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On the Order of Accuracy for Difference

Approximations of Initial–Boundary Value

Problems

Magnus Svärd ∗and Jan Nordström†

October 20, 2005

Abstract

Finite difference approximations of the second derivative in space

appearing in, parabolic, incompletely parabolic systems of, and second-

order hyperbolic, partial differential equations are considered. If the

solution is pointwise bounded, we prove that finite difference approx-

imations of those classes of equations can be closed with two orders

less accuracy at the boundary without reducing the global order of

accuracy.

This result is generalised to initial-boundary value problems with

an mth-order principal part. Then, the boundary accuracy can be

lowered m orders.

Further, it is shown that schemes using summation-by-parts op-

erators that approximate second derivatives are pointwise bounded.

Linear and nonlinear computations, including the two-dimensional

Navier-Stokes equations, corroborates the theoretical results.

1 Introduction

For computations of numerical solutions to an initial-boundary value prob-
lems, it is commonly known that one order less accuracy at the boundary
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is allowed. This stems from two articles by Gustafsson, [1, 2], and refers to
the order of accuracy of the numerical boundary conditions. The physical
boundary conditions have to be approximated to the global order of accu-
racy. Also, in [2] it was shown that 2 orders is recovered at the boundary for
parabolic problems, if Dirichlet boundary conditions are used and a number
of algebraic conditions are satisfied.

Abarbanel et al. showed in [3] that 1.5 orders of accuracy can be re-
covered theoretically at the boundary for parabolic problems with general
boundary conditions. They present computations where two orders of accu-
racy is recovered, indicating that their theoretical estimate is not sharp.

In [4] Mattsson and Nordström suggested that for parabolic problems as
well as incompletely parabolic problems, the numerical boundary conditions
(or numerical closure) can be approximated with two orders less accuracy for
parabolic terms. Further, the physical boundary conditions are allowed to
be approximated with one order less accuracy when the boundary conditions
are weakly implemented. These conclusions are supported with extensive
numerical experiments and an analysis giving conditions for the hypothesis
to be true. However, the conditions derived are algebraically difficult to
evaluate for the actual numerical scheme.

In this article we consider parabolic, as well as incompletely parabolic
systems of partial differential equations with general boundary conditions.
We prove that two orders less accuracy is allowed for the approximation of
second derivatives at the boundary, if the scheme yields a pointwise bounded
solution. It is also proven that the results carry over to discretisations of
second-order hyperbolic equations, such as the wave equation.

The theory is also taken one step further by considering equations with an
mth-order principal part. Then the order of accuracy for numerical boundary
conditions can be lowered m orders if the scheme is pointwise stable.

The article is organised as follows: in Section 2, accuracy theorems are
proven under specific stability assumptions; Section 3 proves that the theo-
rems are applicable to Summation-by-Parts operators (SBP operators) with
the Simultaneous Approximation Term technique (SAT) approximating the
boundary conditions; in Section 4 computations that corroborate the theo-
retical results are presented.

2 Analysis

The focus in this paper will be discretisations near the boundary. To simplify
the notation we consider semi-infinite problems in space. This is no restric-
tion since well-posedness on a bounded domain follows from well-posedness
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of the Cauchy problem and two half-plane problems (see [5]).

2.1 The Advection-Diffusion Equation

Consider the parabolic equation,

ut + aux = εuxx + F (x, t), 0 ≤ x ≤ ∞, t ≥ t0,

u(0, t) + αux(0, t) = g(t), |u| → 0, x → ∞ (1)

u(x, t0) = f(x),

where ε > 0 and ‖·‖ denotes some norm; f is the initial data; g is the bound-
ary data and F is the forcing function. Note that, with a > 0, the energy
method applied to (1) leads to a non-growing energy for the homogeneous
problem if −2ε

a
≤ α ≤ 0 and hence well-posedness.

A general semi-discretisation of (1), with grid spacing h, would be,

vt = Mhv + Bh, v(0) = f (2)

where Mh is the part of the discretisation operator multiplying the unknowns
and Bh is a vector that includes the boundary data and the forcing function.
Further, v is the vector function approximating the solution of (1) and f
is the vector function identical to f(x) at the grid points. Note that, the
general formulation (2) covers both the case when the boundary conditions
are exactly enforced (strong imposition) or weakly imposed as a penalty term.

Next, we define and discuss a few notions that frequently will be used.
Let ‖ ·‖h denote the l2-norm, i.e. ‖v‖2

h = hvT v. In [5] the following definition
is given.

Definition 2.1 The approximation, v, is strongly stable if, for all h ≤ h0,
the estimate

‖v(t)‖2
h ≤ K(t)(‖f‖2

h + max
0≤τ≤t

‖F (τ)‖2
h + max

0≤τ≤t
g(τ)2) (3)

holds. Here K(t) is a bounded function in any finite time interval and does
not depend on the data. The approximation is stable if (3) holds with g(t) = 0

With the norm ‖v‖∞ = supi |vi| we modify the previous definition.

Definition 2.2 The approximation, v, is strongly pointwise stable if, for all
h ≤ h0, the estimate

‖v(t)‖2
∞ ≤ K(t)(‖f‖2 + max

0≤τ≤t
‖F (τ)‖2 + max

0≤τ≤t
g(τ)2) (4)

holds. Here K(t) is a bounded function in any finite time interval and does
not depend on the data. (‖ · ‖ denotes some norm.) The approximation is
pointwise stable if (4) holds with g(t) = 0
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We also define the space l∞ as the space of all grid functions f with the
property that ‖f‖∞ is bounded.

Lemma 2.3 Assume that F , f and g are smooth such that the solution u of
(1) is smooth. Let v denote the solution to the consistent discretisation (2)
of (1) with grid spacing h. Let uh denote the projection of the exact solution
onto the grid. If v is pointwise stable, for all h ≤ h0, v converges to uh

uniformly.

Proof Insert uh into (2) to obtain, (uh)t = Mhuh + Bh + Th with uh(0) = f
where Th denotes the truncation error vector. Using (2) we obtain, (uh−v)t =
Mh(uh−v)+Th, with (uh−v)(0) = 0. Since the scheme is pointwise stable we
have the estimate, ‖uh − v‖2

∞ ≤ K(t)(sup0≤τ≤t ‖Th(τ)‖2
∞). By consistency

and smoothness of u, ‖Th(τ)‖2
∞ → 0 as h → 0. Thus, we have uniform

convergence.

Lemma 2.4 Assume that v is stable in some norm (not necessarily the l2-
norm), i.e. the estimate (3) holds when g = 0 for a specific norm. Then v
is uniquely defined in that norm.

Proof Assume that there exist two solutions w and v to equation (2). By
linearity we have the error equation, (v−w)t = Mh(v−w), with (v−w)(0) = 0
and the bound ‖v − w‖ ≤ 0 for h ≤ h0 follows.

Lemma 2.5 If v is bounded in l∞, then v converges uniformly and uniquely
to u, in the sense of ‖uh − v‖∞ → 0 as h → 0.

Proof Lemma 2.3 and Lemma 2.4.

