
FOI, Swedish Defence Research Agency, is a mainly assignment-funded agency under the Ministry of Defence. The core activities are research, method and technology
development, as well as studies conducted in the interests of Swedish defence and the safety and security of society. The organisation employs approximately 1000 per-
sonnel of whom about 800 are scientists. This makes FOI Sweden’s largest research institute. FOI gives its customers access to leading-edge expertise in a large number
of fields such as security policy studies, defence and security related analyses, the assessment of various types of threat, systems for control and management of crises,
protection against and management of hazardous substances, IT security and the potential offered by new sensors.

Comsim-Platform
an Object-Oriented Basis for Computing

Aircraft Performance and Flight Trajectories

ANDERS HASSELROT

FOI-R--1846--SE	 Technical report	 Defence & Security, Systems and Technology
ISSN 1650-1942	 June 2007

FOI
Defence Research Agency	 Phone: +46 8 555 030 00	 www.foi.se	
Defence & Security, Systems and Technology 	 Fax: +46 8 555 031 00
SE-164 90 Stockholm		

FOI-R-- 1846 --SE
ISSN 1650-1942 June 2007

Defence Analysis

Comsim-Platform
an Object-Oriented Basis for Computing

Aircraft Performance and Flight Trajectories

ANDERS HASSELROT

Source: Darrol Stinton (1966)

FOI-R--1846 --SE
ISSN 1650-1942

Technical report Defence & Security, Systems and
June 2007 Technology

Anders Hasselrot

Comsim-Platform
an Object-Oriented Basis for Computing

Aircraft Performance and Flight Trajectories

2

Issuing organization Report number, ISRN Report type
FOI – Swedish Defence Research Agency FOI-R--1846--SE Technical report

Research area code
2. Operational Research, Modelling and Simulation
Month year Project no.
June 2007 B66066
Sub area code
21 Modelling and Simulation
Sub area code 2

Defence & Security, Systems and Technology
SE-164 90 Stockholm

Author/s (editor/s) Project manager
Anders Hasselrot Adam Jirasek
 Approved by
 Maria Sjöblom
 Sponsoring agency
 HISAC (a European Commission project)
 Scientifically and technically responsible

Report title
Comsim-Platform an Object-Oriented Basis for Computing Aircraft Performance and Flight Trajectories

Abstract

A new flight simulation package, named Comsim-Platform and written in the program language C++, has been
created to replace the LISP-based PcP (being in use for environmental flight studies at FOI). It re-uses the aircraft
model, Platform, of the latter, and it has been provided with a new flight management system, including navigation.
All numerical integrations and event notices are handled by the existing C++ based simulation package Comsim.
The Comsim-Platform package is intended to act as a basis for various types of flight simulations. The
Flight/Navigation application that has been created for testing the functionality of Comsim, with special views on
flight/navigation management, has proved its capability. This report documents the usage and functionality of
Comsim-Platform and Flight/Navigation.
The ease of reproducing the detailed procedures of recorded flights has been demonstrated. This has been used in
the validation of the capability of the Comsim-Platform package. Using accurate data for the airframe and its
engine(s) of a studied flight, this report proves and documents the soundness of the flight-mechanic basis of the
extended Platform model.
The final conclusion is that the Comsim-Platform package is ready to be used, with existing version of
Flight/Navigation, or with some type of modification/utilization of the latter modules.

Keywords
Flight, simulation, aircraft, platform, program package, computer programming, navigation, validation, flight-
mechanics

Further bibliographic information Language English

ISSN 1650-1942 Pages 56 p.

 Price acc. to pricelist

3

Utgivare Rapportnummer, ISRN Klassificering
FOI - Totalförsvarets forskningsinstitut FOI-R--1846--SE Teknisk rapport

Forskningsområde
2. Operationsanalys, modellering och simulering
Månad, år Projektnummer
Juni 2007 B66066
Delområde
21 Modellering och simulering
Delområde 2

Försvars- och säkerhetssystem
164 90 Stockholm

Författare/redaktör Projektledare
Anders Hasselrot Adam Jirasek
 Godkänd av
 Maria Sjöblom
 Uppdragsgivare/kundbeteckning
 HISAC (ett European Commission projekt)
 Tekniskt och/eller vetenskapligt ansvarig

Rapportens titel
Comsim-Platform - en objektorienterad bas för beräkning av prestanda och flygbanor för flygplan

Sammanfattning
Ett nytt flygsimuleringspaket, som kallas Comsim-Platform och som är skrivet i programspråket C++, har skapats för
att ersätta det LISP-baserade PcP (använd i samband med miljörelaterade flygsimuleringar vid FOI). Det
återanvänder flygplansmodellen Platform hos det senare programmet, och det har försetts med ett nytt
flyghanteringssystem, inklusive navigering. Alla numeriska integrationer och händelsenotiser hanteras med hjälp av
det existerande C++-baserade simuleringspaketet Comsim.
Comsim-Platform-paketet är avsett att fungera som grund för olika typer av flygsimuleringar. Flight/Navigation-
applikationen, som har skapats för att testa funktionaliteten hos Comsim, med speciellt fokus på flygbane- och
navigeringshantering, har visat sin förmåga. Denna rapport dokumenterar användningen av och funktionaliteten hos
Comsim-Platform och Flight/Navigation.
Enkelheten att reproducera detaljerade procedurer från inspelade flygdata har demonstrerats. Detta har utnyttjats i
valideringen av kapaciteten hos Com-Platform-paketet. Genom att använda noggranna data för bland annat
aerodynamik och motorer för ett flygplan, tillsammans med data för en inspelad flygning, bevisar och dokumenterar
denna rapport tillförlitligheten hos den flygmekaniska basen i den utökade Platform-modellen.
Slutsatsen är att Comsim-Platform-paketet kan tagas i bruk, med existerande version av Flight/Navigation eller
någon typ av modifiering/användning av de senare modulerna.

Nyckelord
Flyg, simulering, flygplan, plattform, programpaket, datorprogrammering, navigering, validering, flygmekanik

Övriga bibliografiska uppgifter Språk Engelska

ISSN 1650-1942 Antal sidor: 56 s.

Distribution enligt missiv Pris: Enligt prislista

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

5

Contents

Nomenclature ..7

Notations..7
Abbreviations ..9

1 Introduction..11
1.1 Purpose ..11
1.2 Scope ...11
1.3 Background ...11
1.4 Summary of Capability of Comsim-Platform-Flight ...13

2 The Platform Model..15
2.1 Philosophy and Definitions..15
2.2 The Aircraft ..18

2.2.1 Aerodynamics... 18
2.2.2 Engine Characteristics ... 19
2.2.3 Other Aircraft Characteristics ... 19

2.3 The Atmosphere ...20
2.4 Flight-Mechanics...20

3 The Navigation Module ...23
3.1 Path Modelling ..23

4 The Simulation Package (Information for the Software Developer) ...25
4.1 The Comsim Structure ...25

4.1.1 Class cslink .. 25
4.1.2 Class objectattribute : public cslink .. 25
4.1.3 Class variable : public objectattribute... 26
4.1.4 Class continuous : public objectattribute .. 26
4.1.5 Class reporter : public objectattribute... 26
4.1.6 Class object : public objectattribute.. 26
4.1.7 Class process : public cslink .. 27
4.1.8 Class eventnotice : public cslink... 27
4.1.9 Class monitor : public process ... 27
4.1.10 Class integrator : public monitor ... 28
4.1.11 Combined Simulation Module, Comsim ... 28

4.2 Comsim Usage..28
4.2.1 Class Flight : public continuous.. 28
4.2.2 Class Pilot : public process .. 31
4.2.3 Class Report : public reporter... 31
4.2.4 Module Integration.. 31

4.3 Comsim Flow...34
5 Flight Application (Information for the Software User)..35

5.1 Flight Profile and Navigation ...35
5.1.1 Input for Flight Profile ... 35
5.1.2 Input for Navigation .. 38
5.1.3 Interaction between Flight Profile and Navigation .. 39
5.1.4 Example ... 40

6 Validation (Information for the Generalist)..43
6.1 Modelled Data ...43

6.1.1 Aerodynamic Data.. 43
6.1.2 Engine Data.. 43
6.1.3 Miscellaneous Data .. 43
6.1.4 Flight Data .. 45

7 Conclusions...51
References ..53
Appendix A. General Instructions on Creating C++ Classes from FORTRAN Codes....................55

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

6

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

7

Nomenclature
Notations

[a]

The aerodynamically related frame of reference (X-Z plane = aircraft
symmetry plane, X along speed vector)

[b]

The body fixed frame of reference (X-Z plane = aircraft symmetry
plane, X along nose)

[e]

The fixed earth frame of reference (X-Z plane = vertical plane, X to
the north)

[w]

The wind related frame of reference (X-Z plane = vertical plane, X
along speed vector)

a Velocity of sound [m/s]
A Afterburner (reheater) On/Off A/-
acc Aircraft acceleration [m/s2]
CAS Calibrated Air Speed [m/s] (ideally, without position errors) [m/s]
CD Aircraft drag coefficient, defined as D/(q*S) [-]
CDi CD induced by CL [-]
CDmin Minimum CD, i.e. at CL

* [-]
CL Aircraft lift coefficient, defined as L/(q*S) [-]
CL

* CL at Cdmin [-]
CLmax

Maximally allowed CL limit, usually corresponding to CL at 1.2*Vstall
(take-off) or 1.3*Vstall (landing)

[-]

Cp Specicic heat at constant pressure [J/kg/K]
Cv Specicic heat at constant volume [J/kg/K]
D Aircraft drag force [N]
ΔCDH CD increment due to altitude, relatively to sea-level [-]
ΔCD item CD increment due to effect of an item: high-lift flaps or external load [-]
ΔK

Non-parabolic adjustment to K, to account for a special effect, such as
trim drag when balancing the centre-of-gravity effect

ΔΤ

Temperature increment to be used with standardized atmosphere
model, to account for local conditions

[K]

F Ground friction force due to rolling or braking [N]
g Acceleration due to gravity [m/s2]
H Altitude [m]

.
H Rate-of-climb (rate-of-descent when negative) [m/s]
IAS

Indicated Air Speed as seen on instrument (with positional errors),
strictly. However used here synonymously with CAS.

[m/s]

Item

Aircraft configuration element: external load (mainly military
application) or wing flap state (mainly civil application)

K Parabola factor with non-parabolic adjustment for computing CDi
K' Parabolic part of K
Kdeg-m Factor for translating movement on earth from [degrees] to [m]
L Aircraft lift force [N]
lat Latitude [degrees]
long Longitude [degrees]
M Mach number, = V/a [-]
m Aircraft mass [kg]

fuel

.
m or FC Fuel flow [kg/s]

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

8

N Normal force due to ground reaction [N]
nH Loadfactor due to horizontal turn [-]
nT Turnfactor, defined as vector sum of gravity factor (cosγ) and nz [-]
nV Loadfactor due to vertical turn [-]
nZ Loadfactor, defined as L/(m*g) [-]
p Static pressure [Pa]
q Dynamic pressure = 0.5 * ρ * V2 = 0.7 * p * M2 (assuming κ = 1.4) [Pa]
R Molar gas constant in the gas law (=287 for air) [J/kg/K]
r Horizontal turn radius [m]
S

Reference area, usually given by the wing contour extended to the
centre-line

[m2]

S Horizontal, accumulated distance of flight path [m]
.
S Horizontal translation speed [m/s]
T Absolute air temperature [K] [N]
T Installed engine thrust [N]
throttle Part thrust, ratio of T to maximum T, both at the current H and M [-]
time Simulation time [s]
V Air speed [m/s]
W Aircraft weight [N]
X

North pointing axis of [e] frame of reference, primarily used together
with Y for the navigation

[m]

Y

East pointing axis of [e] frame of reference, primarily used together
with X for the navigation

[m]

α Angle-of-attack, i.e. between nose and speed vector (in "clean" flight) [degrees]
χ

Course angle, i.e. angle to the right from the north direction for the
horizontal translation (projection of speed vector). Forms an Euler
(semi-orthogonal) system with μ and γ

[degrees]

δ Ratio, defined by p/psea-level [-]
Δα

α shift of CL-curve, due to change of configuration, such as
deployment of high-lift devices (flaps)

[degrees]

γ

Climb (elevation) angle for the speed vector. Forms an Euler (semi-
orthogonal) system with μ and χ.

[degrees]

κ Ratio of Cp/Cv (=1.4 for air) [-]
μ

Bank angle, by which the vertical aircraft symmetry plane is tilted to
the right along the speed vector. Forms an Euler (semi-orthogonal)
system with γ and χ

[degrees]

μg Ground friction coefficient during rolling or braking [-]
θ

Attitude angle, i.e. angle of the aircraft nose axis relative the
horizontal plane. Forms an Euler (semi-orthogonal) system with φ
(roll angle) and ψ

[degrees]

ρ Air density [kg/m3]
τ

Turnplane angle, the angle between the vertical plane containing the
speed vector and the plane containing the sidewise-upward turn
direction.

[degrees]

ψ

Angle to the right from the north direction for the horizontal nose
direction (projection of the nose axis). Forms an Euler (semi-
orthogonal) system with φ (roll angle) and θ

[degrees]

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

9

Abbreviations

ALGOL

ALGOrithmic Language, a high level language designed in late 50s specifically for
programming scientific computations, formalized in reports ALGOL 58, ALGOL 60
and ALGOL 68. It never attained popularity, mainly due to lack of input/output
definition. It had a profound influence on structure of later generation languages, of
which SIMULA was one.

C++

“C with classes” , as C++ was released in 1983 by Bjarne Stroustrup at Bell Labs,
implements some of the object-oriented technology of SIMULA. It is a superset of
ANSI C. It supports procedural programming, data abstraction, object-oriented
programming, and generic programming. Among the features are: virtual functions,
operator overloading, multiple inheritance, templates, and exception handling. The
current standard is ISO/IEC 14882:2003.

C

A procedural computer language, oriented towards system ("close to the machine")
programming, started its life at Bell Telephone Laboratories in 1969 when the
language and the operating system UNIX was developed together. It has a small
kernel and relies on external libraries. There are different flavours of C, such as the
one of "Kernighan and Ritchie" and the ANSI standard (mid 80s). C of the latter type
forms the basis of C++.

f2c

A free and extremely well-debugged program that converts standard Fortran-77 code
to standard C code. It comes with all GNU/Linux (free UNIX-like operating system)
distributions.

