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A Stable Hybrid Method for Hyperbolic
Problems

Jan Nordstrém *? & Jing Gong **
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Swedish Defence Research Agency, Stockholm, Sweden

Abstract

A stable hybrid method for hyperbolic problems that combines the unstructured
finite volume method with high-order finite difference methods has been developed.
The coupling procedure is based on energy estimates and stability can be guaran-
teed. Numerical calculations verify that the hybrid method is efficient and accurate.

Key words: hyperbolic problems, hybrid methods, finite difference, finite volume,
coupling procedure, stability, efficiency

1 Introduction

The hyperbolic equations involved in modeling aerodynamic, aeroacoustic, or
electromagnetic wave propagation remain a computational challenge both for
academia and industry. In computational physics, unstructured finite volume
methods are widely used to handle complex geometries and nonlinear phenom-
ena. It is also clear that high-order finite difference methods are very efficient
for essentially linear wave propagation problems in smooth geometries.

Strict stability which prevents error growth on realistic mesh sizes, is very
important for calculations over long times. Strictly stable unstructured finite
volume methods and high order finite difference methods for both hyperbolic,
parabolic and incompletely parabolic problems were derived in [1],[2], [3], [4],
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[5] [6], [7]- These methods employ so called summation-by-parts (SBP) oper-
ators and impose the boundary conditions weakly, see [6] and [8] .

In this paper, we will discuss how to combine the finite volume method and the
high-order finite difference method into a hybrid method. The finite volume
method will mainly be used close to the wave source, where complex geometries
and nonlinear phenomena are important, while the high-order finite difference
method is ideally suited for the pure wave propagation part.

The coupling procedure will be based on energy estimates. Essentially, the
whole procedure can be described as a way to modify the dual grid in the
finite volume method in such a way that stability can be maintained at the
interface. Examples of other types of hybrid methods and approaches can be
found in [9],[10],[11],[12], [13],[14],[15],[16], [17]-

Section 2 presents the two numerical methods and the coupling procedure.
Section 3 deals with the numerical experiments, section 4 discusses future
extensions of the method and conclusions are drawn in Section 5.

2 Analysis

As a model problem, we will consider the continuous hyperbolic system
u; + Aug + Buy =0, —-1<z<1,0<y<1 (1)

with suitable initial and boundary conditions. A and B are constant symmetric
matrices with k£ rows and columns.

The computational domain will be divided into two subdomains. A so called
edge-based unstructured finite volume method (UFVM) will be used to dis-
cretize (1) on subdomain [—1,0] x [0,1] with an unstructured mesh while
a high-order finite difference method (HOFDM) will be used on subdomain
[0,1] x [0, 1] with a structured mesh, see Figure 1.

The fact that the unknowns in the UFVM and the HOFDM are located in the
nodes and can be co-located at the interface is a key ingredient in the coupling
procedure we will discuss below.

2.1 The edge-based finite volume method

The computational domain consists of non-overlapping elements and the un-
known variables are stored at the nodes of the mesh. For each node, the control
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Fig. 1. The hybrid mesh on the computational domain.

volume that constitutes the dual grid is defined as a polygon with its vertexes
at the centers of gravity of the surrounding triangles (or quadrilaterals) and
at the midpoints of the sides, see Figure 2a.

Equation (1) is integrated over each control volume (2;, which is surrounded
by the surface 0€2; and we obtain,

%//flidedy+A]{89¢Udy_B]{aQide:0’ (2)

by Green’s theorem.

(a) in the interior (b) on the boundary

Fig. 2. The grid (solid lines) and the dual grid (dashed lines).



In [6] it was shown that a semi-discrete approximation of equation (2) can be
written,

(P' @ I)u + (Q ® A)ju+ (QF ® Bju =0, (3)
or,

u, + {[(P")7'Q;]® Apu + {[(P")~'Q,]® Blu =0, (4)
where ® is the Kronecker product. I is the k X k identity matrix. The discrete
finite volume approximation of u at the nodes is denoted u. It is a vector of
length M = mk where m is the number of nodes. The elements of u are
arranged such that the first £ elements are the discrete representation of the k
variables in u at the first grid point. The following k& elements are the discrete
representation of the k variables in u at another grid point and so on. P* is a
positive diagonal m x m matrix with the control volumes €2; on the diagonal
and QF and Q} are almost skew symmetric m x m matrices which represent
the discrete approximation of the convective flux integral in (2).