To analyse the order of accuracy we shift our focus to consider the error
equation by subtracting the true solution, u(x, t) from v, i.e. e = v − uh.
Using either a strong or weak approximation of the boundary conditions we
would arrive at,

et = Mhe + Th, e(0) = 0. (5)

As before, Th denotes the truncation error and generally we have, T =
(O(hr), ...,O(hr),O(h2p), ...)T , where h denotes the grid spacing. To describe
the size and structure of Th, we will use Th = O(hr, h2p) for boundary and
interior points respectively. If (2) is stable and r = 2p we immediately ob-
tain the desired order of accuracy 2p of the scheme by applying the energy
method (See proof of Lemma 2.3, where the norm may be different from the
supremum norm.). However, we will consider r < 2p. The first theorem
below states that two orders less accuracy is allowed on the boundary in the
purely parabolic case, a = 0.
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Theorem 2.6 If v is a pointwise stable discretisation of (2) for h ≤ h0 and
a = 0, then with r = 2p−2, the global order of accuracy of the approximation
(2) is 2p.

Proof We split the truncation error into a boundary and internal part, such
that T = Ti + Tb where Tb = (O(hr), . . . ,O(hr), 0, . . .)T = O(hr, 0) and
Ti=(0, . . . , 0,O(h2p), . . .)T = O(0, h2p). Similarly, the error is split into e =
ei + eb. Note that ei and eb are both nonzero everywhere since there is in
general a strong coupling between the boundaries and the interior. By the
boundedness in l∞ of v, and since ei is discretised with the same scheme as
v, ei satisfies the same estimate, such that,

‖ei(t)‖∞ ≤ K(t)‖Ti(t)‖∞ ≤ O(h2p). (6)

Next, we turn to the boundary part. Laplace transform (5) and consider
only errors coming from the discretisation at the boundary, sêb = Mhêb +
T̂b, Re s ≥ 0.

In the purely parabolic case all the entries of M are proportional to 1/h2.
Thus, we multiply by h2 such that M̃ = h2Mh to make every nonzero entry
of M̃ of order O(1). With s̃ = sh2 we obtain,

s̃êb = M̃ êb + h2T̂b, Re s̃ ≥ 0. (7)

Note that, the scheme is the same at every point except at points near the
boundary. We consider (7) to be a homogeneous difference equation where
h2T̂b is its initial data. We write the solution to (7) as,

(êb)j =

2p
∑

l=1

σlκ
j
l . (8)

Assume without loss of generality that the interior scheme is 2p = k + q + 1
points wide. Since (T̂b)j = 0 at an interior point j we have,

s̃(êb)j =

q
∑

i=−k

αi(êb)i+j, (9)

where αi are constants. Inserting the ansatz (8) into (9) yields the charac-
teristic equation,

s̃κj =

q
∑

i=−k

αiκ
i+j, (10)
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which has solutions κl(s̃) for l = 1..2p. Denote by κ1, .., κm the roots with
|κi| ≤ 1 for i = 1..m. The remaining roots are discarded due to boundedness
of the solution. That is σm+1 = ... = σ2p = 0. Hence, the solution reads,
(êb)j =

∑m
l=1 σlκ

j
l .

The constants σl, l = 1..m are determined by the scheme near the bound-
ary. Assume that we have ν+1 boundary points (discretised with a boundary
scheme). If ν + 1 > m we may have additional modes near the boundary.
For j = 0, .., ν we write the solution as, (êb)j =

∑m
l=1 σlκ

j
l +
∑ν+1−m

l=1 τlφ
j
l .

Define σ = (σ1, ..., σm, τ1, ..., τ1, ...τν+1−m)T such that, κ̄σ = êrb, where êrb

now denotes the restriction of êb to the ν + 1 boundary points and,

κ̄ =







κ0
1 . . . κ0

m φ0
1 . . . φ0

ν+1−m
...

...
...

...
κν

1 . . . κν
m φν

1 . . . φν
ν+1−m






(11)

Since the φi:s do not continue into the domain we choose them such that each
column in κ̄ is linearly independent. We will use κ̄ to determine σ which is
why we exclude the interior points since (7) is already fulfilled at the interior
points by the κl:s, independent of σ. Let Ir denote the (ν + 1) × (ν + 1)
identity matrix. At the ν + 1 boundary points where the interior scheme
is altered we obtain, (s̃Ir − M̃r)κ̄σ = h2T̂rb, where Mr and T̂rb denotes the
restrictions to the (ν +1) boundary points. To estimate σ we note again that
M̃r is a matrix with coefficients independent of h and s̃. We have,

(s̃κ̄ − M̃rκ̄)σ = h2T̂rb, (12)

where the coefficients of R = (s̃κ̄ − M̃κ̄) are independent of h. Thus if
a unique solution to (12) exists, σ would be of order h2T̂rb, i.e. we would
gain two orders of accuracy at the boundary. Then by Parseval’s relation
we can transform back to e to conclude that the desired order of accuracy is
obtained. We need to prove that (12) has a solution for all Re s̃ ≥ 0.

By well-posedness, the exact continuous solution is unique. From point-
wise stability of the numerical scheme and Lemma 2.5, v converges uniquely
and pointwise to u. The same properties carries over to e and ei and they
will converge uniquely and pointwise to 0. Hence, eb = e − ei is unique.

Suppose σ is not uniquely determined by (12) then êb would not be unique.
However, since e and ei are bounded, êb has to be bounded and the inverse
Laplace transform could be performed and yield a non-unique eb. A contra-
diction.

Next, we want to add a lower-order term, that is a 6= 0 in (1), and still
recover the same accuracy result. We need the following Lemma.
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Lemma 2.7 If A is an invertible matrix and E a matrix, then A + E
will be invertible if ρ(A−1E) < 1, where ρ(·) denotes the spectral radius
(i.e. the magnitude of the largest eigenvalue), and (A + E)−1 = A−1 −
∑∞

k=1(−1)k+1(A−1E)kA−1.

Proof See [6].

The main difference compared to the purely parabolic case is that M̃ will
not be a constant matrix but rather, M̃ = A + Bh, where A, B are constant
matrices. A results from the discretisation of the second derivatives and B
from first derivatives. These perturbations follows through the whole proof
such that the elements of Mr ∼ O(1 + h) and hence κl ∼ O(1 + h), and we
end up with equation (12) where, R = (s̃κ̄ − M̃rκ) ∼ O(1 + h). The same
reasoning applies and we conclude that also in this case R can be reduced to a
square nonsingular matrix. By Lemma 2.7 the inverse would be of order 1+h
and the desired size of σ is obtained. This result is stated in the following
theorem.

Theorem 2.8 If (2) is a pointwise stable discretisation of (1) for h ≤ h0,
then with the order of accuracy r = 2p − 2 at the boundary, the global order
of accuracy of the approximation (2) is 2p.

Remark The truncation errors, Tb, include errors from all terms. That
means that it is allowed for the hyperbolic terms to be 2 orders less accurate
at the boundary as long as parabolic terms are present.

Note that equation (7) can be written as, (s̃I − M̃)êb = h2T̂b, and that
Theorem 2.8 implies that (s̃I − M̃)−1 exists and is of order 1. In [5] the
following definition is introduced which we will need below.

Definition 2.9 If det(s̃I − M̃) 6= 0 for Re s̃ ≥ 0, then (s̃I − M̃)−1 exists
and we say that the determinant condition is satisfied.

