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Stable Artificial Dissipation Operators for

Finite Volume Schemes on Unstructured Grids

Magnus Svärd∗, Jing Gong†and Jan Nordström‡

Abstract

Our objective is to derive stable first-, second- and fourth-order ar-
tificial dissipation operators for node based finite volume schemes. Of
particular interest are general unstructured grids where the strength
of the finite volume method is fully utilised.

A commonly used finite volume approximation of the Laplacian
will be the basis in the construction of the artificial dissipation. Both
a homogeneous dissipation acting in all directions with equal strength
and a modification that allows different amount of dissipation in dif-
ferent directions are derived. Stability and accuracy of the new opera-
tors are proved and the theoretical results are supported by numerical
computations.

1 Introduction

In computational fluid dynamics, edge based finite volume (FV) approxima-
tions are widely used (see [1, 2, 3, 4, 5, 6, 7, 8]). The main advantage of those
schemes is a property called grid transparency by Haselbacher et al in [1].
Grid transparancy means that the algorithm only needs information about
what nodes connect to each other and thus works equally well on structured
as well as unstructured grids. This property is essential for efficiency and
applicability of the scheme.

Numerical computations often require artificial dissipation to remove un-
physical high-frequency oscillations. Usually second- or fourth-order artificial
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†Department of Information Technology, Uppsala University , Uppsala, Sweden.
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dissipation are used. (The use of order refers to the order of accuracy.) When
shocks are present first-order dissipation need to be used. (See for example
[9] and [10].) The following properties are desirable. The artificial dissipation
should:

1. Reduce spurious oscillations.

2. Preserve the order of accuracy of the numerical scheme.

3. Preserve stability of the numerical scheme.

Property 1 is achieved by using undivided differences. To preserve the accu-
racy (Property 2) of the numerical scheme a sufficiently high-order derivative
corresponding to the undivided difference need to be used. For a fourth-order
accurate numerical scheme, a fourth-order undivided difference is added. One
could also add a second-derivative approximation scaled with the grid size
to obtain fourth-order accuracy. However, that implies that the damping of
the highest frequency goes to zero as the grid is refined. With a fourth-order
undivided difference the damping of the highest frequency is independent
of the grid size. The treatment of Properties 1 and 2 is well-known and a
variety of different dissipations have been proposed (See [9]). However, for
unstructured finite volume schemes Property 3 have recieved little attention
until now. We will focus on stability properties to obtain different artificial
dissipation operators that satisfy all three properties even on unstructured
grids.

In [6], Nordström et al considered a first derivative approximation such
that convective terms can be implemented in a stable and accurate man-
ner. The stability proofs include boundary conditions since the scheme is
interpreted in a summation-by-parts framework. This work was continued
in [11] where an approximation of the Laplacian was interpreted in the same
framework such that schemes consisting of first derivatives and Laplacians
can be proven stable. In this paper we aim to construct first-, second- and
fourth-order dissipation and in order not to destroy the stability of the main
scheme, the artificial dissipation has to be bounded in the same norm as the
main scheme. In [6] and [11] the norm is weighted with the finite volumes
that discretise the domain.

The contents of this report are divided as follows; in section 2 the general
finite volume approximation is derived; in section 3 a second-order dissipa-
tion is derived; section 4 contains a derivation of a fourth-order dissipation
operator; in section 5 the dissipation operator is modified to act with differ-
ent strength in different directions. Section 6 shows numerical computations
using the new dissipation operators and in section 7 conclusions are drawn.

2



2 The Approximation of the Laplacian

We aim to construct dissipation operators based on the application of the
Laplacian. Therefore, we begin by deriving the standard node centred finite
volume approximation of the Laplacian (see [1, 2, 3, 4, 5, 11] ). Since our main
interest is to prove stability for the time dependent problem, we consider the
heat equation,

ut = ∆u. (1)

Integration of (1) over the domain Vi yields,
∫

Vi

utdv =

∫

∂Vi

∂u

∂N
ds, (2)

where Gauss’ theorem is used. N denotes the outward pointing unit normal
vector such that ∂u

∂N
= uN = ∇u · N . Further, let Vi be an n-sided polygon

with sides dsin.
Given any grid, let ri denote a grid point. With a slight abuse of notation

we let Vi be defined as the measure of the volume inside the so called dual
grid around ri. The dual grid is in turn defined as the straight lines drawn
between the centres of mass of the cells with ri as a vertex and the midpoints
of the edges from ri, see Figure 1.
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Figure 1: A generic 2D grid. Solid lines are the grid lines and dashed lines
correspond to the dual grid.