FFA-APP FFA Aircraft Performance Program (in FORTRAN)
FORTRAN

FORmula TRANslation, a computer programming language that was released in
1957 by John Backusin at IBM. Each new standard implied increased capability.
Well-known standards are FORTRAN 4 and 77. These were basically supporting
procedural programming until FORTRAN 95 with object-oriented technology was
released.

LISP

LISt Processing, a family of computer programming languages closely connected
with the artificial intelligence research community. An ANSI standard exists:
Common LISP.

LTO

Landing and Take-Off, a flight procedure covering all segments below 3000 feet of
altitude. ICAO defines a standard procedure as a basis for computing engine
emissions. The standard consists of four segment-thrust level-time combinations:
take-off-100%-0.7 min, climb out-85%-2.2 min, approach-30%-4min, and idle-7%-
26 min. At FOI, more physically related LTOs are often used: times and thrusts
determined by reached speed, altitude (the first two segments), force equilibrium
(third and fourth segments).

PcP

Aircraft flight simulation program written in Common LISP: Programmable Civil
Pilot

SIMULA

SIMULA originally developed in the 60s at Norsk regnesentral, Oslo, by Ole-Johan
Dahl and Kristen Nygaard as a computer language for simulation, starting from
ALGOL. The release of SIMULA 67, as a general programming language,
introduced the concepts of object-orientation, inheritance and classes. This version is
often regarded as the first object-oriented language. Both Smalltalk and C++ have
been inspired by SIMULA 67.

Smalltalk

An object-oriented language that Alan Kay began developing in 1971 at Xerox Palo
Alto Research Center (PARC), inspired by some aspects of SIMULA (message
passing). Lateron it incorporated development environment with class library
browser and SIMULA-like class inheritance. The first released version outside
PARC, Smalltalk-80, introduced metaclasses to support the paradigm of "everything
is an object".

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

10

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

11

1 Introduction

In order to satisfy the need of an easily modified software for high-level aircraft flight simulation
– examples of this are emissions and noise computation along flight paths – FOI has created a
batch-oriented (console) application, using input with flight profile and map navigation
specifications. The application is based on a general simulation package and an aircraft module.
The latter also includes modules for handling flight-mechanics. Having this package means that it
can be re-used in other flight applications. This package has been named Comsim-Platform.

The mentioned application was created to be useful for civil applications, but also to verify the
capability of Comsim-Platform. For this validation, flight recorder data were supplied by an
airline operator, of which one flight with known aircraft and engine data was chosen.

1.1 Purpose
This report is intended for three main audiences:

• Generalists, who wish to have knowledge on aircraft modelling and validation aspects.
Chapters 2, 3, and 6 are recommended.

• Software users of the present application or its derivatives. Chapters 2, 3, and 5 are
recommended. Note that the exact description of the input format for the aircraft and its
engine is found in Hasselrot et al. (1987).

• Software developers, who wish to develop applications based on the Comsim-Platform
package, or to modify the present application. Chapters 2, 3, and 4 are recommended. Note
that for a fuller description of the Comsim part, the reader should turn to Aronsson (1991).
The source code is not included in this report.

1.2 Scope
The layout of the report has been aimed at giving an overall view of modelling, simulation,
validation, and usage. Hereby most questions of general nature should be answered. In addition,
examples of code utilization and input data have been included to aid the software developer/user.

1.3 Background
Hitherto FOI had been using the LISP and FORTRAN based PcP software [Stehlin, 1999] for
high-level environment simulations, but it was time-consuming to use (due to many types of
preparations) and difficult to modify for special needs (due to lack of LISP kowledge). As there
were several planned/ongoing projects that called for easier simulation software, the environment
group of FOI decided to perform a quick measure to ease the situation: create an application using
existing modules, the C++ based Comsim package [Aronsson, 1991] and the aircraft module from
FFA-APP [Hasselrot et al.] written in FORTRAN.

Comsim contains a translation – a work performed at FFA as a thesis for ME degree - of
corresponding parts in NYCOND simulation package [Righard, 1981], which in itself has
ancestors in CONDIS [Månsson, 1980] and Combinedsimulation [Heldsgaun, 1978-9]. Indeed, it
is a long FOA-FFA-FOI heritage! The language of the original codes is SIMULA 67, commonly
regarded as the first object-oriented language. Comsim has implemented only a few of the
integration methods that are available in the SIMULA versions, but this is not a serious problem,
as our application will not simulate rapid processes.

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

12

The idea of adopting the FFA-APP module is attractive, as it is being used in the PcP software
(translated into C which Common LISP can handle). This module was named Platform. Thus the
database of aircraft created for the PcP can be reused. Using the Comsim package is attractive,
because hereby the object-oriented philosophy can be introduced: general class declarations and
specific of class objects. There is a viable idea of creating a class version of Platform. Then it will
be possible to create several Platform objects (one for each aircraft), without the risk of internal
data collision. This is useful for cases where several aircraft act/interact in the same simulation,
i.e. when studing collision risks in dense air traffic or air combat.

The focus for the new FOI application, Flight, which may be regarded as a first attempt in
creating something useful, has been creating a re-useable package, with unmodified Comsim and
a class version of Platform. In creating the latter, the FORTRAN code (after some small
modification) was automatically translated to C by means of a public domain software ‘f2c’ (run
on a PC), see Feldman (1990), whereupon the result was edited into a class version. This editing
was performed according to a procedure described in Appendix A.

Figure 1 shows an overview of how Comsim and Platform packages are utilized in an application
(Flight). The Comsim structure and its usage are described in chapter 4.1 and 4.2, respectively.
The FORTRAN based Platform has been extended, in the form of a C++ subclass PlatformX, to
include a comprehensive set of flight-mechanic relationships (to aid implementation of Flight
software and future versions). Note that Navigation is a free-standing class that is called in our
present Flight application. The models of Platform, PlatformX and Navigation are described in
chapters 2, 2.4, and 3, respectively.

integrator

monitor

linkage object

continuous

reporter

process objectattribute

stateevent

variable vectorvariable

cslink

eventnotice

head

NavigationPlatform PlatformX Flight

Pilot report

Comsim package

Platform package

Flight application

Figure 1. Class diagram (C++ structure) of Comsim and Platform packages including a Flight
application.

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

13

1.4 Summary of Capability of Comsim-Platform-Flight
Reference: Hasselrot, A. (2007): “Comsim-Platform — an Object-Oriented Basis for Computing
Aircraft Performance and Flight Trajectories”, FOI-R--1846-SE (2007).

Comsim-Platform is a general aircraft simulation package written in the language C++, with
defined aircraft and simulation handling. Aircraft input is in the form of aerodynamic coefficients,
thrust- and fuel flow tables, and weights. The aircraft is treated kinematically as a masspoint, on
the assumption that the aircraft flies ideally and aerodynamically balanced.

Flight is a specific software, designed primarily for civil applications and based on Comsim-
Platform, to handle one aircraft and its flight procedure. Apart from calling for aircraft data from
Comsim-Platform, Flight requires input in the form of detailed flight profile data and map
coordinates for the navigation. Flight can easily be modified to manage several aircraft.

Simulation, not only of flight but also of ground operations, with Flight is performed by calling an
aircraft—engine combination and running a batch of flight and navigation commands residing in
an input file.

Flight commands are given as ‘taxi’, ‘takeoff’, ‘climb’, ‘accelerate’, ‘cruise’, ‘descend’,
‘approach’, and ‘land’, in any order. Special setup commands are ‘setstate’ and ‘calibrate’. An
LTO procedure can be defined using some of these commands. Ground operations, where the
rolling friction coefficient and the angle-of-attack are specified, are treated with regard to partial
lift depending on the current speed. Each Flight command is performed with its own set of
controlling parameters, such as thrust level, calibrated airspeed, Mach number, etc., and it is
finished when a certain, specified flight condition is met, such as a speed or an altitude has been
reached. The flight simulation is then continued with the next Flight command.

The execution of Navigation commands is performed in parallel with the flight procedure, where
the accumulated flight distance will guide through the pre-defined map path in the form of lines
and arcs. The geometrical path elements are derived from the coordinates given in the batch file,
which can be specified as local, metric coordinates or as global coordinates as latitude and
longitude. The coordinates are useful for both small-scale navigation, such as taxiing, and larger
scales up to global level, when great circle movement, i.e. along shortest paths around Earth, can
be specified.

The flight simulation results in an output, containing a time history, second by second, of various
flight states, such as the thrust state, the speed as calibrated airspeed or Mach number, the altitude,
the path angle, the rate of climb, the fuel rate and state, etc.

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

14

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

15

2 The Platform Model
The basis for the Platform model is FFA-APP [Hasselrot et al., 1987], from which a subset for the
aircraft and its input has been re-used. In this document the modelling and data handling are
already well described. This model is written in FORTRAN but is used in C++ translated form.
An extension, written in C++, of this model covers flight-mechanical relations, which are created
to facilitate writing flight programs.

This chapter at first gives an overall view of the forces acting on the aircraft. The frames of
reference are also briefly introduced. Hereupon more detailed descriptions of the aircraft and
atmosphere models follow. Finally, the basic relationships for the flight-mechanics are presented.

2.1 Philosophy and Definitions
The present simulation package is aimed to satisfy the research needs at high system level (no
detailed modelling of movements initiated by the control system). It can be seen as appropriate
when studying flight paths to represent the aircraft as a mass point, and perform the simulation
through numerical integration of accelerations (acc) based on forces acting on the mass point (m)
(Newton’s second law):

maccforce ⋅=

The forces are assumed to reach their states without transients (=immediately). Aerodynamic data
are supposed to be in trimmed condition (the pitching moment balanced out, with effects of the
centre-of-gravity and the elevator angle) and with no side force (“clean” flying). Figure 2 shows
the kinds of forces that are most important in three different situations.

(a)

(b)

(c) L

LN

N

D

T

D

T

T

W

W

W

F

F

γ
α

α = Angle of attack
γ = Climb angle
D = Aerodynamic drag
F = Rolling friction
L = Aerodynamic lift
N = Ground normal force
T = Total engine thrust
W = Weight force(a)

(b)

(c) L

LN

N

D

T

D

T

T

W

W

W

F

F

γ
α

(a)

(b)

(c)

(a)

(b)

(c) L

LN

N

D

T

D

T

T

W

W

W

F

F

γ
α

L

LN

N

D

T

D

T

T

W

W

W

F

F

γ
α

α = Angle of attack
γ = Climb angle
D = Aerodynamic drag
F = Rolling friction
L = Aerodynamic lift
N = Ground normal force
T = Total engine thrust
W = Weight force

Figure 2. Forces acting on the aircraft in different situations: (a) low speed rolling on ground,
(b) high speed rolling (with aerodynamic effects), and (c) airborne flight along path at angle γ
(note that the thrust is simplified to be acting in the path direction).

From aerodynamics point of view it is convenient to separate forces into longitudinal (along the
path) and transversal (across the path) components, and treat the accelerations separately. To
illustrate this, Figures 3(a) and 3(b) show force projections into aircraft symmetry plane and
transversal (normal to the speed vector) plane, respectly, for the case of an aircraft performing a
climb-turn. Note that the aircraft is banked with its fin in the aerodynamic lift direction (satisfying
the assumption of no side force) and is moving sideways along the transversal acceleration force.

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

16

Another way of viewing Figure 3(b), where forces are shown, is looking at dimension-less factors
as in Figure 4. Here the three forces – the lift force, the gravity force, and the transversal
acceleration force – are translated to factors by relating them to the aircraft mass and the gravity
acceleration. The loadfactor nZ acts in the lift direction and is maximized to nZmax, usually due to
the aircraft structure or a pilot related limit.

(a)

View: A/C symmetry
plane (procections)

Curved path
Tangent to path

Transversal acceleration force

Logitudinal acceleration force

Resultant acceleration force

View: Plane across
the path direction

Transversal acceleration
force (path turn direction)

Gravity force
(component thereof)

(b)
Lift force
(in symmetry plane)

(a)

View: A/C symmetry
plane (procections)

Curved path
Tangent to path

Transversal acceleration force

Logitudinal acceleration force

Resultant acceleration force

View: Plane across
the path direction

Transversal acceleration
force (path turn direction)

Gravity force
(component thereof)

(b)
Lift force
(in symmetry plane)

Figure 3. Separation of forces into path related longitudinal and transversal components.

The gravity factor is given by cos(γ). The force factor triangle is valid in any aircraft and path
attitude, provided that the lift acts in the fin direction. By the turnplane is meant the plane that is
formed when the vertical plane, with the path vector in it, is rotated around this vector by the
amount of the angle τ. The actual turn is then, of course, executed in this plane.

View: Plane across
the path direction

τ

μcosγ nZ
nZmax

nT

Turn direction

Loadfactor limit
γ = Climb angle
μ = Bank angle
τ = Turnplane angle
nZ = Loadfactor
nT = Turnfactor

View: Plane across
the path direction

τ

μcosγ nZ
nZmax

nT

Turn direction

Loadfactor limit
γ = Climb angle
μ = Bank angle
τ = Turnplane angle
nZ = Loadfactor
nT = Turnfactor

Figure 4. Transversal loadfactor diagram for an aircraft in any path orientation.

Mathematically, the following can be extracted from Figure 4, where and in the equations
below are components of . The magnitude of is determined by the path lateral acceleration,

Vn Hn

Tn Tn

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

17

which means that the components are given by the path velocity V, and the path angular rates γ&
(vertical) and χ&& (horizontal), see equations that follow:

χ

μ
τ

γ

μγ
τ

&

&

⋅=

⋅=
⋅=

⋅=

⋅=+
⋅=

g
Vn

sinnn
sinnn

equationsHorizontal
g
Vn

cosncosn
cosnn

equationsVertical

H

ZH

TH

V

ZV

TV

North
East

Down

Xe

Xw, Xa

Xb

Ye

Ya,Yb

Xc

Yc, Yw

Ze, ZcZw

Za

Zb

χ

γ

α

α

γ

χ

μ

μ
Indices:
e = earth
c = course
w = wind
a = aerodynamic
b = body

Vertical axis
Horizontal plane

North
East

Down

Xe

Xw, Xa

Xb

Ye

Ya,Yb

Xc

Yc, Yw

Ze, ZcZw

Za

Zb

χ

γ

α

α

γ

χ

μ

μ
Indices:
e = earth
c = course
w = wind
a = aerodynamic
b = body

Vertical axis
Horizontal plane

Figure 5. Relationship between reference frames [Xe, Ye, Ze], [Xc, Yc, Zc], [Xw, Yw, Zw], [Xa, Ya,
Za], and [Xb, Yb, Zb], derived through rotation serially around one axis (Xx, Yx, or Zx) at a time.
Note that only the [Xe, Ye, Ze] and [Xc, Yc, Zc] systems are orthogonal.

