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1 Introduction

1.1 Background

Many civil and military systems require robust and exact position and time and
therefore based on Global Navigation Satellite System (GNSS). Today GPS is
the most commonly used GNSS but 2008-2010 Galileo, a European equivalent
system, will be in operation. An unsupported GPS-based navigation systems
is very sensitive because of the weak satellite signals. Inertial Navigation Sys-
tems (INS) on the other hand is self contained. The position of the vehicle is
calculated using measurements of accelerations and angular velocities in three
dimensions. INS is therefore a robust and jamming resistant navigation sen-
sor. However the position error of an INS increases without bounds due to the
integration of measurement errors in the accelerometers and gyros. The GPS
delivers positions at a slower rate, typically a few times per second, and the
position error is bounded. These complementary properties make it suitable
to integrate INS and GPS to get accurate and reliable positions. Why use a
jamming sensitive GPS at all? Why not use a high class INS?

By integration of INS and GPS one can achieve better performance for
less money. The performance of a low cost stand alone MEMS IMU, does not
currently fit into tactical grade requirements. But being aided by GPS, tactical
grade navigation performance can be achieved. A Cheap and small navigation
system like a MEMS INS/GPS integration makes it possible for military troops
and smaller units to get access to good positioning and navigation functions.

The drawback of traditional advanced high performing and robust military
navigation systems is that they are expensive, bulky and power consuming. By
integrating a GPS receiver and a MEMS (Micro Electro Mechanical System)
based IMU (Inertial Measurement Unit) one can achieve a navigation system
of small size and weight, with modest power consumption and cost.

However, the error characteristic of the MEMS sensors is often highly non-
linear and temperature dependent. To achieve the desired accuracy it is there-
fore crucial to determine and model the dominating errors and analyzing their
effects in navigation applications.

1.2 Aim Of Work

The department of Autonomous Systems at the Swedish Defence Research
Agency (FOI) conduct research on robust navigation. This include areas such
as integrated navigation systems and collaborative navigation [14][17]. Often
experimental systems are desired to validate navigation algorithms through
experiments. In this assignment the design of an experimental integrated nav-
igation system is proposed. Such a system could also be used as a reference
system when using less accurate sensors to evaluate new navigation algorithms.
The objective of this master thesis should be to create an integrated navigation
platform based on an IMU (Inertial Measurement Unit, three accelerometers
and three gyros) and a GPS-receiver. Experiments should be performed to

3
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evaluate and validate the navigation system as well as existing navigation al-
gorithms. The data collected during experiments should be used in Matlab to
integrate the IMU-signals by using the navigation equations to obtain position,
velocity and orientation of the navigation platform. The result should then be
compared with a GPS position solution. Next step is then to implement both
a loosely-coupled and a tightly coupled Kalman filter based on the GPS and
IMU signals. The work consist of:

• Mounting and installing the experimental equipment: IMU, GPS, com-
puters, power supply, data logger.

• Programming data logging software to store and time stamp the IMU
and GPS-data.

• Performing functionality tests of the separate sensor systems and the
total system.

• Testing IMU in laboratory environment by using the FOI rate table and
performing up-down test on the accelerometers.

• Determining dominating IMU-errors by using and comparing both power
spectral density analysis and Allan variance analysis.

• Planning and performing of experiments both in a high (roller coaster)
and low (car) dynamics environment.

• Validation and comparison of two navigation algorithms, the loosely and
tightly coupled Kalman filter at a 1Hz measurement update rate.

A part of the assignment has also been to document the software and the
hardware of the navigation system, the experimental results and the models.
The IMU used in the experiment was a MICRO-ISU BP3010, which is a Micro
Electro Mechanical Sensor (MEMS) based on MEMS accelerometers and gyros
from Analog Devices. It is a small light weighted and relatively cheap IMU-
sensor unit. The GPS-receiver was a Superstar II from Novatel with 10Hz
update rate.

4
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2 Inertial Navigation

2.1 Introduction

Inertial navigation is based on calculating position, velocity and orientation
of a moving vehicle by using measurements from inertial sensors, such as ac-
celerometers and gyros. Inertial sensors detect and measure motion based on
the law’s of nature and do not rely on external signals, this makes inertial
navigation robust and difficult to jam.

Inertial navigation is based on Newton’s laws of motion.

F =
d

dt
(mẋ) (2.1)

where F is the sum of applied forces, gravity excluded, on a body with constant
mass m and position x. Equation 2.1 needs to be modified to account for the
earth’s gravitational field where g is the gravitational acceleration vector.

mẍ = F + mg (2.2)

The acceleration due to an applied force is a = F
m , substituting that in equation

2.2 becomes
ẍ = a + g (2.3)

These equations only hold for the Newtonian inertial frame. If we now look at
the equation in the i-frame, 2.3 becomes

ẍi = gi
(
xi

)
+ ai (2.4)

where xi is the position in the i-frame, gi is the acceleration due to the grav-
itational field in the i-frame and depends on the position. ai is the specific
force sensed by the accelerometers. These equations is solved for the position
xi and velocity.

2.2 Coordinate Frames

2.2.1 Inertial Frame

An inertial frame is a reference frame in which Newton’s laws of motion holds.
The origin of the inertial frame and the orientation of the inertial coordinate
axes are arbitrary. For convenience, the Inertial frame is often defined so
that it coincides with the earth’s centre of mass. This frame will be called
the i-frame and should not be confused with the ideal inertial frame. All
inertial measurements is relative to this frame. Coordinates in this frame will
be denoted with superscript i as xi.

2.2.2 Earth Centred Earth Fixed Frame

The Earth Centred Earth Fixed (ECEF) frame has its origin in the earth’s
centre of mass. It is defined with the x-axis pointing towards the intersection

5
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of the Greenwich meridian and the equator. The z-axis along the earth’s rota-
tion axis and the y-axis in the direction that forms a right handed orthogonal
coordinate system. Coordinates in this frame will be denoted with superscript
e as xe.

2.2.3 Navigation Frame

The navigation frame is commonly used to describe the navigation of a vehicle
in a local coordinate frame, to provide local directions north, east and down.
Therefor the axes of the frame is defined in these directions (NED), another
definition of the navigation frame is ENU. The down direction is defined from
the down direction of a local tangent plane and therefor it does not always
coincide with the direction of earth’s centre. Coordinates in this frame will be
denoted with superscript n as xn.

2.2.4 Body Frame

The body frame is rigidly attached to the navigating vehicle, and it is moving
and rotating with the vehicle. The axes are defined as forward, right and
down. The objective of navigation is to determine the position and attitude
of a vehicle based on measurements from sensors attached to the vehicle. This
motivates the use of body frame. Coordinates in this frame will be denoted
with superscript b as xb.

2.3 Navigation Equations

Let the a-frame be an arbitrary frame that rotates with respect to the i-frame
with angular rate ωa

ia. A vector in the a-frame can be expressed in coordinates
of the i-frame, by

xi = Ci
ax

a (2.5)

Where Ci
a is the transformation matrix from the a-frame to the i-frame. The

time derivative of this matrix is given by (see [13])

Ċi
a = Ci

aΩa
ia (2.6)

Where Ωa
iadenotes a skew-symmetric matrix with elements from ωa

ia = (ω1, ω2, ω3)
according to

Ωa
ia =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (2.7)

To obtain the second time derivative, we use the chain rule. the second time
derivative then becomes

C̈i
a = Ci

aΩ̇a
ia + Ci

aΩa
iaΩa

ia (2.8)

Differentiating 2.5 twice with respect to time using 2.6 and 2.8 yields

ẍi = C̈i
ax

a + 2Ċi
aẋ

a + Ci
aẍ

a

= Ci
aẍ

a + 2Ci
aΩa

iaẋ
a + Ci

a

(
Ω̇a

ia + Ωa
iaΩa

ia

)
xa (2.9)

Solving for ẍa and combining with 2.4 and using the orthogonality of Ci
a gives

the system dynamics for the position in the a-frame

ẍa = −2Ωa
iaẋ

a −
(
Ω̇a

ia + Ωa
iaΩa

ia

)
xa + aa + ga (2.10)

6
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Where aa = Ca
i ai and ga = Ca

i gi(xi). The system (2.10) of three second
order differential equations can be transformed into a system of six first order
differential equations, this gives the navigation equations in an arbitrary frame
(a-frame).

d
dt ẋ

a = −2Ωa
iaẋ

a −
(
Ω̇a

ia + Ωa
iaΩa

ia

)
xa + aa + ga

d
dtx

a = ẋa
(2.11)

2.4 Navigation Equations in e-frame

To obtain the navigation equations in the e-frame, one can draw knowledge
from the fact that difference between the i-frame and the e-frame is only rota-
tion around the third axis in the e-frame. The rotation around the third axis
is the earth rotation rate. Since the earth rotation rate is constant, Ω̇e

ie = 0,
we obtain from (2.11) the navigation equations in the e-frame.

d
dt ẋ

e = −2Ωe
ieẋ

e − Ωe
ieΩ

e
iex

e + ae + ge

d
dtx

e = ẋe (2.12)

where

Ωe
ie =

 0 −ωe 0
ωe 0 0
0 0 0

 (2.13)

and ωe is the earth rotation rate.
ae is computed from sensed accelerometer data in the body frame

ae = Ce
ba

b (2.14)

where the transformation, Ce
b , is determined by integrating the angular rates

obtained from the gyro data.

Ċe
b = Ce

b Ωb
eb (2.15)

Where the components of Ωb
eb can be expressed in terms of sensed angular

rates, ωb
ib, from the gyros as

ωb
eb = ωb

ib − Cb
eω

e
ie (2.16)

The equations (2.12)-(2.16) define first order differential equations for the
navigation states consisting of position, velocity and attitude driven by the
IMU-signals ab and ωb

ib. If x denotes the total navigation state and a denotes
the IMU-signals (both ab and ωb

ib) these differential equations may be written
s

ẋ(t) = f(x(t),a(t)) (2.17)

This equation will be referred to as the navigation equations.

7
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3 INS and GPS Integration

The main idea of integrated navigation systems is to take advantage of the
complementary attributes of two or more navigation systems to get a system
that provides greater precision than either of the system components operat-
ing stand alone. INS and GPS really complement each other, both have large
advantages as well as disadvantages. An INS exhibits relatively low noise, but
drifts over time. This is because the position solution is based on the inte-
gration of accelerometer and gyro sensor measurements. Errors introduced in
the measurements, such as biases and noisy sensor data, will accumulate and
result in an unbounded position error. The GPS on the other hand produce
position with a bounded error, which depends on the quality of the GPS re-
ceiver. The drawback of GPS is that it relies on weak satellite signals, causing
poor GPS-performance or total GPS-outage in urban environments, in tunnels,
under water and in forests with heavy foliage. Moreover, there is a great risk
of jamming the GPS receiver. More about navigation warfare, see [14].Table
3.1 shows the main features of inertial and satellite navigation systems. Due to
the complementary features, GPS and INS are ideal to integrate. A number of
different integration architectures have been developed to allow GPS and INS
to be combined. There are four main classes of integration architecture

• Uncoupled systems

• Loosely coupled systems

• Tightly coupled systems

• Deep/Ultra-tightly coupled systems

Figure 3.1 illustrates the advantage of integrating GPS and INS.

3.1 System Architectures

3.1.1 Uncoupled Systems

This is the simplest method of integrating GPS and INS. The two systems
operate independently, when a GPS position and/or velocity measurement is
available the INS is reset. This bounds the error growth of the position and
velocity estimates in the INS. This method does not provide performance en-
hancement and jamming avoidance like the coupled architectures.

3.1.2 Loosely Coupled Integration

Loosely coupled systems or decentralised systems are simple and an effective
way of integrating GPS and INS. The GPS operates autonomously ,whilst
providing measurement updates to the inertial system. Figure 3.2 shows a
simplified representation of a loosely coupled system integration architecture.

9
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The main advantages of loosely coupled integration is the simplicity and re-
dundancy. The main problem with loosely coupled integration is the cascade-
coupled Kalman filters, where the position noise from the GPS receiver can be
coloured.This may create problems depending on for example update rates.

3.1.3 Tightly Coupled Integration

Tightly coupled or centralised integration uses the pseudoranges (and possibly
the phase of the carrier frequency) from the GPS receiver. The main advantages
of the tightly coupled integration is that only one Kalman filter is used so the
problem with coloured noise does not arise. The system does not require a
full GPS solution (tracking of four satellites) to aid the INS. Even GPS data
from only one or a few satellites will now contribute enough information to
the navigation filter to estimate the IMU-errors and thereby bounding the
navigation errors. The accuracy of course improve with the number of visible
satellites. Figure 3.3 shows a simplified representation of a tightly coupled
integration architecture.