The matrices Q% and Q) have the components,

Ay; Avy;

(QL)i; = % =—(QN)ji» (Q)iigoa =0, (QF)iicon = Ty, (5)
Ax; Az;

(Qz?)ij = _% = —(Qj)ji, (Qﬁ)z’igan =0, (Q;)n‘ean = - ; . (6)

For the definition of Az; and Ay;, see Figure 2. Moreover, equation (5) and
(6) implies that Q and Q[ satisfy

QU+ @)=Y, @+ Q) =X, (7)

where the non-zero elements in Y and X are Ay;, —Ax; and correspond to
the boundary points.

The operators QF and Q[ satisfies a generalized SBP concept. By using (7)
we obtain,

Yo=Y sidynf gy, ¢'Xo=— Y Anx—¢ dr (8)

1€00Q 1€00Q

where ¢(z,y) is a smooth continuous function. For more details on the SBP
properties of the finite volume scheme, see [6].

The finite volume scheme described above requires a particular boundary
treatment to obtain stability. We will used the so called Simultaneous Ap-
proximation Term (SAT) method where the boundary conditions are imposed
weakly. The SAT technique is a penalty procedure that can be used to specify
outer boundary conditions as well as treating block interfaces. We will not
discuss the outer boundary treatment in detail, only indicate its presence by
adding a penalty term on the right hand side of (3). For more details on the
weak treatment of boundary conditions, see [6].



The final semi-discrete form of (1) on subdomain [—1, 0] x [0, 1] can be written,

w +{[(P")7'Q7]® Alu + {[(P")7'Qy] ® Blu = (9)
SAT + {[(P")" (B PF] @ 2"} (u; — Vi),

where SATY is the penalty term that imposes the outer boundary conditions
weakly. uy and vy are vectors which represent u and v (v is the discrete finite
difference solution that will be presented below) on the interface respectively.
FE¥ is a projection matrix which maps u to uy such that u; = (Ef ® I},)u. The
non-zero components of EF have the value 1 and appear at the interface. PyL ®
Y% is a penalty matrix that will be determined below by stability requirements.

Example The precise structure of EX depends on how u is organized. For
unstructured grids, there are many different ways of doing that. If the first
[ elements of u are located on the interface, we obtain a projection matrix
with the structure E¥ = [I, 0] where E¥ has dimension [ x m and the identity
matrix I has dimension [ x [.

2.2 The high-order finite difference method

Consider the subdomain [0, 1] x [0, 1] with a structured mesh of n x [ points.
The finite difference approximation of u at the grid point (z;,y;) is a k x
1 vector denoted v;;. We organize the solution in the global vector v =
[Vilyeeny VI, Vol e ooy Vaiyeevy Vi1, ..., V|- v, and v, are approximations of
uz and u, and are approximated using the high-order accurate SBP operators
for the first derivative that were constructed in [3], [18], [19]. The difference op-
erators in the z and y direction on the right subdomain are denoted (Pf)"1QE
and (PJ))"'Q[ respectively.

The semi-discrete approximation of (1) on subdomain [0,1] x [0,1] can be
written,

viH{E) el e e Av+{L e (B e Bl
— SAT" + {[(PF @ PF) " (EFT|PF © 7} (v; — up),

where the sizes of the identity matrices I and I} are n x n and I x [ respec-
tively. SAT® is the SAT penalty term for the outer boundary conditions. EF
is a projection matrix which maps v to vy, that is, v; = (FE® I})v. ¥% is a
penalty matrix that will be determined below by stability requirements.

Example With the organization of v given above we have v; = [vy1,..., vyt
and consequently EF = [I,0], where EF has dimension 1/ x nl and the identity
matrix I has dimension [ x {.



Remark Note that u; and v; in (9) and (10) are co-located at the interface.
That is absolutely essential for the accuracy of the hybrid scheme. It will be
shown below that it is also necessary for stability.

Note that the operators (Pf)~'QF and (P]")~'Q}* are SBP operators since
matrices P® and PyR are symmetric and positive definite and the matrices ),
and @), are nearly skew-symmetric, that is,

Q%+ (Q%)" = DF = diag(-1,0,..0,1),

R T ) (11)
Qy + (Qf) = D} = diag(—1,0,...0,1),

where D and D[ are n x n and [ x | matrices respectively.