Finally, there are several coordinate systems to keep track on. Please look at Figure 5. The basic
frame of reference is of course the fixed earth system [e], where the origin is determined by its
latitude and longitude position, and where the Xe-axis is pointing to the north and the Ye-axis to
the east. The aircraft mass point primarily moves along a path, and hence, the wind-related system
[w] is the relevant frame of reference. The orientation of this system relative to the earth system is
given by the course (heading) angle χ and the path elevation angle γ. In order to conveniently treat
the aircraft aerodynamics, the wind system is rotated around the Xw-axis until the wind vector lies
in the X-Z-plane of the new system, i.e. until the bank angle μ is reached. Now the system is an
aerodynamic frame of reference [a]. The final system rotation (here) is performed around the Ya-

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

18

axis to yield the angle-of-attack α. This system is now body-fixed [b], where Xb points forward
along the aircraft nose and Yb points to the right in the normal direction of the Xb-Zb-plane.

In simulations in general, path oriented data are the parameters primarily in view. Sometimes,
however, aircraft attitudes govern the simulation. In civil applications this often happens during
takeoff and landing, where the nose attitude relative to the air field may be important to check. In
military simulations aiming at a target is such a situation. The aircraft attitude, i.e. that of the
engine, is also important, when noise effects of the engine jet are studied. The aircraft attitude is
measured as in the case with the path (the corresponding name in parenthesis): ψ (χ) and θ (γ).
For these two parameters the following expressions are given, using angle-of-attack α and bank
angle μ, see also Figure 4:

μαγθ
μαχψ

cos
sin

⋅+=
⋅+=

2.2 The Aircraft
The aircraft description is separated into three parts: aerodynamics, engine characteristics, and
configuration data.

2.2.1 Aerodynamics
The following presentation is mainly based on information found in Hasselrot et al. (1987).

The aerodynamic tables are based on a coefficient modelling that allows a relatively accurate
description of realistic characteristics. The lift curve can be composed by piecewise linear
segments. The drag polar can have a non-parabolic behaviour by means of a lift-depending
correction of the parabola factor. In this context it is possible to use an arbitrary parameter to
account for trim drag changes due to different centre-of-gravity positions or other effects. The
maximum lift is specified separately from the lift slope definition.

A new feature, already introduced in later versions of PcP [Stehlin, 1999], is the raising of the
whole lift curve, to represent the effect of wing flaps, by using an angle-of-attack change.

The aerodynamic model is thus governed by the following, where M and H are Mach number and
altitude, respectively:

)item,M(fC
)H,M(fC

)M(fC
incrementsionconfiguratloadandaltitudeanddragMinimum

Ditem

DH

minD

=Δ
=Δ
=

−

)M(fC

)parameterarbitrary,M(f)CC/(CK

)C,M(f)CC/(CK

KKK
factorParabolaK

)CC(KC

dragInduced

*
L

*
LLDi

L
*

LLDi
'

'

*
LLDi

=

=−Δ=Δ

=−=

Δ+=

=
−⋅=

2

2

2

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

19

)item,C,H,M(fCCCCC
dragTotal

LitemDDiDHminDD =Δ++Δ+= ∑

)item,H,M(fC
)item(f

)item,C,M(f
liftimimummaxandincrementwithattackofAngle

maxL

L

=
=Δ

=
α

α

The term item refers to an identifiable factor that affects the aircraft lift and drag. It can be
interpreted as an external military load, such as a set-up of missiles, bombs, etc.. It can also be a
configuration, such as a flap setting.

2.2.2 Engine Characteristics
The format description is found in Hasselrot et al. (1987).

The tables for the engine characteristics simply hold pre-computed data for a chosen atmosphere
model, in the form of thrust and fuel rate as a function of several parameters: throttle level (in a
scale chosen by the user), basic operating condition (A, reheating/afterburning or not),
temperature adjustment ΔΤ (for the standard atmosphere), altitude H, and Mach number.

Mathematically this can be expressed as:

)rscalefacto,M,H,T,A,throttle(fm
)rscalefacto,M,H,T,A,throttle(fT

fuel 2
1

Δ=
Δ=

&

It should be noted that T and for each given parameter state (combination of throttle, A, ΔΤ,
H, and M) can be scaled individually (1 is default for scalefactor1 and scalefactor2). It is also
possible to set a global scale factor for the engine installation, and this function is available
programmatically. Hence, there is a means for adjusting with regard to installation effects on T
and .

fuelm&

fuelm&

2.2.3 Other Aircraft Characteristics
In order to complete the specification for an aircraft, additional parameters are needed: reference
area (S) and basic components for computing aircraft mass (m), such as operating empty mass,
maximum fuel mass, maximum payload/external load mass, and maximum takeoff mass.

Although the basic input system in the Platform module can handle S and some rudimentary mass
specifications, the new PlatformX has an extended treatment for this. Here multiple configurations
can be defined, i.e. be given names, be coupled to the items (specified as a number) with the
aerodynamic characteristics and to a mass value. Changing the aircraft configuration will then be
performed by giving its name. The initial fuel state is set during the definition of the flight plan.
The actual fuel mass state is derived from the fuel rate due to the engine characteristics by
performing a numerical integration.

Mathematically the mass build-up can be expressed as:

)time,m,m(fm

mmmmm

fuelfuel.initfuel

fuelload.extpayloadempty.op

&=

+++=

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

20

2.3 The Atmosphere
The atmosphere properties play a central role for the characteristics of both the engine thrust and
the aerodynamic forces. These vary with the location on earth, the season viewed, and even on
day-to-day basis. To bring an order of this, standardized atmosphere models are used. The
Platform package comes with a model that is based on an old ICAO standard (ICAO, 1954).
Later on, the standard has been extended, mainly with data for higher altitudes. This work has
been pursued by both International Civil Aviation Organization (ICAO) and U.S. Committee on
Extension to the Standard Atmoshpere (COESA, established 1953, published standards 1958,
1962, and 1976).

To what degree is the ICAO (1954) standard, modelled in Platform, compatible with the U.S.
(1976) standard? Based on what our model produces and on table lookups in the 1976 standard,
the following observations can be made:

1. The pressure and temperature data are identical for altitudes up to 20 km.
2. The pressures continue to be compatible for altitudes up to 32 km
3. The temperature profiles differ: (a) In the ICAO (1954) standard, the tropopause continues

until 25 km, whereupon a temperature rise starts with a rate of 3 degrees per km. (b) In
the U.S. (1976) standard, the temperature starts rising by 1 degree per km until 25 km and
then by 2.8 degrees per km until 32 km.

The atmosphere model in Platform has a modifying parameter in the form of temperature
adjustment . The model functionality is as follows: TΔ

heatsspecificofRatio
TRsoundofVelocitya

T/constdensityAir
constsureStaticpresp

)T,H(fetemperaturAbsoluteT
)H(foressurefactPr

=
⋅⋅==

⋅==
⋅==

Δ==
==

κ
κ

δρ
δ

δ

2
1

2.4 Flight-Mechanics
Basic conditions
Moving in the air results in aerodynamic forces, lift L and drag D, which grow roughly with
square of the speed V along the path, and inversely with the air density ρ. For this reason the
dynamic pressure, together with the reference area S, is generally used in conjunction with lift and
drag coefficients, CL and CD, respectively. The coefficients are determined by the aircraft
modelling, see the description below.

SqCD
SqCL

aVnumberMachM
velocityPathV

Mp.V.pressureDynamicq
)planesymmetryverticalthetoextendedparttheplus

areaprojectedexternalthebyformedusuallybut,arbitrary(areaWingS

D

L

⋅⋅=
⋅⋅=

⋅==
=

⋅⋅=⋅⋅==

=

22 75 ρ

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

21

Conditions while airborne
The magnitude of L, which acts at right angle to the path, depends on the wing loadfactor nZ and
the thrust component in the L direction (lift to weight and thrust components):

αsinTgmnL Z ⋅−⋅⋅=

where the angle-of-attack α is given by the aircraft lifting characteristics, see section 2.2.1. The
thrust term is usually small when compared to L and thus is often neglected. The nZ, in its turn, is
linked to the gravity factor γcosnG = and the turnfactor nΤ in the way that is shown in Figure 4
and equations in section 2.1.

The longitudinal effect (in the velocity V direction) of L is the aerodynamic drag D, which is
determined through the modelling of the CD, see below, and equations in section 2.2.1. The
longitudinal acceleration acc is given by the excess thrust in this direction:

γα singmDcosTaccm ⋅⋅−−⋅=⋅

Conditions on ground
During ground-run the force relationship changes, which is shown in Figure 2. The following
equations are then valid, where the angle-of-attack is assumed to govern the aerodynamic lift and
drag and Gμ is the ground (rolling) friction coefficient:

FsingmDcosTaccm
gmLwhere,cos)Lgm(frictionGroundF

)L,M(gD
),M(fL

G

−⋅⋅−−⋅=⋅
⋅≤⋅−⋅⋅==

=
=

γα
γμ

α

Flight or movement on the ground always implies variations (continuous or discontinuous) of
state parameters, such as:

,,H,M,CAS,,,,acc,T Gμθαγ &

where CAS is the Calibrated Air Speed (=Indicated Airspeed when instrument and place errors
are zero. From here on IAS, whenever it occurs in the text and the code, will be treated as CAS.

These parameters are interdepending, which means that only a few can be chosen as control
parameters, leaving the others in depending state. For the airborne case, it is possible to specify
conditions for two parameters. For the ground case four are chosen. For example, a climb, or more
commonly an approach, may be required to follow a certain path angle γ . Then there is still room
for making a requirement on another parameter, in our example the thrust level T (e.g. maximum)
or the longitudinal acceleration acc (e.g. zero=constant speed), or one other parameter in the
above list. After the state of, in all, two parameters have been given their values, all other
parameters are functions of these two. This constitutes a flight condition. As there are many
possible flight parameter combinations, there are theoretically also many flight conditions. Table
1 presents several, not all, flight conditions that may be envisioned. Many of these have been
implemented in Platform as case alternatives in the C++ method ‘flight_cond’ during the work
with the present flight application (reported here). The last two lines show four chosen
parameters, which may seem illogical. However, this applies for the ground case, when two
additional degrees-of-freedom are introduced and hence another two parameters must be locked.

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

22

Table 1. Useful flight conditions

Required
locked states

Case name in flight_cond
(C++ code)

Implemented Usage in Flight application

throttle, acc Pt_acc x Cruise-Climb

throttle, γ Pt_gamma x Acceleration

throttle, α Pt_alpha

throttle, θ Pt_theta

throttle, IAS Pt_ias x Climb, descent

throttle, M Pt_mach x Climb, descent

γ, IAS Gamma_ias x Approach

γ, M Gamma_mach x Approach

acc, γ Acc_gamma x Cruise

acc, α Acc_alpha

acc, θ Acc_theta

IAS,H& Hr_ias x Rate-limited descent

Hr_mach x Rate-limited descent M,H&
throttle, μG,
γ, α

Pt_mu_gamma_alpha x Taxi, start, land
(ground acceleration/retardation)

Acc_mu_gamma_alpha x Taxi acc, μG, γ, α

The difference between the terms ‘descent’ and ‘approach’ is only technical, both being useable at
all altitudes: the former is associated with prescribed throttle, and the latter with prescribed climb
angle (γ).

The present development state of Comsim-Platform reflects the focus on civil applications, where
the application development has been performed along two lines: the first to define a vertical
flight profile, and the second to flex this profile along a prescribed projected pathway (on a map).
The whole flight profile is executed by going through the various flight-conditions, each of which
delivering a longitudinal acceleration (acc) value for the numerical integration. This results in a
longitudinal velocity (V) value. As the climb angle (γ) is always either a prescribed value or an
answer of the flight-condition, the following rates for the altitude and horizontal distance, H& and

, respectively, are established for the flight profile state: S&

γ
γ

cos
sin

⋅=
⋅=

VS
VH

&

&

for which the numerical integrations are performed, thus resulting in new H and S states. The S
value is then used for establishing the actual X and Y positions on the map. This is possible, as the
prescribed path projection is a purely a geometrical definition. It should be noted that flexing the
vertical flight profile implies turnfactor effects, which is easily implemented by means of the path
geometrical curvature and speed in the horizontal plane. Another note is the effect due to the fuel
flow , which primarily acts on the aircraft mass m. Of course fuel flow is also numerically
integrated into an actual state, which also affects the total aircraft mass, see below.

fuelm&

For the future development, the performance-related military applications require additional, not
yet defined flight conditions, which may even need new state (controlling) parameters. It is easy
to predict loadfactor- or turnfactor-oriented flight-conditions, and their combinations with the
already present flight parameters.

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

23

3 The Navigation Module
Navigation capability is important in many FOI tasks for computing distributed engine emissions
and noise pollution. Also, the flight-recordings used for the comparisons, see chapter 6, contain
path coordinates. Inclusion of navigation aspects leads to a better validation process. Therefore
the navigation module was created.

The navigation module is in principle a completely isolated code, with its own input (hence it can
be used in contexts other than this). Its contact with flight environment is through the S variable,
see section 2.4, via the argument list.