3.2 Integrating GPS and MEMS-IMU

According to [18] there are four grades of IMU:s,Strategic, Navigation, Tactical
and Consumer grade, see Table 3.2. Accurate IMU:s are expensive and bulky.
However the performance of a low cost stand alone MEMS IMU does not fit
into Tactical grade requirements. But being aided by GPS, Tactical grade
navigation grade performance of MEMS INS/GPS integration can be achieved
[10]. Figure 3.4 shows an example of a aircraft travelling in an ideal horizontal
flight from point A to point B using a Tactical Grade Inertial System, with
gyro drifts of 10◦/h . After 1 hour flight, arriving at point B, the Position Error
(PE) should be 40 km at most. Figure 3.5 shows a possible flight navigation
profile for an aircraft equipped whit a MEMS INS/GPS Navigation system. To
maintain a Tactical Grade performance using a Consumer Grade gyro, GPS
corrections needs to be applied during the flight. In this example the INS needs
at least 10 GPS corrections to maintain a Tactical Grade performance. The
example is taken from [10]. This example shows that, even though using a
cheap Consumer grade MEMS gyro, one can achieve better performance by
GPS/INS integration. Thus a low cost navigation system can be built with
sufficient accuracy.

10
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Table 3.1: Comparison of features of inertial and satellite navigation systems.

Advantages Disadvantages
Inertial navigation High data rate. Unbounded errors.
Systems (INS) Provides both translational and Knowledge of gravity required.

rotational data.
Autonomous-Jamming insensitive.

Global Navigation Errors are bounded. Low data rate.
Satellite System No attitude information.
(GNSS) Sensitive to jamming- intentional

and unintentional.

GPSGPS

+GPS+GPS

20
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10

5

0

5

10

1. GPS

1

2

4

5

3

Figure 3.1: Integration of GPS and INS overview
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Figure 3.2: Loosely coupled INS-GPS integration architecture

Figure 3.3: Tightly coupled INS-GPS integration architecture

Table 3.2: The table describes Position, Gyro and Accelerometer errors for different grades
of INS.

Inertial System
Grade

Position Error
[km/h]

Gyro Error [◦/h] Accelerometer
Error [mg]

Strategic <0.03 0.0001 0.001
Navigation <4 0.015 0.1
Tactical 18.5 to 40 1 to 10 1.0
Consumer >40 1000 20

Figure 3.4: Growth of the performance error of a Tactical Grade INS, for a one hour
flight.
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Figure 3.5: MEMS INS/GPS Tactical Grade Performance

13
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4 Equipment

The experiment equipment consists of navigation sensors, reference system and
a data logger.

4.1 Navigation Sensors

The navigation sensors are small and cheap. The first is a Micro Electronic-
Mechanical System (MEMS) IMU and the second a GPS receiver.

4.1.1 MEMS IMU

The MEMS IMU used is a MICRO-ISU BP3010 from BEC Navigation System
and costs about 1600 euro. The size of the sensor can be compared to one-euro
coin see Figure 4.1 and Table 4.1 shows the technical specifications given from
the manufacturer. The IMU are here strapped down to the navigating vehicle
and the measurements consists of angular increments and velocity increments
from the three gyros and three accelerometers respectively. The measurements
are transmitted via RS232 and in addition the IMU produces a check flag that
signals if the measurements are valid. The MICRO-ISU BP3010 consists of

Figure 4.1: The MICRO-ISU BP3010 with socket for RS232 communication interface.
The size can be compared with the 1 euro coin.

three ADXRS 300 gyros from Analog Devices with a range of ±300◦/s, the in-
ternal sampling rate is 40Hz and the manufacturer given noise performance is
0.1deg/s/

√
Hz. The Accelerometers are two ADXC 210E from Analog Devices

which are a dual accelerometer with a range of ±10g with an internal sampling
rate of 6kHz with a given noise performance of maximum 1000µg/s/

√
Hz. The

accelerometers and gyros are controlled by 3 micro- controllers. The MICRO-
ISU BP3010 is precompensated for gyro and accelerometer scale factor errors,
bias errors and misalignment errors. In addition to the precompensated cali-
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Table 4.1: Technical specifications for MICRO-ISU BP3010

Physical dimensions 35 mm x 22 mm x 12 mm
Weight 30 g approximately

Power consumption 0.5 Watt
Scale factor accuracy 0.2 %
Residual bias errors 0.5◦/s (gyro), 5 mg (accel)
Misalignment error <0.1◦

Output noise (rms) 0.03◦, 0.005 m/s
Bandwidth ≥ 32Hz

Shock 1000 g, 10 ms half-sine

brated values the MICRO-ISU BP3010 compensate for temperature dependent
scale factors and biases as well as coning and sculling effects [18].

The MICRO-ISU BP3010 used in the this navigation system is one of the
first produced units from BEC Navigation Systems that has been borrowed
from SAAB Bofors Dynamics AB. Since the unit is one of the first produced,
BEC Navigation Systems can not assure that the given specifications are valid.
The calibration and compensation procedure has been improved since the first
units. For more information about the MICRO-ISU BP3010 see [8].

4.1.2 GPS Receiver

The other navigation sensor is a Novatel Superstar II GPS receiver, Figure
4.2, which is capable of delivering raw measurements (carrier phase and code
phase) with 10 Hz, a position estimate with 1 Hz and satellite ephemeris data.
Other messages can also be received see [2]. Table 4.2 shows the technical
specifications. The measurements are transmitted via RS232. For further

Figure 4.2: Novatel Superstar II receiver card

information about the receiver and the different messages see [2].

4.2 GPS Reference System

To be able to validate the performance of the navigation filters it is crucial to
have some kind of reference system. Whether it is a carrier phase based GPS,
a very accurate predefined testing track or a high class IMU.
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Position accuracy
Single point L1 < 5 m CEP

WAAS L1 <1.5 m CEP
DGPS (L1 C/A) <1 m CEP

Measurement Precision
L1 C/A code 75 cm rms

L1 carrier phase 1 cm rms

Table 4.2: Technical specifications for Novatel Superstar II receiver

4.2.1 Multi Antenna GPS Attitude System

The reference system used is a Javad HD2 GPS receiver, Fig 4.3, used together
with a Trimble 3400 base station. The Javad HD2 GPS receiver is an attitude

Figure 4.3: Javad HD2 GPS receiver

measuring GPS. The unit consists of two receiver cards and two antennas, en-
abling two angles to be measured, the attitude is calculated using the carrier
phase of the GPS signal. The two Javad antennas were mounted on the alu-
minium pole with 1.5 m separation, see Fig 4.4. The pole is then strapped

Figure 4.4: Javad antenna mounting

down to the car allowing the pitch and heading of the car to be estimated.
In table 4.3 and 4.4 the technical specifications of the reference system can
be seen. Mounting the antennas with a 1.5 m separation will result in 0.15◦

Table 4.3: Real time position accuracy for Javad HD2

Autonomous Carrier phase differential
∼ 3.0 m 3D RMS ∼ 0.01 m 3D RMS

heading accuracy and 0.31◦ pitch accuracy. The attitude has been used mainly

17



FOI-R--1875--SE

Table 4.4: Real time attitude accuracy for Javad HD2. Where L is the separation between
the antennas in meters.

Heading Roll/Pitch
∼ 0.004/L rad RMS ∼ 0.008/L rad RMS

at the initialization of the system. Generally it is always good to be able to
validate the navigation filter with as good reference measurements as possible
and in particular using the attitude. The Javad HD2 receiver system was very
sensitive to vibrations and accelerations resulting in severe measurement out-
ages. The manufacturer reluctantly informs that the oscillator mounting will
be improved in later models. The downside of using a GPS based reference
system is that the reference system relies on the same satellite measurements
as in the filter. If the satellites has a bad geometrical constellation, the DOP
(Dilution of Precision) is high, this will effect both the filter accuracy as well
as the reference accuracy.

4.3 Data Logger

The data logger consists of PC104 running Debian Linux and an interrupt
driven software. It is used to time stamp and store the data from the navigation
sensors.

4.3.1 Software

The data logger software is an interrupt driven threaded C++ implementation,
which creates a thread for each attached sensor, here the Superstar II GPS re-
ceiver and the MICRO-ISU BP3010. The thread associated with the Superstar
II GPS runs a function called gpslogger that first opens a file where all the GPS
data will be stored. The gpslogger function then creates a GPS-logger object
which opens a serial port on the PC104 and initiate the GPS receiver. The
GPS-logger object then initialises the receiver by setting the desired messages
to be received. When the GPS-logger object is created the function sets serial
port filedescriptor (FD) to interrupts, when a interrupt comes the serial port
data is read. When the serial port is read a header in the serial port data is
searched for. When a valid header is found the message is time stamped by
the system time and stored binary in the associated file. Figure 4.5 shows a
flow diagram of the GPS-logger thread.

The IMU-logger thread works in a similar way as the GPS-logger. They
differ in the initialisation where the IMU-logger thread do not require initialisa-
tion of witch messages that should be received. The data logger is terminated
by pressing Ctrl-Z. The interrupt handler then closes the binary files, serial
ports and terminates the logger threads.

The message format of the binary files are as the original messages with
the difference that the message is time stamped by a 8 byte float. The binary
message consists of, in order: the header, the time stamp and finally the mes-
sage. For further information about message and header information for the
Superstar II GPS receiver see [2].

4.3.2 Sensor Synchronisation and Timing Aspects

The data from the two sensors is time stamped according to 4.3.1. That means
that every sensor sample has a time stamp with system time. In addition to
the system time all GPS samples has a GPS-time stamp. It is assumed that the
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internal sampling of the IMU of 64 Hz is stable. The sensors is then synchro-
nised by taking the difference in system time of the first samples from the two
sensors. The difference is then subtracted from the GPS-time of the first GPS
sample, leading to the IMU start time. Knowing that the internal sample rate
of the IMU is 64Hz, the next IMU sample has the GPS-time: start time+ 1

64 .
The filters use the GPS-time stamp to synchronise the measurements.
Since the measurements is not sampled at exactly the same time the measure-
ment update (observation) in the filter will not be at the same time as the
time update (prediction). This problem can be solved in several ways, one
solution is to interpolate the IMU measurements so an estimate of the IMU
measurements is available at exactly the same time as the observation. The
implemented solution is to disregard this problem and associate the observa-
tion with the prediction closest in time. This solution will introduce errors and
the error will be velocity dependent. In the case of an IMU with sampling time
of 64 Hz the largest time difference between a prediction and an observation
is 1/64 s. This means that the vehicles position can be off with 1

64 · v between
successive samples due to problem with time synchronization, where v is the
velocity of the vehicle. But even if the vehicle should reach a speed of 100 m/s
the position error should only be <1.6 [m], which is included in the covariance
matrix of the observation.
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Figure 4.5: Flow diagram of the GPS-logger thread
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5 IMU Error Modelling and Calibration

5.1 Deterministic IMU Errors

Calibration is essential to get correct measurements. This Section describes and
uses calibration techniques for determining deterministic and stochastic IMU-
errors. Information about the IMU error are used in designing the Kalman
filter to integrate GPS and IMU.

5.1.1 Error Model

In order to take advantage of the sensor outputs, calibration of the sensor
errors has to be done. Calibration is the process of comparing sensor outputs
with known reference information and determine bias, scale factor, inertial axis
misalignment, and other inertial sensor model parameters.

Consider the sensor error model (error terms of higher order than the first
is disregarded)
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Were the parameters in (5.1) is:
δab

i , δωb
i , (i = x, y, z) - accelerometer and gyroscope errors expressed in the

body frame.
αi- accelerometer biases

[
m/s2

]
αii- accelerometer scale factor [unit less]
αij- accelerometer installation error (i 6= j) [unit less]
ab

i - accelerometer output in body frame coordinates
[
m/s2

]
βi- gyro biases [rad/s]
βii- gyro scale factors [unit less]
βij- gyro installation error (i 6= j) [unit less]
βijk- gyro drift depending on acceleration, flexure errors

[
s2/m

]
ωb

i - gyro output in body frame coordinates [rad/s] In this report all instal-
lation errors and flexure errors will be disregarded.
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Figure 5.1: Initial IMU position for up-down calibration

5.1.2 Calibration Methods

5.1.2.1 Accelerometer

Accelerometer calibration can be performed in a variety of ways. Accelerom-
eters can be tested in vibration test, shock test, in a centrifuge or just mea-
suring the gravity on turning table or on the dividing head in different angles
[11]. Because cheap MEMS-sensors mostly are very temperature dependent
and sometimes act like thermometers, it is common to calibrate at different
temperatures.

To estimate accelerometer bias and scale factor an up-down test can be
performed [16]. The method is a simple calibration procedure that uses the
earth gravity to calibrate the accelerometers. The IMU is initially positioned
so that the Z-axis of the IMU aligned with the local level frames U-axis, the
Y-axis aligned with the N-axis and the X-axis aligned with the E-axis see figure
5.1. This enables the gravity component to affect only the accelerometer along
the Z-axis of the IMU. If the IMU is then rotated 180◦ around the Y-axis a new
measurement could be taken when the accelerometer along the Z-axis sense the
negative gravity.