Further, dsin is defined as the sum of the length of the “centre of mass-
midpoint-centre of mass” lines passing over one edge (see Figure 1). Let
rni = |ri − rn|. Finally, let Ni denote the set of indices of points being
neighbours to ri.
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For an interior point, ri, an approximation of (2) is,

Vi · (vt)i =
∑

n∈Ni

vn − vi

rni

dsin. (3)

and for a boundary point b,

Vb · (vt)b =
∑

n∈Nb

vn − vb

rnb

dsbn + (vN)bdsbb, (4)

where dsbb is the length between two midpoints of edges at the boundary.
The scheme (3) and (4) can be summarised in matrix form as,

Pvt = Q∆v = (A + DS)v (5)

where P is a diagonal matrix with Vi on the diagonal. DSv holds the terms
(vN )bdsbb. Av represents the remaining terms (essentially the scheme for the
interior points). vt and v are vectors with components (vt)i and vi respec-
tively. In [11], A is proven to be a symmetric negative-definite matrix.

3 Second-Order Artificial Dissipation

A second-order dissipation operator is obtained by,

ut = ǫ2∆u, 0 ≤ x ≤ 1, (6)

where ǫ is a small positive number (compare with the scaling h2 in the discrete
artificial dissipation). If we apply the energy method to (6) we obtain,

∫ 1

0

uut dx = ǫ2uux|
1
0 − ǫ2

∫ 1

0

u2
xdx. (7)

We see that ǫu = 0 or ǫux = 0 will result in a well posed problem. (If ǫ → 0
the boundary conditions vanish. This is the analogue of numerical boundary
conditions.) In the discrete setting we have,

vt = h2P−1Q∆v. (8)

To analyse the discretisation of (6) we introduce the norm ‖v‖2 = vT Pv.
Apply the energy method,

‖v‖2
t = vT Pvt + vT

t Pv = h22vT (A + DS)v = h2(2vTAv + 2vT (DSv)). (9)
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Since A is negative definite the discretisation is stable if v = 0 or DSv = 0

at the boundary. 0 denotes a vector with all entries zero. With the SAT
technique (Simultaneous Approximation Term, see [12, 13, 14]) we impose
DSv = 0 weakly by adding,

h2P−1(DSv − 0), (10)

to the right-hand side of (8). Finally, we have the artificial dissipation,

vt = h2P−1Av. (11)

It is easy to determine the following sizes from (4). dim denotes the number
of space dimensions.

P−1Q∆v ∼ O(1),

DSv ∼ dsbb ∼ O(hdim−1),

P−1 ∼ O(1/Vi), (12)

Vi

dsii

∼ O(h)

Av ∼ O(hdim−1).

This leads to second-order interior accuracy and first-order boundary accu-
racy, which result in globally second-order accuracy.

Remark A scalar equation has been considered when deriving the artificial
dissipation. That equation represents the treatment of a single variable in
a system of partial differential equations such as the Euler or Navier-Stokes
equations. The numerical boundary conditions discussed above, only describe
how to close the scheme. They do not affect the physical boundary conditions
and need not be changed if another equation is considered. Note that no
boundary conditions are imposed in Equation (11) and that no boundary
conditions should be imposed since it is an approximation of ut = 0.

3.1 Some Remarks on First Order Dissipation

It is well-kown that a shock capturing dissipation needs to be first order
which can be obtained by dividing the second-order dissipation by the grid
size. We propose one such scaling in Section 6 on general unstructured grids.

Another issue is the scaling of the dissipation for linear problems. To
address this question we consider two different kinds of grid independence.
First, if the entire problem is rescaled such that the grid size is doubled but
with the same number of points (that is a twice as big grid) and the equations
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are rescaled accordingly so that the exact solution at each grid point is the
same on the small and big grid, then that should be the case for the numerical
solution as well. We illustrate this with an example. Consider, the periodic
problem ut + aux = 0 with initial data u(x, 0) = f(x) on 0 ≤ x < 1. Then
the solution is u(x, t) = f(ξ) where ξ = x−at+an and n is an integer chosen
such that ξ ∈ [0, 1].

Next, consider the periodic problem vt+2avy = 0 with v(y, 0) = f(y/2) =
f(x) on 0 ≤ y < 2. The solution is v(y, t) = f(η/2) where η = y−2at+2an.
n is an integer chosen such that η ∈ [0, 2].