In this paper we will use the Kronecker product rules (A ® B)(C ® D) =
(AC)® (BD) and (A® B)' = A” @ B". Applying these rules to the interface
terms in (9) and (10) yields

{{(PH)H(ED)' P @x"} = [(PY) " @ L[(Er)" @ L](P) ® ¥7)

{[(PF o) (EN)' Pflex"} = [(P @ P @ LI(E) @ L](P)' @ 5.

Note that the unknown penalty matrices above are P,’, ©", and X*. However,
Pl is known.

2.8 Stable interface treatment

Define the norms N* = P* ® I, and N* = (Pf ® Pf) ® I, where N =
(NE)T > 0 and N® = (N®)T > 0. Moreover, define an inner product and a
norm for discrete real vector-functions a,b € R™ by

(a,b)y = a’ Hb, lall3; = (a,a), H=H">0. (12)

We apply the energy method by multiplying (9) and (10) with u” N* and
vI' NE respectively, which yields,

u' N, +u”(QE @ A)u + uT(Qj ® B)u =
u' N¥ - SAT" + u"[(E[)" ® L)(P} @ F) (u; — vy),
vINEy, +vI (QE ® PyR ® Av +vI (PR Qf ® B)v =
vIN®-SATR +vI(Ef)" @ L) |(P] @ £F) (v — uy).



By adding the transposes of (13) and (14), and using (7), (11), (12) we get,

d

%(HUH?\/L) =—u' (Y ® Au—u' (X ® B)u+2u” N* . SAT

+uT[(EHT © L)(PE @ X1)(u; — vy) (15)
+ (u; —v)" (B @ SM)T(EN)T @ L],

%(IIVH?VR) — —vI(DF @ PR @ A)v — v' (PR @ DF @ B)v + 2v" N . SATF
+VI(ER)" ® I)|(P) ® BF) (v — )
+(vr —u) (B HT[(EN)T © I)]v.

(16)
In (15), we will use the relation (8) that leads to
PYp= Y Ayt Y ¢iAyi=dpP o+ ¢ Py o, (17)
1€0Q /Interface iE€Interface
' Xp=— Z ¢$A$i + Z ¢?A$i = ¢§Pf¢3 + ¢?P;UL¢D (18)
1€0Q /Interface i€Interface

where ¢p and ¢; are vectors located at the boundary and interface points
respectively. It is obvious that P, P”, Pl and P} are diagonal matrices.

Recall that ((EF)T @ I)" = Ef ® I, and (EF)" ® I, = (E¥ ® I})" since I}, is
the identity matrix. The terms in (15) can be written

u’ (Y ® A)u = up(Pf ® Ajup +uj (P} ® A)uy,

u’ (X ® B)u = uj(P? ® B)ug +u} (PF ® B)uy, (19)
(BN @ LI(P) © 5w~ vi) = uf (B} © 2 (s — vi),

(ur —v)" (Py @ Z)'(Br)" ® ] "u = (ur —vi)' [Py ® (ZF) ur.

The terms at the right-hand side of (16) can be written

vI(DF @ P @ A)v = —v] (P} ® A)v; + V(P ® A)vg,

vI(PE® DF® B)v = —vi(PF @ B)vs + vy (P} ® B)vn, (20)
V(BF) ® 1))(PF @ 27)(vi — us) = v} (PR & SF)(v, —uy),

(vi —un)" (P @ 2 [(ER)" ® I)]"v = (vi —up)" [P ® (£%)"]vr,

where vg, vg, vy denote the solution on the east, south and north boundaries
(see Figure 1).

In the following we assume that the terms including ug, vg, vg, vy at the
outer boundaries are precisely cancelled by the SAT terms, (see [2], [5], [20]).
Note that P} = 0 since Az; = 0 at the interface and that P and P} are
diagonal matrices of the same size.