Let’s consider an IMU with the i:th accelerometer aligned with the U-axis
in a local level frame, the accelerometer output can then be formulated as

z1
(
ab

i

)
= αi + (αii + 1) g

Where g is the sensed gravity. Rotating the IMU 180◦ around perpendicu-
lar axis and making another measurement, gives the following output of the
accelerometer would then be

z2
(
ab

i

)
= αi − (αii − 1) g

By using the measurements above, the accelerometer scale factor and bias can
be estimated as

α̂i =
z1

(
ab

i

)
+ z2

(
ab

i

)
2

α̂ii =
z2

(
ab

i

)
+ z1

(
ab

i

)
− 2g

2g
(5.2)

The same procedure is used to calibrate the three accelerometers in the IMU.
The main drawback with this method is that the IMU must be perfectly aligned
with the local frame, because the assumption is made that the gravity com-
ponent only affects the axis the axis along the U-axis in the local frame. If
the IMU is not perfectly aligned the gravity component will affect the other
channels and therefor discredit the calibration.
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5.1.2.2 Gyroscope

The most common way to calibrate a gyroscope is via a rotation rate test on
a rate table. Rotation rate tests are usually performed with the gyroscope
inertial axis parallel to the table rotation axis oriented vertical, or sometimes
parallel to the earth rotation vector. A sequence of different table rates is then
performed and data from the gyroscope is logged. If scale factor asymmetry and
nonlinearity is to be considered the sequence of table rates must contain positive
and negative table rates. Even tough it is known that there are no asymmetry
or nonlinearities in the scale factor a table rate sequence with positive and
negative table rates can be used to get a better estimate of the scale factor.
Assume the model equation, using the error model in (5.1).

ωgj = βi + (βii + 1) (ωj + ωex) (5.3)

Where

ωgj nominal gyro indicated angular rate at table angular rate ωj [deg/h,
rad/s].

ωj average table angular rate for data segment j [deg/h, rad/s].

ωex sensed component of earth rotation rate ωe [deg/h, rad/s].

βi gyro bias [deg/h, rad/s].

βii gyro scale factor

If gyro scale factor can be assumed linear and the bias can be assumed con-
stant at a value βi from a earlier made drift test, then the scale factor can be
determined from a single rotation rate. But if the bias can not be assumed
constant from the time of the drift test, then the data from two rotation rates
can be used to estimate the scale factor with the effect of bias removed.

βii =
(ωg1 − ωg2) − (ω1 − ω2)

(ω1 − ω2)
(5.4)

If complete revolutions are made at the rotation rate test, then the scale factor
results are insensitive to misalignment angles between the gyroscope inertial
axis and the rotation axis of the rate table, due to that the cosine of small angels
is close to 1. The scale factor is also insensitive to misalignment between the
earth rotation vector and the rotation axis of the rate table since the earth
rotation component cancels out in the formula. Under the assumption that
there are no scale factor or bias asymmetries and there are no nonlinearities,
the most accurate calibration result is obtained if ω1 and ω2 is widely separated,
even of opposite signs.

The gyro bias can be estimated from rate table measurements, (5.5), how-
ever drift rate test estimate of gyro bias has a much lower uncertainty. A drift
rate test is a test where the gyro is at rest (ωj = 0) and data is collected during
a long period of time hours, days and sometimes months. The estimated bias
is then the mean value of the two sets of measurements compensated for the
earth rotation rate.

βi =
ωg1 + ωg2

2
− (βii + 1)

ω1 + ω2 + ωex

2
(5.5)
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5.1.3 Laboratory Calibration

The purpose of calibrating the IMU is to obtain estimates of the error param-
eters, that can be used to get a more accurate deterministic IMU error model
for the Kalman filter. The calibration procedure was conducted in the gyro
lab at FOI. Figure 5.2 shows a picture of the rate table on which the cali-
bration was conducted. Unfortunately the rate tables control system was out
of order. Instead a constant voltage was applied and the the rate was estab-
lished by manually clocking a certain amount of revolutions. The IMU was
mounted inside an aluminium cube, this enables the IMU to be rotated 90◦ in
any direction.

Figure 5.2: Rate table at FOI gyro lab

Accelerometer bias and scale factor calibration

To extract the accelerometer bias and scale factor an up-down test was per-
formed, see section 5.1.2.1. The IMU, mounted in the cube, was levelled so that
the earth gravity component only affected the accelerometer to be calibrated.
Data was collected during ten minutes then the IMU was rotated 180◦, so that
the accelerometer sensed the earth gravity in the opposite direction. In (5.2)
the local gravity component is needed in order to estimate the scale factor and
bias. The gravity component was evaluated for the Stockholm area at latitude
59◦21′ using the following model

g = 9.78049 + (1 + 0.0052884 sin2 ϕ − 0.0000059 sin2 2ϕ) m/s2

resulting in a gravity component of 9.8185 m/s2. [15]
Figure 5.3 shows a data set for the calibration of the x accelerometer of the

IMU. Equation (5.2) were used to estimate the bias and scale factor. By using
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Figure 5.3: Data output for accelerometer.
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the first 5 minutes of the data set as z1
(
ab

x

)
and the last 5 minutes as z2

(
ab

x

)
.

The accelerometer scale factors and biases has been estimated and are listed
in table 5.1.

Table 5.1: Bias and Scale factor estimation for accelerometer x, y and z.

Accelerometer Bias
(
m/s2

)
Scale factor (unit less) α̂ii (%)

x 0.2899 −4.7856 · 10−4 -0.005
y 0.2312 −0.0014 -0.14
z 0.1928 −0.0031 -0.31

According to the given technical specifications, Table 4.1, the IMU ac-
celerometer scale factor accuracy should be ≤ 0.2 %.

|αxx| = |αyy| = |αzz| ≤ 0.002

However the calibration shows on a larger scale factor in the z-axis, see Table
5.1. One reason for this may be due to the calibration at the manufacturer.
According to the manufacturer the IMU unit is not correctly pre-calibrated,
see 4.1.1. Another reason for this can be that the scale factor is only estimated
from one measurement, the earth gravitational component. In addition the
used gravitational component may differ from the real value. In short the scale
factor estimation for the accelerometers have many error sources.

The estimated accelerometer bias is

|αx| = |αy| = |αz| ≤ 0.3 m/s2

see Table 5.1. This will result in deterministic bias of

0.3 m/s2 ⇒ 0.3
9.8185

≈ 0.03g = 30 mg

According to Table 4.1, the residual bias error should be ≤ 5mg. The previously
mentioned incorrect pre-calibration may also be the reason for this discrepancy.

It is worth noting that the IMU seems to have a settling time. All data are
collected after a settling time of 10 minutes.

Gyroscope bias and scale factor calibration

The rate table is controlled manually and open loop, which may result in
errors. Because the computer controlling the rate table was out of order, the
sequences for the different gyro channels (x, y, z) may vary. Rotation rate test
sequence and gyroscope output for gyroscope axes x, y and z can be seen in
table 5.2, 5.3 and 5.4. All of the different rate sequences are run for at least
one complete revolution. The higher rates are run approximately 15 minutes
each. The associated errors, due to timing errors, to the measurements are
3 · 10−5 [rad/s] for the low rates and 2 · 10−3 [rad/s] for the highest rates.

Equation (5.4) was then used to estimate the scale factor for the gyroscopes.
Measurements that are widely separated and of opposite sign could be used to
achieve as accurate results as possible, see 5.1.2.2. The bias for the gyroscopes
was estimated from a 50 minute long drift test, where the mean value of the
drift rate test is the estimated bias. Table 5.5 shows the resulting estimates
for the scale factor and biases. Comparing the estimated scale factor and bias,
Table 5.5, with the given technical specifications in Table 4.1. One can see
that the estimated bias for accelerometer y and z is larger than the specified
residual bias (0.5◦/s), this can be due to the incorrect pre-calibration. That
the scale factor for gyro y is larger than the given error limit may be due

25



FOI-R--1875--SE

Table 5.2: Gyroscope rotation rate test sequence for gyro x

table rate rad/s gyro output rad/s
-0.0123 -0.0136
0.0117 0.0102
0.0901 0.0860
-0.0897 -0.0938
0.2794 0.2760
-0.2768 -0.2798
-0.4603 -0.4618
0.4647 0.4608

Table 5.3: Gyroscope rotation rate test sequence for gyro y

table rate rad/s gyro output rad/s
0.0117 -0.0016
-0.0121 -0.2683
0.0860 0.0736
-0.0858 -0.1020
0.2741 0.2559
-0.2713 -0.2834
-0.4603 -0.4759
0.4658 0.4476

Table 5.4: Gyroscope rotation rate test for gyro z

table rate rad/s gyro output rad/s
-0.0113 0.0117
0.0114 0.0348
0.0877 0.1101
-0.0868 -0.0631
-0.2750 -0.2487
0.2770 0.3010
0.4671 0.4905
-0.4630 -0.4383

to the pre-calibration, but the estimated scale factor is associated with many
error sources. The scale factor is assumed to be linear and symmetric, if this
is not the case the estimated scale factor would be incorrect. The calibration
procedure is also associated with errors because the computer controlling the
rate table was out of order.

Table 5.5: Bias and scale factor estimates for gyro x, y and z.

Gyro Bias (rad/s) Bias (◦/s) Scale factor (unit less) β̂ii (%)
x 0.0003962 0.0227 -0.0020 -0.20
y 0.0146681 0.8404 -0.0042 -0.42
z 0.0195939 1.1226 -0.0017 -0.17
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5.2 Stochastic IMU Errors

The Spectral analysis and Allan variance are used to determine the dominating
stochastic IMU-errors. The Allan variance is investigated because it is easy to
extract the error parameters and it can discern more error terms then the Power
Spectral Density (PSD). The PSD and Allan variance is then compared to see
that the Allan variance algorithm is properly implemented and how much the
error parameters differ between the two methods.

5.2.1 Error Terms

There can be several error terms in a IMU, below the some of the error terms
is listed and described for the acceleration and angular rate.

Quantisation Noise

Quantisation noise introduced into an analog signal, the error results from
encoding the analog signal in digital form. Quantisation noise is caused by the
small difference between the actual amplitudes of the sampled signal and the
bit resolution of the analog-to-digital converter.

White Noise High frequency noise terms with correlation time much shorter
than the sample time can contribute to the angle (velocity) random walk.
Angular rate white noise can be a a major source of error that limits the
performance of an attitude system.

Bias Instability/Flicker Noise Flicker noise is a low-frequency noise term that
shows as bias fluctuations in the data, flickering. The origin of the noise is the
electronics, or other components susceptible to random flickering.

Random Walk This is a random process of uncertain origin, possible a limiting
case of an exponentially correlated noise with long correlation time.

5.2.2 Error Analysis

Power Spectral Density Analysis, PSD

The Power Spectral Density, PSD, of a time series of data describes how the
power (or variance) is distributed with frequency. Mathematically the PSD is
defined as the Fourier transform of the auto correlation sequence of the time
series. Where the auto correlation is the expected value of the data multiplied
by itself delayed.

The PSD is expressed in units2/Hz and it represents the “energy” in a time
series x(t) split into frequency components. A spike in the PSD represents
a sinusoidal signal in the data . White noise is represented as a zero slope
line parallel to the frequency axis in a PSD plot, white noise has constant
power at all frequencies. Characteristic PSD log-log slopes of noise processes
can be found in figure 5.4 for gyroscope angular rate data and Figure 5.5 for
accelerometer data.

Allan Variance Analysis

The Allan variance is a statistical measure to characterise the stability of a
time and frequency system over an interval of time. It is needed since the
mathematical variance does not converge for all time and frequency system
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Figure 5.4: Typical slopes in log-log plot of one-sided PSD versus frequency for gyroscope
angular rate data. Figure taken from [11] Figure 10.

noise processes. Retrieval of error parameters other than the white noise spec-
tral density in a PSD plot is complex. In contrast, using the Allan variance,
several other error parameters can be extracted fairly simple. The basic idea
is to take a long data sequence and divide it into segments (clusters) based on
an averaging time, τ . Each segment is then averaged, the squared differences
of the successive averaged segments added and divided by a rescaling factor.
We now have a quantitative measure of how much the average value changes at
that particular value of averaging time, τ. Given a sequence with N elements
yk, k = 0, 1, ..., N − 1, define for each n = 1, 2, 3, ...,M ≤ N/2 a new sequence
of averages of subsequences of the yk:s with length n

xj(n) =
ynj + ynj+1 + ... + ynj+n−1

n
, j = 0, 1...,

[
N

n

]
− 1 (5.6)

If the sampling interval is ∆t , the time span within an averaged sequence of
length n is τ , n∆t.