2.2 Incompletely Parabolic Systems

An incompletely parabolic system consists of coupled hyperbolic and parabolic
equations. We begin by considering the discretisation,

vt + a11D11v = B, a11 > 0, v(0) = f (13)

of the hyperbolic equation,

ut + a11ux = F (x, t), 0 ≤ x < ∞ (14)

u(0, t) = g(t), u(x, 0) = f(x),

7



where B holds the boundary data and forcing function. Suppose that the
determinant condition for (13) holds, such that, for some constant δ > 0,

|(s̃I + a11D̃11)
−1| > δ, Re s̃ ≥ 0. (15)

The tilde denotes the undivided difference such that hD11 = D̃11.
Consider the following incompletely parabolic system,

(

u(1)

u(2)

)

t

+

(

a11 a12

a21 a22

)(

u(1)

u(2)

)

x

=

(

0
εu(2)

)

xx

, x ≥ 0, t ≥ 0, (16)

with boundary and initial conditions L0(t)u = g0(t), u(x, 0) = f(x), where
u = (u(1), u(2))T . Let equation (16) be discretised by,

(

v(1)

v(2)

)

t

+

(

a11D11 a12D12

a21D21 a22D22 − εD2

)(

v(1)

v(2)

)

=

(

B(1)

B(2)

)

, (17)

where B(1) and B(2) are vectors that introduce the boundary data. Further,
v(1) and v(2) are the discrete solution vectors. With the splitting of the error
e = ei + eb and the truncation error T = Ti + Tb we obtain for eb,

(

e
(1)
b

e
(2)
b

)

t

+

(

a11D11 a12D12

a21D21 a22D22 − εD2

)

(

e
(1)
b

e
(2)
b

)

=

(

T
(1)
b

T
(2)
b

)

, (18)

where T
(1)
b = O(hr, 0) and T

(2)
b = O(hq, 0).

Remark Note that D11, D12, D21 and D22 are not necessarily pure first
derivative approximations but can include terms from the boundary treat-
ment. The same is true for D2 which is mainly an approximation of the
second derivative.

Below, we state and prove a theorem based on the following conditions.

Condition 2.10 Assume that the discretisation (17) of (16) is pointwise
stable.

Condition 2.11 Assume that the discretisation (17) of (16) is stable and,
with a11 = a12 = a21 = a22 = 0, fulfils Theorem 2.8.

Theorem 2.12 Assume that the discretisation (13) of (14) satisfies the de-
terminant condition (15). If either Condition 2.10 or Condition 2.11 is sat-
isfied and, D11 and D12 are closed with r = 2p− 1 whereas D21, D22 and D2

are closed with q = 2p − 2, then (17) is of order 2p.
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Proof Laplace transform (18) to obtain,

(

sI + a11D11 a12D12

a21D21 sI + a22D22 − εD22

)

(

ê
(1)
b

ê
(2)
b

)

=

(

T̂
(1)
b

T̂
(2)
b

)

, (19)

or,

Aê = T̂b, Re s̃ ≥ 0. (20)

Rotate equation (20) to,

BARR−1ê = BT̂b, R =

(

I α
0 I

)

, B =

(

I 0
β I

)

. (21)

To make BAR block diagonal we choose α = −h(s̃I + a11D̃11)
−1a12D12 =

−(s̃I + a11D̃11)
−1a12D̃12 and β = −(s̃I + a11D̃11)

−1a21D̃21. By assumption,
(s̃I + a11D̃11)

−1 exists. Thus, α and β are of order 1. The matrices R
and B are both non-singular justifying the transformation. Further, BTb =
( T̂

(1)
b , T̂

(2)′
b )T , where T̂

(2)′
b = T̂

(2)
b +βT̂

(1)
b . Note that BT̂b is of the same size as

Tb. Furthermore, R−1êb = (ê
(1)
b − αê

(2)
b , ê

(2)
b )T = (ê

(1)′
b , ê

(2)
b )T = ê′b. Multiply

equation (21) by diag(hI, h2I) to obtain,

(

(s̃I + a11D̃11) 0

0 ha21D̃21α + ˜̃sI + ha22D̃22 − εD̃2

)

ê′b =

(

hT̂
(1)
b

h2T̂
(2)′
b

)

.(22)

The upper left block is invertible by assumption (15), yielding that ê
(1)′
b is

order r + 1.
The lower left is ˜̃sI − εD̃2 +O(h). Two different approaches may be con-

sidered for this term. We can use Assumption 2.11 that the purely parabolic
equation is uniquely determined such that the inverse of (˜̃sI − εD̃2) exists.
Then det((˜̃sI − εD̃2)) ≥ const > 0 for ˜̃s ≥ 0. By Lemma 2.7, if h is small
enough the perturbation does not make the matrix singular. Or, we use As-
sumption 2.10 that the incomplete parabolic system is pointwise stable in
which case the inverse must exist by uniqueness of the numerical as well as
the mathematical solution. Either of the two assumptions leads to a solution
ê
(2)
b of order q + 2. Solving for êb yields, êb = Rê′b = (ê

(1)′
b + αê

(2)
b , ê

(2)
b )T . We

conclude that ê
(1)
b ∼ max(O(hr+1),O(hq+2)) and ê

(2)
b ∼ O(hq+2). Inverting

the Laplace transform yield the same order of magnitude to e
(1)
b and e

(2)
b ,

respectively.
Finally, we consider ei. With Condition 2.10, (17) is pointwise stable and

with Condition 2.11, (17) is stable. Hence, an estimate analogous to (6) is
obtained in both cases.
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2.3 The Wave Equation

Consider a second-order hyperbolic partial differential equation such as the
wave equation.

utt = uxx, 0 ≤ x ≤ ∞, 0 ≤ t ≤ T (23)

L0(t)u = g1(t), at x = 0, u(x, 0) = f(x)

We assume that (23) is supplied with boundary conditions such that it is
well-posed. A semi-discretisation of (23) can be written,

vtt = Mv + B, v(0) = f, (24)

where B includes the boundary data. We assume that the order of accuracy
is 2p for the interior scheme and r at a finite number of boundary points
(as h → 0). Let e1 denote the error in v and e2 the error in vt, such that
(e1)t = e2. Write the error equation corresponding to (24) as a system of
equations and Laplace transform,

s

(

ê1

ê2

)

=

(

0 I
M 0

)(

ê1

ê2

)

+ T̂ (25)

where T̂ = (0, T̂2)
T is the truncation error and I the identity matrix. We

state the following theorem.

Theorem 2.13 If v and vt are pointwise stable discrete solutions to (24),
then with r = 2p − 2 the global order of accuracy is 2p.

Proof The proof of Theorem 2.6 applies directly to the system (25).

2.4 A General Statement

Consider the advection-diffusion equation, ut+aux = εuxx. The above theory
shows that pointwise stability of a scheme approximating the equation is
sufficient to gain two orders of accuracy at the boundary. A key part in the
proof is the multiplication of the truncation error by h2 in (7).

On the other hand, with ε = 0 and the assumption of a pointwise stable
scheme, we could use the same proof but this time only multiplying the
boundary error by h in (7). Then, the components of M̃ are O(1) and
s̃ = sh. That is just proving that we can lower the accuracy at the boundary
by one order for hyperbolic equations, i.e. what is proven in [1, 2]. We
have also shown above, that lower-order terms will not affect the resulting
accuracy (as long as they do not destroy well-posedness).
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The above reasoning justifies the study of the following equation,

ut = a
∂mu

∂xm
, 0 ≤ x < ∞, L0u = g(t), u(x, 0) = f(x) (26)

since lower-order terms will not affect the order at the boundary. For well-
posedness of (26) we require that a = (−1)p/2+1 if p is even and a = 1
otherwise. A semi-discretisation would be,

vt = Mhv + B, v(0) = f. (27)

As before, we assume that the discrete scheme is pointwise stable. Again we
study the error equation, et = Mhe+Th, e(0) = 0 and split the error into two
parts, internal and boundary. (ei, eb, Ti, Tb) The internal error directly yields
the correct order. The boundary part is Laplace transformed and viewed as
a homogeneous difference equation with initial data. In order to obtain O(1)
coefficients in M we need to multiply the error equation (corresponding to
(7)) by hm. With these observation the proof of the following theorem is
identical to the previous proof of Theorem 2.6.