The two examples have identical solutions at the points located at the
same ratio of the total interval. For example u(1/8, t) = v(1/4, t). This
is easily understood since the two problems connects through the mapping
y = 2x such that ux = uyyx = 2uy.

Next, we turn to the discrete problems on the same domains. Let ut +
aDxu = Axu where Dx is the discrete x-derivative on x ∈ [0, 1] with grid
spacing h and Ax is an artificial dissipation operator. Further, u(xi, 0) =
f(xi). Let vt + 2aDyv = Ayv be the same discretisation with grid spacing
2h on y ∈ [0, 2] and u(yi, 0) = f(xi). Note that we have the same number
of grid points in the two problems. The two problems are indentical under
the transformation y = 2x and so are the discrete solutions. Hence, at grid
point i we have, u(xi, t) = v(yi, t). Note that we have not assumed anything
regarding the size of the dissipation so this similarity applies to both first-
and second-order dissipation.

The second property of importance is the scaling of the dissipation for a
given linear problem and for different grid sizes.

We consider the periodic problem ut + aux = 0 on 0 ≤ x < 1 described
previously in this section. It is discretised by vt + aDxv = Axv where Dxv
is the standard second-order (non-dissipative) approximation. Ax = hjÃx

where Ãxv is the undivided second-derivative approximation times a constant
c. j = 1, 2, 3... yields a jth-order dissipation. Written in component form
the N + 1-point discretisation is,

(vn)t + a
vn+1 − vn−1

2h
= hjc

vn+1 − 2vn + vn−1

h2
, n = 1..N, v0 = vN .
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Expand the solution in a Fourier series with h = 1/N ,

v(t)n =

N−1∑

m=0

v̂(t)meimωn , ωn = 2πxn ∈ [0, 2π(N − 1)/N ],

v̂(t)m =
N−1∑

n=0

v(xn)e−imωnh.

(13)

Insert the Fourier expansion into the error equation,

N−1∑

m=0

(
(v̂(t)m)te

imωn − v̂(t)meimωn(−
a

h
isin(m2πh) + 2chj−2(cos(m2πh) − 1))

)
= 0.

Note that with this choice of transform m = 0 corresponds to a constant and
m = N−1 is the least oscillating mode while m = N/2 is the most oscillating
(usually called the π-mode since with m = N/2 we have m2πh = π).

The purpose of the dissipation is to damp the unresolved modes while
leaving the resolved modes undisturbed. Hence a low frequency mode should
have less and less damping as the grid is refined and the highest mode should
experience the same damping. Therefore, we study the behaviour of the mode
m = N/2. The equation for that mode is,

(v̂(t)N/2)t = v̂(t)N/2(−
a

h
isin(2πhN/2) + 2chj−2(cos(2πhN/2) − 1) =

−v̂(t)N/24ch
j−2. (14)

Now, it is easily seen that the only h independent solution is achieved with
j = 2. If j = 1 the highest frequency will have increased damping as h → 0
and if j > 2 the damping will diminish with smaller h.

These conclusions hold for any constant ratio N/x where x is a valid
choice that gives an existing mode. Hence the choice j = 2 imposes the same
damping, independent of h, on the portion of the modes that are unresolved.
However, if a fixed mode N = Nfix is considered the damping on that mode
will decrease with h since it will be more and more resolved.

The general conclusion for a pth-order scheme is that the undivided dif-
ference corresponding to the pth derivative gives the grid independent dissi-
pation.
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4 Fourth-Order Artificial Dissipation

The most obvious fourth-order artificial dissipation using the Laplacian would
be ∆(∆u) or in the semi-discrete case,

vt = −h4P−1Q∆P−1Q∆v. (15)

In order to prove stability, equation (15) has to supplied with numerical
boundary conditions. To investigate what numerical boundary conditions to
use we examine the one-dimensional continuous counterpart of equation (15).

ut = −h4uxxxx, 0 ≤ x ≤ 1 (16)

Apply the energy method to equation (16).

∫ 1

0

uutdx = −h4

∫ 1

0

uuxxxxdx = −h4uuxxx|
1
0 + h4uxuxx|

1
0 − h4

∫ 1

0

u2
xxdx (17)

In (17) it is seen that the boundary conditions h4uxxx = 0 and h4ux = 0 will
result in a well posed problem.