For a given n, the sequence xj(n) thus has
[

N
n

]
elements when j runs from

0 to
[

N
n

]
−1. From these, we can form the

[
N
n

]
−1 differences xj+1(n)−xj(n),

with j running from 0 to
[

N
n

]
−2. The Allan variance, for the given subsequence

length n, is now defined as half the average of these differences squared, i.e.

σ2
a (τ,N)

4
=

1
2

([
N
n

]
− 1

) [N
n ]−2∑
j=0

(xj+1(n) − xj(n))2 (5.7)

The square root of the Allan variance, i.e. the Allan standard deviation, is
then plotted in a log-log diagram versus the averaging time τ . Next a simple
example is given to illustrate the principle.

Example Assume N=12 . Then n=1,2,3,4,5,6 lead to the following combi-
nations :
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Figure 5.5: Typical slopes in log-log plot of one-sided PSD versus frequency for accelerom-
eter acceleration data. Figure taken from [11] Figure 11.

n = 1, τ = ∆t :
x0(1) = y0, x2(1) = y2, · · · , x11(1) = y11,

σ2
a(∆t, 12) =

1
2 · 11

10∑
j=0

(xj+1(1) − xj(1))2 =
1

2 · 11

10∑
j=0

(yj+1 − yj)2.

n = 2, τ = 2∆t :

x0(2) =
y0 + y1

2
, x1(2) =

y2 + y3

2
, x2(2) =

y4 + y5

2
,

x3(2) =
y6 + y7

2
, x4(2) =

y8 + y9

2
, x5(2) =

y10 + y11

2
,

σ2
a(2∆t, 12) =

1
2 · 5

4∑
j=0

(xj+1(2) − xj(2))2

=
1

2 · 5

4∑
j=0

[
y2j+2 + y2j+3

2
− y2j + y2j+1

2

]2

.

n = 3, τ = 3∆t :

x0(3) =
y0 + y1 + y2

3
, x1(3) =

y3 + y4 + y5

3
,

x2(3) =
y6 + y7 + y8

3
, x3(3) =

y9 + y10 + y11

3
,

σ2
a(3∆t, 12) =

1
2 · 3

2∑
j=0

(xj+1(3) − xj(3))2
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=
1

2 · 3

2∑
j=0

[
y3j+3 + y3j+4 + y3j+5

3
− y3j + y3j+1 + y3j+2

3

]2

.

n = 4, τ = 4∆t :

x0(4) =
y0 + y1 + y2 + y3

4
, x1(4) =

y4 + y5 + y6 + y7

4
,

x2(4) =
y8 + y9 + y10 + y11

4
,

σ2
a(4∆t, 12) =

1
2 · 2

1∑
j=0

(xj+1(4) − xj(4))2

=
1

2 · 2

1∑
j=0

[
y4j+4 + y4j+5 + y4j+6 + y4j+7

4
− y4j + y4j+1 + y4j+2 + y4j+3

4

]2

.

n = 5, τ = 5∆t :

x0(5) =
y0 + y1 + y2 + y3 + y4

5
, x1(5) =

y5 + y6 + y7 + y8 + y9

5
,

σ2
a(5∆t, 12) =

1
2 · 1

(x1(5) − x0(5))2

=
1

2 · 1

[
y5 + y6 + y7 + y8 + y9

5
− y0 + y1 + y2 + y3 + y4

5

]2

.

n = 6, τ = 6∆t :

x0(6) =
y0 + y1 + y2 + y3 + y4 + y5

6
, x1(6) =

y6 + y7 + y8 + y9 + y10 + y11

6
,

σ2
a(6∆t, 12) =

1
2 · 1

(x1(6) − x0(6))2

=
1

2 · 1

[
y6 + y7 + y8 + y9 + y10 + y11

6
− y0 + y1 + y2 + y3 + y4 + y5

6

]2

.

For n=5 it is not possible to use all the data points due to the fact that
the integer part

[
N
n

]
of

[
N
n

]
is used. In order to demonstrate the quality of

estimation of the true Allan standard deviation, we define its relative error as

δAV (τ,N)
4
=

σa(τ,N) − σa(τ,∞)
σa(τ,∞)

. (5.8)

This is justified by the fact that σa (τ,∞) is based upon an infinite number of
independent data and can thus be regarded as the standard deviation’s “true
value”, as it has zero variance. A lengthy but straightforward calculation shows
that the relative error σa(τ,N) has the variance

V ar(δAV (τ,N)) =
1

2
(

N
τ ∆t − 1

) . (5.9)

From this expression it is clear that the relative error increases with the sub-
sequence length τ , which is natural as the number of subsequences decreases
with increasing τ . More about this in [4] and in [5]. Figure 5.6 shows the Al-
lan standard deviation as function of τ for gyroscope angle velocity noise in a
log-log plot, and figure 5.7 for accelerometer acceleration noise. For short av-
eraging times τ , the Allan variance is dominated by quantization noise. There
is a direct correlation between the standard deviation of the output versus time
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Figure 5.6: Typical slopes in log-log plot of square root of Allan variance versus averaging
time for gyroscope angular rate. Figure taken from [11] Figure 12.

 

 
 

Figure 5.7: Typical slopes in log-log plot of square root of Allan variance versus averaging
time for accelerometer acceleration data. Figure taken from [11] Figure 13.

with the slope of the Allan variance at small τ . This is called angle random
walk (ARW) for gyroscopes and velocity random walk (VRW) for accelerome-
ters. As averages are taken over longer and longer times the variance decreases.
When the averaging time increases even more, the Allan variance starts to in-
crease, due to long term variations in the bias. This is called rate random walk
(RRW) for gyroscopes and acceleration random walk for accelerometers

5.2.3 Laboratory Tests

The data used to process the PSD and Allan variance, is data from a 50 minute
long drift test. The Allan variance need a long data set to discern all error
terms, data sets up to 2 hours is not unusual.
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PSD

Figure 5.8 shows a log log plot of the PSD of gyro x of the IMU. Due to bunching
of the high frequency data points, it is difficult to identify the noise terms and
the parameters associated with them. To be able to identify the noise terms
the frequency averaging technique [3] is used to reduce the number of data
points. Figure 5.9, 5.10 and 5.11 shows the PSD result, with the frequency
averaging technique, for gyro x, y and z. From figure 5.9 and 5.10 the slopes
of the the curve include -2, -1, 0, and +2, this indicates that the gyro data
contains angular rate random walk, angular rate flicker noise, angle random
walk and angular rate quantisation noise. In figure 5.11 it is hard to determine
if the gyro has any influence of angular rate random walk due to the lack of
measuring points. Figure 5.12, 5.13 and 5.14 shows the PSD result, with
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Figure 5.8: PSD results of gyro x
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Figure 5.9: PSD result for gyro x with frequency averaging technique
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Figure 5.10: PSD result for gyro y with frequency averaging technique
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Figure 5.11: PSD result for gyro z with frequency averaging technique

the frequency averaging technique, for accelerometer x, y and z. From figure
5.12 and 5.13 the slopes of the curve include -2, -1, 0, and +2, this indicates
that the accelerometer data contains acceleration random walk, acceleration
flicker noise, velocity random walk and acceleration quantisation noise. The
PSD of the z accelerometer , in Figure 5.14, do not have the inclination of -1,
this means that the z accelerometer lacks the acceleration flicker noise term.
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Figure 5.12: PSD result for accelerometer x with frequency averaging technique
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Figure 5.13: PSD result for accelerometer y with frequency averaging technique

Parameter acquisition of noise terms from a PSD plot is complex, beside the
angular rate and acceleration white noise. Table 5.6 shows the estimated white
noise for the accelerometers and gyros. Converting the angular white noise
into units of ◦/

√
h using (5.10), and the acceleration white noise into units of

m/s/
√

h with (5.11) if the values are from a one-sided PSD.[
◦/

√
h
]

=
1
60

· 1√
2

(
180
π

· 3600
) [

rad/s

Hz

]
(5.10)
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Figure 5.14: PSD result for accelerometer z with frequency averaging technique

Table 5.6: PSD estimation results for accelerometers and gyros

Noise term x axis y axis z axis

Angular rate white noise
[
(rad/s)/

√
Hz

]
1.1 · 10−3 1.1 · 10−3 1 · 10−4

Acceleration white noise
[
(m/s2)/

√
Hz

]
7.9 · 10−3 6.8 · 10−3 9.4 · 10−3

[
m/s/

√
h
]

= 60 · 1√
2

[m

s2
/
√

Hz
]

(5.11)

Table 5.7 shows the estimated white noise from the PSD plots with con-
verted units. Analog Devices states an angular random walk of 6

(
◦/

√
h
)

Table 5.7: PSD estimation result for accelerometers and gyros

Noise term x axis y axis z axis

Angular rate white noise
[

◦/
√

h
]

2.71 2.68 2.42

Acceleration white noise
[
m/s/

√
h
]

0.33 0.29 0.40

at 25◦C for the ADXRS300 gyros, which are used in the MICRO ISU BP3010
IMU. If we compare this to Table 5.7, we can see that the PSD result for
the white noise level lies well within the limits of the manufacturer. The
given accelerometer power spectral density is 200

[
µg/s/

√
Hz

]
= 200µ · 9.81 ·[

m/s2/
√

Hz
]

by using (5.11) to convert this specification into velocity ran-

dom walk 0.1177
[
m/s/

√
h
]
. The maximum accelerometer PSD is also given

as 1000
[
µg/s/

√
Hz

]
= 1000µ ·9.81 ·

[
m/s2/

√
Hz

]
and converted to maximum

velocity random walk 0.4166
[
m/s/

√
h
]
. The PSD measurement result of the

white noise level for the accelerometers also lies below the maximum noise level
but a little higher then the typical value.

The PSD result indicates that there are several noise terms in addition to
the angular rate and acceleration white noise.

Allan Variance

The Allan variance in section 5.2.2 is another tool to analyse the noise terms
and extract the noise parameters. In difference to the PSD the Allan variance
can discern angular rate (acceleration) random walk as well as angular rate
(acceleration) trend, which in the PSD case is perceived as one noise term.
The difference can be seen by comparing Figure 5.4 and 5.5 with Figure 5.6
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and 5.7. Figure 5.15, 5.16 and 5.17 shows log-log plots of the square root Allan
variance for the gyros. The plots also contains the square root Allan variance
uncertainty bounds according to (5.9) described in section 5.2.2. The log-
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Figure 5.15: Estimated square-root Allan variance with error limits for gyro x.
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Figure 5.16: Estimated square-root Allan variance with error limits for gyro y.
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Figure 5.17: Estimated square-root Allan variance with error limits for gyro z.

log plots of the square-root Allan variance in Figure 5.15 and 5.16 shows the
presence of angular rate white noise (slope −1/2), angular rate flicker noise
(slope 0) and angular rate random walk (slope +1/2). While the log-log plot
of the square-root Allan variance of the z-gyro in Figure 5.17, only shows the
presents of angular rate white noise (slope −1/2) and angular rate flicker noise
(slope 0). This result is consistent with the result from the PSD plots. The
−2 slope at short averaging times is some unknown error of unknown origin,
this strange behaviour can also be seen in the PSD plots for high frequencies.
Figure 5.18, 5.19 and 5.20 shows the log-log square-root Allan variance for
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accelerometer x, y and z respectively. Figure 5.18 and 5.19 shows the presence
of acceleration quantisation noise (slope −1), acceleration white noise (slope
−1/2), acceleration flicker noise (slope 0) and acceleration random walk (slope
1/2). While the the Allan variance of accelerometer z in Figure 5.20 do not
have any acceleration flicker noise.
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Figure 5.18: Estimated square-root Allan variance with error limits for accelerometer x.

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

Square Root Allan Varince

Averaging time (s)

S
qu

ar
e 

R
oo

t A
lla

n 
V

ar
ia

nc
e 

(m
/s

2 )

Figure 5.19: Estimated square-root Allan variance with error limits for accelerometer y.
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Figure 5.20: Estimated square-root Allan variance with error limits for accelerometer z.

To extract the different noise parameters a straight line is fitted to the plot
and the noise coefficient can be read out [12]. For example, if the white noise
coefficient should be obtained, a straight line with slope −1/2 would be fitted
to the log-log plot of the square-root Allan variance. The white noise coefficient
is obtained by reading the slope line at τ = 1. Below the relations between the
square root Allan variance and the PSD for the different noise parameters are
listed. Where σ is the square-root Allan variance and τ is the averaging time.
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• Quantization Noise.

σ (τ) = Qz ·
√

3
τ

(5.12)

Where Qz is the quantization noise coefficient.

• Angular rate (Acceleration) white noise.

σ (τ) =
Q√
τ

(5.13)

Where Q is the white noise coefficient.