Theorem 2.14 Assume that (26) is well-posed and its semi-discretisation
(27) is pointwise stable. Then with the order of accuracy p in the interior
and order p − m at the boundary closure, the global order of accuracy is p.

3 Analysis of SBP Schemes

The conditions in Theorems 2.8, 2.12 and 2.13 are quite general and we will
devote this chapter to derive pointwise stability for SBP schemes with SAT
implementation of boundary conditions. SBP schemes in combination with
the SAT technique for boundary conditions, are designed to yield energy
estimates and using those estimates we will prove pointwise stability. (For
theory of SBP-SAT schemes see [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 4])

3.1 The Heat Equation

3.1.1 The Continuous Problem

To show how pointwise bounds on the solution can be obtained, we begin by
deriving an energy estimate for the heat equation,

ut = uxx, 0 ≤ x ≤ 1, L1u = g1(t), L0u = 0, (28)

11



where L1u = u(1, t)+αux(1, t), α > 0 and L0u = ux(0, t) and (28) is assumed
to have bounded initial data. The energy method applied to (28) leads to,

1

2
‖u‖2

t +

∫

u2
x dx = [uux]

1
0 ≤ −(1 − η)

|u(1, t)|2
α

+
1

η

|g1(t)|2
α

. (29)

where ‖u‖2 =
∫ 1

0
u2dx and 0 < η ≤ 1. and well-posedness follows. Note

also that ‖ux(·, t)‖ is bounded. Then u can be pointwise estimated by a
Sobolev inequality. For any point x1 ∈ [0, 1] and every ε > 0 we have,
|u(x1)| ≤ ε‖ux‖2 + (ε−1 + 1)‖u‖2.

3.1.2 The Semi-discrete Problem

In order to discretise (28), an approximation of the second derivative is
needed. Such approximations in the SBP-framework are derived in [4] for dif-
ferent orders of accuracy, see also [11]. For any order, those can be expressed
as,

D2 = P−1(−A + BS). (30)

In (30), P is an l2-equivalent norm, that is P is symmetric and positive def-
inite and vT Pv = ‖v‖2

P . Further, A + AT ≥ 0; B = diag(−1, 0..., 0, 1) and S
is a matrix approximating the first derivative at the boundaries. We will also
need the following, e0 = (1, 0, ..., 0)T , E0 = diag(1, 0, ..., 0), eN = (0, ..., 0, 1)T ,
EN = diag(0, ..., 0, 1). Further, we will frequently use the notation (w)i to
denote the ith component of some vector w. Discretise equation (28) with
N+1 grid points and denote the solution vector v. The operator (30) together
with an SAT treatment for the boundary conditions lead to,

vt = P−1(−A + BS)v + σ1P
−1LD

1 (v, g1) + σ0P
−1LD

0 v. (31)

where LD
1 (v, g1) = (EN(I + αBS)v − eNg1(t)), LD

0 v = E0BSv and I denotes
the identity matrix. The parameters σ0 and σ1 will be determined with
respect to stability. The initial data is the vector f , i.e. the function f(x)
projected onto the grid. Next, we multiply (31) by vT P and add the result
to its transpose. We obtain, with σ0 = 1 and σ1 = −1/α,

(‖v‖2
P )t + vT (A + AT )v =

−2

α
vN(vN − g1(t)), (32)

i.e. the discrete counterpart of (29). We conclude that the term vT (A+AT )v
will be bounded and is the discrete analogue of ‖ux‖2 in (29).

The following properties of the SBP operators can be shown to hold and
we state those without a proof in an assumption.

12



Assumption 3.1 The matrix A, in the diagonal norm schemes we consider,
is symmetric and the row sums are zero. Further, if A is an n × n-matrix
then rank(A) = n − 1.

Remark The rank of A in Assumption 3.1 can be checked for some n. Then
A is extended in the interior by the difference stencil which is linearly in-
dependent to the rest of the matrix. Hence, the rank does not change as n
increases.

Lemma 3.2 Let A be defined above and satisfy Assumption 3.1, c1 a positive
constant and C a function depending only on data (f, g and F , denoting
initial data , boundary data and forcing function respectively). Then, any
scheme with an estimate

‖v‖2
P + c1v

T (A + AT )v < C(f, g, F ), (33)

is pointwise stable.

Proof In [5] the following discrete Sobolev inequality is proved. An ε > 0
exists such that, |vi|2 ≤ ‖v‖2 + ε‖D+v‖2

2, i = 1..N where ‖v‖2
2 = h

∑N
1 |vi|2,

(D+v)i = (vi − vi−1)/h.
Since A is symmetric we obtain from equation (33), 0 ≤ vT Âv ≤ ch,

where Â = hA and c = C(f, g, F )h/(2c1). Note that, all Âij are of order

1. We will need a few properties of Â. For the diagonal norm case Â is
symmetric and the row sums are zero. Then,

ch ≥
n
∑

i=1

n
∑

j=1

viÂijvj =

n
∑

i=1

vi(Âiivi +
∑

j 6=i

Âijvj) =

n
∑

i=1

vi((−
∑

j 6=i

Âij)vi +
∑

j 6=i

Âijvj) =
n
∑

i=1

vi(
∑

j 6=i

Âij(vj − vi)) ≥ 0.

Since Â is symmetric this can be rewritten as,

n
∑

i=1

vi(
∑

j 6=i

Âij(vj − vi)) =
n
∑

i=2

∑

i<j

(vi − vj)
2(−Âij).

Next, consider, (vi −vj)
2 = ((vi −vi−1)+(vi−1 −vi−2)+ ...+(vj+1 −vj))

2.

From this observation we conclude that, vT Âv = vTDT BDv, where B is an
(n − 1 × n − 1)-matrix and D is the (n − 1) × n matrix in (34). The crucial
part is to prove that B is positive definite. Extend B by a top row and left
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column of zeros such that it becomes an n×n-matrix denoted by B̃. Further,
let D̃ be the non-singular n × n-matrix in (34).

D̃ =















1 0 . . .
−1 1 0 . . .
0 −1 1 0 . . .

. . .
. . .

0 −1 1















, D =











−1 1 0 . . .
0 −1 1 0 . . .

. . .
. . .

0 −1 1











(34)

We obtain vT Av = vT D̃T B̃D̃v. Since D̃ is non-singular B̃ and A have
the same rank, i.e. rank(B̃) = rank(A) = n − 1. Also, since B was ex-
tended by zeros, B itself must be non-singular, i.e. positive definite. Then
0 < vT DT Dv ≤ c′h. Hence, the discrete Sobolev inequality applies and we
conclude that v is pointwise bounded.

Remark In the example above the estimate is bounded by, C(f, g1, F ), i.e.
we have a bound for non-homogeneous boundary data. Hence, the proof
shows strong pointwise stability. In general, it might be easier to prove an
energy estimate with g1 = 0 in which case the above proof concerns pointwise
stability.