Next turn to the discrete equation (15) and apply the energy method to
prove stability,

‖v‖2
t = vT Pvt + vT

t Pv = −h4(vT (A + DS)P−1(A + DS)v +

vT (A + DS)T P−1(A + DS)Tv) =

−h4(2vTAP−1Av + 2vT AP−1DSv + 2vTDSP−1(A + DS)v). (18)

If equation (18) is compared with (17) we note that the boundary terms
correspond to each other. In the discrete case we would choose,

h4DSP−1(A + DS)v = 0, (19)

h4DSv = 0. (20)

Equation (19) is precisely a discretisation of h4uxxx = 0 and (20) is the
discretisation of h4ux = 0. To impose these numerical boundary conditions
in a stable manner we again use the SAT technique (see [12, 13, 14]) and add
the following terms to the right hand side of (15),

h4P−1DSP−1(A + DS)(v − 0) + h4P−1AP−1DS(v − 0), (21)

and obtain the artificial dissipation,

vt = −h4P−1AP−1Av. (22)

8



To determine the size of (22) we consider the penalty terms (21). The sizes
in (12) apply here also, which implies that the first penalty term in (21) is
O(h3), the second is O(h2) and equation (15) is O(h4). Since the action
of the penalty terms is restricted to the vicinity of the boundary the global
order of accuracy of (22) is O(h3).

In fact, it is immediately realised that the artificial dissipation (22) might
be a good choice because it is negative definite in the P -norm. However, the
above derivation gives a more thorough understanding of the action of (22)
and is also required to understand what order of accuracy that is obtained.

The choice of numerical boundary conditions can also be understood di-
rectly from the discretisation. The action of the penalty terms is to cancel
the DS part of the second derivative discretisation. Thus, when this arti-
ficial dissipation is used the Laplacian algorithm is run twice on the entire
domain. The first time (vN)b = 0 in (4) and the second time vn in (3) and
(4) represents (∆v)n, i.e. we have ((∆v)N)b = 0. This precisely corresponds
to the boundary conditions ux = 0 and uxxx = 0.

Remark In [11] it was shown that on grids different from equilateral poly-
gons the approximation P−1Q∆v = const · ∆v + O(1). Although, P−1Q∆

does not approximate the Laplacian on general grids it is always dissipative
since A is negative semidefinite and has the correct size. Moreover, the dis-
sipation is always a blend of derivatives, including the Laplacian. Hence, it
has the same effect as the Laplacian and the additional dissipation will not
affect a constant.

Remark The fourth-order JST operator (see [9]) is built from a first-derivative
approximation D1, a third-derivative approximation D3 and a scaling λ(xi)
to become (D1λD3)u. With this construction it is not possible to derive an
energy estimate proving stability.

5 Direction Dependent Artificial Dissipation

In the previous section the artificial dissipation did not take directions into
account. Sometimes, it is desirable to scale the artificial dissipation differ-
ently in different space directions. In order to include that possibility, we
will modify the approximation of the Laplacian.

Following the analysis in [11] we consider,

Pvt = Av, (23)
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or at a specific point ri,

Vi(vt)i =
∑

n∈Ni

vn − vi

rni
dsin =

∑

n∈Ni

dsin

rni
vn − vi

∑

n∈Ni

dsin

rni
=

∑

n∈Ni

ainvn + aiivi,

(24)
where Ni is the set of indices of neighbours to a point ri, implying that,

aii = −
∑

n∈Ni

dsin

rni
, (25)

ain =
dsin

rni
, if n ∈ Ni. (26)

Define aij = 0 whenever j 6∈ Ni. Further, aij is the (i, j) component of A.
As is shown in [11], A has the following properties.

∑

i6=j

aij =
∑

n∈Ni

ain = −aii, (27)

aij = aji, (28)

aii < 0. (29)

These properties are equivalent to A being symmetric and negative semidefi-
nite, which are necessary and sufficient for stability. That is, we may modify
A such that the properties (27)-(29) are not violated and still obtain a stable
approximation. In the case of artificial dissipation it will also be accurate
(have the correct size) due to the scaling.

Let ê denote a unit vector in space in which direction the artificial dissi-
pation should act and n̂in the unit vector pointing at the direction ri − rn.
We propose the following modification.