• Angular rate (Acceleration) flicker noise

σ (τ) =

√
2 · ln 2

π
B (5.14)

Where B is the flicker noise coefficient.

• Angular rate (Acceleration) random walk.

σ (τ) = K

√
τ

3
(5.15)

Where K is the random walk coefficient.

• Angular rate (Acceleration) trend.

σ (τ) = R
τ√
2

(5.16)

Where R is the trend coefficient.

The realtive error in the Allan variance is calculated using 5.9. Table 5.8
shows the estimated noise coefficients for the gyros and Table 5.9 shows the
estimated noise coefficients for the accelerometers.

√
means that the sensor

lacks the error.

Table 5.8: Identified Noise Coefficients for the gyros, using Allan variance.

Qz[rad] Q [rad/
√

s] B [(rad/s] K [rad/s/
√

s] R
[
rad/s2

]
x

√
(8.8 ± 0.3) · 10−4 (4.7 ± 0.2) · 10−4 (1.8 ± 0.2) · 10−4 √

y
√

(8.7 ± 0.3) · 10−4 (4.7 ± 0.2) · 10−4 (1.9 ± 0.2) · 10−4 √

z
√

(8.1 ± 0.3) · 10−4 (3.6 ± 0.2) · 10−4 √ √

Table 5.9: Identified Noise Coefficients for the accelerometers, using Allan variance

Qz Q B K R
[m/s] [m/s/

√
s]

[
m/s2

] [
m/s2/

√
s
] [

m/s3
]

x (36.9 ± 0.5) · 10−4 (78.4 ± 2.8) · 10−4 (43.8 ± 2.3 · 10−4 (23.2 ± 2.4) · 10−4 √

y (30.8 ± 0.4) · 10−4 (61.0 ± 2.2) · 10−4 (24.5 ± 1.3) · 10−4 (9.8 ± 1.0) · 10−4 √

z (40.7 ± 0.5) · 10−4 (69.7 ± 2.5) · 10−4 √
(13.4 ± 1.4) · 10−4 √
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5.2.4 Comparison of PSD and Allan Variance Extracted White Noise
Coefficient

To be able to compare the extracted white noise coefficient result from the
Allan variance with the result from the PSD the former is converted to

[
◦/

√
h
]

for the gyros and
[
m/s/

√
h
]

for the accelerometer error coefficients. Table
5.10 shows the comparison between the PSD and Allan extracted white noise
coefficient. The white noise coefficients is very similar in the PSD extraction
and the Allan variance extraction. The difference can be due to read out errors
in the PSD plot or a small error due to the frequency averaging in the PSD
plots, or a read out error in the Allan variance plots.

Table 5.10: Comparison between PSD extracted white noise coefficient and Allan variance
extracted white noise coefficient.

Gyro PSD
[

◦/
√

h
]

Gyro Allan
[

◦/
√

h
]

Accl. PSD
[
m/s/

√
h
]

Accl. Allan
[
m/s/

√
h
]

x 2.71 3.02 ± 0.1 0.33 0.47 ± 0.02
y 2.68 3.00 ± 0.1 0.29 0.37 ± 0.01
z 2.42 2.8 ± 0.1 0.40 0.42 ± 0.02

5.2.5 MICRO-ISU BP3010 Performance

To get an idea of how the performance of the MICRO-ISU BP3010 is the
MICRO-ISU BP3010, which is of consumer grade, is compared with three other
IMU:s with different quality:

• Navigation grade IMU: The Honeywell CIMU

• Tactical grade IMU: The Honeywell HG1700

• Consumer grade MEMS based IMU: The Systron Donner MotionPack
II-3g

The evaluation of these IMU:s is performed in [12] from a two hour data set.
Table shows the noise coefficients for the different IMU:s

Table 5.11: Comparison of noise coefficients of the gyros for different IMU quality

Qz [◦] Q
[

◦/
√

h
]

B [◦/h] K
[

◦/h/
√

h
]

R
[◦/h2

]
CIMU 0.00014 0.0015

√ √ √

HG1700 0.00035 0.0883
√ √ √

MP II
√

0.4891 16.79
√ √

BP3010
√

3.0252 96.94 222.77
√

Table 5.12: Comparison of noise coefficients of the accelerometers for different IMU
quality

Qz [m/h] Q
[
m/s/

√
h
]

B [m/s/h] K
[
m/s/h/

√
h
]

R
[
m/s/h2

]
CIMU 1.6801

√ √ √
2.6364

HG1700 2.1988
√ √

1.1572
√

MP II
√

0.01612 4.36
√ √

BP3010 13.284 0.4704 15.768 501.12
√
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One can see that the BP3010 has much higher noise coefficients then the
other IMU:s
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6 Experiment

This chapter describes the two different experiments. A high dynamic test in
a roller coaster and a low dynamic test in a car.

6.1 High Dynamic

The high dynamic test were conducted in October 2004, in a roller coaster
called “vilda musen” at Gröna lund in Stockholm. Some of the reasons for
conducting the experiment in a roller coaster is because of the:

• High dynamic with three dimensional motion

• Good repeatability

• Three dimensional rotation and acceleration

• Access to AutoCad data of the roller coaster

The size of the roller coaster construction is:

• Width ~ 100 [m]

• Depth ~ 40 [m]

• Height ~ 60 [m]

and the track width is 0.8 [m] with a total track length of 480 [m]. The
maximum pitch and roll angle is 50◦ and 81◦ respectively. The maximum
speed depends on the surrounding temperature, humidity and load of the wagon
resulting in a velocity of about 60 [km/h] and a maximum acceleration of about
3 − 4g. The experimental location also has its limitations, during a run there
are vibrations and swaying in the construction produced by the other wagons
and the chain dragging the wagons up the first hill. There are mainly two
locations on the course where the wagon goes under a roof and between in
narrow passage. In these locations satellite outage may occur. Due to the
metal construction there is a high risk of multipath.

Figure 6.1 shows the reference trajectory of the roller coaster. The reference
data of the roller coaster is provided by Stengel AG in München. In addition
to the position coordinates for the roller coaster also yaw, roll and pitch angles
are provided. A total of 11 laps were made during the experiment logging data
from the navigation sensors and the reference GPS. The test procedure started
with an 5 minutes initialization at the start point, see Figure 6.1, to obtain a
good initial attitude and position from the reference GPS. A lap takes about
60 seconds and ends at the stopping point also marked in Figure 6.1. The GPS
antennas were mounted as in Figure 4.4.
However after having analyzed the data it was clear that there was not enough
number of satellites available for a sufficient long time for a Kalman filter to
converge and to be able to estimate the IMU errors. For example, after just
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Figure 6.1: Reference trajectory of the roller coaster. The start position is marked.

10 seconds after start the number of satellites dropped to 20% of what was
available at that time.

During the experiments a GPS software receiver NORDNAV R30 was used
to record RF data during some of the laps of the experiment. The reason
for this was to be able to postprocess the data and tune the GPS receiver
parameters making more satellites available. However by increasing the GPS
receiver tracking bandwidth, the measurement noise in the pseudo distances
also increases. More satellites was achieved, but the price for this was increased
measurement noise that led to a severe degraded position solution.

Also the reference GPS receiver (Javad HD-2) was very sensitive to vibra-
tions and high dynamics making it difficult to analyze the filter performance.

So the initial high dynamic test’s resulted in many important experiences
where the most important are:

• The reference system in position and attitude has to be high performing
and robust to high dynamic and satellite outages.

• Maximize the number of satellites during the experiments by simulating
the satellite availability. Higher antenna placement. The rear operator
was limiting the sky view.

To be able to test and tune the Kalman filter parameters new experiments was
conducted by using a Volvo 945 on a test track in Ursvik.
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6.2 Low Dynamic

The 5 minutes data set used to validate the filters was collected at FOI:s estab-
lishment in Ursvik the 20th December 2004. The data were collected with the
navigation equipment explained in 4. The navigation equipment was mounted
in the trunk of a Volvo 945, the Superstar II antenna and the GPS reference
antennas were mounted on a pole as in the high dynamic case, see Figure 4.4.
The pole were strapped to the roof of the car enabling the reference GPS to
measure the pitch and yaw angles of the vehicle. To optimize satellite avail-
ability the experiment was conducted when the number of satellites peaked.
In total five laps were made logging data from the sensors. The sensors were
exposed to large temperature fluctuations, due to opening of doors of the test
vehicle. The temperature difference between the inside and outside of the test
vehicle were large because of the heater in the car and the cold weather out-
side. The test track can be seen in Figure 6.2, the red line represents the
reference GPS position for all laps made during the experiment, the car was
moving clock wise starting just before label A. The green blocks in the figure
represents buildings.
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Figure 6.2: GPS reference trajectory expressed in a local frame projected on an Ursvik
map.

6.2.1 Environment. Satellite Constellation, availability and Visibility

Table 6.1 describes the entire car run in time segments determined by carefully
chosen positions marked by letter labels, Figure 6.2. Each row in the table
corresponds to a segments with its time interval, so as to more easy compare
two dimensional x − y plots with time plots. It also contains the number of
used satellites, VDOP, HDOP associated with the Superstar II GPS receiver.
And a column that in short describes the environment and how the vehicle is
moving. The letters A − X labels to mark interesting events and to aid the
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comparison between two dimensional x − y plots with time plots. The events
corresponding to these letters are described in Table 6.1 and can be seen in
Figure 6.2.

Table 6.1: Summary of parameters for the used data set.

Position Time (s) Nr Sv VDOP HDOP Description/Environment
Start-A 0 − 31 8 1.2 1 No obstruction. Starts moving at A.

A-B 31 − 35 4 12.2 20 No obstruction. Down hill.
B-C 35 − 46 4 − 6 2 − 4 1.5 − 4 Building on west side. Down hill.
C-D 46 − 56 4 − 6 2 − 4 1.5 − 2 Fairly open, some trees. Down hill.
D-E 56 − 64 5 2 2 No obstruction. Level.
E-F 64 − 73 2 − 5 2 − 4.2 2 − 4 No obstruction. Down hill.
F-G 73 − 83 4 − 6 2 − 4.2 1.5 − 4 Building on south side. Level.
G-H 83 − 92 5 − 6 2 − 2.7 1.5 − 2 Building on north side. Level.
H-I 92 − 101 5 − 6 2 1.5 Buildings on north-east and

north-west side. Level.
I-J 101 − 115 2 − 5 2 − 9.5 2 − 14 Building on north side. Level.
J-K 115 − 126 4 − 7 1.7 − 4 1.5 − 4 Building on north side. Level.
K-L 126 − 139 5 − 7 1.7 1.5 − 2 Building on north side. Level.
L-M 139 − 150 3 − 5 2 − 5 2.5 − 5 Building on north-east side. Level.
M-N 150 − 155 5 2 2.5 Right turn. Building on east side.

Level.
N-O 155 − 165 4 − 5 2 2.5 No obstruction . Level.
O-P 165 − 174 5 − 7 2 1.5 − 2.5 Building on south-east side at O.

Level.
P-Q 174 − 186 3 − 7 2 − 5 2 − 17 Sharp right turn. Forest begins at Q.

Level.
Q-R 186 − 196 4 − 5 2 − 9 2 − 5 Forest. Up hill.
R-S 196 − 204 4 − 7 2 − 5 2 − 5 Forest, buildings at north and

south side. Up hill.
S-T 204 − 215 5 − 7 2 − 4.5 2 − 9 Left turn. Building on north side.

Up hill.
T-U 215 − 223 2 − 6 2 − 9 2 − 6 Right turn. Building on east and

west side. Up hill.
U-V 223 − 228 4 − 7 2 − 7 2 − 21 Fairly open. Up hill.
V-W 228 − 237 4 − 6 2.5 − 7 2 − 21 No obstruction. Up and down hill.
W-X 237 − 242 5 − 7 1.5 − 2 1.5 No obstruction. Up hill.

X-Stop 242 − 287 6 − 9 1.5 1 No obstruction. Stationary.

The satellite visibility for the Superstar II GPS receiver during the run can
be seen in Figure 6.3. The y-axis shows the satellite vehicle number (Sv) and
the x-axis is the elapsed time. Thereby the solid line shows when a particular
satellite has been visible to the Superstar II GPS receiver. Figure 6.4 is a
skyplot showing the satellite constellation during the run. The track of the
satellite vehicles that are visible are plotted here. The circles in the grid is
the elevation angle with zenith (90◦) in the centre and the azimuth angle with
north at 0◦. Figures 6.5, 6.6 and 6.7 represents the VDOP, HDOP and the
number of used satellites for the Superstar II, respectively. It should be noted
that these plots are for the Superstar II GPS receiver but it is likely that the
reference GPS system lso has about the same number of satellites.
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Figure 6.3: Satellite visibility for the entire run of about 5 minutes. For the Superstar II
GPS receiver

Figure 6.4: Skyplot for the Superstar II GPS receiver.
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Figure 6.5: VDOP for the Superstar II GPS receiver during the entire run
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Figure 6.6: HDOP for the Superstar II GPS receiver during the entire run
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Figure 6.7: Number of satellites used by the Superstar II GPS receiver to calculate the
position during the entire run
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7 Navigation Filter

This chapter is divided into two sections describing the implementation and
result for a loosely coupled filter and a tightly coupled filter respectively.

