ntot is the total number
of points. (We assume N points in one space dimension.) qi is the order of
accuracy at interface points. (0 meaning order 1 error.) Nb is the number of
boundary points. qtot is the resulting overall order of accuracy.

a problem with d space dimensions. One can anticipate even more restrictive
constraints in higher-dimensional problems. If there is a disconituity at one
or many points or even along a subsapce of the interface order 1 errors will
be introduced. With the the same technique as used above to estimate the
l2-norm of the truncation error we get the results displayed in Table 1 in two
and three space dimensions.

4.2 Computations

Consider, equation (1) with a = 1, b = 1 and ǫ = 0 on a two-dimensional rect-
angular domain discretised by (4). The initial data is u(x, 0) = asin(4π(ax+
by)) and the exact solution, u(x, t) = sin(4π(a(x− t) + b(y− t))). The exact
solution is also used as boundary data.

In Fig. 10 the convergence rate for a triangular grid is displayed. The
convergence rate is close to 2 which is due to the fact that the grid is very
symmetric.
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Figure 10: Left: A triangular mesh with 727 grid points. Right: Convergence
rate for the advection equation on triangular meshes. The dashed reference
line represents second-order of accuracy.

We also consider a quadrilateral grid (see Figure 11) where there is a
smooth mapping to a Cartesian grid. In this case we also obtain second-
order accuracy. See Table 2
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Figure 11: A smooth quadrilateral grid.

To illustrate that the smoothness is essential for quadrilateral grids we
show the convergence properties for quadrilateral grids (without stretching)
with a 20% perturbation in the x- and y-direction for each node. This yields
a sequence of non-smooth quadrilateral grids. (See Figure 12).
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√
N l2-error l2-convergence l∞ − error

41 0.0325 - 0.2497
81 0.0080 2.06 0.1054
121 0.0035 2.06 0.0415
161 0.0020 1.98 0.02195
201 0.0013 1.92 0.0152
241 9.05e-4 2.00 0.0107
281 6.76e-4 1.90 0.0075

Table 2: Errors and convergence for the advection equation on smooth
quadrilateral grids.

√
N l2-error l2-convergence l∞ − error

41 0.0424 - 0.1187
81 0.0225 0.93 0.1243
121 0.0192 0.40 0.1393
161 0.0179 0.25 0.1534
201 0.0168 0.29 0.1551
241 0.0161 0.23 0.1382
281 0.0160 0.04 0.1855

Table 3: Errors and convergence for the advection equation on non-smooth
quadrilateral grids.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0
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1

1.2

Figure 12: A non-smooth quadrilateral grid.

In Table 3 it is seen that there is no convergence in l∞ and in l2 the
convergence drops towards 0. The results in l∞ shows that there are O(1)
errors present at at least one point. Since the l2-error does not go to zero we
conclude that the number of inconsistent points are proportional to the total
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√
N l2-error l2-convergence l∞ − error

41 0.0352 - 0.2603
81 0.0087 2.05 0.1035
121 0.0038 2.06 0.0412
161 0.0022 1.91 0.0353
201 0.0014 2.04 0.0291
241 0.0010 1.85 0.0246
281 7.5e-4 1.87 0.0218

Table 4: Errors and convergence for the advection equation on hybrid quadri-
lateral and triangular grid with smooth interface.

number of points. This is what we would expect since there are perturbations
to the nodes everywhere.

Next, we turn to mixed grids. We begin our study with the same smooth
quadrilateral grid used above. The total number of points is (N + 1)2 and
we place an interface at x(N/2 + 1). This yields a smooth interface. On
one side we triangulate the grid and on the other we keep the quadrilaterals
(See Figure 13). According to the previous theory this should have order of
accuacy 1.5. The errors and convergence are displayed in Table 4 and we see
that the errors in l2 and l∞ are convergent.
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Figure 13: A hybrid quadrilateral and triangular grid with a smooth interface.

However, as previously mentioned, it is common that the interface is
non-smooth. (See Figure 1.) An example of such an interface is displayed in
Figure 14 and the convergence data given in Table 5.
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√
N l2-error l2-convergence l∞ − error

41 0.0338 - 0.1329
81 0.0144 1.23 0.1015
121 0.0108 0.72 0.1003
161 0.0091 0.60 0.0999
201 0.0081 0.52 0.1004
241 0.0074 0.50 0.1006
281 0.0068 0.55 0.1004
321 0.0064 0.46 0.1004

Table 5: Errors and convergence for the advection equation on hybrid quadri-
lateral and triangular grid with non-smooth interface.
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Figure 14: A hybrid quadrilateral and triangular grid with a non-smooth
interface.