3.1 Path Modelling
The basis for the navigation is letting the projection of the flight path follow a prescribed map
path, and assuming the path be defined as straight lines and circular arcs. The input then consists
in specifying the corner-points (latitude, longitude) of a polygon-train and radii (r) to round-off
the corners:

Nrlonglatrlonglatrlonglat),,(...,,),,(,),,(21

Before these data are analyzed into alternating lines (shorter than the corresponding polygon
elements) and arcs, the lat and long are translated into metric coordinates of X (positive
northwards) and Y (positive eastwards), using the following:

]/[90/10000000

)cos()cos()(

)(

deg

deg000

deg00

omK

KlatlatlonglongYY

KlatlatXX

m

m

m

=

⋅⋅⋅−+=

⋅−+=

−

−

−

where the index 0 refers to an origin along the map path, at the start or locally defined.

An idea of a typical map path is shown in section 5.2. In the navigation module, the distances of
the lines and the arcs are noted. To identify what line or arc is being processed during the actual
flight simulation, the accumulating sum of these distances is compared with the simulated
distance (S). With the segment identified, it is possible to compute the actual metric position as a
function of S:

)S(gY
)S(fX

=
=

Of course, these values can be converted back to lat and long, using the above expressions.

In the navigation module there is a variant of the “straight” segment in the path definition, which
is intended for long distances due to Earth curvature. In this context “straight” is the shortest
distance on the surface, the so-called the great-circle distance. This is treated in the module
mainly by means of translating lat and long position into Earth centre angle movement, and from
there to accumulated distance using the value of Earth radius.

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

24

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

25

4 The Simulation Package (Information for the
Software Developer)
Comsim [Aronsson, 1991] has been chosen to form one of main pillars (the other being the
Platform model) for the new flight simulation system, mainly due to its capability of handling
continuous simulation (based of derivatives) and discontinuous event management. In addition it
is considered in this context a merit that it is written in C++. It is, in fact, a relatively direct
translation of parts in NYCOND [Righard, 1981], written in SIMULA, commonly regarded as the
first object-oriented language (no longer being maintained).

Comsim is well described in Aronsson (1990), but as the present report is intended to mediate the
experiences of using the package, a general overview is given about its structure and usage (this
chapter) before proceeding to the Comsim application (next chapter).

4.1 The Comsim Structure
Comsim contains classes to enable handling of continuous simulation, i.e. numerically integrating
conditions for user defined variable set, and treatment of process events, which may be user-
defined (in the application). A typical event is reporting variable states, for which Comsim
provides a class reporter to aid the application writer. All events imply stopping and re-starting
the simulation.

This chapter is primarily intended for those who need an in-depth knowledge of the workings of
the package. The reader may jump directly to 4.2, where application-oriented aspects are
presented.

The more in-depth interested reader can also go to Aronsson (1991) for the complete theory and
the implementation notes.

In the following, please note that words in italics are reserved words in C++ or concepts in
Comsim. The main concepts are described under sections below. Note also that these sections
have form of class definitions, the first being simple, and the others shown as child – parent
relationship. The parent part is indicated by ‘: public’.

Concepts, marked as italics:
virtual: a method defined within a class can have this prefix, say:
class parent { virtual void method_a(); … }
then it is possible to redefine this method without changing its name:
class child : public parent { void method_a() { <own actions> }; }

4.1.1 Class cslink
During simulation many objects are handled dynamically in various levels. For example,
variables are such objects that need updating in the integration calculation. These objects need to
have ability to be placed into some queue, and later to be picked one after another for the
appropriate treatment. Comsim therefore includes definitions for the class cslink (renamed from
link due to name clash in g++ compilation, where ‘cs’ stands for Comsim), with facilities for
queue handling. This class is intended mainly for internal (but also external) usage: direct object
declaration, or as the parent of subclasses

4.1.2 Class objectattribute : public cslink
Comsim has many kinds of dynamic objects that, apart from having queueing capability, also
need to be started and stopped. This occurs for example, when a reporter at intervals needs to
check variable states (i.e. for an interpolation). Therefore a class objectattribute, based on the

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

26

class cslink, has been provided in Comsim, where the following as virtual defined methods are
included: start(), stop().

4.1.3 Class variable : public objectattribute
Class variable is a subclass to class objectattribute, with additional storage attributes to hold
intermediate state conditions for the numerical integration. Apart from starting and stopping the
handling for the variable object (using the methods start() and stop()), queueing methods
(intoobject() and outofobject()) are available to place the objects into an environment instance of
the class object.

There also exists an extension of class variable: vectorvariable, which is based on three-
dimensional vectors. Each element is handled as a variable. In the Comsim package there is a
fairly complete set of class definitions for vector and matrix (up to three dimensions) and their
operation methods.

4.1.4 Class continuous : public objectattribute
Class continuous is subclass to class objectattribute, with additional facilities for handling
variables and their numerical integration.

It is normally used as parent for subclass extension, from which a continuous simulation object is
created. From here (or externally) variable objects are created, queued here and continuously
managed. The place within this class where in principle the rates are computed is: virtual
compute(). However, this method is empty. The idea is then letting the programmer/user redefine
the method, to contain the proper derivative computing, in a subclass of continuous.

The numerical integration of all variable objects is performed by integrator, where objects are
accessed from a common environment instantiation of the class object. For this the methods are
available: intoobject() and outofobject().

4.1.5 Class reporter : public objectattribute
Class reporter is a subclass to class objectattribute, with additional methods for handling reports.
Four types of reporters can be specified: eventrep, time_steprep, timerep, time_eventrep, i.e.
based on repetition of time, event, step, or a combination thereof. Apart from methods for time
and frequency handling and queueing, the following re-definable methods are handled:

 virtual void prelude() {;}
 virtual void start();
 virtual void stop();
 virtual void compute() {;}
 virtual void endcompute() {;}

The programmer/user must define a subclass of reporter, in order to compose a report layout, for
which the methods prelude, compute, and endcompute may be modified. Note that special
computing can be performed from here on the variable objects (provided that access is granted).

4.1.6 Class object : public objectattribute
Class object is a subclass to class objectattribute, with additional facilities for handling objects of
the following classes: variable, vectorvariable, continuous, and reporter. It manages queues for
these objects, and also has a time setting method. It is in fact a basis for a complete simulation
environment.

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

27

The programmer/user has the responsibility of inserting the different kinds of objects into their
respective queues, by means of the method: intoobject(), defined in the respective classes. The
reverse is of course: outofobject().

4.1.7 Class process : public cslink
Class process is a subclass to class cslink, with additional facilities for activating process objects
and eventnotice handling. The following methods are available:

 friend void _diractivate(bool, process*);
 friend void _befactivate(bool, process*, bool, process*);
 friend void _delactivate(bool, process*, double, bool);
 friend void _atactivate(bool, process*, double, bool);
 friend void _passivate();
 friend void _wait(head*);
 friend void _cancel(process*);

4.1.8 Class eventnotice : public cslink
Class eventnotice is a subclass to class cslink. An instance of this class is created whenever a new
object of the class process (or a subclass of it) is instantiated, i.e. this event is placed into the time
sequence (schedule) by means of the method: intosqs(). The class eventnotice also allows re-
scheduling, or in other words control where to place the event on the time axis. This is controlled
by a number of external methods, as the following:

 friend void runsimulation();
 friend void _diractivate(bool,process*);
 friend void _befactivate(bool,process*, bool, process*);
 friend void _delactivate(bool,process*, double, bool);
 friend void _atactivate(bool, process*, double, bool);
 friend void _passivate();
 friend void _hold(double);
 friend void _wait(head*);
 friend void _cancel(process*);

4.1.9 Class monitor : public process
Class monitor is a subclass to class process, with storage attributes to hold time status and coming
time and process events for the process of the integrator and the reporter handling, and for the
internal management of continuous (variable) objects. The following methods are
available/planned (modelled after SIMULA application, see Righard):

void compute_rates(); //Executes all objects’ Continuous->compute
virtual void simplestep() {;} //Takes an integration-step with the Euler-, Simpson-,

fixAdams- or Trapez method.
virtual void stiffstep() {;} //Takes an integration-step with Gear’s method.
virtual void adamsstep() {;} //Takes an integration-step with Adam’s method.
virtual void rkstep() {;} //Takes an integration-step with Runge-Kutta-England’s

method.
virtual void stiffini() {;} //Initiates for stiffstep().
virtual void adamsini() {;} //Initiates for adamsstep().
virtual void seterrcoeff() {;} //Assigns the errortest-coefficient-matrix values used in

stiffstep().
virtual void interpolate() {;} //Interpolates variable-states at lasttime + dt.
virtual void coset_interpolate() {;} //Interpolates variable-states at lasttime + dt and calculates

the interpolation-coefficients.
virtual void happening(); //Contains the code for the simulation-control.

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

28

where only the first one has the functionality defined: usage of the continuous method compute().
This constitutes the monitor functionality. The rest of the methods are envisioned integration
methods, see Righard (1981), of which some are implemented in class integrator.

This class accesses an appropriate instantiation of the class object, where the variable objects are
stored.

It is in this place both continuous (based on derivatives) and process (based on happening) objects
are managed in the same dynamic context, i.e. a combined simulation is executed. (Hence the
name of the simulation package: Comsim.)

4.1.10 Class integrator : public monitor
Class integrator is a subclass to class monitor, with some of the envisioned integration methods
implemented. These are:

 void simplestep();
 void interpolate();
 void coset_interpolate();

Presently, this class is the basis (the only one, in fact) for creating a monitor object for the
integration process. If additional methods are to be implemented, then a new class must be
defined, using ‘: public integrator’ to retain the earlier implementations.

4.1.11 Combined Simulation Module, Comsim
This module is the final product that contains all references to the package elements. A simulation
application must always include Comsim, in order to have access to all the functionality. The
module has two functions defined:

Initcombinedsimulation(); //Calls initsimulation() and creates an instance of the class
Integrator (theMonitor), which is activated instantaneously.

Runcombinedsimulation(); //Ractivates theMonitor instantaneously because the user might
have activated some processes before the simulation has started.
TheMonitor must be the first event in SQS (on the time axis) when
the simulation starts. Finally, runsimulation() is started.

4.2 Comsim Usage
The usage of the Comsim structure in a simulation program is considerably simpler than it may
seem by looking at the Comsim structure, as described above. How it would appear in an
application is best shown by an example, which is an extract of the application program described
in chapter 5. We will follow a step by step build-up of the program (each step under its own
header).

The example is based on the availability of Comsim, with the structure as described above, and of
the class PlatformX, whose software structure is not described here.

Using Comsim requires that subclass extensions of the following classes are defined by the
programmer: continuous, process, and reporter. In our example, these are:

4.2.1 Class Flight : public continuous
Here our problem-oriented variables are declared and initialized. In order to compute their rates
(derivatives), the continuous method compute has to be redefined. All this is shown in List 1 and
List 2.

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

29

List 1. Sketch of Flight.h file

#ifndef _FLIGHT_H
#define _FLIGHT_H

#include "comsim.h"

#include "platformx.h"

class Flight : public continuous

{

 friend class Pilot; //to let objects of Pilot have access to Flight attributes and methods

 friend class Report; //to let objects of Report have access to Flight attributes and methods

//Flight attributes

 PlatformX *thisPlatform; //to hold actual aircraft data

 object *thisObject; //thisObject is the simulation environment

 variable *v, *s, *h, *fc; //variable declarations (all that are needed!; explained in the

 flight.cpp scetch)

 float g=9.80665, acc_, ga_, al_, chi_, bankangle_, psi_, th, x_, y_, x0_, y0_, r;

 ...

//Flight methods

 void FlightCondition(); //entry point to the following flight segments

 void Setstate(char *config, int no, float takeofffuel, float fc, float dist, float h,

 float v, float vi, float mach);

 void Calibrate(char *config, float takeoff_fuelmass, float pt, float paftt, float alt,

 float vel, float ias, float mach);

 void Taxi(char *config, float pt, float dist, float dur, float iaslim, float mu,

 float acc, float ga, float al);

 void Start(char *config, float pt, float paftt, float iaslim, float mu, float ga,

 float al, float cllim);

 void Climb(char *config, float pt, float paftt, float hlim, float hrlim, float dur,

 float machlim, float iaslim, float acc, float ga, float cllim);

 void Accelerate(char *config, float pt, float paftt, float dist, float dur,

 float machlim, float iaslim, float ga, float cllim);

 void Cruise(char *config, float pt, float paftt, float dist, float dur, float machlim,

 float iaslim, float acc, float ga, float cl_max);

 void Descend(char *config, float pt, float hlim, float hrlim, float dur, float machlim,

 float iaslim, float cl_max);

 void Approach(char *config, float hlim, float acc, float machlim, float iaslim, float ga,

 float cllim);

 void Land(char *config, float pt, float iaslim, float mu, float ga, float al);

 ...

 void compute(); //this is the prototype for the redefined method (of the one

 in class continuous)

 public:

 void readFlightInstr(char *flightFile); //must be public, as it is called in Main

};

#endif //_FLIGHT_H

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

30

List 2. Scetch of Flight.cpp file

#include "flight.h"

...//Method implenentations for the class Flight
//The implementations for FlightCond, Fuel, Taxi, Start, Rotate, Climbout, Flapsin, Climb,
//Cruise, Descend, Flapsout, Approach, Land, and Unspecified are placed here.

void Flight::vars_intoobject(object *refObject) //this method must be called before starting
 //the Flight simulation, see main() program
{ //create the variables and place them into the environment (thisObject)
 thisObject = refObject;
 v = new variable(0); //to hold the velocity value
 v->intoobject(thisObject);
 s = new variable(0); //to hold the horizontal distance along the path from the start
 s->intoobject(thisObject);
 h = new variable(0); //to hold the altitude value
 h->intoobject(thisObject);
 fc = new variable(0); //to hold the amount of fuel consumption
 fc->intoobject(thisObject);
}

void Flight::compute() //the implementation of the redfined method
{
 //Save the previous state values:
 float x0_ = x_;
 float y0_ = y_;
 float chi0_ = chi_;
 float time0 = time_;

 //Establish the current flight condition,
 //and compute the resulting longitudinal acceleration (acc_):
 FlightCondition(); //delivers acc_ value

 //Set the speed rate along the path (to be numerically integrated):
 v->rate = acc_;

 //Set the horizontal speed (to be numerically integrated):
 s->rate = v->state * cos(ga_);

 //Set the altitude rate (to be numerically integrated):
 h->rate = v->state * sin(ga_);

 //Set the rate of the fuel consumption (to be numerically integrated):
 fc->rate = ff_;
 fuelmass_ = takeoff_fuelmass_ - fc->state;

 //Check the loadfactor requirement:
 nz_in = thisNavigation->get_loadfactor();
 <Here the nz_in value is checked against the maximum loadfactor value that is allowed
 for thisPlatform, which may be limited by aerodynamics or structure.
 The structural reference data is found through thisPlatform->maxloadfactor, while
 the aerodynamically related value is computed by means of thisPlatform->lift_and_drag.
 After nz_in has been adjusted, the corresponding turn radius, r_, is computed.>

 //Let thisNavigation compute positional data based on the accumulated horizontal distance:
 thisNavigation->handle_pathsegment(s->state, r_); //note the radius input!