7.1 Loosely-Coupled Extended Kalman Filter

7.1.1 Implementation

The loosely coupled extended Kalman filter uses inertial navigation system
(INS) sensors to predict the position, velocity and attitude. By using 3 gy-
ros and 3 accelerometers mounted in the inertial measurement unit (IMU) the
navigation states position, velocity and attitude is determined by propagating
the non-linear navigation equations (2.17) forward in time. The filter imple-
mentation is visualised in figure 7.1. The INS predict the position, velocity and
attitude. When a GPS position is available the Kalman filter uses the differ-
ence between the measured GPS-position and the predicted INS-position. The
INS predicted navigation states are corrected by the Kalman filter navigation
error states.

Figure 7.1: Block diagram of the loosely coupled EKF.

7.1.1.1 System Model

The total error state vector of the loosely-coupled extended Kalman filter is

ε =
[

ε1
ε2

]
=


Ψ
δv
δx
d
b

 (7.1)

47



FOI-R--1875--SE

Where ε1 =

 Ψ
δv
δx

 represents the nine navigation errors, attitude, velocity

and positional errors respectively. ε2 =
[

d
b

]
are the sensor errors, here gyro-

and accelerometer bias respectively. The linearised system can be written as

d

dt
ε (t) = F (t) ε (t) + G (t)w (t) (7.2)

where

F =
[

F1 (t) F2 (t)
06×9 06×6

]
(7.3)

Where F1 is the error dynamics matrix of the navigation equations (2.17). F2

transforms the IMU errors from body coordinates to ECEF-coordinates.

F1 =

 −Ωe
ie 03×3 03×3

a× −2Ωe
ie 5

03×3 I3×3 03×3

 (7.4)

F2 =

 −Ce
b 03×3

03×3 Ce
b

03×3 03×3

 (7.5)

Ωe
ie is the skew-symmetric matrix described in (2.13). I3×3 is a identity matrix

of size 3×3 and Ce
b is the directional cosine matrix that transforms coordinates

from the body frame (b-frame) to the ECEF-frame (e-frame). 5 is a matrix
which contains the tensor of gravitational gradients Γ and centripetal acceler-
ation due to the earth rotation. It can be expressed as 5 = − (ΩΩ − Γ). The
gravitational model used in the implementation of the filters is a model of a
spherical earth described in [13].
The G(t) matrix in (7.2) describes how the noise w (t) effects the system, where
w (t) is a white Gaussian process. In the implementation of the loosely coupled
filter the system noise w (t) is assumed to be additive noise in the IMU sensors,
accelerometers and gyros.

w (t) =
[

wgyro (t)
wacc (t)

]
(7.6)

In the IMU calibration test in section 5.2.3 it was concluded that the IMU
output also contains other error processes. These error sources could also be
modelled to get a more accurate model of the IMU. The white noise from
the gyros only effects the attitude states Ψ, and the accelerometer white noise
effects the velocity states v. the G(t) matrix therefore contains two direction
cosine matrices.

G =

 −Ce
b 03×3

03×3 Ce
b

09×3 09×3

 (7.7)

Discrete system

The system (7.2) is a continuous linear system. In order to implement the
system it has to be rewritten into discrete form. In order to calculate the error
covariance, Pk, the transition matrix , Φk, of the linearised system in (7.2) is
needed. Φ may be expressed as

Φ (tk, tk−1) ≈ I + F∆t (7.8)
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valid only for small values of ∆t = tk − tk−1. For more information see [17] and
[13]. The noise must be discrete as well. The discrete system noise covariance
Θk depends on the matrix Gk which is time dependent. The system noise
covariance will be discretized as

Θk = GkQ∆tGT
k (7.9)

Where Q is a diagonal matrix containing spectral densities of the gyro and
accelerometer noise.

7.1.1.2 Observation Model

The observations come from the GPS in the form of a position estimate. The
observation model can be written as

y = h (x) + v (7.10)

Where h (x) simply is the GPS position estimate, as

h (x) =

 x
y
z

 (7.11)

Here x = (x, y, z)T is the user position.
The linearized observation model can then be expressed as

H =

 01×3 01×3 1 0 0 01×3 01×3

01×3 01×3 0 1 0 01×3 01×3

01×3 01×3 0 0 1 01×3 01×3

 (7.12)

7.1.1.3 Filter Structure

The extended Kalman filter algorithms are not given here in details but can
be found in [13]. Instead an overview of the calculations of the loosely coupled
filter is given in the form of a flow chart in Figure 7.2.

First the filter is initialized by setting the initial Kalman state vector and
the corresponding covariance matrix. The filter then enters a loop as long
as IMU data exists. The loop begins by getting the current system matrix
with associated accelerometer data (used in F1, see (7.4)) where bias has been
compensated for. Then the discrete state transition matrix Φ and covariance
matrix Θ is calculated according to (7.8) and (7.9) respectively. In the next
step the prediction is calculated. This means that a state estimate for time k+1
given measurements to time k and its corresponding covariance is computed
according to [17]. The described prediction step is repeated until a new mea-
surement is available. Then the measurement update is performed by getting
the new observation and then calculating the Kalman gain and the innovation.

Taking the product between the Kalman gain and the innovation gives a
correction term to be added to the previous estimate. Before the filter state
vector is measurement updated, a diverge test is performed in the first three
elements of the state vector, the angular errors.

7.1.1.4 Filter Parameters

To be able to compare the loosely coupled and the tightly coupled filter the
filter settings should be set to the same values except for the measurement
noise covariance, R. For the loosely coupled Kalman filter the measurement
noise covariance was initially determined by collecting GPS position fixes from
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Figure 7.2: Flow chart for the computations of the loosely coupled Kalman filter

the Superstar II GPS receiver. This data was used to calculate the standard
deviation. After using these standard deviations in the measurement noise
covariance matrix the values was slightly decreased to get a better filter per-
formance. The final measurement noise parameters after the filter tuning are
presented in Table 7.1.The initial state vector covariance are presented in Table
7.2 and the system noise in Table 7.3.

Table 7.1: Square root of the diagonal elements of the measurement noise covariance
matrix R

x y z

[m] 1.8 1.4 2

Table 7.2: Square roots of the diagonal elements in the initial error covariance matrix P0.
All values are presented in three dimensions.

Attitude Velocity Position Gyro Bias Acc Bias
[◦] [m/s] [m] [rad/s]

[
m/s2

]
5 (roll) 1 10 5µ 5m
5 (pitch) 1 10 5µ 5m
7 (yaw) 1 10 5µ 5m

Table 7.3: square root of the diagonal elements in the initial Kalman filter system noise
matrix Q. The noise variance for the attitude and velocity reflect the gyro and accelerom-
eter white noise spectral densities, respectively.

Attitude Velocity
[rad/

√
s]

[
m/s2/

√
Hz

]
1.1167 · 10−3 7.888 · 10−3 · 20
1.1023 · 10−3 6.7713 · 10−3 · 20
9.945 · 10−4 9.3595 · 10−3 · 20
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7.1.2 Experimental Results

7.1.2.1 Estimated Position

These results are based on the data from lap-nr 5 of the five laps conducted
around the Ursvik test track. These data were chosen because of the number
of available satellites.
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Figure 7.3: GPS measurements. The reference GPS (red dots) are compared to the
Superstar II GPS (green circles) and the loosely coupled filter estimate (blue line) of
the vehicle trajectory. Note that due to the vibration sensitive reference GPS (with long
outages), measurements from five laps are here overlaid. The error of the reference GPS
is about 4 cm (SEP ).The labels A to X is described in Table 6.1 to help to keep track
of the vehicles position at a certain time.
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Figure 7.4: Ursvik road map with buildings. The loosely-coupled filter estimate (blue line)
of the vehicle trajectory together with the reference GPS measurements (red dots).Note
that due to the vibration sensitive reference GPS (with long outages), measurements from
five laps are here overlaid. The error of the reference GPS is about 4 cm (SEP ).

During the tests the reference GPS in section 4.2 has been used. It is
very sensitive to vibrations and accelerations which give rise to relatively long
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GPS-outages. To be able to compare and analyze the filter estimates of the
vehicle trajectory reference GPS measurements from multiple laps has been
overlaid in Figure 7.3 and 7.4. However when there is a reference GPS position-
fix its positional error is in the order of 4 cm (SEP ). Figure 7.3 shows the
comparison between the filter generated position, the Superstar II position and
the reference position. To be able to analyze filter performance, the resulting
filter estimate of the vehicle trajectory has been plotted on a Ursvik road
map containing information about surrounding buildings (marked green), see
Figure 7.4 which also has the reference GPS trajectory. In Figure 7.5 the
innovations in e-frame for x, y and z axes with associated 3σ limit can be seen.
It is of particular interest to analyze the time intervals when the innovation
exceeds the corresponding 3σ intervals. This is an indication that the filter has
been exposed for an out-lier meaning that it was not designed for this event.
All time intervals when this happens are listed in and described in Table 7.4
It should also be noted that in the case of the loosely coupled navigation
filter the innovation is in fact three element measurement residual in position
expressed in the e-frame (ECEF). Later in this chapter, for the tightly coupled
filter, the innovation consists of measurement residual in pseudo distance for
all visible satellites. The estimation error in position in a ENU local frame are
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Figure 7.5: Innovations of the loosely-coupled navigation filter for the entire run. In
e-frame.

plotted together with the corresponding 3σ intervals. The navigation equations
being used when designing the Kalman filter has been expressed in the e-
frame (ECEF). The reason for evaluating the estimation errors in a local ENU-
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frame and not the e-frame is easier to grasp the error magnitude when looking
at the trajectory in Figure 7.4. Note that the estimation error is calculated
as the difference between the filter position and the reference GPS position.
Therefore the estimation errors can only be evaluated when there is a reference
GPS measurement available. Due to the sensitive reference GPS receiver there
are relatively long time-intervals without estimation errors. The Superstar
II measurements are used as filter observations and the difference between the
Superstar II measurements and the reference position is also plotted, with green
circles, in Figure 7.6 There are two interesting time-intervals of the estimated
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(a) Position estimation error in east
(E)axis
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Figure 7.6: Estimation error in position in a ENU local frame. The estimation errors
in position are marked with red stars. The Superstar II measurements are used as filter
observation and re marked with green circles. Note that the estimation error is calculated
as the difference between filter position and reference GPS position: lack of GPS reference
data is the reason for the gaps in estimation error where it can not be evaluated.

trajectory that will be investigated. It is in particular the effect of (1) poor
geometrical satellite constellation and (2) frequent switching of satellites that
will be discussed here. It can be seen in Figure 7.4 and 7.6 that during the
time interval labels L − O the filter position differs from the reference system
with approximately 20 m in the E axis, 10 m in the N axis and 22 m in the U
axis. However the innovations in Figure 7.5 does not exceed the 3σ intervals
during this time interval. In Figure 7.3 and 7.6 it is clear that the position
from the Superstar II receiver also differs from the reference position. The
buildings on the north-east side of the vehicle obstructs the satellites. Figure
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Table 7.4: Summary of time-intervals when innovation exceed the 3σ intervals.

Position Time [s] Description/Reason
Start-A 0 − 31 Vehicle starts moving and the velocity changes

rapidly from zero.
O − P 165 − 174 Loss of satellite changing the satellite constellation
P − Q 174 − 186 Loss of satellites due to forest above and on both

sides of the road.
T − U 215 − 223 Gain of a satellite.

6.7 shows that the position estimate from the Superstar II receiver is only
based on four satellites and for a short period of time the number drops to
three between L and M . The sky-view in Figure 6.4 and the availability plot
in Figure 6.3 shows all these satellites (3-5 satellites, Sv nr.: 21, 18, 16, 15, 3)
lies in north-west to south-east bound direction, indicating that the position
estimate has a larger position error lateral to the direction of motion. It can
also be seen in Figure 6.6 and Table 6.1 that the HDOP during the time
interval L − O is oscillating between 2.5 and 5, indicating a poor geometrical
satellite constellation. The Superstar II GPS errors naturally influences the
performance of the loosely-coupled navigation filter. It is also important to
note that the information about poor geometrical constellation is not used in
this filter. Only the position-fix calculated by the Superstar II GPS receiver
is used as an observation. However is should be noted in Figure 7.3 that the
navigation filter uses IMU-information. In the rather sharp turn the estimated
trajectory has even larger lateral errors than of the Superstar II GPS receiver.
This is due to that the INS senses the turning motion.

