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1 INTRODUCTION 

Light that propagates through a medium, for example the atmosphere, may become distorted 
due to wavefront perturbations. This is due to turbulence effects which introduce phase 
perturbations that need to be compensated. Adaptive optics is an area of science where 
controllable optical elements are used to improve an optical system. To narrow this description 
it is common to only talk about systems with a closed-loop control that works in real time[1]. 
An adaptive optics system also includes a wavefront sensor and a feedback control system. The 
science of adaptive optics has been developed since the 1960s. The main use has been high 
budget projects such as compensation of atmospheric turbulence in astronomical telescopes and 
improving the beam quality in high power lasers[2]. Lately, adaptive optics has become more 
available. This is due to the development of cheaper components such as e.g. membrane 
mirrors, bimorph mirrors and liquid crystal devices. New areas for adaptive optics are, for 
example, atmospheric turbulence correction of laser countermeasure systems, active imaging 
systems, ophthalmology and free-space optical communication[3]. 
 
The purpose of this work was to analyze a micromachined membrane deformable mirror 
(MMDM). In order to evaluate the mirror a transfer function was generated. The work included 
assembling an experimental setup for the evaluation. The mirror is commercially available from 
OKO Technologies in the Netherlands. This type of mirrors has been in production since 
1997[4]. The specific mirror used in this study had 37 actuators that individually control 
different areas of the mirror surface. The mirror has a continuous surface due to the membrane 
structure. The spatial response of the mirror was studied to investigate how well the mirror can 
correct for wavefront errors. The evaluation of the mirror was done with a Zernike polynomial 
representation. The mirrors capability to produce wavefronts corresponding to Zernike 
polynomials was tested. Only the mirrors spatial domain has been investigated i.e. the response 
time has not been considered. Nor have any of the algorithms been optimized to work in real 
time. 
 

2 THEORY 

2.1 Optical waves 
This section gives a brief description of the wave nature of light. Light can be described as an 
electromagnetic field, which propagates in time and space. To express the propagation of the 
light a complex field notation is often used. A scalar representation can be used and the 
electromagnetic field is expressed as 
 

( , ) exp( ) it t e ϕω= ⋅ − =E r A k r A  (1) 
 
where ( ),r tE is the electric field vector at position r and time t, A is the amplitude of the 

electromagnetic field, k is the wave vector with magnitude 2π
λ

¸ in vacuum (and air) which 

describes the propagation of the wave in space, ω is the angular frequency of the light and ϕ is 
the phase. 
 
At the time 0t t=  the wave ( , ) it e ϕ=E r A consists of surfaces where the phase constantϕ = . These 
surfaces are called wavefronts[5]. When a wave only propagates in one direction it can be 
described by the wave vector k. For example, if the wave propagates in the x-direction ˆxk=k x  
the wave is then described as (assume that t0 = 0 for simplicity)  
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( , ) exp( ) it kx t e ϕω= − =E r A A  (2) 
 
Then, ϕ = constant for all planes described by x̂ and consequently the wave is called a plane 
wave (Figure 1). A wave which propagates uniformly in all directions is described by k̂ being 
equal in all directions. Then, the wavefront is described by a sphere and the wave is called a 
spherical wave. An example of a spherical wave is depicted in Figure 1. The deviation of the 
wavefront from a plane wave is denoted aberration. 
 

  
 

Figure 1 A plane wave created by a lens (left) and a spherical wave created by a point source (right). 

 

2.2 Adaptive optics 
An adaptive optics system consists of a wavefront sensor, a correction element and a control 
system. One example of a wavefront sensor is an interferometer (described in chapter 2.3) 
which measures the aberration of the light beam. The control system commonly uses a closed 
loop to determine how the correction element should compensate for the aberration. 
 

2.2.1 The deformable mirror 
In this work a deformable mirror is the active element. The principle of the deformable mirror is 
that after the aberration has been determined the mirror forms into a shape that cancels the 
aberration (in the ideal case) in the reflected beam. The principle is depicted in Figure 2. 
 

 
Figure 2 Principle of a deformable mirror. The mirror cancels the aberration and the reflected wave is a plane wave. 

 
The mirror deflection ( , )U x y  is given by Poisson's equation[6] 
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( , )( , ) P x yU x y
T

= −  (3) 

 
where P(x, y) is the external load and T the membrane tension. In this case, P(x, y) is caused by 
electrostatic forces and is derived according to 
 

2
0

2

( , )( , )
( , , )

PotentialV x yP x y
d x y P

εε
= −  (4) 

 
and T is given by 
 

2

2(1 )
EhT δ

ν
=

−
 (5) 

 
Vpotential(x,y) is the potential distribution on the actuator structure, 0εε is the dielectric constant, 
d2(x,y,P) is the distance between the membrane and the actuator structure, E is Young's modulus 
of the membrane material, h is the thickness of the membrane, ν is the Poisson ratio of the 
membrane material and δ is the in-plane membrane elongation due to the stretching. Combining 
equations (3) to (5), yields that the deflection of the mirror is proportional to the square of the 
voltage i.e. 2( , )U x y V∝ . 
 

2.3 Interferometry 
When two light beams overlap the sum of the beams depends on both the amplitude and the 
phase. If they have the same phase constructive interference and a high intensity is produced. If 
the two beams are out of phase, on the other hand, they produce a destructive interference and 
the intensity becomes zero. An instrument that uses the optical differences between two light 
beams to produce an interference pattern is called an interferometer. 
 

2.3.1 The principle of a Michelson interferometer 
A schematic drawing of a Michelson interferometer is shown in Figure 3. From the light source, 
a beam (represented by a plane wave) falls on the beam splitter (BS) which divides the light into 
two paths. The two beams are reflected on the mirrors M1 and M2, respectively. The beams are 
subsequently summed into one beam which is examined in the detector. Because of the different 
optical paths the two beams experience they can be out of phase with each other. This can be 
due to the mirrors, or a component in one of the arms, causing a change in the optical path 
length. If the difference in path length between the mirrors is denoted d, ∆ = 2d is the optical 
path length difference between the two beams. Hence, ∆ = mλ gives constructive interference, 
while ∆ = (m+1/2)λ gives destructive interference (λ is the wavelength). 
 

Light
source

M1

M2

BS

Detector

 
Figure 3 Schematic drawing of a Michelson interferometer 
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2.3.2 Interferogram 
The registered interferometric pattern is called an interferogram. The interferogram can be 
described mathematically by the intensity of the electrical field. By definition the intensity is 
proportional to the square of the absolute value of the complex field of the wave. If E1 and E2 
represent the electric fields of the light beams the intensity can be calculated as follows 
 

2 2 2 * *
1 2 1 2 1 2 1 2

1 2 12

I E E E E E E E E
I I I

∝ + = + + + =

+ +
 (6) 

 
Using the complex representation of a wave, iE Ae ϕ= , the intensities in equation (6) can be 
written as 
 

( ) ( )( ) ( )

( )

1

2

1 2 1 2

1 2 1 2

2 2
1 1 1

2 2
2 2 2

12 1 2 1 2

1 2 1 2 1 2

1 2 1 2

2cos

2cos .

i

i

i i i i

i i

I A e A

I A e A

I A e A e A e A e

A A e e A A

I I

ϕ

ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ

− −

− − −

= =

= =

= + =

= + = −

= −

 

 (7) 
 
Note that Ai is a real number. Constructive interference is observed when cos(ϕ1-ϕ2) = 1 and 
destructive interference when cos(ϕ1-ϕ2) = -1. If I1 = I2 = I we obtain 
 

max

min

2 2 4
2 2 0

I I I I
I I I

= + =
= − =

 (8) 

 
Studying interferogram dark and bright fringes can be observed. The phase difference between a 
dark and a bright fringe is a half wavelength, / 2λ . Two examples of interferograms are 
presented in Figure 4. In the left interferogram one of the beams is tilted giving rice to vertical 
stripes. In the right figure one of the beams has a spherical aberration generating concentric 
circles. 
 