By using (19) and (20), the energy estimate becomes,

& (Wl + Nslem) = o, vl Mg, w1 (21)
where,
y -P/® A+ P/ @%" + P (BF)" —-Pl@¥t - Pf@x#
T —-PL@xl — PR X Pil® A+ PF@Y"+ Pl (XF)T

We need M; to be negative semi-definite for stability. Consider a simplified
case where,

L _ pR _
Pl =PF=pP

Y9

b= (ST, SR = (SR, (22)
This yields,

—A+425L 3L 3R
M;=P,® =P,®M
—¥$L %R A4 2%R

To obtain stability M has to be negative semi-definite. We can diagonalize A
by XTAX = A, where X is an orthogonal matrix consisting of the eigenvectors
of A. Moreover, consider penalty parameters ¥ and ©% of the form X7XlX =
AF and XTEEX = AR Denote by ); the ith diagonal component of A and
similarly A¥ and AR for AL and A®. Then we obtain a negative semi-definite
M if

2\B

7

I
>

by
i 24
. 24)

IN

AL
fori=1,...,k.

Remark Equation (23) is recognized as the condition for a conservative in-
terface treatment. The condition (24) leads to stability if conservation is guar-
anteed via (23). For more details, see [5], [20].

We have proved the following proposition,

Proposition 2.1 If the conditions (22)-(24) hold, (21) leads to a bounded
energy and (9), (10) have a stable and conservative interface treatment.

We can also prove,



Proposition 2.2 The eigenvalues of M are 2(2\F = X;), (i =1,...,k) and k
duplicative zeros.

Proof Inserting X" = XA*XT and ¥ = XAEXT = X(AF — A)X7 into
matrix M, we have

X(2AF — A)XT —X(2AF — A)XT 1 -1
M = = X(2A" - AN)XT®
~X(2AT — A)XT X (2AY — A)XT 11
([ _2 ] ool [=2 -
— XOQAP—A)XTe{| V2V 2oV
1 1 02 1 1
\ V2 V2 V2 V2
_ 1 _ 1] 00 _1 _1
“dxe| V7V A" - AN ® XTe| VOV
1 1 02 1 1
V2 V2 2 V2
-1 _ 1 0 0
V2 V2 k k
= XuAuXy, Xu=X® , Ay =
-7 75 0x 2(2A" — A)

In the equation above, 0, is an k x k matrix of zeros, X, is the matrix
consisting of the eigenvectors of M and A,/is the diagonal matrix of eigenvalues
of M. Hence the eigenvalues of matrix M are 2(2A\F — X;), (i =1,...,k) and
k duplicative zeros. W

Remark If (23) holds, the maximal eigenvalue of M is zero, i.e. M is negative
semi-definite.

The specific SBP operators that are based on diagonal norms are given in
[3], [19]. When we use the second-order diagonal norm P = diag[1/2,1, ...,
1,1/2]/h on the right subdomain, we do not need to change the control volume



since P = P[. But the standard fourth- and sixth-order diagonal norms are,

[ 13649
43200

17 12013
48 8640

59 2711
48 4320

43 5359
48 4320

1 1
- : -
h 19 h 7877
18 8640

(25)

1 43801
43200

respectively. In both cases we need to modify the control volume for the UFVM
at the points on the interface to guarantee P,” = P. The old dual grid for the
points at the interface consists of the lines between the center of the triangles
and the midpoints of the edges. In order to match PyL and PyR, the new lines
will connect the center of the triangles and the points at the interface which
correspond to the PJ, see Figure 3.

3 Numerical Experiments

Consider the scalar advection equation,
uy + aug + buy, =0, -1<z<1,0<y<1, b>0, (26)

where the exact solution is u(z,y,t) = f(z,y,t) = sin(27(z/a + y/b — 2t)).

As initial data, we use u(x,y,0) = f(z,y,0). For a > 0, we use the boundary

conditions u(z,0,t) = f(z,0,t), u(—1,y,t) = f(—1,y,t)), while we replace
u(—1,y,t) = f(=1,y,t) with u(1,y,t) = f(1,y,t) for a < 0.

The problem (26) is a special case of the hyperbolic system we analyzed above.
However, the main difficulties are the same; namely to get the accuracy by
co-locating points on the interface and stability by choosing the finite volume
norm and penalty parameters correctly.