Vi(vt)i =
∑

n∈Ni

vn − vi

rni

dsin|n̂in · ê|. (30)

In this case,

ain =
dsin

rni

|n̂in · ê|,

such that property (28) is fulfilled by definition. Also, it is easily seen that
property (27) is satisfied (c.f [11]). Then (29) will also be fulfilled since ain ≥
0. The properties (27)-(29) are all satisfied, implying that this modification
of the Laplacian is stable.
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Equation (30) is just one example of a Laplacian based artificial dissipa-
tion. A generalisation would be,

Vi(vt)i =
∑

n∈Ni

vn − vi

rni
dsincni. (31)

Stability will not be destroyed if cji = cij ≥ 0 (c.f the above derivation
and [11]). Thus, for example, it is possible to change the direction that the
dissipation is acting at different parts of the grid without formally destroying
stability.

Remark With this observation in mind we would be able to choose cij =
|n̂ij · êx + c|, where c is some constant, in the Cartesian case such that a
nonzero dissipation is always obtained in the direction normal to x.

To obtain a fourth-order dissipation we would apply (31) twice and ac-
cording to (22) multiply it by h4 where h is some grid size. The remaining
issue is the choice of h. With a general unstructured grid the cell sizes may
vary considerably in the domain and a better scaling should be used. How-
ever, rin is the size of an edge locally and we may use that when deriving the
dissipation.

(vt)i = h2 1

Vi

∑

n∈Ni

vn − vi

rni
dsincni ∼

1

Vi

∑

n∈Ni

r2
ni

vn − vi

rni
dsincni =

1

Vi

∑

n∈Ni

(vn − vi)rnidsincni (32)

Again, conditions (27)-(29) are fulfilled since rin = rni ≥ 0.
The equations (22) and (32) constitute the final artificial dissipation.

(Both are similar to the artificial dissipations used in [2, 15, 16]). That
is, at each time step (32) is used once and yields an approximation of the

Laplacian with homogeneous boundary conditions, (∆̃u)i, at each grid point
i in the domain. Equation (32) is then applied again on the grid function

(∆̃u)i instead of ui such that the fourth order dissipation is obtained. Note
that with this approach, the edge based data structure is not destroyed,
maintaining an efficient implementation of the finite volume scheme.

Let us analyse the action of the proposed artificial dissipation, equation
(32), on an equidistant Cartesian grid where the desired direction is êx. In
this case we can order the solution in a matrix {vij} where the first index
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denotes space variation in the x-direction and the second index in the y-
direction. Let h denote the grid spacing. In this case rij = dsij = h and
Vi = h2. We have for a point p,

(vt)pp =
1

h2
((vp+1,p − vp,p + vp−1,p − vp,p)h

2|êx · êx| +

(vp,p+1 − vp,p + vp,p−1 − vp,p)h
2|êy · êx|),

or,

(vt)pp = vp+1,p − 2vp,p + vp−1,p,

i.e. the standard second order undivided finite difference approximation of
the second derivative in the x-direction. The Laplacian used twice will of
course result in the standard fourth-order undivided finite difference approx-
imation.

5.1 Concluding Remarks on the Fourth Order Dissi-

pation

Consider,

vt = −h4P−1AΛP−1Av, (33)

where Λ is a diagonal positive definite matrix. The energy method leads to,

‖v‖2
T = −2vT AΛP−1Av = −h42vT AΛ1/2P−1Λ1/2Av, (34)

where the right-hand side is a negative-definite quadratic form. Introduce
Ã = AΛ1/2. Equation (33) becomes,

vt = −h4P−1ÃT P−1Ãv, (35)

Ã = AΛ1/2 can be interpreted as cij 6= cji in (31). To be more specific,
cni = cii for all n ∈ Ni and cii > 0 can be chosen arbitrarily. This form of
dissipation does not take directions into account but scales the dissipation
only with respect to position in space.

6 Numerical Computations

6.1 Linear examples

We will consider the two-dimensional advection equation.

ut + aux + buy = 0, (−1 ≤ x ≤ 0, 0 ≤ y ≤ 1) = Ω,

Lu = g(x, y) (x, y) ∈ ∂Ω, (36)

u(x, y, 0) = f(x, y),

12



where,

L =

{
1, (a, b) · n̂ < 0
0, (a, b) · n̂ ≥ 0

, (37)

and n̂ is the unit outward pointing normal. We will use the first derivative
finite volume operators defined in [6] denoted P−1Qx and P−1Qy in the x-
and y-direction respectively. (Those are the standard scheme obtained with
Green’s theorem.) In [6] equations such as (36), were proven stable with a
weak implementation of the boundary conditions and we refer to that article
for details. The second-order artificial dissipation operator is defined in (32),
and repeated here for convenience,