2.3.3 Fourier transform analysis of interferogram 
The Fourier transform method for analyzing fringe patterns in the interferograms was first 
developed by Takeda et al. in 1981[7]. The method uses a carrier frequency f0 which is achieved 
by tilting the reference beam. The interferogram is described by 
 

0( , ) ( , ) ( , )cos(2 ( , ))g x y a x y b x y f x x yπ φ= + +  (9) 
 
where a(x,y) and b(x,y) are variations in the intensity due to errors in the interferometer such as 
uneven reflections etc. The desired information is obtained by considering the phase, φ(x,y). It is 
important that φ(x,y) varies slowly compared to f0, so that φ(x,y) can be easily separated from the 
added phase f0. If they are mixed, the tilt component in the interferogram must be increased. 
Now the fringe pattern can be rewritten as 
 

*
0 0( , ) ( , ) ( , )exp( 2 ) ( , )exp( 2 )g x y a x y c x y i f x c x y i f xπ π= + + −  (10) 

 
where 
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1( , ) ( , )exp( ( , ))
2

c x y b x y i x yφ=
.
 (11) 

 
The two dimensional Fourier transform is given by 
 

*
0 0( , ) ( , ) ( , ) ( , )x y x y x y x yG f f A f f C f f f C f f f= + − + +  (12) 

 
where *

0 0( , ), ( , ) and ( , )x y x y x yA f f C f f f C f f f− + denote the energy spectra of the interferogram 
after the Fourier transform operation. An example of this method is illustrated in Figure 5. The 
analyzed interferogram consisted of the added tilt (f0) and a defocus aberration(Figure 5A). The 
absolute value of the Fourier transform of the interferogram (i.e. the energy spectrum) is shown 
in Figure 5 b. 

Tilt Circular

 
Figure 4 Interferograms with tilted (left) and spherical aberrations (right). The interferograms were simulated using 
the software package LightPipes for Matlab. 

 
The left white spot in the Fourier transform corresponds to C(fx-f0,fy), the spot in the middle is 
the DC component A(fx,fy) and the spot to the right is C(fx+f0,fy). The desired information φ(x,y) 
is now stored in c(x,y). In this example, f0 is large enough so C(f,y) can be separated by 
translating the Fourier transform G(fx,fy) with the distance f0 along the fx-axis and then use a 
window function to filter C(fx,fy). Figure 5c shows the translated and filtered Fourier transform. 
Only C(f,y) is present in the picture. To obtain c(x,y), which contains the phase information, the 
inverse Fourier transform of C(x,y) is calculated. To determine the phase φ(x,y) the complex 
logarithm of c(x,y) is subsequently calculated as 
 

{ }1 ( , ) ( , )
1log( ( , )) log( ( , ) ( , ))
2

C f y c x y

c x y b x y i x yφ

− =

= +

F

.

 (13) 

 
The phase values derived from the inverse Fourier transform are within a domain between -π 
and +π. The real phase, however, often occupy a larger domain. To compensate for this 
behaviour φ(x,y) must be unwrapped. The phase map corresponding to the spherical aberration 
(defocus) is displayed in Figure 5d. 
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a

    

b

d

c

 
Figure 5 a) An interferogram consisting of tilt and spherical terms. b) The Fourier transform of the interferogram 
(energy spectrum). c) The translated and filtered Fourier transform corresponding to C(fx,fy). d) The extracted phase 
after an inverse Fourier transform. 

 

2.3.4 Quick Fringe 
The program Quick Fringe was used as an alternative method to analyze interferograms[8]. 
Quick Fringe works best with about ten fringes to analyze. To achieve this a tilt term is added to 
the reference beam by tilting one of the interferometer mirrors. Since the introduced tilt is 
known it can easily be removed in the fringe analyzes. Quick Fringe uses linear regression to 
find the Zernike polynomials which are used to reconstruct the wavefront (see section 2.4 for 
information on Zernike polynomials). The ability to remove optical aberrations such as tilt, 
defocus, coma and astigmatism is a functionality of the program. Even if this option is used the 
Zernike coefficients produced by the program are not affected since the removal of optical 
aberrations are only shown in the images produced by the program[8]. Hence, this fact limited 
the applicability of using Quick Fringe for interferogram analyzes. Instead the Fourier transform 
method described above was used in the characterization of the deformable mirror. 
 

2.4 Zernike polynomials 
The notations used in this chapter are the same as those presented in ref[9]. Zernike polynomials 
define a two dimensional basis and are commonly used to describe aberrations. They are 
especially useful in describing the de-composition of a wavefront having a circular aperture. 
The wavefront can then be represented by the coefficients in a linear combination of Zernike 
polynomials. Zernike polynomials have the following properties: 
 

1. They are orthogonal over the unit circle, i.e. ( ) ( )
1 2

' '
0 0

, ,n n nnZ Z d d
π

ρ θ ρ θ ρ ρ θ δ=∫ ∫  

2. They have simple rotational symmetry, which means that all polynomials can be written 
as a product ( ), ( ) ( )z R Gρ θ ρ θ=  

3. The angular function, G(θ), is continuous and periodic with period 2π and can be 
written as ( ) imG e θθ ±=  

4. The radial function, R(ρ), is a polynomial of degree n and has no power less then m 
5. If m is even, R(ρ) must be even, and if m is odd, R(ρ) must be odd 

c 
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6. m
nR  are orthogonal functions i.e. 

1

0 2( 1)
m m nn
n nR R d

n
δρ ρ ′

′ =
+∫  

 
and finally R(1) = 1. 
 
A special case of Jacobi polynomials fulfil properties 4 to 7. We use the help function Q so that  
 

2 ( ) ( )m m m
n m nR Qρ ρ ρ− =  (14) 

 
where Q is a polynomial of order 2(n- m) and can be written as 
 

2( )

0

(2 )!( ) ( 1)
!( )!( )!

n m
m s n m s
n

s

n m sQ
s n s n m s

ρ ρ
−

− −

=

− −
= −

− − −∑
.
 (15) 

 
Here, ρ is the distance from origin and θ is the angle from the x-axis. The first 37 Zernike 
polynomials are presented in Appendix1. Some of the first polynomials are shown in Figure 6. 
Note that this is not the only way to number Zernike polynomial. The reason for using this 
numbering of the polynomials is to use the same numbering as in Quick Fringe[8]. 
 

2.5 Description of the mirror surface 
Instead of calculating the mirror surface the wavefront from the reflected beam is determined. 
The mirror surface corresponds to half of the magnitude of the wavefront. The wavefront can be 
described as a vector of Zernike coefficients, with the Zernike polynomials as a base. The fitting 
of the polynomials can be carried out numerically with e.g. Matlab using the least square 
method (see Appendix1).  
 

 
Figure 6 Example of Zernike polynomials. 

 
The wavefront can be described according to 
 

1

( , ) ( , )
M

k k
k

x y a z x yφ ε
=

= +∑  (16) 
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where ak denotes the Zernike coefficients and zk(x,y) the Zernike polynomials, respectively. ε is 
the error due to the fact that only M Zernike polynomials are used. This error is ignored below 
in the description of the mirror surface. Applying voltage to the mirror actuators causes the 
surface of the membrane to change. The deflection of the surface is proportional to the square of 
the applied voltage as pointed out above [10,11]. The shape of the deflection, applying a voltage 
to one actuator is denoted the influence function of the actuator. A three dimensional plot of an 
influence function is shown in Figure 7. 
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Figure 7 Example of an influence function. In this case 200V was applied to actuator number 8. 