 //Extract the positional data including the actual heading course, chi_:
 thisNavigation->get_pos_data(la_, lo_, x_, y_, chi_);

 chi_rate_ = (chi_ - chi0_) / (time_ - time0_);
 turnfactor_ = sqrt(nz_in * nz_in – cos(ga_) * cos(ga_));
 loadfactor_ = sqrt(turnfactor_ * turnfactor_ + cos(ga_) * cos(ga_));
 bankangle_ = asin(turnfactor_ / loadfactor_);
 th_ = ga_ + al_ * cos(bankangle_);
 psi_ = chi_ + al_ * sin(bankangle_);

 //Check the break condition:
 <In this prototype application of ComsimPlatform, the check for end of simulation is
 performed here. This is not in the spirit of the Comsim package (=clumsy)! This should
 be implemented in a (class) process object, for example our Pilot. This remains to be
 done.>
}

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

31

4.2.2 Class Pilot : public process
Here the discrete-oriented events are defined. The idea of our envisioned example is letting the
discrete happenings be governed by the class Pilot (as the pilot naturally has this role), but for the
time being this has not been implemented yet. The conditions for the happenings are specified in
the redefined process method happening(). To give an example of happening, the total total
simulation time has been specified in List 4 (the hold instruction). The simulation can also be
controlled by variable states. As in our example variable objects are declared in the continuous
class Flight, and in order for Pilot to have access to these, a reference to the Flight object has to be
transferred to thePilot, see how this is done in List 3 and List 4.

List 3. Pilot.h

#ifndef _PILOT_H
#define _PILOT_H

#include "comsim.h"
#include "flight.h"

class Pilot : public process
{
 private:
 Flight *thisFlight;
 public:
 Pilot(Flight *refFlight)
 {
 thisFlight = refFlight;
 }
 void happening();
};

#endif //_PILOT_H

List 4. Pilot.cpp

#include "pilot.h"

void Pilot::happening()
{
 thisFlight->simtime = tm_time();
 switch (_pos)
 {
 case 1:
/* dtMin = 0.00001; dtMax = 100;
 maxAbsError = maxRelError = 0.00001;*/
 hold(36000);
 case 2:
 default: ;
 }

 lastline: ;
}

4.2.3 Class Report : public reporter
As variable objects are defined as problem-oriented, their presentations must also be handled
accordingly. In our example, Report contains the problem-specific output, see Lists 5 and 6.

4.2.4 Module Integration
Having defined the necessary extensions to the Comsim classes: continuous, process, and
reporter, it is time to bring the components together. As in all programs, the main program is
where all things collected and controlled. Let us see how this is done in our example, using
Comsim, Platform, and Flight, please look at List 7.

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

32

List 5. report.h file

#ifndef __REPORT_H
#define __REPORT_H

#include "comsim.h"
#include "flight.h"
#include <fstream.h>
#include <iomanip.h>

class report : public reporter
{
 private:// double cyclus;
 Flight *thisFlight;
 ofstream out;
 public:
 report(Flight *refFlight, char *resultFile, reportertype r = timerep, double f = 0.1) :
reporter(r,f)
 {
 thisFlight = refFlight;// ofstream out;
 out.open(resultFile);
 out << "\ntime[s] F[kN] Frel00 V[m/s] X[km] Y[km] H[km] Psi[deg] Theta[deg]\n" ;
 }
 void compute();
};

#endif __REPORT_H

List 6. report.cpp file

#include "report.h"
#include <stdio.h>

float simtime;

void report::compute()
{
 float kN = .001;
 float km = .001;
 float thrust(float alt, float mach, float pt, float paftt, integer lim); //primarily to
be used externally
 simtime = tm_time(); //
 float maxthr00 = thisFlight->thrust(0., 0., 1., 0., 0.);
 float relthr00 = thisFlight->thr_ / maxthr00;
 out << "\n" << simtime << " " << setprecision(4) << thisFlight->thr_*kN << " "
 << relthr00 << " " << thisFlight->v->state << " " << thisFlight->x_*km << " "
 << thisFlight->y_*km << " " << thisFlight->h->state*km << " "
 << thisFlight->psi_*deg << " " << thisFlight->th_*deg << endl;
}

By following the explanations (after “//”) in List 7, the reader should be able to identify the
important elements, already presented above. Examples of such are the objects of the classes
PlatformX, Flight, Pilot, Report, and object (= theEnvironment). Also, how they, including the
variable objects, are introduced into theEnvironment, and how to specify the file transfers to or
from the different objects. However, the most important is including Comsim into the main
program, which is done with #include “comsim.h” at the beginning of main(). This file and its
implementation file are shown in List 8 and List 9, respectively.

These files contain two routines (not formally methods, as they do not belong to a class):
initcombinedsimulation() and runcombinedsimulation(). The first one creates an instace of the
class integrator, theMonitor, and sets up the same in inactive state. The second one activates
theMonitor and starts simulation. As expected the two routines are called in main(), in beginning
and at the end, respectively, see List 7.

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

33

List 7. C++ main program

#include "comsim.h"//makes available Comsim package
#include "flight.h"//makes available extension of Comsim class continuous
#include "pilot.h"//makes available extension of Comsim class process
#include "report.h"// makes available extension of Comsim class reporter

int main(int argc, char* argv[])
{
 Platform *thePlatform = new Platform; //create a Platform object
 char aircraft[20];
 cout << "\nGive name of an aircraft type: "; //specify a specific aircraft (frame and engine)
 cin >> aircraft;
 thePlatform->readPlatformData(aircraft); //read aircraft data to thePlatform

 initcombinedsimulation(); //create an integrator object (theMonitor), see #include "comsim.h"

 Flight *theFlight = new Flight(thePlatform); //create a Flight object and refer to thePlatform
 char flightprofile[20];
 cout << "\nGive name of a flight profile: "; //specify a filename to flight profile data
 cin >> flightprofile;
 theFlight->readFlightInstr(flightprofile); //read flight profile data to theFlight

 Pilot *thePilot = new Pilot(theFlight);
 _diractivate(false,thePilot);

 fixadams = true; //choose an implemented method for numerical integration, here fixaddams

 dtmin = 0.00001; dtmax = .1 //set conditions for the integration
 maxabserror = maxrelerror = 0.00001;

 object *theEnvironment = new object;
 //create an common environment where all simulation objects
 //are stored (variable, Flight, Report etc.)
 theFlight->intoobject(theEnvironment);
 theFlight->vars_intoobject(theEnvironment);
 theFlight->gotoFirstInstr();

 char resultfile[20];
 cout << "\nGive name of a result file: "; //specify a filename for storing result data
 cin >> resultfile;
 Report * theReport = new Report(theFlight, resultfile);
 //create a report object, with reference
 //to theFlight and the filename
 theReport->setfrequency(timerep, 1); //set reporter conditions
 theReport ->intoobject(theEnvironment);

 theEnvironment->start(); //
 runcombinedsimulation(); //activate theMonitor and start the simulation,
 //see #include "comsim.h"
 return 0;
}

List 8. Comsim.h

#ifndef __COMSIM_H
#define __COMSIM_H

// This file is to be included in continuous-
// and discrete-time event-driven simulations,
// i.e. combinedsimulations.
// By Johan Aronsson. Revision 1990-02-06.
// © Johan Aronsson.
// File comsim.h.

#include "integrator.h"

void initcombinedsimulation();
void runcombinedsimulation();

#endif __COMSIM_H

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

34

List 9. Comsim.cpp

// By Johan Aronsson. Revision 1990-02-06.
// © Johan Aronsson.
// File comsim.cpp.

#include "comsim.h"

void initcombinedsimulation()
{
 initsimulation();
 themonitor = new integrator;
 _diractivate(false, themonitor);
}

void runcombinedsimulation()
{
 _diractivate(true, themonitor);
 runsimulation();
}

4.3 Comsim Flow
When initiated the simulation stays within runcombinedsimulation(), i.e. in the routine
runsimulation(), until it exits itself due to pre-defined conditions in a continuous object, a process
object, or a reporter object. In our application program, this would theoretically imply any of the
following class objects: theFlight, thePilot, or theReport. Actually, we have let theFlight take care
of the intelligent program flow and the final exit condition.

The running simulation is completely controlled by Comsim methods, which may be redefined
(when possible). Most of the time will be spent in the integrator object (theMonitor), going
through each variable in the queue for their appropriate integration treatment (according to the
chosen method). This will involve a call of the method compute (redefined in Flight) for
computing the variable derivatives. Occasionally, programmer/user defined conditions are
satisfied to allow a break in order to handle a special task, such as a reporter event (from our
theReport) or a process event (from our thePilot; not implemented). The end of simulation
happens either when the flow has reached a point when there is nothing more to execute, or when
a pre-defined condition for an event has been met.

Let us return to our main program in List 7. Before initiating the simulation, there are some
necessary steps to be performed: the objects thePlatform, theFlight and theReport need have their
data and be linked to each other in one context. This context is defined by theEnvironment (object
of class object), into which these objects are introduced by means of intoobject. Although
indirectly through vars_intoobject (defined in List 2), variables are also inputted into
theEnvironment in the same way. Process objects, such as thePilot are introduced in the
simulation process by activation, i.e. through _diractivate, as shown in List 7 for thePilot (and the
the process descendent theMonitor, see List 9). Other steps before the simulation can start are:
setting time steps and error tolerances (Pilot may be a suitable place for this) and setting report
trigging characteristics. Finally theEnvironment, i.e. the variable objects (which are started
internally), must be started, before theMonitor is activated.

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

35

5 Flight Application (Information for the Software
User)
The flight application, here called Flight, has been created to be useful in the FOI inventory, and,
at the same time, be of use when validating the methods against reference data. Both viewpoints
indicated creating a package for civil applications: the needed PcP replacement and the existing
civil flight-recorder data. As the flight-recordings contained positional information and this also
was needed in FOI computation of distributed engine emissions and noise pollutions, a navigation
module was written to aid the comparisons.

Technically, Flight has already been sketched in the example listings of 4.2. Essentially the flight-
specific part of the application contains the implementations of a set of flight commands, their
switching, and the integration control. The method compute takes care of the derivatives. Table 1
and List 2 indicate the set of implemented flight commands. Almost all of these are based on the
same set of flight-mechanic equations, the difference being only which two “independent”
parameters are selected in each case, see 2.4. The working of the navigation module is described
in chapter 3.

Flight, as it stands today, is a rather complete simulation program for civil flight missions. For
military applications additional flight commands are needed, especially where maximum
performance governs the flight movement. Extending Flight for this kind of mechanics should be
easy, as much is already prepared for this. For example the Platform part of the package can
handle external loads.

The focus of this chapter will be on user aspects, such as input handling including the navigational
side.

5.1 Flight Profile and Navigation
From the user point of view, the definition of the flight profile is isolated from that of the
navigation, in most aspects. How the coupling will be done will be high-lighted later on. Despite
the isolatedness, all inputs for the flight profile and for the navigation are given in the same file.
Rows belonging to the former are marked with an ‘F’ and to the latter with an ‘N’.

5.1.1 Input for Flight Profile
Flight Profile Segments and Parameters
An overview of the available flight segments and their purposes is shown in Table 2. The
controlling parameters for these segments are presented in Table 3.

There are some concepts that need to be explained, when exploring these tables:

Variable is a Comsim entity that is being updated continuously during the simulation. Four of this
are defined: V, S, H, and FC. These hold states of velocity (along the path), horizontal distance
(from the start), altitude, and consumed fuel, respectively.

Parameter is a flight segment entity that remains constant during the execution of the actual
segment. It is user-specified. By means of the defaulting mechanism the parameter value can be
transferred to the next segment.

Default value is given to any parameter when no value is specified in a flight segment. The
mechanism varies with the segment

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

36

Table 2. Available flight segments.

Segment Explanation Notes
setstate Set initial condition for flight (position, speed,

fuel, etc)
The only place where the simulation variables V, S,
H, and FC can be set

calibrate Adjust zero-lift drag indirectly according to
known flight state

The achieved drag coefficient level will be used for
segments that follow from then on

taxi Taxi at specified speed and distance or duration Performs ground acceleration initially to the
required speed

start Accelerate on ground until lift-off speed
climb Climb and follow the minimum speed of IAS and

Mach number
Performs accelerate initially to the required speed

accelerate Accelerate in flight The segment is used indirectly by climb, cruise,
descend, and approach

cruise Cruise or cruise-climb at required condition Performs accelerate initially to the required speed
descend Descend and follow the minimum speed of IAS

and Mach number, and follow the required rate-
of-descent

Performs accelerate initially to the required speed

approach Descend at constant path angle (strictly) Performs accelerate initially to the required speed
land Retard (break) on ground

Of the segments in Table 2, two serve special purposes:

setstate is normally the first command among the flight specifications on the file, where the
purpose is initializing the flight simulation variables, to be left untouched for the rest of the flight
simulation. setstate can be used repeatedly with the same number argument, to return to the flight
state of the first occurrence of setstate-number combination. This mechanism enables studies of
alternative flight sequences. Using a different number implies several branching levels.

calibrate is used when a flight simulation is required to reproduce a known performance out of
known flight condititions. As the performance and all the conditions are pre-set, then something
else has to be changed. Here an increment to the zero-lift drag coefficient is added (invisibly to
the user), to be unchanged for the rest of the flight simulation. The increment is also valid for all
speeds, despite only one speed condition is used with calibrate.

The workings of the remaining segments do not need further explanations, apart from the
information given in Table 2 and section 2.4 (about flight-mechanics and following certain flight
conditions).