10
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(b) Sixth-order SBP

Fig. 3. The modified control volumes for the points on the interface.
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3.1 Figenvalue analysis

By the previous analysis we know that the long-time behavior for the hybrid
method is determined by the eigenvalues of interface matrix M. Consider a
case where the left subdomain has an unstructured mesh with 704 nodes and
the right subdomain has a structured mesh with 21 x 21 grid points (see
Figure 1). The HOFDM with the sixth-order SBP operator is used on the
right subdomain. Let ¢ = 1, b = 2 and PyL = Pf. We consider two cases:
¥l =1/2, 3% = —1/2 and =F = 0, ©F = —1. For both cases (22), (23) and
(24) are satisfied. In Figure 4 we can see that all eigenvalues are located in the
left half of the complex plane (including the zero eigenvalues). However, if one
or more of the stability conditions cannot be guaranteed, some of eigenvalues
might get positive real parts (see Figure 5). These eigenvalues will lead to
exponential time-growth and (unless they are of O(h)) an unstable scheme.

1 ‘ 1
0.8F 08
0.6t 06
0.4 0.4
0.2t 0.2
0 * OF % % K ¥ * * *
-0.2t -0.2
-0.4f -0.4
-0.6f -06
-0.8f -0.8f
1 08 06 04 02 0 02 04 06 08 1 3 25 2 -15 -1 05 0 0.5
(2) max(R(\)) = 0 (b) max(R();)) = 7.42 - 1016

Fig. 4. Spectra of the interface matrix M. (a) Pf = PF, £ =1/2 and £ = —1/2.
(b) P} = Bfl, 2" =0 and £F = 1.

3.2 One domain calculation

In this section, we test how efficient and accurate the high-order SBP operator
is on one domain. We start by defining the rate of convergence, ¢, on the
computational domain as,

~ logyg (|[u—vW[o/[[u—v®]]5)
logyo (\/ NO) /v N(2)) ’

12



1 ‘ 1
0.8f 08
0.6t 06
0.4t 0.4
0.2t 0.2
ope K oK * * e OF ok ok kx K * ok ok
-0.2f -0.2
-0.4F -0.4
-0.6f -06
-0.8f -0.8
I s 4 3 2 1 0 1 % 25 2 15 1 05 0 05
(a) max(R(\;)) = 0.3282 (b) max(R(A;)) = 0.2088

Fig. 5. Spectra of the interface matrix M. (a) PyL = Pf, ¥l =0and 2 = —2. (b)
Pl # PE,3F =0 and BF = 1.

where u is the exact solution. v and v(®) are the corresponding numerical
solutions on meshes with N and N® nodes (including boundary nodes),
respectively.

The convergence rate for both HOFDM and UFVM on one domain are dis-
played in Table 1. The structured mesh is refined from 861 nodes to 125751
nodes. We use the classical fourth-order Runge-Kutta method for the time
integration. A small time-step is used to minimize the temporal errors.

HOFDM (2nd) || HOFDM (4th) || HOFDM (6th) UFVM
Nodes err q err q err q err q
861 || —1.65 —2.66 —2.67 —1.06

3321 —2.26 2.07 —3.59 3.17 —3.84 4.00 —-1.69 | 2.13
7381 —2.61 2.03 —4.13 3.09 —4.55 4.12 —2.04 | 2.05
13041 —2.86 2.02 —4.51 3.06 —5.06 4.11 —2.29 | 2.02
20301 || —3.06 2.02 —4.80 | 3.06 —546 | 4.11 —2.49 | 2.02
29161 —-3.21 2.01 —5.04 3.02 —5.78 4.05 —2.64 | 2.00
37950 || —3.33 2.03 —5.21 | 2.98 —6.01 | 4.05 —2.75 | 1.91
125751 || —3.85 2.01 —6.00 | 3.02 —7.07 | 4.06 —3.27 | 1.99

Table 1
Convergence rates of approximations to u; + ug + 2u, = 0 on one domain.

The convergence rates for the second-, fourth- and sixth-order schemes are 2,
3 and 4 respectively. Those results are in line with the theory in [21], [22] and
[23], since we use diagonal norms that lead to first-, second- and third-order
accuracy at the boundaries. The convergence rate for the UFVM is 2 on the
structured symmetric mesh. One can prove that the UFVM is at least first
order accurate on a general triangular mesh.

13



The UFVM requires 5 flops at an edge that connects two nodes for the com-
putation of a gradient in two dimensions. On a cartesian mesh, the number of
edges are twice the number of nodes which means that 104+ 10 + 1 = 21 flops
are required for the computation of the sum of the z and y gradients at a node
point. The second-, fourth- and sixth-order finite difference method requires
3+3+1=7,6+6+1=13 and 9+ 9+ 1 = 19 flops for the same task.