Clearly, there are points that are non-convergent according to Table 5. As
shown above the l2-convergence should approach 0.5 which is corroborated
in Table 5.

5 Conclusions

Edge-based node-centred finite volume approximations are widely used in
computational aerodynamics for one important reason. They are assumed
accurate on unstructured grids.

In Theorem 3.1 and 3.2, we prove that discretisations of second deriva-
tives with two different commonly used approximations are inconsistent on
unstructured grids. However, the accuracy is recovered on grids with a high
level of regularity. For the Laplacian approximation equilateral polygons
are required and for the first derivative approximation applied twice slightly
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more general grids can be allowed. We conclude by showing that a compact
finite volume approximation of the Laplacian has to rely on symmetries in
the grid to be first-order accurate.

The CFD community (see for example [19]) have recognised that in
boundary layers, structured grids should be used in order to obtain better
accuracy (see Fig 1). Our analysis confirm that observation since the viscous
terms are dominant in the boundary layer and those are only approximated
correctly on regular grids, such as rectangles and equilateral polygons.

Structured grids in boundary layers and unstructured to capture geome-
tries have led us to study mixed grids for the first derivative approximation.
That approximation is shown to be consistent on triangular grids and on
smooth quadrilateral grids. For mixed grids with smooth interfaces between
the quadrilaterals and triangles the accuracy is not degraded.

However, if the interface is non-smooth the order of accuracy drops to
0.5 due to inconsistencies in the discretisation. To summarise, care has to
be taken when constructing hybrid grids. Extensive numerical experiments
corroborate our theoretical results.
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APPENDIX

I First derivative approximation

We will show that the first derivative approximation is first order accurate
on a general triangular grid. This derivation is due to [20].

Consider the grid in Fig. 15.
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Figure 15: A general triangular grid.

The approximation of ux at the centre point c is,

(ux)c =
1

Vc

∑
i

uc + ui

2
∆yi, (24)

where V is the volume the measure of the volume of the dual grid. If this
approximation is first order accurate it should exactly differentiate a constant
and a linear function.

For a constant function u = C we have ux = 0 and,

(ux)c =
C

V

∑
i

∆yi = 0. (25)

Hence, the approximation is correct for a constant. Next, we turn to a linear
function u = ax + by where a and b are constants and ux = a. Denote by
r̃1 = (x̃1, ỹ1) the position of the centre of mass for the triangle 1, 2, c and r̃2

for the triangle 2, 3, c etc. Then the approximation for the linear function is,

(ux)c =
1

Vc

max∑
i=1

axc + byc + axi + byi

2
(ỹi − ỹi−1) =

1

V

max∑
i=1

axi + byi

2
(ỹi − ỹi−1), (26)
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where ỹ0 is interpreted as ỹmax in a cyclic manner around c. (In Fig 15
max = 5.) Hence, it is always assumed assumed that we compute modulo
the number of neighbours.

The y-coordinate of the centre of mass is obtained by,

ỹi =
yi + yi+1 + yc

3
. (27)

Then,

ỹi − ỹi−1 =
yi + yi+1 + yc

3
− yi + yi+1 + yc

3
=

yi+1 − yi−1

3
. (28)

Using (28) in (26) results in,

(ux)c =
1

Vc

∑
i

axi

2

yi+1 − yi−1

3
+

byi

2

yi+1 − yi−1

3
.

Note that,

max∑
i=1

yi(yi+1 − yi−1) = 0.

Hence,

(ux)c =
a

Vc

∑
i

xi
yi+1 − yi−1

6
. (29)

Next, we will compute Vc. The triangle 1, 2, c has the area,

1

2
|(r1 − rc) × (r2 − rc)|

where ri = (xi, yi) is the point vector at point i. With the same notation as
for r̃i we denote the area of traingle i, i + 1, c by Ai. Hence,

Ai =
1

2
((xi − xc)(yi+1 − yc) − (yi − yc)(xi+1 − xc)).

The area of the dual volume is,

Vc =
∑

i

1

3
Ai =

∑
i

1

6
((xi − xc)(yi+1 − yc) − (yi − yc)(xi+1 − xc)) =

1

6

∑
i

xiyi+1 − xiyc − xcyi+1 + xcyc − (yixi+1 − ycxi+1 − yixc + ycxc) =

1

6

∑
i

xiyi+1 − yixi+1 =
1

6

∑
i

xi(yi+1 − yi−1) (30)
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Note that we use modulo calculations extensively which also justifies the shift
of the indices. With (30) in (29) we have,

(ux)c = a.

Hence, we have shown first order accuracy on an arbitrary triangular grid.
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