 
The surface shape can now be described as 
 

0( , ) ( , ) ( , )l lx y x y x y cφ φ ϕ= +  (17) 
 
where cl is a control signal for actuator l and φ0(x,y) is the initial shape of the mirror surface. 
The control signal is proportional to the square of the applied voltage. ϕl is the response 
function, which describes how the mirror deforms with a voltage applied on actuator l. 
Assuming that the deformation can be described as a linear superposition of the deformation 
from single actuators the deflection of the mirror surface can be expressed as 
 

0
1

( , ) ( , ) ( , )
P

l l
l

x y x y x y cφ φ ϕ
=

= + ∑  (18) 

 
where P is the number of actuators. Expanding the different response functions ϕ(x,y) into 
Zernike polynomials we get 
 

1

( , ) ( , )
M

l kl k
k

x y r z x yϕ
=

= ∑  (19) 

 
Equations (18) and (19) gives 
 
 

( ) ( ) ( )0
1 1 1 1

, , , ( , ) ( , )
P M P M

l kl k l kl k
l k l k

x y x y x y c r z x y c r z x yφ φ φ
= = = =

   
∆ = − = =   

   
∑ ∑ ∑ ∑  (20) 

 
Another way to express equation (20) is to letΦ describe the Zernike coefficients of the mirror 
surface i.e. the vector of ak in eq. (16). Collect rkl into the matrix R and the control signals of all 
the actuators into the vector c [10]. The equation that relates the applied actuator voltage into 
the deformation of the mirror surface then becomes 
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∆ =Φ Rc ∆ =Φ Rc  (21) 
 
The matrix R is called the transfer function and describes the response of the deformable mirror. 
The transfer function matrix is of the size M×P i.e. in general not a square matrix. 
 

2.6 Reconstruction of the wavefront 
To reconstruct the wavefront we need to calculate the vector of control signals required to 
produce the desired wavefront. An inversion of the equation (21) is needed to accomplish a 
reconstruction scheme. However, since R is not a square matrix it is not possible to calculate the 
inverse. Instead Singular Value Decomposition (SVD) is used to calculate a pseudo-inverse. 
Singular value decomposition breaks up a matrix in three matrices. Using SVD, R can be 
expanded as[12] 
 

TR = UΛV . (22) 
 
These three matrixes have different properties[13]. U and V are orthogonal matrices. The 
columns of U describes the eigenmodes of the mirror whereas the columns of V describes the 
eigenmodes of the control signals. Λ is a diagonal matrix where the diagonal values i are the 
eigenvalues. These eigenvalues relates the column vector ui to the column vector vi. The 
following assumptions are made in the SVD scheme: 
 

• If 0iλ = the mode ui is not correctable and the control signal vi has no effect on the 
mirror 

• If 0iλ ≠ the mode ui is correctable. 
 
The magnitude of λi determines the sensitivity of the mode. High values of λi are favourable, 
because they bring less noise to the transfer function. The inverse of R is denoted C and obtained 
as 
 

1 T− ∗=C VΛ U  (23) 
 
where 1− ∗Λ is the pseudo-inverse or the least-square inverse. The pseudo-inverse is formed by 
transposing Λ  and replacing the nonzero λi with the inverse 1

iλ − . To eliminate the noise 
contributions the smallest values of λi are set to zero. 
 

2.7 Wavefront error 
One way to measure the wavefront quality is to use the root mean square (rms) error. The rms 
error is also commonly denoted the standard deviation and is defined as 
 

( ) ( )( )
1 2

2

0 0

, ,rms d d
π

ρ θ ρ θ ρ ρ θ= Φ − Φ∫ ∫
.
 (24) 

 
This expression can be simplified by dividing ( ),ρ θΦ into normalized Zernike coefficients. To 
normalize the Zernike polynomial the normality factor nk is used. The normality factor is 
calculated according to 
 

( )
1 2

2 2

0 0
k kn z d d

π

ρ ρ θ= ∫ ∫
. (25) 
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If all the Zernike polynomials are normalized they are orthonormal i.e. 
 

( )( )
1 2

0 0
k k l l kln z n z d d

π

ρ ρ θ δ=∫ ∫  (26) 

 
If we use the fact that the first polynomial equals the mean of the wavefront 

( )0 0 0 ,a n z ρ θ= Φ the rms can be rewritten as 
 

( ) ( )( )
21 2 1 22

0 0 0
00 0 0 0

2

1

, , k k k

k k k

rms d d a n z a n z d d

a n z

π π

ρ θ ρ θ ρ ρ θ ρ ρ θ
∞

∞

 
= Φ − Φ = − = 

 

 
=  

 

∑∫ ∫ ∫ ∫

∑
. (27) 

 
Consequently the wavefront rms can be expressed in terms of the Zernike coefficients ak. 
 
The Strehl ratio is another way to measure the error of the wavefront. The Strehl ratio is defined 
as the ratio between the on-axis intensity of an aberrated beam and an unaberrated beam. In 
presence of a tilt term the on-axis aberration is defined as the normal to the plane of the tilt. Due 
to this fact tilt errors should be removed when calculating the Strehl ratio. The Strehl ratio is 
written as 
 

21 2
( , )

2
0 0

1 ikS e d d
π

ρ θ ρ ρ θ
π

Φ= ∫ ∫  (28) 

 
where ( ),ρ θΦ is the aberrated wavefront. The Strehl ratio is a value between zero and one 
where a higher Strehl ratio corresponds to a better performing system[1]. The Strehl ratio can 
also be expressed in terms of the rms if the unit of the rms error is in radians 
 

2rmsS e−≈ . (29) 
 
This is an approximate expression but if the Strehl ratio is larger then 0.6 the error is less then 
10%[14]. 
 

3 EXPERIMENTAL METHODS 

3.1 Experimental setup 
The experimental setup consists of two main parts; the interferometer and the control system. 
The deformable mirror is a part of the interferometer. 
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Figure 8 Schematic drawing of the interferometer setup. BE: beam expander, BS: beam splitter, DM: deformable 
mirror, L: lenses, CCD: camera. 

3.1.1 The interferometer 
The interferometer setup is shown Figure 8 and Table 1 specifies values for some of the used 
components. The laser beam is directed through a beam expander and a spatial filter consisting 
of a microscope lens and a pin hole. 

Table 1 Parameters of the interferometer setup 

Item Description 

Laser HeNe, λ = 633 nm 

L1 f = - 50 mm 

L2 f = 150 mm 

L3 f = - 50 mm 

L4 f = 100 mm 

CCD Resolution 1040x1160, 12 bits 
1/60 s shutter duration 

 
The low-pass spatial filter improves the beam quality. After the spatial filter the beam size is 
reduced with an iris. If the diameter is too small it causes diffraction fringes. The iris is kept 
large enough to avoid this problem. Two lenses are added to make the light beam collimated 
(i.e. represent a plane wave). The beam passes through a beam splitter, which divides it into two 
parts. One beam falls onto the deformable mirror and the other falls onto the reference mirror. 
Both the deformable mirror and the reference mirror holders can be tilted. To obtain an extra tilt 
pattern for the Fourier transform method (see chapter 2.3.3) the reference mirror is tilted so that 
there is approximately 70 fringes on the interferogram. After the beam splitter the light passes 
through two lenses in order to adapt the beam to the detector in the CCD-camera. The 
interferogram is captured by the CCD-camera and transferred to a PC using a frame grabber 
card. A photograph of this setup is shown in Figure 9. 
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Figure 9 Experimental setup showing the interferometer and the deformable mirror. 

 

3.1.2 The control system 
The mirror is controlled using two PCI-cards (D/A converters) installed on an ordinary 
computer. One card controls the inner 19 actuators and the other card controls the outer 18 
channels. The two cards worked in different ranges. One worked between 0 to 215 V and the 
other in the range 0 to 613 V (after being amplified). Both cards have eight bit resolution. This 
means that the card that operates between 0 to 215 V has a higher resolution in the mirrors 
working area. This card was used for the inner 19 actuators because these are assumed to affect 
the mirror the most. The PCI cards are connected to amplifiers, which amplifies the signal 59 
times. A drawing of the amplifier with inputs and outputs is shown in Figure 10. The driving 
voltage of the amplifier is ±15 V. There is also an input that controls the maximum voltage 
output from the amplifiers. The maximum voltage of the mirror is 215 V. To have a security 
margin the maximum output voltage of the amplifiers was set to 200 V. 
 