Proposition 3.3 With σ0 = 1 and σ1 = −1/α, the discretisation (31) of
(28) leads to strong pointwise stability and two orders of accuracy are gained
at the boundary.

Proof Equation (31) with σ0 = 1 and σ1 = −1/α leads to boundedness of
vT (A + AT )v. Then by Lemma 3.2, (31) is (strongly) pointwise stable and
two orders are gained by Theorem 2.8.

Remark Note that, applying an SBP first derivative twice yields a non-
compact second derivative in the interior. However, this does not affect the
proof since the re sulting A matrix has the same properties as those derived
in [4] and stated in Assumption 3.1

Remark In an SBP-SAT scheme the penalty term is scaled by 1/h. Hence,
if a pth-order global accuracy allows mth order boundary closure it follows
trivially from the proofs in Section 2 that the boundary conditions need to
approximated to m + 1th order of accuracy.
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3.2 The Advection-Diffusion Equation

Consider,

ut + aux = εuxx + F (x, t), 0 ≤ x ≤ 1, t ≥ t0, (35)

L0u = g0(t), L1u = g1(t), u(x, t0) = f(x),

where L0u = u(0, t) + αux(0, t) and L1u = u(1, t) + βux(1, t). Assume that
a > 0, then equation (35) can be proven well-posed with the energy method
if,

−2ε

a
≤ α ≤ 0, β ≤ −2ε

a
, β > 0. (36)

From the previous subsection, we have the tools to prove pointwise stability
by deriving an energy estimate. Equation (35) is discretised as,

vt + aP−1Qv = εP−1(−A + BS)v − P−1σ0L
D
0 v − P−1σ1L

D
1 , (37)

v(0) = f.

where LD
0 v = (E0(I−αBS)v−e0g0(t)) and LD

1 v = (EN(I+βBS)v−eNg1(t))
and I denotes the identity matrix.

The first derivative approximation operator P−1Q satisfies the following
relation, Q + QT = B, where B = diag(−1, 0, ..., 0, 1). Next, the energy
method is applied by multiplying equation (37) by vT P and adding the result
to its transpose.

An energy estimate is obtained if σ0 = ε/α, σ1 = −ε/β and (36) hold.
We have,

d

dt
(vT Pv) + avT Bv = −εvT (A + AT )v (38)

+2
ε

α
v0(v0 − g0(t)) − 2

ε

β
vN(vN − g1(t)).

Condition (36) ensures that the boundary terms are bounded such that the
desired estimate of the semi-discrete initial-boundary value problem is ob-
tained. Denoting the boundary terms by BT , (38) becomes, d

dt
(vT Pv)+BT =

−εvT (A+AT )v. Omitting the integration in time we conclude, using Lemma
3.2, that v is strongly pointwise bounded. Since the requirement of Theorem
2.8 is fulfilled, we have proved the following theorem.

Proposition 3.4 With σ0 = −ε/β0 and σ1 = ε/β1 and (36), the discretisa-
tion (37) of (35) with internal order of accuracy 2p and boundary accuracy
r has global accuracy min(2p, r).
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We have justified that for these SBP schemes 2 orders less accuracy at the
boundary does not reduce the global accuracy of the scheme Note also that
in the case with parabolic terms we can also reduce the accuracy of the
hyperbolic terms two orders at the boundary.

3.3 An Incompletely Parabolic System

3.3.1 The Continuous Problem

We proceed by considering one example of an incompletely parabolic system
of equations and test the conditions in Theorem 2.12.

ũt + Aũx = εCũxx (39)

ũ(1)(0) = g(1)(t), ũ(2)(0) = g(2)(t), ũ(2)
x (1) = g(3)(t).

where ũ = (ũ(1), ũ(2))T . A is a symmetric positive definite (2 × 2)-matrix
such that [A]ij = aij, C = diag(0, 1) and ε > 0. We define the norm

‖ũ‖2 =
∑1

i=0

∫ 1

0
(ũ(i))2 dx and apply the energy method,

1

2
‖ũ‖2

t +
1

2
ũTAũ|10 − ũ(2)ũ(2)

x |10 = −ε

∫ 1

0

(ũ(2)
x )2 dx.

Imposing the boundary conditions, and for simplicity assuming that g(2) =
g(3) = 0, yields,

1

2
‖ũ‖2

t +
1

2
ũT (1)Au(1)(1) + ε

∫ 1

0

(ũ(2)
x )2 dx =

1

2
g(1)a11g

(1),

Thus the problem (39) is well-posed.

3.3.2 The Semi-discrete Problem

To analyse systems of partial differential equations it is convenient to intro-
duce the Kronecker product,

A ⊗ B =







a0,0B . . . a0,q−1B
...

...
ap−1,0B . . . ap−1,q−1B






, (40)

where A is a (p× q) matrix and B an m×n matrix. The Kronecker product
satisfies the following rules: (A⊗B)(C⊗D) = (AC)⊗(BD) and (A⊗B)T =
AT ⊗ BT .
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We proceed by constructing a semi-discretisation of (39) with N + 1 grid

points. Let v
(1)
i and v

(2)
i denote the approximation of u(1)(xi) and u(2)(xi).

Further, let vi = (v
(1)
i , v

(2)
i )T and v = (v0, v1, ..., vN )T . Finally, we will need,

v
(1)
0 = (v

(1)
0 , 0, ...)T ,v

(2)
0 = (0, v

(2)
0 , 0, ...)T , v

(2)
N = (..., 0, v

(2)
N )T and E

(2)
N such

that E
(2)
N v = v

(2)
N .

The basic scheme approximating (39), without boundary conditions, is,

vt + (P−1Q ⊗ A)v = (P−1(−A + BS) ⊗ εC)v. (41)

To determine the structure of the penalty terms the energy method is applied
to (41) by multiplying vT (P ⊗ I), where I is the (2× 2) identity matrix, and
adding the transpose.

The resulting boundary terms determines the form of the penalties and
the full SBP-SAT scheme approximating (39) becomes,

vt + (P−1Q ⊗ A)v = (P−1(−A + BS) ⊗ εC)v +

σ0(P
−1 ⊗ A)(v

(1)
0 − G1) + σ1(P

−1(BS)T ⊗ εC)(v
(2)
0 − G2) + (42)

σ2(P
−1 ⊗ εC)(E

(2)
N (BS ⊗ I)v − G3),

where Gi = (g(i), 0, ...)T , i = 1, 1 and G3 = (0, ..., 0, g(3)). For simplicity, we
assume that g(2) = g(3) = 0.

We have used ‖v‖2
M = vT (P ⊗ I)v to denote the norm. With σ0 ≤ −1/2

and σ1 = σ2 = −1/2 we have,

(‖v‖2
M)t + vT

NAvN + vT ((A + AT ) ⊗ εC)v = (43)

(1 + 2σ0)a11v
2
0 − 2σ0v

(1)
0 a11g

(1)

If σ0 = −1/2 in (43) we obtain exactly the same estimate as in the continuous
case.

In the previous subsection we proved the heat equation to be pointwise
stable, which is a requirement for Theorem 2.12 to apply. It remains to show
that the hyperbolic part satisfies the determinant condition. The hyperbolic
part of the scheme is in general of the form,

vt + P−1Qv = σ0P
−1E0(v0 − g(t)). (44)

(In the specific example above g(t) = 0, but that is not necessary.) For a
hyperbolic equation it is not sufficient that the scheme is strongly stable for
it to be pointwise stable (which is equivalent to the determinant condition).