There is a one-to-one coupling between the flight segments in the file specification and the
methods in the Flight code, both having the same name, and hence the reference to Flight in Table
3. An overview of the methods with their arguments (attributes in C++ terminology) has already
been listed in List 1. The names of these are listed in column 1. Column 2 will be referred to in
the input section.

In the right-most column, the names with ‘_rq’ are used internally within Flight and represent
values set in the previous segment in the default system.

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

37

Table 3. Available segment parameters.

Parameter in
Flight method list

Parameter code
in input file

Explanation Segment application Default value

acc (ac) Acceleration when
changing speed

taxi, climb, cruise,
approach

calibrate, taxi, start,
cruise, approach: 0;
climb: 10;

al (al) Angle-of-attack [deg] taxi, start, land taxi, start, land: 0
config (cf) Configuration name

(found in .plf file)
All segments Current config_rq

cllim, cl (cl) Lift coefficient to
determine IAS, for cruise:
cruise-climb parameter

start, climb, accelerate,
cruise, descend,
approach

4

dist (di) Max. distance [m] for
segment, for setstate:
startpoint in flight profile

setstate, taxi,
accelerate, cruise

40000000

dur (du) Max. duration [s] for
segment

taxi, climb, accelerate,
cruise, descend

3600

fc (fc) Initial state of consumed
fuel, in [kg] or fraction of
internal capacity (value in
.plf file)

setstate 0

takeoff_fuelmass (fu) Tanked fuel, in [kg] or
fraction of internal
capacity (value in .plf file)

calibrate, setstate Max. internal
capacity

ga (ga) Elevation angle [deg] of
path

taxi, start, climb,
accelerate, cruise,
approach, land

calibrate, taxi, start,
accelerate, land: 0;
climb, approach:
current ga_;

hrlim (hr) Min. rate-of-climb [m/s];
for climb: end of segment
when reached, for
descend: hold the
reached neg. value

climb, descend climb: 0.5;
descend, approach:
-25

alt, h, hlim (hs) (Final) altitude state [m] calibrate, setstate,
climb, descend,
approach

climb: 1000;
descend, approach:
0;

vi, ias, iaslim (is) (Final) IAS state [m/s] calibrate, setstate, taxi,
start, climb, accelerate,
cruise, descend,
approach, land

Start: 1.2*stall
speed,
land: 0; else current
ias_rq

mach, machlim (ma) (Final) Mach number
state

calibrate, setstate,
climb, accelerate,
cruise, descend,
approach

Current mach_rq

mu (mu) Friction coefficient taxi, start, land taxi, start: 0.02;
land: 0.4

paftt (pa) Part thrust (<=1) of max.
afterburning state

calibrate, start, climb,
accelerate, cruise

Current paftt_rq

pt (pt) Part thrust (<=1) of max.
non-afterburning state

calibrate, taxi, start,
climb, accelerate,
cruise, descend, land

Current pt_rq

v, vel (vs) (Final) absolute speed
[m/s]

calibrate, setstate, land land: 0

no (no) Setstate ID no; defined at
1st occurrence, use as
return reference at later
ocurrences

setstate 0

Input Format
Flight segment commands are given in the order they are to be exequted, one command per row in
the file. The format for the command follows the pattern:

F <segment> (<par1>) <val1> (<par2>) <val2> (<par3>) <val3> … //comment

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

38

where <segment> is a name as above; par1, par2, par3 … are two-letter codes according to Table
5.2; val1, val2, alv3 … are the corresponding values (numeric except for the textual ‘(cf)’);
comment is any string cannot be interpreted as a parameter code.

The parameter codes with the corresponding value can be placed in any order.

5.1.2 Input for Navigation
The navigation module in the flight application uses a pre-defined map path, which divided into
consequtive lines and arcs. The input consists in specifying the corner points and radii of a
polygon train, which are used by the module to create the necessary lines and arcs. Figure 6
illustrates this.

Figure 6. Alternative ways of specifying the navigation path, consisting of straight lines and
circular arcs. The path starts at ‘1’. The parameter codes within parenthesis are explained in the
report text.

In the figure four corner points are shown, where the coordinates of each can be specified in four
alternative ways in the input file. The two-letter codes within parentheses are used in the file
specification.

Absolute Coordinates
It is possible to use absolute coordinates (latitudes and longitudes) only, which is necessary for
long (global) distances and also useful for short distances. Then all corner points are specified in
the same format, one corner per row in the file, where dd mm ns/ew stand for degrees, minutes
and one of the letters n, s, e, and w for north, south, east, and west, respectively, and r is a radius
value [m]:

N (la) dd mm ns (lo) dd mm ew (rc) r //comment about the location

When specifying a location from which a global flight is to be executed, it is of interest that the
path will be the shortest possible, i.e. the great-circle path be followd. This is done by giving the
mode parameter (md) the value g (for global/great-circle):

N (md) g (la) dd mm ns (lo) dd mm ew (rc) r //comment about the location

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

39

Local Coordinates
It is also possible to use local coordinates (X and Y with an implicitly defined origin) only, which
is only useful for short distances. For long distances these coordinates become meaningless due to
the curvature of Earth. Hereafter all corner points are specified in the same format, each per row
in the file, where x, y, and r are metric values [m]:

N (xc) x (yc) y (rc) r //comment about the location

Alternatively a corner point can be specified relatively to the previous corner point, either as
increments in X- and Y-directions [m], or a distance increment [m] and a heading direction
[degrees]:

N (dx) dx (dy) dy (rc) r // comment about the location

or

N (dd) dd (hd) hd (rc) r // comment about the location

Mix of Absolute and Local Coordinates
Finally, it is possible to mix absolute coordinates with local coordinates, even with several local
systems. Then it is mandatory to couple each local system to a latitude – longitude pair, which is
done by specifying both absolute and local coordinates on the same row as:

N (la) dd mm ns (lo) dd mm ew N (xc) x (yc) y (rc) r //comment about the location

After such a row either absolute or local coordinates can be specified. Internally in the navigation
module, if absolute coordinates are specified then the local ones will be computed, or vice versa.

Finishing Navigation
The last navigational location, regardless of how it is specified, need not have the radius (rc)
specification. Instead an exit command (ex) must be given:

N … (ex)

5.1.3 Interaction between Flight Profile and Navigation
Up to now the the navigation (5.1.2) has been treated as completely independent of the flight
profile (5.1.1). The navigation path is traversed while performing the flight simulation. As the
paths of the navigation and the flight profile have implicit lengths, there is a risk for mismatching:
the flight may end before the navigation is finished, or vice versa. Hence, there is a need for
synchronizing.

Distance Synchronization
The main synchronizing mechanism is having the flight profile (F) and navigation (N) commands
in the same file, and let an occurred navigational condition trigger a pre-mature end of a flight
segment, in order to start the next following flight segment. Presently, only the basically
horizontal flight segments taxi and cruise allow for pre-mature breaks. Thus the following will
enable the interaction:
F cruise … //(di) not to be specified here
N (la) dd mm ns (lo) dd mm ew (rc) r (do) dist_offset //provided cruise has been started

Not introduced before in 5.1.2 is the distance offset (do), which is an offset [m] the user can
specify relative to the location on the row, along the “straight” path from the previous given

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

40

location. By “straight” is meant literally straight (as handled in a local system) or along the great-
circle path (as handled in the absolute system, when global is specified). The interaction
mechanism is triggered when the specified location plus the offset (a negative value) is reached,
which means that the on-going cruise will be broken. Hereafter the the navigation will be
continued to the location (regardless of the offset), while executing the next (or more) segment(s).

Load Factor Interaction
Another type of interaction is through the aircraft load factor. Whenever the aircraft follows an arc
of the navigation path, the flight speed together with the turn radius of the path cause an increase
of the load factor, when compared to a straight flight. This increase of course implies a drag rise.
This handling is automatic without the user action.

There is, however, a situation when the user needs to be aware of the load factor state. This is
when the factor approaches the maximum level that the aircraft is allowed to perform due to
aerodynamic, structural or pilot-related limit. If that happens then the specified radius is too small.
The consequence is that the flight path cannot be followed. To circumvent this, instead of giving a
radius (rc) value, a load factor (lf) can be specified:

N … (lf) nn ..

This interaction is performed just prior to the entry of the arc associated with the assigned load
factor. It is only then the state information about the altitude and speed is available, on which to
base a computatiom of loadfactor and the corresponding ard radius.

5.1.4 Example
The final example that is being described here, to illustrate the usage of the flight and navigation
commands, is input for the validation case, where the simulation results will be discussed in
chapter 6. As this input is complicated, a simpler example will be introduced first, using the same
aircraft modelling.

Input File Structure
The flight application using the Comsim-Platform package requires the following input files:

1. <aircraft>.aer_dat
2. <aircraft>.eng_dat
3. <aircraft>.plf
4. <flight_navigation>.fn

The first two files, which are inputs for the Platform part of the package, contain the aerodynamic
coefficient basis and the engine tables with thrusts and fuel rates. The format for the files are
described in Hasselrot et al. (1987). No example of aircraft data, i.e. .aer_dat and .eng_dat, will be
presented here.

The third file serves as a master file, from which the .aer_dat and .eng_dat files are reached. Here
the basic weights are given, the configurations are defined, and finally, the static sea-level thrust
and the reference area for aerodynamics are specified. The last two items imply scaling, as these
are also given in the .eng_dat and .aer_dat files. It is to be described in this report, later on while
going through the example.

The fourth file is the true simulation file, as it is unique for each flight simulation. The input rules
for the flight profile and the navigation are described in 5.1.2.

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

41

Example of Platform File
List 10 shows an example of a platform file (.plf), in which the basic data (.aer_dat and .eng_dat)
for the MD90-30 are referred. The values in this file are complementary data, needed for the
simulation. They are essentially self-explanatory, but the configuration handling is worth
commenting. The .aer_dat file contains the configuration building blocks and the built
configurations, which are used to form the actual named configurations, see configlist and
confignolist. The names are referred to in all simulation files that use this aircraft as basis. The
values at addmasslist are the used passenger payload [kg].

List 10. Contents of a Platform file (.plf): data for the McDonnell Douglas MD90-30

//file: md90-30.plf
//date: 2005-12-20
//basic aircraft and engine data (only first name; data must have extensions .aer_dat
and .eng_dat)
basicaircraft: md90-30a
wingarea: 113.0 //default found in .aer_dat file: 113.0 m2; other value implies
 //using this as new reference (=scaling the size)
maxbasicthrust: 222192. //default: determined by static sea-level data and engine
scale.
maxtakeoffmass: 70760. //default found in .aer_dat file
emptyopmass: 39916. //empty operating mass
maxfuelmass: 16964. //default found in .aer_dat file
maxpayload: 13880. //max payload
maxloadfactor: 1.5 //default: 7.
configlist: clean mid-flaps mid-flaps+gear max-flaps max-flaps+gear
//the names in this list are defined here; these are referred to in the flight
instruction file
confignolist: 1 4 5 8 7
//configs are defined in the last lines of .aer_dat file; a config thus may be composed
//by several elements defined earlier in the file
addmasslist: 9284. 9284. 9284. 9284. 9284.
//the config system is used for flap settings; hence weights are used for payload

Example of Flight and Navigation File
To illustrate how a typical flight–navigation file would look like, List 11 is shown. The flight
profile and navigation aspects are marked with F and N, respectively. During the preparation of
this file, these aspects are viewed separately at first. Afterwards some N rows are moved among
suitable F rows to satisfy synchronization needs.

As shown there are traces of all the N rows having been collected. Later on a couple of the last N
rows were moved, in order to satisfy the need of starting the descent, here simplified as an
approach, early enough to be in Copenhagen when the descent is finished. Through a couple of
experiments (the flight software helps with information) it was found that the descent of -4 degree
slope had to be started 85000 m before reaching the beacon Fyr Kemax. The row containing this
beacon was therefore moved to a position immediately after the F row containing cruise, to enable
the break interaction, see 5.1.3. Of course the remaining N rows must also be moved (the place is
uncritical).

The flight profile, described by the F rows, is relatively easy to follow, as both the segments (taxi,
start, etc.) and their parameters (names in parenthesis and values) are described in 5.1.1. Some
parameters have values transported from the previous F row, and therefore need not be explicitly
specified. This is the effect of the defaulting system. The default values in the different situations
are presented in Table 3. For example, no (is) is specified for start, which implies 1.2 times the
stalling speed is used. Defaulting from the previous segments are used in the example for (cf), (is),
and (ma). Finally to note, cruise has no (di) specified, as would seem logical. This is intentional,
because it is to be broken through interaction by the follwing N row.

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

42

List 11. Contents of a Flight and Navigation file (.fn): data for a Stockholm – Copenhagen flight

N (la) 59 39 n (lo) 17 55 e (dd) 0 //Stockholm/Arlanda
N (la) 59 12 n (lo) 17 01 e (rc) 5000 //beacon Fyr Dunker
N (la) 58 18 n (lo) 15 43 e (rc) 5000 //beacon Fyr Vassen
N (la) 57 33 n (lo) 14 44 e (rc) 5000 //beacon Fyr Shilling
F setstate (fu) 7800 (hs) 0 (is) 0
F taxi (cf) mid-flaps+gear (pt) .2 (is) 10 (du) 500
F start (pt) 1
F climb (hs) 500 (is) 80
F climb (cf) mid-flaps (pt) .95 (hs) 1500
F climb (cf) clean (pt) .95 (hs) 10668 (is) 160 (ma) .77
F cruise //no distance value set, cruise will stop at 85000 m before Fyr Kemax
N (la) 56 08 n (lo) 13 13 e (rc) 5000 (do) -85000 //beacon Fyr Kemax
F approach (ga) -4 (hs) 1500 (is) 130
F approach (cf) mid-flaps (ga) -4 (hs) 500 (is) 100
F approach (cf) max-flaps+gear (ga) -4 (hs) 0 (is) 69
F land (pt) 0 (is) 10
F taxi (pt) .2 (is) 10 (di) 2000
N (la) 55 37 n (lo) 12 39 e (rc) 5000 (ex) //Copenhagen/Kastrup

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

43

6 Validation (Information for the Generalist)
Validation in our context is stating the soundness of the various aspects of the modelling.