+15V

Ground

-15V

AmplifierGround

Control for
maximum
output

Voltage to the
deformable
mirror

Voltage from
PCI-card

Voltmeter showing
the maximum
output voltage  

Figure 10 Schematic drawing of the amplifier 

 

3.1.3 Technical details – the deformable mirror 
The micromachined deformable mirror (MMDM) used in this study is produced by OKO 
Technologies in the Netherlands [4]. The diameter of the mirror is 15 mm and the active area is 
12 mm. It can be manipulated with 37 actuators that are positioned according to Figure 11. 
When a voltage is applied to one of the actuators the mirror moves toward the actuator structure 
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taking a concave shape. The maximum peak to valley distance for the mirror is about 7 µm[15]. 
The maximum voltage for the examined mirror was 215 V. 
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Figure 11 Actuator structure. 

 
The mirror consists of two major parts; the actuator structure and the flexible membrane mirror. 
The flexible membrane is mounted with a 20 to 100 µm gap relative to the actuator structure. 
The mirror is formed by the 0.5 µm thick silicon nitride membrane which is coated with a 0.2 
µm evaporated layer of aluminium to make the membrane reflective[16]. The principle of the 
mirror is shown in Figure 12. The maximum number of modes is obtained by using 
approximately 62% of the mirrors area which corresponds to 9.3 mm[17]. In the captured image 
used for interferogram analysis the square regime that contains the beam from the deformable 
mirror was extracted. Subsequently, 62% of this square was cut out and a circular aperture was 
exported to Matlab. This image was then used in the analysis. 
 

 
Figure 12 Schematics of the micromachined deformable membrane mirror. 

3.2 Determining the transfer function 
The theory of the transfer function was presented in chapter 2.5. The mirror surfaceΦ is 
described by 
 

= + 0Φ Rc Φ  (30) 
 
or 
 

1 1,1 1,2 1 1,0

2 2,1 2,2 2 2,0

r r c
r r c

φ φ
φ φ

      
      = +      
      
      

 (31) 
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In order to determine the transfer function R the voltage was varied for one actuator at the time. 
The voltage was set to eight different values ranging from 44 to 184 V chosen so that the 
squares of the values increase with a constant. The reason to have equal distance between the 
square of the voltages is that the mirror deflection is proportional to the voltage squared. The 
other actuators were kept at a constant voltage, Vbias. Using LabView the interferograms were 
recorded and saved. Subsequently they were analyzed (using Matlab) and the Zernike 
coefficients were calculated. This was done for all 37 actuators leading to 37x8 interferograms. 
When all the actuators are set to Vbias the mirror forms into a bias shape. The control signal c 
was set to zero for Vbias. To avoid numerical problems with large values of c, the vector c was 
normalized using the maximum actuator voltage allowed for the mirror. Due to the fact that the 
mirror deformation is proportional to the square of the applied voltage c should also be 
proportional to the square of the voltage suggesting the following normalization. 
 

( )2 2 2/ 200biasc V V= − . (32) 
 
The measurements were preformed by keeping ci = 0 for all the actuators except for one, cj, 
reducing equation (3.1) to 
 

1 1, 1 1,0

2 2, 2 2,0

j

j

r c
r c

φ φ
φ φ

      
      = +      
      
       .

 (33) 

 
The Zernike polynomials that were used were the last 34 of the 37presented in Appendix1. The 
first three (piston and tilt) were not used in the transfer function. Piston does not affect the phase 
of the light and the tilt component is easier to compensate with an additional tip-tilt mirror. 
There were 37 equations (one for each actuator) to be solved. Each one can be solved using the 
least square method where ri,j and cj are obtained. φ0,j are obtained for each of the 34 equations. 
Note that all these 34 φ0,j are nearly identical (where j is the number of the actuator). 

0Φ corresponds to the mirror surface with Vbias applied to all the actuators. For one of the 
measured transfer functions the standard deviation of the coefficients was less then or equal to 
0.013 rad. The highest standard deviation was obtained for polynomial number three, where the 
coefficient value was -13.62 rad. The average of the different φ0,j was calculated and used as 0Φ . 
 

3.3 Mirror control 
The two main ways to control the mirror is by using an open or a closed loop scheme. With an 
open loop a desired wavefront is produced using only the transfer function. The open loop 
control signal is calculated by inverting the transfer function as defined in eq. (23). As stated in 
chapter 2.6, R can not always be inverted. Instead the pseudo inverse is calculated using 
singular value decomposition. The inverse is denoted C. The wanted wavefront, Φwanted, was 
chosen and the vector or control signals were calculated using 
 

( )wanted biasµ= + −c c C Φ Φ  (34) 
 
As with the open loop scheme C is calculated and wantedΦ is chosen in the closed loop scheme. 
By modifying eq. (34) the closed loop scheme is obtained according to 
 

( )-1 1n n wanted nµ −= + −c c C Φ Φ  (35) 
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µ is a number between 0 and 1. The optimal value of µ is determined by experiment. The closed 
loop iteration starts with an open loop correction to determine 0c  and 0Φ . 
 

3.4 Zernike polynomial production 
Experiments were carried out to see how well the mirror can produce different Zernike 
polynomials. The main experiments were performed using an open loop scheme and then in 
some of the experiments a closed loop was utilised. Using the open loop scheme one coefficient 
at the time of wantedΦ was varied while the others were kept at zero. Zernike polynomial 
production was performed in different ways: 
 
1. with a flat surface as a bias. The transfer function was measured with Vbias taken to be 100, 
100 / 2  and 152 V and Φwanted(x,y) = akzk(x,y) 
 
2. with a bias having a constant voltage applied on all the actuators. Vbias was used as 100, 
100 / 2  and 152 V and Φwanted(x,y) = Φbias+akzk(x,y) 
 
3. with a spherical bias Φbias(x,y) = -14z3(x,y) rad. 
 
The reason to use a bias is that the mirror only deforms towards the actuator structure. With a 
bias that has a constant voltage applied to all the actuators, as in case 2 above, the dynamic 
range of the mirror should increase. The drawback of using this procedure is that aberrations are 
introduced to the system. The bias 100 / 2  V was evaluated because it theoretically corresponds 
to half of the maximum deflection. When measuring the peak to valley (PV) distance of the 
mirror detection the half of the maximum deflection occurs with a bias of 152 V (see chapter 
4.4). The bias of 100 V was used to investigate if it is important to be in the central part working 
region of the mirror.  
 
With a spherical bias that lies in the central part of the working region of the mirror the effect 
should be similar to applying a bias of constant voltage. The difference is that by using this 
transfer function to compensate for an aberration the resulting beam will be a spherical wave 
that can be compensated by a lens. To obtain an optimized bias the voltage to achieve this 
surface was obtained by using a closed loop. The transfer function with bias 152 V was used 
and the iteration was performed 30 times with µ = 0.5. As stated in chapter 2.6 some of the 
eigenmodes can be set to zero in order to decrease to noise. In order to see how the result 
depends of the number of eigenmodes 12, 16, 20 and 25 modes were corrected when producing 
the Zernike polynomials. 
 
To investigate how the results improves if we close the loop and improve the surface step by 
step Zernike polynomial production was preformed with polynomial three, four and eight 
(defocus, astigmatism and spherical aberration). These polynomials were chosen because they 
were easiest (three and four) and hardest (eight) to produce using an open loop scheme. The 
objective was to find out how the result could be improved. The µ values used were 0.3, 0.5 and 
1, respectively. The iteration was stopped if the rms value of Φerror was lower then 0.2 rad or 
after 16 iterations. As for the open loop the Zernike polynomials were produced using 12, 16, 20 
and 25 eigenmodes. The bias used for closed loop experiments was the spherical bias. 
 