We begin by considering dissipative schemes and restrict ourselves to
schemes where P is diagonal. Then P−1Q is replaced by,

P−1(Q + R). (45)
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In [14] dissipation operators that do not destroy the SBP-property are de-
rived, such that R = γhD̃T

p BD̃p where D̃p/h
p is a 1st-order accurate approx-

imation of the pth space derivative, γ > 0 is a parameter and B a positive
definite matrix. If p is chosen such that 2p is the order of the scheme this
dissipation operator will keep the order of accuracy without widening the
stencil. In order to prove pointwise stability we must choose γ ∼ 1/h. Then
the accuracy is lowered one order or we must choose a larger p, i.e. widening
the stencil. We can prove the following proposition.

Proposition 3.5 The scheme (44), discretised with a dissipative SBP oper-
ator (45), satisfies the determinant condition (15), i.e. it is pointwise stable.

Proof See Appendix I.

For a central difference scheme we can not use the energy method to prove
pointwise stability. Hence, we have to turn to the Laplace transform tech-
nique. (See [5] for a thorough presentation of the theory.) For this reason we
have to prove that the determinant condition is satisfied for each particular
type of scheme and order of accuracy. However, the Laplace transform tech-
nique becomes increasingly difficult to apply for higher-order schemes. We
state the following conjecture and give some justification.

Conjecture 3.6 The scheme (44), discretised using a central difference SBP
scheme, satisfies the determinant condition, i.e. it is pointwise stable.

A proof that the Conjecture is true in the 2nd-order case is included in [17]
along with analysis indicating the truth of the Conjecture for an internally
fourth-order scheme. For higher-order methods than four, we refer to com-
putations where the measured global order of accuracy can be explained if
the Conjecture is true.

We conclude that the requirements of Theorem 2.12 may be fulfilled and
summarise the results in a proposition.

Proposition 3.7 If either Proposition 3.5 or Conjecture 3.6 holds, then with
σ0 = −1 and σ1 = σ2 = −1/2 the discretisation (42) of (39) with internal
order of accuracy 2p and boundary accuracy r for the parabolic and r + 1 for
the hyperbolic equation has global order of accuracy min(r + 2, 2p).

This is just one example of an incompletely parabolic system that we use
to show the techniques to prove the conditions of Theorem 2.12. However, for
any well-posed incompletely parabolic system,discretised with an SBP and
SAT scheme that satisfy a discrete energy estimate, those conditions will be
fulfilled.
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3.4 The Wave Equation

Consider (23) with homogeneous Dirichlet boundary conditions. In the SBP-
setting we discretise by,

vtt = P−1(−A + DS)v + σ0P
−1E0S(v − 0) + σ1P

−1ENS(v − 0). (46)

In this case A has to be symmetric which the energy method will reveal
below. Applying the energy method to (46) yields,

(‖vt‖2
P + vT Av)t = −2(1 − σ0)(vt)0(Sv)0 + 2(1 + σ1)(vt)N(Sv)N . (47)

Note that without symmetry of A it would not be possible to obtain the
total derivative (vTAv)t. With σ0 = 1 and σ1 = −1 stability follows. In
this case we do not directly have a bound on ‖v‖ and vT Av. However, with
‖f‖ ≤ ∞ we can solve the ordinary differential equation (47) to bound ‖vt‖
and vT Av. Since the norm of v(0) and ‖vt‖ is bounded it follows that ‖v‖
has to be bounded. Then we can estimate the solution v, pointwise using
Lemma 3.2. We make the plausible assumption that vt is pointwise bounded
such that Theorem 2.13 applies. We summarise the results in a proposition.

Proposition 3.8 With σ0 = 1, σ1 = −1, the discretisation (46) of (23)
yields a pointwise bound on v. With the assumption that vt is pointwise
bounded the global order of accuracy is min(2p, r+2), where r is the boundary
and 2p the internal order of accuracy.

4 Computations

In [4] extensive computations on the advection-diffusion and incompletely
parabolic equations were performed with SBP-schemes. We will not redo
the calculations for the advection-diffusion but only give their results. We
will omit computations for the heat equation, since it is a special case of the
advection–diffusion equation. We present novel results for the wave equation
and a simple 4th-order equation. We will also test the validity of the linear
theory for the nonlinear viscous Burgers’ equation and the two-dimensional
compressible Navier-Stokes equations.

Throughout this section we will consider approximations of the second
derivatives derived in [4]. Also, first derivative approximations are used.
Those were originally derived in [7, 8] and given as exact expressions in [9].
We distinguish between two types of operators. Those with a diagonal norm,
i.e. P is diagonal, and those with a block norm where P is diagonal except at
the upper-left and lower-right corners where blocks are situated. In [7, 8] it
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was proven that diagonal norm schemes can only be closed at the boundary
with half the internal accuracy.

In all the computations, we use the classical Runge-Kutta scheme in time
except for the Navier-Stokes equations where we use a 4th-order five-stage
low-storage, explicit Runge-Kutta method derived in [18].

4.1 Equations with First Derivative in Time

The contents of this subsection was originally presented in [4] and we briefly
quote some of their computational results.

4.1.1 The Advection-Diffusion Equation

Consider equation (1) discretised by (37). The Cauchy problem have the
solution,

u = sin(ω(x − ct))e−bx, c > 0, ω =

√
c2 − a2

2ε
, b =

c − a

2ε
, |c| > |a|. (48)

The computational domain is 0 < x < 1 and (48) is used both as initial and
boundary conditions. Further, a = 1, c = 2 and ε = 0.1 have been used. The

convergence rate is calculated as, q = log
(

‖u−vh1‖h

‖u−vh2‖h

)

/log
(

h1

h2

)

, where u is

the analytical solution and vh1 is the corresponding numerical solution with
grid size h1. Further, ‖u − vh1‖h is the l2-error.

In [4] results are presented for schemes with both 4th and 6th-order in-
ternal accuracy. The results agree with the theory and we choose only to
quote the results for a 4th-order diagonal norm scheme, Table 1. Note that
with a diagonal norm an internally 4th-order accurate scheme can be closed
to maximally 2nd-order at the boundary. However, two orders are gained at
the boundary and the scheme is globally 4th-order.

Two different cases are shown:

1. Theoretically strongly stable scheme. Hence, also pointwise stable.

2. The theoretical estimates are violated by altering the penalty param-
eter. Hence, the scheme is not pointwise stable. However, the compu-
tations are stable in the sense that the eigenvalues are located in the
left half-plane. This case is marked with superscript v.

Notable is that if the penalty parameter is chosen such that the scheme
is not energy stable (though the computations are not unstable), the global
order of accuracy is reduced by 1 indicating that the conditions in Theorem

20



N log(l2 − error) q log(l2v − error) qv

40 -4.25 -2.59
60 -5.02 4.30 -3.13 3.01
100 -5.98 4.25 -3.81 3.01
200 -7.24 4.17 -4.72 3.01
300 -7.97 4.11 -5.25 3.00

Table 1: SBP-scheme with 4th-order internal accuracy and 2nd-order bound-
ary closure. The two right columns are results for scheme with stability
estimates violated.

2.8 are not only necessary but also sufficient. From the present article this
is justified since the scheme is not pointwise stable.

Finally, if ε = 0 in the above computations, i.e. we have a hyperbolic
equation, the accuracy drops to 3rd-order in full agreement with the results
in [1, 2].