The idea of creating the Comsim-Platform package, to be used in flight applications, was re-using
well-tried modules. The main constituents, as the package name indicates, are simulation package
and the aircraft management. This basis can be assumed to be validated. The foundation for the
platform side is specified aerodynamic and engine characteristics, and this means that the
performance of the platform model depends on the quality of the input.

To be useful for flight application, the Comsim-Platform package has been provided with newly
developed modules: a platform extension with a set of flight-mechanic relations, and a navigation
module with user-defined map paths. To test this and to be of practical usage, a flight
management program has been written. The functionality of the flight-mechanics in the different
flight profile segments and the management system is an area, where validation is needed.

The validation idea is using a flight recorder data from an actual flight as a reference, and select a
case having an aircraft with well described model data to enable accurate flight simulation. Thus
the aim is to compare the results, with focus on the flight performance. The Scandinavian flight
operator SAS has kindly provided us with a number of flight-recordings, among which we have
chosen one: a Stockholm – Copenhagen flight with the aircraft MD90-30 and V2525-D5 engines.

6.1 Modelled Data
As the validation aims at verifying flight data and for it to be credible, the methods for creating
the underlying data must be presented. These concern the aerodynamics for the aircraft, the engine
thrust and fuel rate during operation, and weight data for the actual referred flight. Only then it is
meaningful to compare the conditions and results of the flight itself.

6.1.1 Aerodynamic Data
Aerodynamic data for the airframe of the MD90-30 were not available at FOI. However, there
existed manufacturers’ data for a related aircraft: DC-9-40. Externally, the wing geometry of the
two aircraft is about the only difference. The MD90-30 has almost the same fuselage size as the
older aircraft, but the wing has been increased (=higher aspect ratio). Essentially the adjustments
consist in the following:

1. The zero-lift drag of the DC9 has been adjusted with regard to the overall wetted area.
2. The parabola factor (K, see 2.2.1) of the DC9 has been inversely proportioned with respect

to the aspect ratio.

6.1.2 Engine Data
FOI did not have access to real thrust and fuelflow characteristics for the V2525-D5. In
connection with some environment-related work, considerable effort had been laid down at FOI in
accurately computing data, using the commercial software GasTurb [Kurzke, 1988], for a related
engine: the V2527-A5. In the ICAO databank [ICAO, 1995] for engine emissions, these two
engine versions are presented with identical thrust and fuelflow properties. Thus we accepted all
data that were created for the V2527-A5 to be valid for the V2525-D5.

6.1.3 Miscellaneous Data
The third main data category for the aircraft is the mass components that sum up into the total
flight weight. This varies with every flight, which is due to the passenger and fuel loads. Fuel is
usually tanked for the flight in mind and allowing for reserves. From simulation point of view it is
only the initial total aircraft weight that matters. In the SAS flight-recordings no aircraft mass is
specified. This is noted in other loggings. For the chosen Stockholm – Copengagen flight, FOI

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

44

remembered making an extract of the logging for the actual flight, where the take-off mass was
noted: 57000 kg.

Other data that have a potential of influencing the performance results are when configuration
changes, i.e. the retraction/deployment of the high-lift system and the landing gear, are performed.
The effects are drag changes. For the chosen flight-recording there was no information on this.
Recordings of other flights with the actual aircraft type did have this. Thus approximate times for
for the configuration changes could be had. In any case the errors in applying the different drag
levels at slightly wrong times are very small (a few seconds), when viewing the fuel consumption
on flight basis.

Figure 7. Check of Flight Recorder Data.

0 100 200 300 400 500 600 700
Distance [km]

0

10000

20000

30000

40000

A
lti

tu
de

 [f
t]

Radar altitude
Pressure altitude

Sth Cph

0 100 200 300 400 500 600 700
Distance [km]

0
20
40
60
80

100
120
140
160
180
200
220
240

S
pe

ed
 [m

/s
]

Ground speed
True air speed

Sth Cph

12 13 14 15 16 17 18 19
Longitude [deg]

55

56

57

58

59

60

La
tit

ud
e

[d
eg

]

(c) "Recorded" geographical path

Sth

Cph

(a) Altitude recordings (b) Speed recordings

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

45

6.1.4 Flight Data
The selected flight recorder data, used for the validation process, consist of time-recorded (every
fouth second) data for many parameters, of which only a few have been used in the comparisons.
The reproduction of the complicated flight procedures has been performed largely by observing
how the thrust (or fuel) and the speed change with the altitude specifying the corresponding
commands for the simulation. In descents, path angles and descent rates have been studied
alternately. The final reproduced flight, from which the comparison data are shown in this
chapter, has been created with the flight/navigation file that is reproduced in List 12. This is a
considerably more complicated version of List 11, which was explained in 5.1.4.

List 12. Contents of a Flight and Navigation file (.fn): data for a Stockholm – Copenhagen flight

F setstate (cf) mid-flaps+gear (fu) 7800 (hs) 0 (is) 0
N (la) 59 39 n (lo) 17 55 e (xc) 0 (yc) 0 (dd) 0
N (dd) 35 (hd) 267 (rc) 10
N (dd) 450 (hd) 356 (rc) 10
N (dd) 241 (hd) 20 (rc) 10
N (dd) 255 (hd) 40 (rc) 10 //runway end
N (dd) 470 (hd) 73 (rc) 3000
N (dd) 5600 (hd) 79 (rc) 3000
N (dd) 5200 (hd) 180 (rc) 3000
N (la) 59 9 n (lo) 17 01 e (rc) 5000 //near beacon Fyr Dunker
N (la) 58 14 n (lo) 15 18 e (rc) 5000 //near beacon Fyr Vassen
N (la) 56 57 n (lo) 13 30 e (rc) 5000
N (la) 56 00 n (lo) 12 49 e (rc) 1000 //near beacon Fyr Kemax
N (dd) 11000 (hd) 90 (rc) 1000
N (dd) 15000 (hd) 0 (rc) 1000
N (dd) 11000 (hd) 270 (rc) 1000
N (dd) 15000 (hd) 180 (rc) 1000
N (la) 55 46 n (lo) 13 00 e (rc) 1000 //exact
N (la) 55 41 n (lo) 13 12 e (rc) 1000 //exact
N (la) 55 28 n (lo) 12 52 e (rc) 1000 //exact
N (la) 55 29 n (lo) 12 52 e (rc) 1000 //exact
N (dd) 10000 (hd) 100 (rc) 1000
F taxi (cf) mid-flaps+gear (pt) .2 (is) .9 (di) 1010
F start (pt) 1 //(ma) .25 //(is) 1081
F climb (hs) 517 (is) 100 (ma) .25
F climb (cf) mid-flaps (pt) .99 (hs) 850
F climb (pt) .98 (hs) 1300 (is) 125 (ma) 1
F climb (pt) .97 (hs) 1422 (is) 127
F climb (cf) clean (pt) .96 (hs) 3300 (is) 130
F climb (pt) .95 (hs) 3700 (is) 160 (ma) .77
F climb (pt) .93 (hs) 4200 (is) 160 (ma) .77
F climb (pt) .91 (hs) 5000 (is) 160 (ma) .77
F climb (pt) .89 (hs) 6000 (is) 160 (ma) .77
F climb (pt) .87 (hs) 7000 (is) 160 (ma) .77
F climb (pt) .86 (hs) 8750 (is) 160 (ma) .77
F climb (pt) .84 (hs) 10668 (is) 160 (ma) .765
F cruise (pt) 1 (ma) .765 (di) 164350
F cruise (pt) 1 (ma) .741 (di) 54900 //58650
F descend (pt) 0 (hs) 9750 (is) 135.5 (hr) -11 (ma) .753
F descend (pt) 0 (hs) 9500 (is) 135.5 (hr) -11
F descend (pt) 0 (hs) 8400 (is) 135.5 (hr) -11
F descend (pt) 0 (hs) 8100 (is) 122.5 (hr) -6
F descend (pt) 0 (hs) 6100 (is) 122.5 (hr) -8
F cruise (pt) .3 (is) 122.5 (di) 26000
F descend (pt) 0 (hs) 4600 (is) 123 (hr) -5
F descend (pt) 0 (hs) 3600 (is) 123 (hr) -7
F descend (pt) 0 (hs) 2650 (is) 120 (hr) -7
F descend (pt) 0 (hs) 2300 (is) 120 (hr) -9
F descend (cf) mid-flaps (pt) 0 (hs) 1600 (is) 120 (hr) -9
F descend (cf) mid-flaps (pt) 0 (hs) 1400 (is) 120 (hr) -7
F descend (pt) 0 (hs) 1000 (is) 120 (hr) -4
F approach (ga) -3.5 (hs) 750 (is) 103
F approach (ga) -3.2675 (hs) 400 (is) 82
F approach (cf) max-flaps+gear (ga) -3.2675 (hs) 0 (is) 69
F land (pt) 0 (is) 10
F taxi (pt) .2 (is) 10 (di) 3000

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

46

Checking Flight Conditions in Recordings
Reproducing a recorded flight through a computer simulation requires that all the flight conditions
are copied, if a meaningful comparison is to be performed. First of all, the flight is subjected to
the current meteorogical properties. The use of the Standard Atmosphere in the simulation has to
be checked, and also the expected headwind conditions.

In the chosen flight recorder data, two kinds of altitude presentations were available, which enable
us to judge the correctness of using the Standard Atmosphere for the modelling, without or with
temperature adjustment. The first is the radar altitude, which based on geometric measurement.
The other is pressure altitude, which is a translation of static pressure into metric altitude, using
the altitude—pressure relationship of the Standard Atmosphere. If the two kinds of altitude values
co-incide, then it is proper to use Standard Atmosphere. If not, a temperature adjustment is
applied so that the pressure—altitude characteristics of the flight are reproduced. Figure 7(a)
shows that the former is valid, i.e. no temperature correction is needed.

The current headwind condition is easily established by taking the difference between the true air
speed (TAS) and the ground speed. None of these is is directly accessible from the recordings.
TAS is computed by combining Mach number recording and the sound speed given by the
Standard Atmosphere. The ground speed is derived by using the path (metric coordinates) and
time recordings. Figure 7(b) reveals that a head wind is encountered. Another proof of the current
headwind is the peak at around 550 km flown distance, which is an effect of a performed waiting
loop, see Figure 7(c).

Reproducing Flight Conditions in Simulations
Flight is essentially governed by performance of the engines and aircraft aerodynamics. The thrust
is usually kept high at takeoff and climb. However, there may be reasons for holding it lower:
noise abatement, stress relax (due to lower burning temperature), etc. Aerodynamically, low speed
may require flap deployment (safety), or the speed may be chosen to reach an optimum flight
condition (lower fuel comsumption). Therefore it is important to study the thrust levels and speed
states, in order to reproduce these sequences in the flight simulation.

How can we best present the reproduction? Due to the identified headwind condition, which can
not be simulated (in the present state of the Flight program, based on the Comsim-Platform
package), the distance cannot be used as an independent parameter. We need a parameter that is
not influenced by the headwind. The altitude fulfills this role almost perfectly, as we will use only
quantities that are derived from pressure measurings, such as the calibrated air speed (CAS) and
the Mach number.

The speed is readily available in the flight recording, as CAS and as Mach number, see Figures
8(a) and 8(b). The thrust has to be computed from recorded fuel flow states, as the former is not
presented. For this the thrust—fuel flow characteristics of the estimated engine data are used. We
are happy about the correctness of using the Standard Atmosphere for the actual simulation,
because the engine data have also been computed under this assumption. Thus the result of the
thrust adaption is presented as fuel flow comparisons, see Figure 8(c).

The thrust affects the climb performance, which may be viewed as rate of climb (r.o.c.), see
Figure 8(d). Negative r.o.c. is to be interpreted as rate of descent (r.o.d.). It is apparent that the
climb is well reproduced. The exception is visible within altitudes 8—9.5 km. Here the
encountered headwind leads to inertial effect of gained altitude. The equilibrium is again
established above this region.

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

47

The descent adaption has been focused on reproducing the r.o.d., which means the thrust level is
an answer. It is possible to specify an r.o.d. value (=negative r.o.c.) in the software to control the
descent. It should be noted that the actual flap settings in take-off and landing procedures for this
flight are not known. Such were available, however, for other similar flights. We have assumed a
mid-flaps setting at the altitude of 2.3 km during the landing, and maximum setting and gear down
from 0.4 km. For the descent the resulting trust (=fuel flow) levels are well reproduced, see Figure
8(c).

0 20 40 60 80 100 120 140 160
CAS [m/s]

0
1
2
3
4
5
6
7
8
9

10
11

A
lti

tu
de

 [k
m

]

Flight recording
Flight simulation

(a) Calibrated Air Speed versus altitude

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Mach

0
1
2
3
4
5
6
7
8
9

10
11

A
lti

tu
de

 [k
m

]

(b) Mach number versus altitude

0.0 0.4 0.8 1.2 1.6 2.0 2.4
Fuel flow [kg/s]

0
1
2
3
4
5
6
7
8
9

10
11

A
lti

tu
de

 [k
m

]

-10 0 10 20
r.o.c. [m/s]

0
1
2
3
4
5
6
7
8
9

10
11

A
lti

tu
de

 [k
m

]

(c) Fuel flow versus altitude (d) Rate of climb versus altitude

Figure 8. Reproduction of flight conditions.

Comparing Flight Performance
Having established the controlling flight parameters, i.e. the flap settings, the thrust and speed
sequences, it is time to compare the path characteristics. Although neither the flight distance nor
the flight time is fully suitable for the comparison of the recorded and similated flights, studying
the effects of these leads to interesting observations. Viewing the distance is natural, since the
flight is between two points, whereas the time is better for headwind independent studies.

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

48

igures 9(a) and 9(c) (left vertical) show the fuel flow level (corresponding to a thrust) and the

he good agreement between the fuel flows in cruise can be taken as a sign of good estimation of

under the assumption of correctly estimated thrust—fuel flow characteristics.