4 RESULTS 

4.1 Validity of the Fourier transform method 
To compare the developed Matlab script using the Fourier transform method and Quick Fringe, 
an interferogram was analyzed using the different methods. The analyzed interferogram was 
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corresponding to the mirror with zero voltage on the actuators. The difference between the 
results comparing the methods is a constant factor. After normalizing the polynomials (dividing 
all the coefficients by the largest absolute value of the coefficients) the magnitude of the 
coefficients is similar (Figure 13). The piston and tilt coefficients are not compared. Hence, 
these results support the validity of the Fourier transform method used throughout this work. 
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Figure 13 Quick fringe vs. the Fourier transform method. Zernike coefficients calculated from the same 
interferogram using Quick fringe and the Fourier transform method. Both graphs are normalised. 

 

4.2 Linearity of the mirror 
The method described in section 3.2 requires that each one of the Zernike polynomials must be 
linear with respect to the square of the applied voltage. To verify this assumption the Zernike 
polynomials were plotted versus the control signal. Note that the control signal is not the same 
as the applied voltage. The coefficients for Zernike polynomials number 3 and 4 are plotted 
versus the control signal on actuator 1 and polynomials number 14 and 15 are plotted versus the 
control signal on actuator 11 (Figure 14). The lines plotted together with the measurements are 
the results from the least square calculations verifying that the mirror response is linear. Results 
for other actuators, Zernike polynomials and biases were found to be similar to those presented 
in Figure 14. 
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Figure 14 The mirrors Zernike coefficients (in radians) versus the control signal. The measurements are performed 
using the transfer function with Vbias = 141 V. 
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4.3 The eigenmodes of the mirror 
Using singular value decomposition (SVD) the matrix U represents the eigenmodes of the 
system. Figure 15 contains the first 9 eigenmodes of the mirror with the transfer function having 
a 141 V bias. The modes are ordered by the magnitude of the eigenvalues λ. The figure shows 
that a higher number of the mode corresponds to a more complex surface. 
 

 
 
Figure 15 The first nine eigenmodes of the mirror (Vbias = 141 V) 

 

4.4  Determining the bias 
The total response of the mirror was measured when the same voltage was applied to all of the 
actuators. The wavefront peak to valley distance (i.e. the difference between the highest and 
lowest point on the wavefront) is depicted in Figure 15. The mirror PV distance is half of these 
values. The maximum PV distance was 66.4 rad corresponding to the distance 6.7 µm at the 
wavelength λ = 632 nm. This value does not correspond to the stated maximum deflection of 7 
µm because only 62 % of the inner part of the mirror is used. The half of this distance occurs 
when the voltage is approximately 152 V to be compared with the theoretical value 
200 / 2 141V V≈ . 
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Figure 16 Peak to valley distance in radians versus the voltage squared. 
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4.5 Open loop 
Open loop correction was used to find the optimal number of correction modes and to 
investigate how well the mirror could produce different Zernike polynomials. 
 

4.5.1 Number of eigenmodes 
In order to find out the optimal number of eigenmodes, 12, 16, 20 and 25 modes were used to 
produce different Zernike polynomials. The results varied between the tested Zernike 
polynomials. For some Zernike polynomials the optimal number of modes depends on the 
coefficient value. One example of this behaviour is shown in Figure 17. The rms value of the 
error is plotted versus the number of modes. The wanted surface was 13 13wanted a zΦ = ⋅ . If a13 is 
less than -5 then 12 to16 modes is the best choice. However, when a13 is between -3 and -1 then 
20 to 25 modes turn out to be better choice. It was not possible to find any correspondence 
between how easy the polynomial was to produce and the optimal number of modes. For other 
Zernike polynomials the experimental results showed a varying number of optimal modes. 
 
Table 2 Optimal number of modes. The statistics show the best number of modes producing single Zernike 
polynomials. The utilised voltages are indicated.  

 100 V 141 V 152 V ∑ 

12-16 modes 2 2 2 6 
20-25 modes 
Different 
No difference 

3 
1 
3 

3 
3 
1 

3 
1 
4 

9 
5 
5 

 
From 30 measurements, 10 polynomials with 3 different bias some statistics are shown in Table 
2. "Different" means that for the same Zernike polynomial, it depends on the coefficient if it is 
preferable to use 12-16 modes or 20-25modes. "No difference" means that the results are 
independent of the number of modes. If a choice is made from these measurements 20 modes 
seems to be the best choice. However, more measurements are required to confirm the optimal 
number of modes. 
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Figure 17 Dependency of the rms value as the function of different number of eigenmodes. The following values 
were used: ( ) 13 13, bias a zθ ρΦ = Φ + with a13 = -7, -5, -3 and -1 rad. The plot shows the rms value for the resulting 
wavefront for different number of modes. 
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4.5.2 Zernike polynomial production 
To evaluate the open loop Zernike polynomial production the Zernike coefficients were used. 
They were measured using approximately 62 % of the mirror surface with the interferometer 
described above. The measured experimental wavefront was compared with the theoretical 
wavefront. The difference was determined according to 
 

error wantedΦ = Φ − Φ . (36) 
 
The rms value of Φerror was calculated using eq. (24). A limit for an approved surface of the 
mirror was defined as rms ≤ 0.8 rad. This rms value corresponds to a Strehl ratio of about 0.52 
using eq. (29). The approved rms value should be obtained for either 12, 16, 20 or 25 modes. 
 
Constant voltage bias 
The transfer function was measured with a bias of 100, 141 or 152 V applied to all of the 
actuators simultaneously. This corresponds to a mirror surface bias with a large defocus and 
some astigmatism. The wavefronts attributed to the different bias and expressed in the first 10 
Zernike coefficients are shown in Figure 18. 
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Figure 18 The surface corresponding to different voltage bias expressed in the first 10 Zernike coefficients The Vbias 
are from the top, 100, 141 and 152 V, respectively. 

 
None of the transfer functions were able to produce an approved surface using open loop when 
no bias voltage was applied to the actuators. The surfaces that were generated 
was wanted k ka zΦ = ⋅ and ak was varied between ±1 and ±7. The main part of the error was due to 
applying voltage to the actuators causing the mirror deforms in only one direction. This creates 
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a defocus, i.e. coefficient number three is less than zero and consequently affecting the the rms 
so that it becomes larger than 0.8. 
 
When wanted bias k ka zΦ = Φ + that is the deflection was measured compared to the bias and not a flat 
surface a better agreement between the constructed and wanted wavefront was obtained. Figure 
19 shows the difference, in radians, between the largest and smallest coefficient that forms an 
approved surface (rms ≤ 0.8) i.e. ak,max-ak,min. Three different intervals of the bias were 
compared. It is favourable to be in the middle range of the mirror working area which 
corresponds to a Vbias = 152 V. There is only one polynomial where the other transfer functions 
work better (defocus component). The largest advantage is achieved for polynomials number 9 
and 10 (corresponding to the trefoil aberration). 
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Figure 19 Difference between the largest and smallest coefficients with an approved area.  

 
In Table 3 the maximum and minimum coefficient to produce approved surfaces for different 
Zernike polynomials i.e. ak,min and ak,max are shown. The minimum coefficient for the third 
Zernike polynomial is lowest for the bias with 100 V due to the fact that the deflection is 
measured relative to the bias. A coefficient of -9 rad for a bias of 100 V corresponds to -14 rad 
for the mirror whereas a coefficient of -5 rad for the bias of 152 V corresponds to -19 rad. 
 