4.1.2 An Incompletely Parabolic System

The system (39) was considered in [4] with,

u =

(

u(1)

u(2)

)

, C =

(

1 1
1 −1

)

, D =

(

0 0
0 ε

)

. (49)

The system is transformed such that the hyperbolic part is diagonal and
provided with well-posed boundary conditions. The system is discretised
using SBP and SAT technique such that the scheme is strongly stable.

We will discuss the results from two test cases:

1. An internally 4th-order accurate block-norm scheme (see [4], Appendix
D1 ). The second derivatives are closed to 2nd-order accuracy and the
first derivatives to 3rd-order accuracy.

2. An internally 4th-order accurate diagonal-norm scheme (see [4], Ap-
pendix C2). Both the first and second derivatives are closed to 2nd-
order accuracy.

In Table 2 the results of Test Case 1 are displayed. Also in this case, orders
of accuracy to the problem with a non-energy stable choice of the penalty
parameter are presented. This reduces the global order of accuracy by one.
This indicates that the conditions of Theorem (2.12) are both necessary and
sufficient.

Next, we turn to Test Case 2. The results are shown in Table 3. As
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N log(l2 − error) q log(l2v − error) qv

30 -3.31 -3.26
60 -4.52 3.91 -4.25 3.24
90 -5.23 4.00 -4.81 3.10
120 -5.74 4.03 -5.19 3.05
150 -6.13 4.03 -5.48 3.03

Table 2: SBP-scheme with 4th-order internal accuracy and 2nd-order bound-
ary closure for the second derivative and 3rd-order for the first derivative.
The two right columns are results for scheme with stability estimates vio-
lated.

N log(l2 − error) q log(l2v − error) qv

30 -2.59 -2.60
60 -3.61 3.33 -3.55 3.10
90 -4.18 3.19 -4.10 3.05
120 -4.58 3.13 -4.48 3.05
150 -4.88 3.11 -4.78 3.04

Table 3: SBP-scheme with 4th-order internal accuracy and 2nd-order bound-
ary closure for both first and second derivative. The two right columns are
results for scheme with stability estimates violated.
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N log(l2 − error) q
10 -1.09
20 -5.23 5.97
40 -8.59 4.84
80 -11.27 3.87
160 -14.07 4.04

Table 4: SBP-scheme with 4th-order internal accuracy and 2nd-order bound-
ary closure.

expected the scheme is only 3rd-order accurate. All the hyperbolic terms
are discretised with 2nd-order boundary closure but Theorem 2.12 requires
the hyperbolic equation in the system to have a boundary closure of only
one order less than the internal scheme. Hence, the violation of the energy
estimates does not affect the accuracy either, as long as the scheme remains
stable in the numerical computations.

Note that, since 4th-order accuracy is recovered in Table 2, the Conjecture
3.6 seems to be true. The hyperbolic part need to be pointwise stable for
Theorem 2.12 to be true.

4.2 The Wave Equation

Using the scheme (46) we have computed convergence rates to corroborate
Theorem 2.13. (In (46) it is assumed that the boundary data is zero. This is
sufficient for Theorem 2.13 to hold. However, in the case below, it is possible
to show strong stability which allows less smoothness in the data.)

We have considered the following wave equation, utt = c2uxx, on 0 ≤
x ≤ π, 0 ≤ t ≤ 0.5 with c = 2. We use Neumann boundary conditions and
initial conditions derived from the exact solution exact solution u(x, t) =
1
2
(sin(x− ct) + sin(x + ct)). The l2-error and convergence rate are computed

at t = 0.5. The results are shown in Table 4. In Table 4 there are no data
for the scheme with the energy estimate violated. This is due to the scheme
being unstable for σ0 6= 1 or σ1 6= −1. Further, we note that 4th-order
accuracy is achieved in accordance with the theory.

4.3 The biharmonic operator

Consider,

ut = −uxxxx, 0 ≤ x ≤ L, t ≥ 0, (50)

uxx(0) = g1(t), uxx(L) = g2(t), u(0) = g3(t), u(L) = g4(t).
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N log(l2 − error) q
20 -8.93
30 -10.63 4.0295
40 -11.83 4.0391
50 -12.75 4.0362
60 -13.50 4.0321
70 -14.13 4.0285
80 -14.67 4.0255
90 -15.15 4.0230

Table 5: SBP-scheme with second derivative approximation according to Test
Case 2.

With the energy method it is easily shown that (50) is well-posed. u =
sin(x)e−t is a solution to the Cauchy problem and by choosing g1,2,3,4 ac-
cordingly we have an exact solution to (50). The equation is discretised by,
ut = −D4u + penalty, where D4 = D1 · D1 · D1 · D1 and D1 = P−1Q is an
SBP operator with 6th-order internal accuracy and 3rd-order boundary ac-
curacy. Hence, D4 is 0th-order at the boundary and 6th-order in the interior.
Further,

penalty = P−1(σ1D
T
1 E0(D2u − g1) + σ2D

T
1 EN(D2u − g2) +

σ3D
T
3 E0(u − g3) + σ4D

T
3 EN (u − g4)),

where σ1 = 1, σ2 = −1, σ3 = −1 and σ4 = 1 lead to stability. The first
two penalty terms are 1st-order implementation of the boundary condition
multiplied by P−1 which leads to 0th-order truncation error at the boundary.
The second two terms does not have a truncation error. Altogether, we have
a globally 4th-order accurate scheme when Theorem 2.14 has been applied.
(We omit the proof of pointwise stability since it is similar to all the previous.)

The results of computations with the scheme above is shown in Table 5.
We choose L = 3π/4 to obtain non-zero boundary data and the final time is
t = 0.01 in order not to introduce a large temporal error. We see that the
convergence is 4th-order as predicted by theory.

4.4 The viscous Burgers’ equation

Consider,

ut + uux = εuxx, 0 ≤ x ≤ L, t ≥ t0, (51)

L0u = g0(t), L1u = g1(t), u(x, t0) = f(x),
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N log(l2 − error) q
210 -21.0
230 -21.4 3.98
250 -21.7 3.97
270 -22.0 3.97
290 -22.3 3.97

Table 6: SBP-scheme with second derivative approximation according to Test
Case 1.

N log(l2 − error) q
210 -20.8
230 -21.1 3.47
250 -21.4 3.32
270 -21.6 3.17
290 -21.8 3.02

Table 7: SBP-scheme with second derivative approximation according to Test
Case 2.

where L0u = u(0, t) + αux(0, t) and L1u = u(L, t) + βux(L, t). If equation
(51) is linearised we obtain (35) and from the linear theory we derive a
numerical scheme that is similar to (37). For linear well-posedness we have,
− 2ε

u(0)
≤ α ≤ 0, β > 0, β ≤ − 2ε

u(L)
. Equation (51) is discretised as,

vt + P−1Q(
v2

2
) = εD2v − P−1σ0L

D
0 v − P−1σ1L

D
1 , v(0) = f (52)

where LD
0 v = (E0(I − αBS)v − e0g0(t)) and LD

1 v = (EN (I − βBS)v −
eNg1(t)) and I denotes the identity matrix. The computations are done with
a constant small time step and 100 iterations. In (51) we choose t0 = 0.16
and L = 0.5. The exact solution to the viscous Burgers’ equation is, u(x, t) =
−a · tanh(ax−ct

2ε
) + c, −∞ < x < ∞, which is used as initial and boundary

data with a = 1, c = 2 and ε = 0.02. We test two different cases,

1. D2 = P−1(−A + BS); internally 4th-order accurate; 2nd-order bound-
ary scheme; Su is 3rd-order discretisation of ux at the boundary points.