F
numerically integrated altitude as a function of the covered flight distance. Here it is evident that
the recorded flight has a climb gain due to the headwind, and that the cruise starts earlier. Figures
9(b) and 9(d) (right vertical) show similar graphs, but now as a function of the accumulated flight
time. Here it is very clear, when viewing only states relative to the free air without regard to the
headwind effect, that the climb and the cruise (as long the smallest of the two cases lasts) are very
much in agreement. It should be noted that the length of the simulated cruise has been adjusted, in
order to have the descent parts of the recorded and simulated flights to match. The simulated end
of cruise thus occurs earlier as a consequence.

Figure 9. Comparison of engine thrusts (=proportional to fuel flows) and flight paths.

T
the aerodynamic drag. The reason is that during the cruise the flight speed is constant, which
means that the drag level is almost in steady-state (as the weight decrease due to the fuel
consumption is negligible) and thus also the thrust level (balancing the drag). This of course is

0 100 200 300 400 500 600 700
Distance [km]

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

Fu
el

 fl
ow

 [k
g/

s]

Flight recording
Flight simulation

(a) Fuel flow versus flight distance

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

Fu
el

 fl
ow

 [k
g/

s]

0 1000 2000 3000 4000 5000
Time [s]

(b) Fuel flow versus flight time

(c) Altitude versus flight distance (d) Altitude versus flight time

0
1
2
3
4
5
6
7
8
9

10
11

A
lti

tu
de

 [k
m

]

0
1
2
3
4
5
6
7
8
9

10
11

A
lti

tu
de

 [k
m

]

0 100 200 300 400 500 600 700
Distance [km]

0 1000 2000 3000 4000 5000
Time [s]

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

49

 accumulated fuel
onsumption, see Figures 10(a) and 10(b). As with the time-history of the climb and cruise, we

 program (newly created
nd described in this report) regarding the management of the navigational path. Figure 10(c)

The relative merits of the path characteristics are also reflected in the
c
have extreme agreement between the corresponding accumulated fuel consumption in the same
phases. The first part in Figure 10(b) is the effect of the taxi-out phase, where the assumption of
the rolling friction coefficient of 0.02 seems to be adequate (defaulted to this value in the flight
specification file; another can be given). The difference in the consumed fuel versus the covered
distance starts diverging when the recorded flight ancounters the headwind at about 8 km, by then
the distance is about 100 km. From here on the diverging continues until about the approach
phase. This is as it should be.

(a) Consumed fuel versus

Figure 10. Comparison of integrated fuel consumptions and positions.

Finally, it is of interest to show the capability of the Comsim-Platform
a
shows the comparisons between recorded and simulated map paths, using latitude and longitude
coordinates, where the former were translated from metric coordinates in a post-process.

0 100 200 300 400 500 600 700
Distance [km]

0

500

1000

1500

2000

2500

3000

C
on

su
m

ed
 fu

el
 [k

g]

Flight recording
Flight simulation

flight distance

0

500

1000

1500

2000

2500

3000

C
on

su
m

ed
 fu

el
 [k

g]

0 1000 2000 3000 4000 5000
Time [s]

(b) Consumed fuel versus flight time

(c) Geographical path

55

56

57

58

59

60

La
tit

ud
e

[d
eg

]

12 13 14 15 16 17 18 19
Longitude [deg]

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

50

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

51

7 Conclusions
A new flight simulation package, named Comsim-Platform and written in the program language
C++, has been created to replace the LISP-based PcP (being in use for environmental flight
studies at FOI). It re-uses the aircraft model, Platform, of the latter, and it has been provided with
a new flight management system, including navigation. All numerical integrations and event
notices are handled by the existing C++ based simulation package Comsim.

The Comsim-Platform package is intended to act as a basis for various types of flight simulations.
The Flight/Navigation application that has been created for testing the functionality of Comsim,
with special views on flight/navigation management, has proved its capability. The usage and
functionality of Comsim-Platform and Flight/Navigation have been documented.

The ease of reproducing the the detailed procedures of recorded flights has been demonstrated.
This has been used in the validation of the capability of the Comsim-Platform package. Using
accurate data for the airframe and its engine(s) of a studied flight, the soundness of the flight-
mechanic basis of the extended Platform model has been proved and documented.

The final conclusion is that the Comsim-Platform is ready to to be used, with existing version of
Flight/Navigation, or with some type of modification/utilization of the latter modules.

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

52

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

53

References
Aronsson, J. (1991): “Comsim – a Module for Combined Discrete and Continuous Simulation in
C++”, Thesis for a Master’s Degree in Computer Engineering at Lund Institute of Technology
(1991).

Feldman S. I., Gay D. M., Maimone M. W., Schryer N. L. (1995): “A Fortran-to C Converter”,
Computing Science Technical Report No. 149, AT&T Bell Laboratories, Murray Hill, NJ 07974
(1995).

Hasselrot, A., Marklund A. (1987): “FFA-APP – a Computer Program for Estimating Flight
Performance of Military Aircraft”, FFA TN 1986-44 (1987).

Heldsgaun, K. (1978-9): “Combinedsimulation”, reports (in Danish): “Introduktion” (Rapport nr
4, 1978), “Brugerhåndbog” (Rapport nr 5, 1978), and “Dokumentation” (Rapport nr 6, 1979). Dep
of Computer Science, Roskilde University Center.

ICAO (1954): “Manual of the ICAO Standard Atmosphere”, ICAO Document 7488 (1954).

ICAO (1995): “ICAO Engine Exhaust Databank”, first edition (1995), International Civil
Aviation Organization.

Kurzke, J. (1988): “User’s Manual – GasTurb 8.0 for Windows, a Program to Calculate Design
and Off-Design Performance of Gas Turbines”, www.gasturb.de.

Månsson, L. (1980): “CONDIS, en vidareutveckling av simuleringspaketet Combinedsimulation”
(“a Further Development of the Simulation Package Combinesimulation”; in Swedish), FOA
Rapport C 20357-E3 (1980).

Righard, T (1981): “NYCOND, en omarbetning av CONDIS” (”a Revision of CONDIS”), FOA
Rapport C 20419-E3 (1981).

SAS (1999): Flight Recorder Data for a selection of flights and aircraft operated by SAS,
confidential data (1999).

Stehlin, P. (1999): “PcP: The Programmable Commercial Pilot”, FFA TN 1999-02.

Stinton, D. (1966): “The Anatomy of the Aeroplane”, G.T. Foulis & Co Ltd 1966, London.

US (1976): “U.S. Standard Atmosphere”, 1976, U.S. Government Printing Office, Washington,
D.C.

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

54

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

55

Appendix A. General Instructions on Creating C++
Classes from FORTRAN Codes

by Anders Hasselrot, FOI, September 2005

Translating FORTRAN to C/C++
Feldman et al. (1995) gives the basic information on the f2c translation. Using "f2c -C++
<FORTRAN code>", the proper calling format of functions/routines for C++ applications are
created. In principle the generated code is directly ready to be compiled. It is also convenient to
give the switch -c in order to include extractions of the original FORTRAN codes as comments.

Conditioning the FORTRAN code for C++ classes
If the intention is translating the code into C++ classes, it may be convenient to perform some
minor source editings. The ‘common’ blocks will need careful treatment. All unlabelled blocks
should be given names, as this will facilitate placing into classes. Also, let all the ‘common’
blocks with the same label have the same variable names, which apply all occurrences in the code,
i.e. in all subroutines and functions.

Creating C++ classes
Some editing of the f2c-generated code is required, if class structures are to be generated. The
generated code assumes that immediate instantiation is performed, i.e. that the program can be
used. The class definition is a code that awaits the instantiation, i.e. a class object must be created
before the code can be used.

The class is structured with "attributes" (constants and variables) and "methods" (functions and
subroutines). Both "attributes" and "methods" can have different access levels: 'private' (default),
'protected' and 'public'. Of these 'public' is the most important. Under the 'public:' specification all
"methods" that may be of interest to be run separately are placed here. Regarding the "attributes",
almost all are to be kept under 'private:'. If some "attributes" need to be extracted, do this through
'public' "methods".

The C++ programming technique is based on separaion of code into .h and .cpp files. The former
type is used for the basic 'class' definitions within which the "attributes" are placed according to
their access level. In addition, "prototypes" (function/subroutine name with arguments) of the
"methods", also according to their access level, are put here. In the .cpp file the full "method"
definitions, taken directly from the f2c generated code, are placed, where however the '< class
name>::' is inserted just berore each "method" name, in order to qualify the "method" for the class
in view.

FORTRAN 'common' statements are translated into structs, with names based on the FORTRAN
labels. The ‘struct’ concept is very similar to class concept in C++ (as opposed to C ‘structs’):
they can have "attributes" and "methods", which have the same access possibilities as the class
ditto. However the default access level is 'public'. However, structs are are mostly used for data
only applications. Structs in classes cannot be initialized in the way it may be done in C and
somple C++ applications. The only way is assigning each variable explicitly, i.e. using the '='
operator. This has to be reviewed in the generated f2c code.

During the code generation, constants that f2c detects are treated as static variables. These may be
placed outside of the class scope. Problematic static variables are those that are created by local
(defined in a function/subroutine) and DATA-set variables. These are static and initialized. Being
static, such a variable cannot be created in several instances, i.e. two (or more) class objects will
share the same static variable. The DATA-statement (as translated from FORTRAN) will take

 SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1846--SE

56

tic
e>

 '<parameter>=<value>').

' to avoid name mangling during linking. This applies
es. However, there are other functions that are created

ecific FORTRAN characteristics, such as open, read and write

effect during the first object creation, but not in the second. To sum up: initializing a local sta
variable must be done through assinging it the initial value (not :'static <typ
<parameter>=<value>', but: 'static <type> <parameter>' and

The f2c automatically generates 'extern "C"

 the explicitly defined functions/subroutinto
during the translation process of sp
statements. These are not declared with 'extern "C"' (which they should), and hence causing name
mangling problems. There are also other name referencing problems that the f2c code generates:
in functions/subroutines where calls of other routines in the package are performed, for which f2c
has defined extern declarations. These are not needed and should be commented out.

Reference
Feldman S. I., Gay D. M., Maimone M. W., Schryer N. L. (1995): “A Fortran-to C Converter”,
Computing Science Technical Report No. 149, AT&T Bell Laboratories, Murray Hill, NJ 07974
(1995).

	 Nomenclature
	Notations
	 Abbreviations
	 1 Introduction
	1.1 Purpose
	1.2 Scope
	1.3 Background
	1.4 Summary of Capability of Comsim-Platform-Flight

	 2 The Platform Model
	2.1 Philosophy and Definitions
	2.2 The Aircraft
	2.2.1 Aerodynamics
	2.2.2 Engine Characteristics
	2.2.3 Other Aircraft Characteristics

	2.3 The Atmosphere
	2.4 Flight-Mechanics

	 3 The Navigation Module
	3.1 Path Modelling

	 4 The Simulation Package (Information for the Software Developer)
	4.1 The Comsim Structure
	4.1.1 Class cslink
	4.1.2 Class objectattribute : public cslink
	4.1.3 Class variable : public objectattribute
	4.1.4 Class continuous : public objectattribute
	4.1.5 Class reporter : public objectattribute
	4.1.6 Class object : public objectattribute
	4.1.7 Class process : public cslink
	4.1.8 Class eventnotice : public cslink
	4.1.9 Class monitor : public process
	4.1.10 Class integrator : public monitor
	4.1.11 Combined Simulation Module, Comsim

	4.2 Comsim Usage
	4.2.1 Class Flight : public continuous
	#include "comsim.h"
	#include "platformx.h"
	
	class Flight : public continuous
	{
	 friend class Pilot; //to let objects of Pilot have access to Flight attributes and methods
	 friend class Report; //to let objects of Report have access to Flight attributes and methods
	//Flight attributes
	 PlatformX *thisPlatform; //to hold actual aircraft data
	 object *thisObject; //thisObject is the simulation environment
	 variable *v, *s, *h, *fc; //variable declarations (all that are needed!; explained in the
	 flight.cpp scetch)
	 float g=9.80665, acc_, ga_, al_, chi_, bankangle_, psi_, th, x_, y_, x0_, y0_, r;
	 ...
	//Flight methods
	 void FlightCondition(); //entry point to the following flight segments
	 void Setstate(char *config, int no, float takeofffuel, float fc, float dist, float h,
	 float v, float vi, float mach);
	 void Calibrate(char *config, float takeoff_fuelmass, float pt, float paftt, float alt,
	 float vel, float ias, float mach);
	 void Taxi(char *config, float pt, float dist, float dur, float iaslim, float mu,
	 float acc, float ga, float al);
	 void Start(char *config, float pt, float paftt, float iaslim, float mu, float ga,
	 float al, float cllim);
	 void Climb(char *config, float pt, float paftt, float hlim, float hrlim, float dur,
	 float machlim, float iaslim, float acc, float ga, float cllim);
	 void Accelerate(char *config, float pt, float paftt, float dist, float dur,
	 float machlim, float iaslim, float ga, float cllim);
	 void Cruise(char *config, float pt, float paftt, float dist, float dur, float machlim,
	 float iaslim, float acc, float ga, float cl_max);
	 void Descend(char *config, float pt, float hlim, float hrlim, float dur, float machlim,
	 float iaslim, float cl_max);
	 void Approach(char *config, float hlim, float acc, float machlim, float iaslim, float ga,
	 float cllim);
	 void Land(char *config, float pt, float iaslim, float mu, float ga, float al);
	 ...
	 void compute(); //this is the prototype for the redefined method (of the one
	 in class continuous)
	 public:
	 void readFlightInstr(char *flightFile); //must be public, as it is called in Main
	};
	#endif //_FLIGHT_H

	4.2.2 Class Pilot : public process
	4.2.3 Class Report : public reporter
	4.2.4 Module Integration

	4.3 Comsim Flow

	 5 Flight Application (Information for the Software User)
	5.1 Flight Profile and Navigation
	5.1.1 Input for Flight Profile
	5.1.2 Input for Navigation
	5.1.3 Interaction between Flight Profile and Navigation
	5.1.4 Example

	 6 Validation (Information for the Generalist)
	6.1 Modelled Data
	6.1.1 Aerodynamic Data
	6.1.2 Engine Data
	6.1.3 Miscellaneous Data
	 6.1.4 Flight Data

	 7 Conclusions
	 References
	 Appendix A. General Instructions on Creating C++ Classes from FORTRAN Codes