(D2v)i =
1

Vi

∑

n∈Ni

(vn − vi)rnidsincni. (38)

In the computations we use cni = 1. To obtain a first-order dissipation we
divide by rni,

(D1v)i =
1

Vi

∑

n∈Ni

(vn − vi)dsin. (39)

Finally we define D4v = D2D2v. A semi-discretisation of (36) is,

vt + aP−1Qxv + bP−1Qyv = ǫ1D1v + ǫ4D4u + BC, (40)

where BC are penalty terms imposing the boundary conditions. Two test
cases, computed on an unstructured triangular grid with 4357 nodes, are
considered:

1. ǫ1 = 0, ǫ4 = 0 or 1, random numbers as initial data, see Figure 2 .

2. ǫ1 = 0, ǫ4 = 0 or 5, sine function with random perturbation as initial
data, see Figure 2.

The results from Test 1 are displayed in Figure 3. Clearly, the dissipation
damps the solution. Further, the non-dissipative computation converge very
slowly to the steady state solution u = 0. Test case 2, Figure 4, also signi-
fies the damping performed by the dissipation operator without altering the
underlying solution.
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Figure 2: Two different initial data.
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Figure 3: Solution at t=1 with random initial data.
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Figure 4: Solution at t=0.5 with perturbed sine function as initial data.
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6.2 Nonlinear examples

Consider Burgers’ equation,

ut +

(
u2

2

)

x

= 0, (−1 ≤ x ≤ 0, 0 ≤ y ≤ 1) = Ω,

u(−1, y, t) = uL, u(0, y, t) = uR, (41)

u(x, y, 0) = f1,2(x, y), (42)

where we use either,

f1(x, y) =





uL = 1, −1 ≤ x ≤ −0.9,
−15x − 12.5, −0.9 ≤ x ≤ −0.8,
uR = −0.5, −0.8 ≤ x ≤ 0,

(43)

or

f2(x, y) =





uL = 3, −1.0 ≤ x ≤ −0.8,
−10x − 5, −0.8 ≤ x ≤ −0.6,
uR = 1, −0.6 ≤ x ≤ 0,

(44)

as initial data. We test 3 different cases where at most one of ǫ1 and ǫ4 is
nonzero:

1. Initial data f1, unstructured fine mesh (11139 nodes). ǫ1 = 1, ǫ4 = 0 or
ǫ1 = 0, ǫ4 = 5.

2. Initial data f2, unstructured coarse mesh (2807 nodes) with either,
ǫ1 = 0, ǫ4 = 0 or, ǫ1 = 1, ǫ4 = 0 or ǫ1 = 0, ǫ4 = 5. The shock will reach
and pass through the boundary.

3. Initial data f2, unstructured mesh with 11139 nodes with either, ǫ1 =
0, ǫ4 = 0 or, ǫ1 = 1, ǫ4 = 0 or ǫ1 = 0, ǫ4 = 5. The shock will reach and
pass through the boundary.

In Fig 5 Test Case 1 is shown. We see that the first-order dissipation yields
a smooth shock. The fourth-order dissipation is not able to damp all oscilla-
tions at the shock but prevents them from spreading throughout the domain.
In Fig 6, Test cases 2 and 3 are shown. On the coarse mesh all three options
are stable. However, without dissipation the numerical solution has no ac-
curacy and with dissipation the shock will move out through the boundary.
The best performance is achieved with the first-order dissipation. On the
fine mesh the non-dissipative even becomes unstable while the dissipative
schemes manage to propagate the shock through the boundary.
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(a) ǫ1 = 1 (b) ǫ4 = 5

Figure 5: Solutions at t = 2 with different artificial dissipation. Test Case 1.
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Figure 6: Deviation from steady state solution as a function of t. Test Cases
2 and 3.
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Remark We have tuned the amount of dissipation to be efficient in this case
only. To be efficient in general flow calculations it would need a limiter that
identifies shocks and yield a proper scaling of the dissipation. Nonetheless,
our computations shows that the structure of the artificial dissipation scheme
is efficient.

7 Conclusions

We have constructed and analysed first-, second- and fourth-order Lapla-
cian based dissipation operators and proven them to be stable and accurate.
The first-order dissipation is suitable for shocks and the fourth-order dissipa-
tion for non-physical oscillations. Computations corroborate the theoretical
results.
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