Table 3 Maximal and minimal coefficient values for different bias voltages and Zernike polynomials 

Zernike no. 
(k) 

100 V 141 V 152 V 

 ak,min ak,max ak,min ak,max ak,min ak,max 
3 -9 6 -6 10 -5 9 
4 -6 8 -6 8 -8 8 
5 -7 7 -8 7 -8 8 
6 -1 4 -2 4 -5 5 
7 -5 5 -4 3 -5 5 
8 -1 2 -2 1 -3 2 
9 -3 5 -3 5 -7 6 
10 -5 5 -4 3 -6 6 
11 -3 3 -3 3 -3 3 
12 -3 3 -3 2 -3 3 
 
 
Spherical bias 
In order to investigate if the mirror works differently with a spherical bias a spherical surface 
was studied. The surface and its coefficients are shown in Figure 20. The theoretical bias was 
supposed to be 314bias zΦ = − and was used when the coefficients were calculated. The measured 
bias had some contribution on other coefficients as indicated in Figure 20. The motivation to use 
-14 rad as a coefficient is that this number corresponds to the defocus coefficient for the bias 
with Vbias = 152 V. 
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Figure 20 The surface of the spherical bias and the first 10 Zernike coefficients representing the surface. 
 
Following the scheme for the bias with a constant voltage the deflection from the bias was 
measured. The limit for an approved surface was rms ≤ 0.8 rad. The distance between the 
largest and the smallest value of the coefficient that produce an approved surface is shown in 
Figure 21. In comparison, the coefficients with the bias of 141 and 152V are shown. The 
dynamics of the mirror using the spherical bias is less then when applying a bias with 152 V but 
larger in comparison to 141V bias. 
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Figure 21 Difference between largest and smallest coefficients with an approved area ,max ,mink ka a− for the spherical 

bias (left). The maximum and minimum coefficient to produce approved surfaces, i.e. ak,max and ak,min for the 
spherical bias (right). 

 

4.6 Closed loop 
 
The closed loop scheme was used to investigate if the results from the Zernike production using 
the open loop scheme could be improved. The spherical bias was used since the defocus 
aberration introduced by the bias is easy to compensate for using e.g a passive optical 
component. All experiments were carried out with µ = 0.3, 0.5 and 1 and 12, 16, 20 and 25 of 
the mirror eigenmodes were used. The mirror shapes investigated were: i) defocus with φwanted = 
a3z3 and a3 = 10, 11, 12, 13 and 14 rad, ii) astigmatism with φwanted = a4z4 and a4  = 10, 11, 12 
and 13 rad and iii) spherical aberration with φwanted = a8z8 and a8  = 2, 3, 4, 5 and 6 rad. All 
iterations start by using the open loop to obtain an initial value. 
 

4.6.1 Dependence of µ 
In the closed loop scheme the gain factor µ determines how much the control signal changes per 
iteration. A larger µ gives a faster but less stable improvement. No significant problems with 

Zernike (no.) ak,min ak,max 

3 -4 11 
4 -6 10 
5 -6 9 
6 -4 4 
7 -4 4 
8 -2 2 
9 -6 5 
10 -5 5 
11 -3 3 
12 -3 3 
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fluctuations due to large µ values were observed. Figure 22 shows the rms value of the 
wavefront error using different values of µ. The rms error decreases rapidly for the first 
iterations and an equilibrium is reached. Table 4 shows how much the rms value improves in 
average for the different coefficients when 16 eigenmodes are used. The best choice is obtained 
with µ = 1. 
 

Table 4 Average enhancement of rms (∆rms) value with different µ+ 

 µ = 0.3 µ = 0.5 µ = 1.0 

Defocus 1.36 1.44 1.52 

Astigmatism 0.48 0.49 0.60 

Spherical aberration 0.30 0.31 0.34 
+)All values are in rad and originates from experiments with 16 eigenmodes. 
 

4.6.2 Number of eigenmodes 
The number of eigenmodes used in the production of Zernike polynomials is important. This 
was clear even with the open loop scheme described above. In the closed loop scheme the 
number of eigenmodes had an even greater importance. With the surfaces producing defocus the 
results were as expected i.e. the rms value improved per iteration. The left plot in Figure 23 
shows the rms value vs. iteration number when φwanted = 10z3. The number of modes makes a 
small difference but the results improve for all different number of modes. However, when 
producing a surface with astigmatism or a surface with spherical aberration the results depended 
highly on the number of modes. With 20 or 25 modes, the rms value could even increase from 
the initial value. The centre and the right plot in Figure 23 displays the rms value vs. iteration 
number for φwanted = 10z4 and φwanted = 2z8. For the astigmatic surface the rms value increases 
compared with the open loop value (the first iteration) when the number of eigenmodes are 20 
or more. 
 

0 10 20
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Defocus

Iteration number

rm
s 

va
lu

e 
[r

ad
]

0 10 20

0.7

0.8

0.9

1

1.1

1.2

1.3

rm
s 

va
lu

e 
[r

ad
]

Iteration number

Astigmatism

0 10 20
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Iteration number

rm
s 

va
lu

e 
[r

ad
]

Spherical

µ = 0.3
µ = 0.5
µ = 1.0

 
Figure 22 The rms improvements for different µ values. The rms is plotted versus the iteration number. Twelwe 
eigenmodes were used and the surfaces produced were (from left to right), φwanted = 10z3, φwanted = 10z4 and φwanted = 
2z8. 

 
For the spherical aberration the rms value increases after a few iterations when 20 eigenmodes 
are used. However, with 25 modes the rms values decreases and even reaches 0.2 where the 
iteration stops. With other Zernike coefficient values the results were quite similar. The defocus 
surfaces improved for all cases. There were no astigmatic surfaces whereas the rms value 
improved for 20 and 25 modes. In some of the experiments with astigmatism the rms value did 
not improve with respect to the initial value. For the surfaces with spherical aberrations the 
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number of modes that worked depended on the coefficient value. With a8 = 2 using 12, 16 and 
25 modes the results improved. With a8 = 3 or 4 only 12 and 16 modes gives an improvement 
and when a8 = 5 or 6 then the rms value increases after a few iterations even with 16 modes. 
 

0 10 20
0

0.5

1

1.5

2

Iteration number

rm
s 

va
lu

e 
[r

ad
]

Defocus

0 10 20

0.8

1

1.2

1.4

1.6

Iteration number

rm
s 

va
lu

e 
[r

ad
]

Astigmatism

0 10 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Iteration number

rm
s 

va
lu

e 
[r

ad
]

Spherical

12 modes
16 modes
20 modes
25 modes

 
Figure 23 rms value for different number of eigenmodes using a closed loop scheme. The gain was µ = 0.3 in all 
plots. The iteration was aborted when the rms value was less then 0.2 rad. 
 
To further investigate why the closed loop might increase the rms values a measurement was 
performed with φwanted = 10z4 (astigmatism) and µ = 0.1. A low µ was used to make sure that the 
divergence did not depend on a large µ value. The rms value increased for 20 and 25 modes as 
shown in the left plot in Figure 24. Hence the problem with increasing rms errors is not due to µ 
but most likely to the modes of high order. The results also show that after 30 to 40 iterations 
equilibrium is reached. If the rms value is divided into the component from the different Zernike 
polynomials it is clear that the largest part of the increasing rms value originates from the 
defocus component (Figure 24). 
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Figure 24 Investigations of closed loop rms values. The left plot shows the rms value for φwanted = 10z4 and µ = 1. 
The right plot shows the rms value divided into the defocus and astigmatism components with 20 eigenmodes. 

 
The conclusion that can be made from these results is that more than 20 modes causes instability 
to the system. Even 16 eigenmodes might cause instability and divergence. In the case where 16 
modes cause instability the rms values are high even with 12 modes which indicate that the 
surface can not be produced by the mirror. Consequently, 16 modes give the best rms values in 
almost all the cases and can therefore be considered to be the best choice. 
 