During the time-interval labels T − W it can be seen in Figure 7.3 that the
INS and GPS are in conflict with each other, due to the jagged-shaped filter
trajectory revealing that the GPS heading information and the INS heading
information is wide part. This is due to many loss-of-tracking and reacquiring
of satellites during this time interval. This can clearly be seen in Figure 6.7
showing a sever flickering in the number of satellites. The effect of this abrupt
changes in Superstar II position and thereby also in the loosely-coupled position
estimate. The filter can not handle these geometrical changes as can be seen
in Figure 7.3.

7.1.2.2 Attitude Errors

Figure 7.7 shows the orientation of the vehicle during the entire run, plotted
with the associated 3σ intervals. The attitude standard deviation for all three
error states, Figure 7.8, shows that the pitch and roll estimates converge faster
than the yaw estimate. This is due to the fact that the pitch and roll estimation
can take advantage of that the accelerometers senses the gravitation whenever
there is an attitude error present. When the Kalman filter parameters are
tuned it is important to take advantage and use knowledge of the conditions
during the test. For example the yaw (direction/heading) estimate uses infor-
mation from the yaw gyro (angular changes in heading), the accelerometers
(direction changes of the velocity vector) and the GPS (velocity vector esti-
mate). However during periods when the vehicle is driving slow or standing
still the GPS and the accelerometers contains very little information about
the heading and therefore it is mainly the gyro readings that do contribute to
improve the heading estimate. The attitude estimation error of the filter has
been calculated as the difference between the navigation filter attitude angle
estimates and the reference GPS attitude estimates. However, since the ref-
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(a) Estimated roll angle.
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(b) Estimated pitch angle.
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(c) Estimated yaw angle.

Figure 7.7: The estimated attitude angles expressed in the local frame with the corre-
sponding 3σ intervals.
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Figure 7.8: Standard deviation of the estimated attitude angles.

erence GPS system only is based on two antennas the estimation errors could
only be evaluated in pitch- and heading-angle. Also due to the very vibration
sensitive reference GPS there are rather long time intervals where the estima-
tion error unfortunately could not be evaluated due to missing reference data,
Figure 7.9. It should be noted that when the vehicle is stationary at the end of
the experimental run (reference measurements can be trusted) the pitch- and
yaw-errors are in the order of 0.5◦ and 5◦ respectively. there is a slow error
growth in yaw error from 250 seconds when the car is standing still. The reason
is that the Superstar II GPS do not contribute with heading information when
it is stationary resulting in that the navigation filter has to rely on the inertial
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sensors with its increasing error.
Since angular errors give rise to large positional errors it is vital to be able

to analyze these estimation errors. Therefore, in the future experiments a more
robust reference system is needed.
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(a) Pitch error.
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(b) Yaw error.

Figure 7.9: Estimation error in pitch and yaw with corresponding 3σ intervals.

7.1.2.3 Gyro Bias

The initial value of the gyro bias and its covariance has been chosen according
to Table 5.5 and 7.2, and is based on the calibration result presented in chapter
5. In Figure 7.10 and 7.11 it can clearly be seen that the roll- and pitch-gyro
bias estimates converge faster than the yaw-gyro bias estimate. This is most
likely due to the low excitation in the heading channel which is needed for
convergence.

To improve this a special initial motion is required which for example could
consist of a slalom like trajectory.

It is quite difficult to really make any certain performance conclusions for
the gyro bias estimation. The bias determined in the calibration was done in a
laboratory environment with room temperature and the experiments was con-
ducted outside. Most likely the IMU-biases are changing with the temperature
even though the manufacturer has temperature compensated the sensor unit.

During future experiments it is therefore important to stabilize the ambient
temperature and to monitor and store possible deviations.

There are no changes in sign of the estimates and the estimates does not
change radically from the initial guess originating from the calibration which
indicates that the estimator is working properly.

7.1.2.4 Accelerometer Bias

The initial value of the accelerometer bias and its corresponding covariance has
been chosen according to Table 5.1 and 7.2, and is based on the calibration
result presented in chapter 5. In Figure 7.12 and 7.13 it clearly can be seen
that the x- and y-accelerometer bias estimates converge slower than the z-
accelerometer bias. This is most likely due to that the gravity component
effects the z channel at all times and therefore the estimation can converge
faster.

Since the bias estimates changes so much during a experimental run, par-
ticularly in the y-accelerometer bias estimate, it indicates that the filter might
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(a) Gyro bias for roll-gyro (x).
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(b) Gyro bias for pitch-gyro (y).
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(c) Gyro bias for yaw-gyro (z).

Figure 7.10: Estimated gyro bias with corresponding 3σ intervals (rad/s).
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Figure 7.11: Standard deviation of the estimated gyro bias (rad/s).

be exposed to un-modelled errors. The temperature changes can be one reason.
Also the model of the gravity need to be improved.

During future experiments it is important to stabilize the ambient temper-
ature and to monitor and store possible deviations.

7.1.2.5 Summary of Results for The Loosely Coupled Filter

For the major part of the test course the position error lies within the 3σ
intervals. But the position estimate has problems when a satellite tracking is
lost or a satellite is reacquired. The attitude estimates are good. The gyro and
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(a) Accelerometer bias estimate
forward(x).
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(b) Accelerometer bias estimate
side(y).
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Figure 7.12: Estimated accelerometer bias in m/s2
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Figure 7.13: Standard deviation of the accelerometer bias in m/s

accelerometer biases converge. The results can be improved by expanding the
error model for the accelerometers and gyros and maybe make the measurement
covariance time dependent so that it depends upon the number of satellites and
the constellation.
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7.2 Tightly-Coupled Extended Kalman Filter

7.2.1 Implementation

The tightly coupled extended Kalman filter uses an INS to predict the position,
velocity and attitude. The observations consists of GPS pseudoranges. The
filter implementation is visualized in Figure 7.14.

Figure 7.14: The INS sensors are used to predict the position, velocity and attitude by
using the navigation equations in the INS-block. Which is then used to predict the pseudo-
ranges to all visible satellites. The Kalman filter then uses the difference in pseudoranges
(INS-predicted minus GPS-measured) as an observation.

7.2.1.1 System Model

The total error state vector of the tightly-coupled extended Kalman filter is

ε =

 ε1
ε2
ε3

 =


Ψ
δv
δx
d
b

δ (cδt)

 (7.13)

Where ε1 =

 Ψ
δv
δx

 represents the navigation errors, attitude, velocity and

positional errors respectively. ε2 =
[

d
b

]
are the sensor errors, here gyro- and

accelerometer bias respectively. ε3 = δ (cδt) is the error state of the receiver
clock error. The linearised system can be written as

d

dt
ε (t) = F (t) ε (t) + G (t)w (t) (7.14)

where

F =

 F1 (t) F2 (t) 09×1

06×9 06×6 06×1

01×9 01×9 01×1

 (7.15)

F1 is the error dynamic matrix (7.4) and F2 transforms the IMU sensor readings
from body to earth frame according to (7.5).
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The G(t) matrix in (7.14) describes how the sensor noise effects the system.
The only difference from the loosely coupled filter is the additional receiver
clock error state which result in

G =

 −Ce
b 03×3

03×3 Ce
b

010×3 010×3


The discrete system is calculated in the same manner as in the loosely

coupled filter, see subsection 7.1.1.

7.2.1.2 Observation Model

The observation model for the tightly coupled Kalman filter is based upon the
pseudoranges from the GPS receiver. The GPS measures the pseudorange for
every visible satellite. The observations are modelled as the true geometrical
distance from the user to the satellite, together with a receiver clock bias,
satellite clock error, ionospheric , tropospheric delay and white noise. The
observation model can be written as

y = h (x, cδt) + v (7.16)

where

h (x, cδt) =



√
(x − x1)2 + (y − y1)2 + (z − z1)2 + cδt − δt1sv + T 1

Iono + T 1
Tropo√

(x − x2)2 + (y − y2)2 + (z − z2)2 + cδt − δt2sv + T 2
Iono + T 2

Tropo

...√
(x − xp)2 + (y − yp)2 + (z − zp)2 + cδt − δtpsv + T p

Iono + T p
Tropo


(7.17)

Here x = (x, y, z)T is the user position, (xn, yn, zn) is the position of the n:th
satellite. cδt is the user clock bias. δtnsv, Tn

Iono and Tn
Tropo is the satellite clock

error, ionospheric and tropospheric delay for the n:th satellite respectively.
The linearized observation matrix, H, is given by taking the partial derivatives
of the non-linear observation equation h.

H =


01×3 01×3 e1

1×3 01×3 01×3 1
01×3 01×3 e2

1×3 01×3 01×3 1
...

...
...

...
...

...
01×3 01×3 ep

1×3 01×3 01×3 1

 (7.18)

en
1×3 =

[(
x̂ − xn

r̂n

) (
ŷ − yn

r̂n

) (
ẑ − zn

r̂n

)]
(7.19)

where r̂n is an estimate of the distance between the estimated position, (x̂, ŷ, ẑ),
to the n:th satellite position (xn, yn, zn)T , where n = 1, ..., p:

r̂n =
√

(x̂ − xn)2 + (ŷ − yn)2 + (ẑ − zn)2 (7.20)

7.2.1.3 Filter Structure

Since the extended Kalman filter is a recursive algorithm, the filter needs to be
initialised with the initial Kalman state vector and the corresponding covari-
ance matrix. The filter then loops as long as there are IMU sensor readings.
The filter starts by getting the system matrix with the current bias corrected
accelerometer readings. The discrete state transition matrix Φ and covariance
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matrix Θ is calculated. A prediction is made with the current IMU readings.
If GPS measurements exist for the current time, then the filter fetches the ob-
servation model. The observation model consists of two steps. The first step is
to calculate the GPS message time of transmission ,tsv ,to be able to estimate
the satellite positions and then estimate the satellite clock error and the iono-
spheric and tropospheric delay. The ionospheric delay is estimated using the
Clobuchar model see [1]. The tropospheric delay is estimated using a standard
model with standard atmospheric parameters. The satellite positions are then
updated. In the second step the observation model described in section 7.2.1.2
is evaluated for the time of interest. When the observation is evaluated the
Kalman gain and the innovation is calculated and multiplied with each other
resulting in a correction term. If not the full state and covariance is updated.
Figure 7.15 shows a overview of the filter structure.

Figure 7.15: Filter structure for tightly coupled Kalman filter

7.2.1.4 Filter Parameters

To be able to compare the loosely coupled filter results with the tightly coupled
filter, the filter parameters is the same for both filters besides the measurement
noise covariance. The initial full state is set to predefined values, the start po-
sition taken from the reference GPS the initial attitude is also taken from the
reference GPS, the velocity is known to be zero since we are stationary at the
beginning, the gyro and accelerometer biases is taken from the calibration. The
only unknown value is the user clock bias, which is set to zero, since we do not
expect it to be any user clock bias since the Superstar GPS clock is steered,
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meaning that the user clock is compensated for clock biases. The initial values
of the covariance matrix, P0, are presented in Table 7.5. The measurement
covariance ,R, reflect the error such as errors in the ionospheric and tropo-
spheric models, multipath, satellite and receiver clock offset and other uncor-
related noise. The measurements is assumed to be uncorrelated, with variance
σ2 = (4 [m])2. Another tunable parameter is the system noise covariance, Q.

Table 7.5: Square roots of the diagonal elements in the initial error covariance matrix P0.
All values except the user clock bias are presented in three dimensions.

Attitude Velocity Position Gyro Bias Acc Bias User Clock Bias
[◦] [m/s] [m] [rad/s]

[
m/s2

]
[m]

5 (roll) 1 10 5µ 5m 10
5 (pitch) 1 10 5µ 5m
7 (yaw) 1 10 5µ 5m

The R matrix has been fixed then the Q matrix has been tuned until the filter
performance is satisfactory. Q started out with the power spectral density for
the gyros and accelerometers from the calibration, but to decrease the position
and attitude error the accelerometer noise had to be multiplied by a factor 20.
The increased accelerometer noise can be due to unmodelled errors, scale factor
and misalignment. The final system noise covariance is presented in Table 7.6.

Table 7.6: square root of the diagonal elements in the initial Kalman filter system noise
matrix Q. The noise variance for the attitude and velocity reflect the gyro and accelerom-
eter white noise spectral densities, respectively.

Attitude Velocity
[rad/

√
s]

[
m/s2/

√
Hz

]
1.1 · 10−3 7.9 · 10−3 · 20
1.1 · 10−3 6.8 · 10−3 · 20
1 · 10−4 9.4 · 10−3 · 20

7.2.2 Experimental Result

As mentioned the Superstar II GPS receiver can produce pseudoranges with a
10 Hz frequency. To be able to compare the results from the loosely coupled
filter with the tightly coupled, the observations is set to 1Hz as the observation
update in the loosely coupled filter.