2. D2 = P−1QP−1Q; internally 4th-order accurate; 2nd-order boundary
scheme; Su = P−1Qu, i.e. 2nd-order accurate.

Table 1 displays 4th-order convergence for Test Case 1 just as in the linear
case. Indicating that the linear theory is applicable in this nonlinear case also.
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Table 2 displays third order accuracy. This is due to the 2nd-order accuracy
of the discretisation of the boundary condition. However, this also indicates
that the linear theory applies. If two orders of accuracy were not gained at
the boundary Test Case 2 would result in globally 2nd order accuracy.

4.5 The Navier-Stokes Equations

As a final example, we consider the two-dimensional nonlinear compressible
Navier-Stokes equations. The Navier-Stokes equations are an incompletely
parabolic system of equations and if linearised, the linear theory of Subsection
2.2 and 3.3 applies. The computational domain is shown in Figure 1.

Figure 1: The 2 block computational grid.

Note that it is a 2 block grid. At the interface, it is possible to derive an
energy stable coupling for the SBP scheme. (See [11, 12, 13].) As a reference
solution we use an analytic expression of a viscous shock introduced at x = 0
and travelling in the x-direction. The flow parameters are, the Mach number
M = 1.1, the Reynolds number Re = 50 and the Prandtl number Pr = 0.75.
This gives a very smooth solution, which is necessary to accurately measure
the rate of convergence.

The equations are discretised with three different linearly stable (and
linearly pointwise stable) SBP scheme. The second derivatives are computed
by applying the first derivative twice. The orders of accuracy of the different
schemes are:

1. 8th-order internal accuracy with 4th/3rd-order boundary closure for
the first/second derivatives. Theoretically 5th-order global accuracy.

2. 6th-order internal accuracy with 3rd/2nd-order boundary closure for
the first/second derivatives. Theoretically 4th-order global accuracy.
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N log(e5) q5 log(e4) q4 log(e3) q3

20 -12.3 -12.0 -11.0
40 -15.5 4.63 -14.8 3.4 -13.2 2.97
80 -18.9 4.84 -17.0 4.1 -15.3 3.15

Table 8: Convergence rates for the Navier-Stokes equations. qi is the conver-
gence rate and ei the l2-error of the ith-order method .

3. 4th-order internal accuracy with 2nd/1st-order boundary closure for
the first/second derivatives. Theoretically 3rd-order global accuracy.

The solution is computed on 3 different grids with 20, 40 and 80 points in
each direction and block. The solution on the finest grid computed with the
5th-order method is seen in Figure 2.
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xy
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Figure 2: Viscous shock solution on finest grid at T = 1 with the globally
5th-order scheme. The density field.

The l2-errors and convergence rates was measured at T = 0.1 and are
displayed in Table 8. The orders of accuracy are close to their theoretical
values and it seems that the theory holds even for the nonlinear Navier-Stokes
equations.

5 Summary and Conclusions

The results of this article can be divided into three parts. In the first part
we consider partial differential equations including spatial second derivatives.
We show that finite difference discretisations of such equations can be closed
with 2 orders less accuracy at the boundary without reducing the global
accuracy, if the scheme is pointwise stable. In particular it should be noted
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that this result also applies to second-order hyperbolic equations such as the
wave equation.

An immediate consequence of this theory is a generalisation to partial
differential equations with mth-order derivatives. With the same stability
assumption on the scheme it is possible to lower the order of the boundary
closure m orders of accuracy.

In the second part, it is shown that summation-by-parts operators with
either compact second derivatives or, with the first derivative applied twice,
fulfil these requirements. For summation-by-parts operators the task of prov-
ing pointwise boundedness is reduced to derive an energy estimate for the
scheme which is considerably simpler. (See [10, 7, 8, 9, 11, 12, 13, 14, 15, 16])

The third part concerns numerical results. In [4] and [3] the newly devel-
oped theory is verified for different schemes with a first derivative in time. In
[4], stable computations with the energy estimate (and hence, the pointwise
stability), violated, were performed showing that 2 orders of accuracy are not
gained at the boundary. That is in full agreement with the theory developed
in this article and indicates that pointwise stability is a necessary condition.

Further, numerical computations with the wave equation supports the
theoretical results showing that the scheme can be closed with 2 orders of
accuracy less at the boundary.

As a final observation, consider a first derivative approximation with re-
duced order at the boundary. The truncation error at the boundary is in-
creased by one order for each new application of the first derivative operator
to approximate a higher derivative. However, the theory of this article shows
that the decreasing order of accuracy at the boundary is precisely cancelled,
resulting in the same global accuracy. To test this in numerical experiments,
we perform computations for a time-dependent 4th-order equation and show
that 4 orders of accuracy are gained at the boundary.

Finally, we also test the validity of the linear theory on nonlinear equa-
tions. Computations show that the linear theory is applicable both for the
viscous Burgers’ equation and the nonlinear compressible Navier-Stokes equa-
tions.

APPENDIX

I Proof of Proposition 3.5

Throughout this proof, the tilde sign indicates that it is an undivided prop-
erty, i.e. the components have no dependence on h. Furthermore, C always
denotes a constant, not necessary the same in every expression.
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Here we will prove that,

vt + P−1(Q + R)v = σ0P
−1(v0 − g(t)), v(0) = f (53)

is pointwise stable. In [14] a numerical dissipation of the form P̃−1R =
γP̃−1D̃T

p BD̃p was derived. B is an O(1) positive definite matrix. With
γ ∼ 1/h we can prove the theorem, which corresponds to an upwind scheme,
i.e. the order of accuracy drops by one order.

Apply the energy method (53), (‖v‖2
P )t+vT Bv+vT (R+RT )v = 2σ0v0(v0−

g(t)), Using that v0g(t) ≤ ηv2
0 + 1

η
(g(t))2, η > 0, we obtain with η < 1 an esti-

mate of ‖v‖2
P in g(t). Thus, the scheme (44) is strongly stable. Furthermore,

vT (R + RT )v < C.
First, we consider boundedness of ‖v‖2

P . The norm ‖ · ‖P is l2 equivalent.
Hence,

N
∑

i=1

h|vi|2 < C, or

N
∑

i=1

|vi|2 <
C

h
. (54)

We see that |vi| may become infinite as the total number of points N = 1/h →
∞. However, the total number of unbounded points n satisfies, n/N → 0 as
N → ∞.

Next, since D̃p is a higher-order undivided difference, vT (R + RT )v < C
implies,

vT (R + RT )v ∼
N−r
∑

p

γh(D̃pv)2
i ⇒

N−r
∑

p

(D̃pv)2
i < C, (55)

The sum goes between the points closest to the boundary such that the
difference do not pass over the boundary. (Every point will be ’touched’ by
the sum.) Equation (55) yields directly,

(D̃pv)2
i < C. (56)

Assume that some |vj| tend to infinity without violating (54). Since
only a decreasing fraction of grid points may become unbounded we can
choose vj such that its p closest neighbours are bounded. Consider, (D̃pv)2

j =
(α0vj+α1vj+1+...αpvj+p)

2 → ∞ as h → 0 which is a violation of (56). Hence,
|vi| < ∞ for all i as N → ∞.
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