4.6.3 Improvement 
All the Zernike polynomials that were produced were improved by using the closed loop (when 
16 modes or less were used) approach. Table 5 shows the improvement of the rms value with 16 
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modes and µ = 1. In these cases the initial rms values were 1 < rms < 2. The largest 
improvement is caused by defocus (1.69 rad) but also the spherical aberration can improve if the 
coefficient is 2 or 3 rad. With the astigmatism the results improve less as shown in Table 5. 
 
Table 5 Improvement of the rms value using closed loop. The results corresponds to µ = 1.0 and 16 eigenmodes. All 

values are in rad 

a Defocus a Astigmatism a Spherical 

10 1.35 10 0.49 2 0.94 

11 1.42 11 0.58 3 0.62 

12 1.55 12 0.62 4 0.2 

13 1.69 13 0.63 5 0.04 

14 1.59 14 0.68 6 -0.11 

 
 

5 DISCUSSIONS AND CONCLUSIONS 

The spatial behaviour of a micromachined membrane deformable mirror has been investigated. 
Transfer functions corresponding to different voltage bias have been determined. The transfer 
functions were evaluated by testing the capability to produce wavefronts that can be described 
by different Zernike polynomials using an open loop scheme. In addition, a closed loop scheme 
has been investigated for three polynomials using spherical bias to study how much the mirror 
performance could be improved. It is important to remember that only one mirror was tested. 
 
Wavefronts according to the first ten Zernike polynomials were produced by the mirror in order 
to obtain an understanding of how well the mirror could deform into different shapes. The 
Zernike polynomials were produced using an open loop scheme. Some of the polynomials were 
subsequently enhanced with a closed loop method. Several biases were investigated with the 
open loop scheme; constant voltage on all actuators (voltage 100, 141 and 152V) and a spherical 
bias Φ =-14z3 rad. The bias with 152 V exhibited the best resolution i.e. the difference between 
the largest and the smallest Zernike coefficient that can be produced was largest. The spherical 
bias had a good resolution too and is probably the best choice since it only leaves a spherical 
aberration which can be corrected by a lens. The PV value of the spherical bias was slightly less 
then the PV value for the bias with 152 V. This fact probably explains why the spherical bias 
does not give as good results as the 152 V bias. 
 
The low order Zernike polynomials, defocus and astigmatism, could be produced with large 
coefficients values. It seems like the polynomials having a radial part of the power of three 
(polynomials 6, 7, 9 and 10) the bias with 152 V is more important to use then for the other 
polynomials. The closed loop scheme can enhance the open loop results. The magnitude of the 
enhancement depends on the conditions. In the case of defocus to create φwanted = 10z3 with the 
bias φwanted = -14z3 means that the mirror surface is φ = -4z3. This surface should be quite easy to 
achieve but starting with the bias it becomes more difficult. In this case, the closing of loop 
creates a big difference. In the cases of astigmatism and spherical aberration the enhancement is 
not as large. With the open loop the results varied with respect to the optimal number of 
eigenmodes. However, with the closed loop it became obvious that when using 20 modes or 
more the system was not stable. This need to be further investigated but with the results 
available it seems as if 16 modes is the best choice. 
 
If the same voltage was applied to the mirror several consecutive times the results were 
identical. However, if the same voltage was applied to the mirror with a few days difference the 
results varied somewhat (typically the rms value changed with about 0.1 rad over a week). This 
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is probably due to small changes in the interferometer. The main error sources which need to be 
considered include; aberrations in the interferometer, the aperture applied by the software (i.e. 
the region of the interferogram that was analyzed) might not be perfectly centred and the fact 
that the superposition principle for the different actuators is an approximation. 
 
Aberrations in the interferometer are probably the largest error source. The aberrations depend 
both on errors when aligning the interferometer and on imperfections in the components. The 
error in alignment is probably the main reason for why the values change over time. The errors 
due to the misplacement of the software aperture are not very large. A short experiment was 
done where the aperture was moved with 10 pixels in both the x and y direction. The difference 
in the Zernike coefficient values were less then or equal to 0.23 rad and the average difference 
was 0.10 rad. When the aperture was moved 10 additional pixels the difference was doubled. 
Finally, the fact that the superposition principle is not completely accurate is the reason why the 
closed loop scheme should improve the results. If the mirror was perfectly linear and the 
superposition assumption was totally accurate there would not be a need for the closed loop. 
 
In conclusion, a deformable membrane mirror was tested. Four different transfer functions were 
used, where the one with Vbias= 152V had the highest resolution. Zernike polynomials were 
produced with coefficient values reaching from 2 to 11 rad depending on the polynomial. A 
closed loop scheme was tested and improved the results significantly. The number of the 
mirrors eigenmodes that were used in the transfer function had a great influence on the result. 
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6 APPENDIX 1 

6.1 The least square method 
The least square method is a scheme to determine the best solution to an over-determined 
equation system. We want to solve the system 
 

=Ax b  (37) 
 
where A is a mxn matrix and b is a column vector with m elements. Since the equation is over 
determined, m > n, the error becomes 
 

= −r b Ax . (38) 
 
The aim of the method is to minimize the square of this error 
 

2

1

m

i
i

r
=

= ∑r . (39) 

 
The solution is obtained by solving the equation 
 

T T=A Ax A b . (40) 
 
This equation has a unique solution. For a proof of this statement the reader is referred to a 
standard text book in numerical analysis, e.g. ref[18]. 
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6.2 Zernike polynomials 
There are several different ways to number the polynomials. The reason for using the order 
presented in this appendix is that Quick Fringe uses it. 
 

Table 6 Zernike polynomials 

 
 
 

6.3 Program source code 

6.3.1 Matlab code transforming an interferogram into Zernike coefficients 
 
function [x] = image2zernike(impath) 
 
%Get the interferogram images from file 
inter = imread(impath); 
 
% Cut out the interferogram from the image 
inter = inter(140:960,230:1050); 
 
% Set the number of lines from the added tilt in the interferogram whith a 
% flat mirror 
number_of_lines = 54; 
 
% Reduce the window to the inner 64% 
s = size(inter,1); inter = inter(0.18*s:0.82*s, 0.18*s:0.82*s); 
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% Normalize the interferogram 
inter = (double(inter)); 
inter = (inter-(min(min(inter)))); 
inter = (inter/max(max(inter))-0.5); 
 
% Shrink the image to 400*400 pixels 
s = size(inter,2); 
inter = interp2(inter,1:(s/400):s,(1:(s/400):s)'); 
s = size(inter,2); 
 
% Add a circular aperture 
for i = 1:s 
    for j = 1:s 
        if (sqrt((i-s/2)^2 + (j-s/2)^2)) > (s/2) 
            inter(i,j) = 0; 
        end 
    end 
end 
 
% Fourier transform 
Inter = fft2(inter); 
 
% Move the quadrants, to have origo in the middle. 
Inter2 = fftshift(Inter); 
f = number_of_lines - 1; 
 
% Translate the fourier transform, and filter it. 
skal = 1.2; 
Inter3 = [zeros(s,f) Inter2(:,1:(s-f))]; 
Inter4 = [zeros(s,(s/2-f/skal))  Inter3(:,(s/2-f/skal):(s/2+f/skal)) zeros(s,(s/2-f/skal))]; 
 
Inter5 = fftshift(Inter4); 
 
% Use the invers fourier transform, and pick out the angel. 
phase = angle(ifft2(Inter5)); 
 
% Add a circular aperture 
for i = 1:s 
    for j = 1:s 
        if (sqrt((i-s/2)^2 + (j-s/2)^2)) > (s/2) 
            phase(i,j) = -pi; 
        end 
    end 
end 
 
% Unwrap the phase in the x-direction 
phase = unwrap(phase,[],2); 
 