7.2.2.1 Estimated Position

These results are based on the data from lap-nr 5 of the five laps conducted
around the Ursvik test track. These data was chosen because of the number of
available satellites.

During the tests the reference GPS in section 4.2 has been used. It is very
sensitive to vibrations and accelerations which give rise to relatively long GPS-
outages. To be able to compare and analyze the filter estimates of the vehicle
trajectory reference GPS measurements from multiple laps has been overlaid in
Figure 7.16. However when there is a reference GPS position-fix its positional
error is in the order of 4 cm (SEP ). To be able to analyze filter performance,
the resulting filter estimate of the vehicle trajectory has been plotted on a
Ursvik road map containing information about surrounding buildings (marked
green), see Figure 7.4 which also has the reference GPS trajectory.
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Figure 7.16: Ursvik road map with buildings. The tightly-coupled filter estimate (blue line)
of the vehicle trajectory together with the reference GPS measurements (red dots).Note
that due to the vibration sensitive reference GPS (with long outages), measurements from
five laps are here overlaid. The error of the reference GPS is about 4 cm (SEP ). The
labels A to X is described in Table 6.1 to help to keep track of the vehicles position at a
certain time.

In Figure 7.17 the innovations in e-frame with associated 3σ intervals can
be seen. The innovation consist measurement residual in pseudo distance for all
visible satellites. The innovations only exceeds the 3σ intervals ones, just before
the P time label. this is due to reacquiring of a satellite. It can clearly be seen
that the estimated standard deviation of the tightly-coupled filter position,
Figure 7.18, is highly correlated with the loss-of-tracking and reacquiring of
satellites, this can be seen by comparing the standard deviation with the times
of loss-of-tracking and reacquiring of satellites in Figure 6.3.

The estimation error in position in a ENU local frame are plotted together
with the corresponding 3σ intervals, Figure 7.19. The navigation equations
being used when designing the Kalman filter has been expressed in the e-frame
(ECEF). Note that the estimation error is calculated as the difference between
the filter position and the reference GPS position. Therefore the estimation
errors can only be evaluated when there is a reference GPS measurement avail-
able. Due to the sensitive reference GPS receiver there are relatively long
time-intervals without estimation errors. In the loosely coupled filter in 7.1.2.1
two sections of the estimated trajectory were investigated, section L − O and
section T − W of the test course. It is in particular the effect of (1) poor
geometrical satellite constellation and (2) frequent switching of satellites that
will be discussed here. It can be seen in Figure 7.16 and 7.19 that during the
time interval labels L − O the filter position differs from the reference system
with approximately 18 m in the E axis, 22 m in the N axis and 15 m in the
U axis. Just as discussed in the loosely coupled filter, the available satellites
drops. The sky-view in Figure 6.4 and the availability plot in Figure 6.3 shows
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Figure 7.17: Innovation of the tightly-coupled filter for the entire run. In e-frame.

all these satellites (3-5 satellites, Sv nr.: 21, 18, 16, 15, 3) lies in north-west to
south-east bound direction, indicating that the position estimate has a larger
position error lateral to the direction of motion, which shows in Figure 7.16.

During the time-interval labels T − W it can be seen in Figure 7.16 that
the tightly-coupled filter estimated trajectory is very close to the reference
GPS trajectory.The INS and GPS still conflict each other, but the estimated
trajectory still manage the geometrical changes in the satellites. It should be
noted that for this particular run no reference GPS measurements are available.

7.2.2.2 Attitude Errors

Figure 7.20 shows the orientation of the vehicle during the entire run, plotted
with the associated 3σ intervals. Just like in the loosely-coupled filter the
attitude standard deviation for the pitch and roll estimates converge faster
than the yaw estimate.all three error states, Figure 7.21.

The attitude estimation error of the filter, Figure 7.22, has been calculated
as the difference between the navigation filter attitude angle estimates and the
reference GPS attitude estimates. The only time where the reference measure-
ments is valid is when the vehicle is stationary at the end of the experimental
run. The pitch- and yaw-errors are in the order of 0.3◦ and 7◦ respectively at
that time. Just like in the loosely-coupled filter there is a slow error growth
in yaw error from 250 seconds when the car is standing still. The reason is
that the Superstar II GPS do not contribute with heading information when
it is stationary resulting in that the navigation filter has to rely on the inertial
sensors with its increasing error.
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Figure 7.18: Standard deviation of the tightly-coupled filter position in a local frame.

7.2.2.3 Gyro Bias

The initial value of the gyro bias and its covariance has been chosen according to
Table 5.5 and 7.5, and is based on the calibration result presented in chapter
5. In Figure 7.23 and 7.24 it can clearly be seen that the roll- and pitch-
gyro bias estimates converge faster than the yaw-gyro bias estimate, as in the
loosely-coupled filter.

There are no changes in sign of the estimates and the estimates does not
change radically from the initial guess originating from the calibration which
indicates that the estimator is working properly.

By comparing the estimated gyro bias for the loosely-coupled, Figure 7.10,
with the estimated gyro bias for the tightly-coupled filter, Figure 7.23, it can
be seen that the estimates converge to the same values. This indicates that the
gyro biases seems to be estimated correctly in the filters.

7.2.2.4 Accelerometer Bias

The initial value of the accelerometer bias and its corresponding covariance has
been chosen according to Table 5.1 and 7.5, and is based on the calibration
result presented in chapter 5. In Figure 7.25 and 7.26 it clearly can be seen
that the x- and y-accelerometer bias estimates converge slower than the z-
accelerometer bias, as in the loosely-coupled filter.

Comparing the accelerometer bias estimates for the loosely-coupled filter,
Figure 7.12, with the tightly-coupled estimated accelerometer bias, Figure 7.25,
it can be seen that the estimates converge to the same vale indicting that the
estimation of the filters is correct.
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(a) Position estimation error in east
(E) axis
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(b) Position estimation error in
north (N) axis
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(c) Position estimation error in up
(U) axis

Figure 7.19: Estimation error in position in a ENU local frame. The estimation errors in
position are marked with red stars. Note that the estimation error is calculated as the
difference between filter position and reference GPS position: lack of GPS reference data
is the reason for the gaps in estimation error where it can not be evaluated.

7.2.2.5 User Clock Error

Since the Superstar II GPS user clock is steered, meaning that the user clock
is internally compensated for user clock errors, the user clock error should be
fairly small and constant. This is also the case as seen in Figure 7.27. If the
user clock was not steered the user clock bias would have a jagged shape like
Figure 5.2 on page 151 in [9].

7.2.2.6 Tightly Coupled Filter Using 10Hz Observations

Since the Superstar II receiver can produce pseudorange measurements at
10Hz. Here follows a comparison between the 1Hz and the 10Hz solution.
Figure 7.28 shows the accumulated error vector in position for both solutions.
Since the reference attitude are not valid when the vehicle is moving, the ac-
cumulated error for the attitude can not be shown. Figure 7.29 shows the
attitude errors instead.
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(a) Estimated roll angle.
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(b) Estimated pitch angle.
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(c) Estimated yaw angle.

Figure 7.20: The estimated attitude angles expressed in the local frame with corresponding
3σ intervals.
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Figure 7.21: The standard deviation of the estimated attitude angles.

7.2.2.7 Summary of Results for The Tightly Coupled Filter

The position error lies within the 3σ intervals for the major part of the test
course. The filter has no problems when satellites loose tracking or are reac-
quired. The attitude estimates are good, but just like the position the yaw
seems to drift when the vehicle is stationary. The gyro and accelerometer bi-
ases converge, and they converge to the same values as the loosely coupled
biases. Just like expected the user clock bias was stable. Many things can be
done to improve the result, like adding a velocity observation and expand the
error modelling of the accelerometers and gyros.
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(a) Pitch error.

0 50 100 150 200 250 300
−25

−20

−15

−10

−5

0

5

10

15

20

25

Elapsed time (s)

Y
aw

 e
rr

or
 (

de
gr

ee
s)

(b) Yaw error.

Figure 7.22: Estimation error in pitch and yaw with corresponding 3σ intervals.
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(a) Gyro bias for roll-gyro (x).
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(b) Gyro bias for pitch-gyro (y).
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(c) Gyro bias for yaw-gyro (z).

Figure 7.23: Estimated gyro bias with corresponding 3σ intervals (rad/s).
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Figure 7.24: Standard deviation of the estimated gyro bias (rad/s).

7.3 Comparison Between Loosely and Tightly Coupled Filter
Performance

Since the reference attitude can not be depended on, it is hard to make any
conclusions on the performance of the attitude of the loosely and the tightly
coupled filter. However the reference position can be trusted, and can therefore
be used to compare the filter performance of the two integration techniques.
Figure 7.30 and Figure 7.31 shows the filter positions plotted with the reference
position for the loosely and the tightly coupled filter respectively. One can see
that the loosely coupled filter does not have the same ability to coup with the
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(b) Accelerometer bias estimate
side(y).
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Figure 7.25: Estimated accelerometer bias in m/s2.
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Figure 7.26: Standard deviation of the accelerometer bias in m/s2.

sharp turn at the same time a new satellite appears, on the other hand the
tightly coupled filter manage to follow the reference position fairly well. The
conclusions that can be made is that the tightly coupled filter perform better
under conditions where satellites loose tracking or are reacquired.
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Figure 7.27: Estimated user clock bias in m.
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Figure 7.28: The accumulated error vector in position for the 1Hz and 10Hz solution.
where the red line is the 1Hz solution and the blue line is the 10Hz solution.
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(a) Pitch error in degrees for entire run with 3 sigma limit
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(b) Yaw error in degrees for entire run with 3 sigma limit

Figure 7.29: Attitude errors for the 1Hz (red stars and blue line) and 10Hz ( green stars
and purple line) solution.
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Figure 7.30: Estimated trajectory of the loosely-coupled filter in a local frame projected
on a Ursvik map, plotted between labels R − V .
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Figure 7.31: Estimated filter trajectory of the tightly-coupled filter in a local frame pro-
jected on a Ursvik map, plotted between labels R − V
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8 Conclusions

The work consisted of designing and implementation of an integrated navi-
gation platform based on a MEMS IMU and a GPS receiver. Also the data
logging software for the PC 104 computer was implemented.

A comparison between a tight and a loose integration of a cheap MEMS
IMU and a GPS, has been conducted on experimental data from a car driving
in an environment with blocking buildings and dense foliage. Both navigation
filters has been tuned and works well, except for cases when few satellites are
available. Under these conditions the tightly integrated solution works the
best.

Laboratory tests determining deterministic errors and stochastic IMU errors
has been used to validate navigation filter performance by comparing the filter
estimates with the corresponding calibrated errors. Initial high-dynamic tests
in roller coaster showed a need for a better and more robust reference system to
be able to validate the estimated position, velocity and in particular attitude.

It is also important, when having few available satellites, to have enough
long data sets for the navigation filter to converge.

8.1 Future Work

Following below, is a list meassures which will improve the navigation algo-
rithms and the validation process of the same.

Experiments:

Reference System:

It is cruisal to use a more robust reference system that measures accurate posi-
tion, velocity and attitude angles. It must also withstand high g’s, vibrations,
impact and most important: longer periods of satellite outages.

By using doppler radar, wheel encoders and compass as reference measure-
ments.

Satellite Availability:

The number of available satellites can be improved by a higher antenna place-
ment to avoid damping or blocking from nearby objects. It is also important to
plan experiments to be conducted during time intervals with as many satellites
as possible.

Temperature:

When testing cheap MEMS-sensors it is important to either monitor the am-
bient temperature or to stabilize the same by temperature control or good
insulation.
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Trajectory:

It is advantegous to conduct multiple laps, Zero-velocity-updates (stopping for
a certain time) and returning to a known point (start point) to be able to
improve navigation performance by smart post-processing.

Data logger:

The data logger can be improved by adding a checksum check. Improve the
termination of the program. Look over the time stamping procedure and min-
imize the time stamping error. Create a better user interface.

Navigation Filter:

Observation Model:

The observation model should be improved for both filters so that the obser-
vation also consist of velocity measurement.

System Model:

Improving the system model by incorporating all errors deducted through Allan
variance analysis. Information about how to use Allan variance parameters in
a Kalman filter can be found in [7] and [6].

Gravity Model:

The gravity model should be changed to a elliptic instead of a spherical.

Tropospheric Model:

The tropospheric model is now based on standard atmospheric parameters.
The tropospheric model should be based on atmospheric parameters like air
pressure, altitude, temperature, humidity corresponding to the actual situation.

Timing Aspects:

Now the filter syncronize the observation and prediction by taking the obser-
vation that is less then one IMU sampling period away. This may be improved
by interpolating the prediction to the observation time.
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