% Unwrap the phase in the y-direction 
phase(200:400,:) = unwrap(phase(200:400,:)); phase2 = 
imflip(phase(1:200,:)); phase2 = unwrap(phase2); phase = 
[imflip(phase2) ; phase(201:400,:)]; 
 
% Reduce the size of the field to decrease the calculation time 
s = size(phase,2); 
phase = interp2(phase,1:(s/200):s,(1:(s/200):s)'); 
 
% Add a circular appertur 
s = size(phase,2) maxi = phase(100,100); 
for i = 1:s 
    for j = 1:s 
        if (sqrt((i-s/2)^2 + (j-s/2)^2)) > (s/2); 
            phase(i,j) = maxi; 
        end 
    end 
end 
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% Reduce the phase to 100*100, and transform it into polar coordinates 
phase = interp2(phase,1:2:200,(1:2:200)'); 
 
x = [-1:2/99:1]; 
y = [-1:2/99:1]; 
[X,Y] = meshgrid(x,y); 
[Theta,R,Phase] = cart2pol(X,Y,phase); 
 
% Make a matrix of zernike polynomials 
 
z(1:100,1:100)     = R.*cos(Theta);  %x 
z(1:100,101:200)   = R.*sin(Theta);  %y 
z(1:100,201:300)   = 2*R.^2-1; 
z(1:100,301:400)   = R.^2.*cos(2*Theta); 
z(1:100,401:500)   = R.^2.*sin(2*Theta); 
z(1:100,501:600)   = (3*R.^3-2*R).*cos(Theta); 
z(1:100,601:700)   = (3*R.^3-2*R).*sin(Theta); 
z(1:100,701:800)   = 6*R.^4-6*R.^2+1; 
z(1:100,801:900)   = R.^3.*cos(3*Theta); 
z(1:100,901:1000)  = R.^3.*sin(3*Theta); 
z(1:100,1001:1100) = (4*R.^4-3*R.^2).*cos(2*Theta); 
z(1:100,1101:1200) = (4*R.^4-3*R.^2).*sin(2*Theta); 
z(1:100,1201:1300) = (10*R.^5-12*R.^3+3*R).*cos(Theta); 
z(1:100,1301:1400) = (10*R.^5-12*R.^3+3*R).*sin(Theta); 
z(1:100,1401:1500) = 20*R.^6-30*R.^4+12*R.^2-1; 
z(1:100,1501:1600) = R.^4.*cos(4*Theta); 
z(1:100,1601:1700) = R.^4.*sin(4*Theta); 
z(1:100,1701:1800) = (5*R.^5-4*R.^3).*cos(3*Theta); 
z(1:100,1801:1900) = (5*R.^5-4*R.^3).*sin(3*Theta); 
z(1:100,1901:2000) = (15*R.^6-20*R.^4+6*R.^2).*cos(2*Theta); 
z(1:100,2001:2100) = (15*R.^6-20*R.^4+6*R.^2).*sin(2*Theta); 
z(1:100,2101:2200) = (35*R.^7-60*R.^5+30*R.^3-4*R).*cos(Theta); 
z(1:100,2201:2300) = (35*R.^7-60*R.^5+30*R.^3-4*R).*sin(Theta); 
z(1:100,2301:2400) = 70*R.^8-140*R.^6+90*R.^4-20*R.^2+1; 
z(1:100,2401:2500) = R.^5.*cos(Theta*5); 
z(1:100,2501:2600) = R.^5.*sin(Theta*5); 
z(1:100,2601:2700) = (6*R.^6-5*R.^4).*cos(4*Theta); 
z(1:100,2701:2800) = (6*R.^6-5*R.^4).*sin(4.*Theta); 
z(1:100,2801:2900) = (21*R.^7-30.*R.^5+10*R.^3).*cos(3*Theta); 
z(1:100,2901:3000) = (21*R.^7-30.*R.^5+10*R.^3).*sin(3*Theta); 
z(1:100,3001:3100) = (56*R.^8-105*R.^6+60*R.^4-10*R.^2).*cos(2*Theta); 
z(1:100,3101:3200) = (56*R.^8-105*R.^6+60*R.^4 -10*R.^2).*sin(2.*Theta); 
z(1:100,3201:3300) = (126*R.^9-280*R.^7+210*R.^5-60*R.^3+5*R).*cos(Theta); 
z(1:100,3301:3400) = (126*R.^9-280*R.^7+210*R.^5-60*R.^3+5*R).*sin(Theta); 
z(1:100,3401:3500) = 252*R.^10-630*R.^8+560*R.^6-210*R.^4+30*R.^2-1; 
z(1:100,3501:3600) = 924*R.^12-2772*R.^10+3150*R.^8-1680*R.^6+420*R.^4-42*R.^2+1; 
z(1:100,3601:3700) = 1; 
 
% Add a circular aperture to all of the polynomials 
for i = 1:100 
    for j = 1:100 
         if R(i,j) > 1 
             z(i,j:100:3700) = 0; 
             Phase(i,j) = 0; 
         end 
    end 
end 
 
% Use least square method to fit the phase to zernike polynomial 
for i = 0:99 
    A((i*100+1):((i+1)*100),1:37) = z(1:1:100,(i+1):100:3700); 
end for i = 0:99 
    b(i*100+1:(i+1)*100,1) = Phase(1:1:100,i+1); 
end 
 
x = -lsqr(A,b,1e-9,100); 
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6.3.2 Control program for the mirror 
 
#include <windows.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <winioctl.h> 
#include <iostream.h> 
#include "ClassDriver.h" 
#include <stddef.h> 
#include <conio.h> 
 
#define BASE_ADDRESS_2 0xDC00 
#define BASE_ADDRESS_1 0xD800 
 
_declspec(dllexport) float voltout(long volt_in[]); 
_declspec(dllexport) float voltout(long volt_in[]) 
 
{ 
    int i; 
    int error; 
    int konv[38]; 
    konv[1] = 13; 
    konv[2] = 21; 
    konv[3] = 10; 
    konv[4] = 14; 
    konv[5] = 2; 
    konv[6] = 1; 
    konv[7] = 9; 
    konv[8] = 20; 
    konv[9] = 22; 
    konv[10] = 11; 
    konv[11] = 12; 
    konv[12] = 7; 
    konv[13] = 4; 
    konv[14] = 5; 
    konv[15] = 3; 
    konv[16] = 0; 
    konv[17] = 15; 
    konv[18] = 8; 
    konv[19] = 23; 
 
    konv[20] = 9; 
    konv[21] = 23; 
    konv[22] = 22; 
    konv[23] = 21; 
    konv[24] = 8; 
    konv[25] = 4; 
    konv[26] = 2; 
    konv[27] = 7; 
    konv[28] = 5; 
    konv[29] = 3; 
    konv[30] = 1; 
    konv[31] = 0; 
    konv[32] = 15; 
    konv[33] = 14; 
    konv[34] = 13; 
    konv[35] = 12; 
    konv[36] = 11; 
    konv[37] = 10; 
 
 
// Create Handle 
    CDriver PortDriver("\\\\.\\PORTIO1"); 
     PortDriver.Open(1, BASE_ADDRESS_1, 0x0080); 
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     PortDriver.Open(2, BASE_ADDRESS_2, 0x0080); 
 
    for (i = 0; i<19; i++) 
    { 
        if(PortDriver.Write(1, BASE_ADDRESS_1+(konv[i+1]*4), volt_in[i])!=0) 
            error = 1; 
        // i = 0 => kanal 1 = 0+1 
    } 
    for (i = 19; i<37; i++) 
    { 
        if(PortDriver.Write(2, BASE_ADDRESS_2+(konv[i+1]*4), volt_in[i])!=0) 
            error = 1; 
        //i = 19 => kanal 1 = 19-18 
 
    } 
    if (error ==1) 
            return (1); 
    else 
        return (0); 
} 
\end{verbatim} 
\end{scriptsize} 
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