Note that log(Ls — error) is —2.64 for the UFVM scheme on a fine mesh of
29161 nodes and approximately —2.66 for the fourth- and sixth-order HOFDM
on a coarse mesh of 861 nodes. The second-order finite difference scheme has a
log(Ly—error) of —2.61 for 7381 nodes. The operation count above implies that
all the HOFDMs are more accurate and efficient than the UFVM. For high
accuracy requirements, the sixth-order method is of course the most efficient.

(b) error at T'=1

Fig. 6. HOFDM with sixth-order SBP operators used on the whole computational
domain with 861 nodes and log(Lg — error) = —2.67.

Figures 6 and 7 show the results for HOFDM with sixth-order SBP operator
at T =1 on one domain. The calculations have a log(Ly — error) of —2.67 on
a mesh with 861 nodes and —3.84 on a mesh with 3321 nodes. On the same
mesh, the numerical solution for the UFVM is displayed in Figure 8. Note the
significant difference in error levels.

14



(b) error at T' =1

Fig. 7. HOFDM with sixth-order SBP operators used on the whole computational
domain with 3321 nodes and log(Ly — error) = —3.84.

(b) error at T'=1

Fig. 8. UFVM used on the whole computational domain with 3321 nodes and
log(Lg — error) = —1.69.

3.8 Two subdomains with an interface

Next, we will illustrate the efficiency of the hybrid method. We calculate on
two subdomains with an interface at + = 0. First we apply the UFVM on

15



an unstructured mesh in both subdomains. Next, we use the UFVM on the
same mesh in the left subdomain and the HOFDM on a structured mesh in
the right subdomain. Finally, we reduce the number of grid points in the right
subdomain until we obtain a similar Ly — error in both subdomains.

The mesh enlargement is done in the x-direction only and Ay is kept constant.
As previously shown, stability and accuracy require that the finite volume and
finite difference solutions are co-located at the interface.

UFVM (whole domain) || Hybrid(UFVM+HOFDM (2nd)) Hybrid(UFVM+HOFDM(6th))
Nodes ‘ err ‘ q Nodes ‘ err ‘ q Nodes ‘ err ‘ q
1410 —1.39 1145 —1.34 1019 —1.36
(704 4 441) (704 + 315)
5569 —1.94 | 1.84 4488 —1.91 | 1.92 3396 —1.94 | 1.96
(2807 4 1681) (2807 4 1189)
22331 | —2.49 | 1.82 17700 —2.47 | 1.88 14460 —2.48 | 1.93
(11139 + 6561) (11139 + 3321)
78543 | —2.97 | 1.76 54370 —2.98 | 2.09 46820 —2.98 | 1.96
(39119 + 15251) (39119 4 7701)
138113 | —3.16 | 1.56 93447 —3.16 | 1.54 79377 —3.16 | 1.57
(69126 + 24321) (69126 + 10251)
Table 2

Convergence rates of approximations to us + uz + 2u, = 0 on two subdomains.

Table 2 shows that the rate of convergence for the UFVM is less than 2 on
unstructured, unsymmetrical meshes. The log(Ls — error) is —3.16 for UFVM
scheme on the finest mesh with 138113 nodes. To obtain the same error level
we need a mesh with 93447 and 79377 nodes for the two hybrid methods
respectively. We can also see that in the sixth-order case only one sixth of the
nodes are required for the HOFDM.

In the calculations shown in Figure 9 we have used 2807 grid points in the left
subdomain and 861 in the right subdomain. The major part of the error in
Figure 9 is created in the left domain (with the fine mesh and low accuracy)
and advected into the right domain (with the coarse mesh and high accuracy).

In the previous calculations, the left subdomain with the unstructured mesh
can be considered a modelling the source field while the right subdomain with
the structured mesh can be considered as the wave propagation domain. The
previous numerical results illustrate the efficiency of the hybrid method when
waves propagate from the source to the far field.

It is also of interest to investigate the efficiency of the method for waves prop-
agating from the far field to the source. To illustrate this, consider equation
Uy — Uz + 2u, = 0 with initial and boundary conditions as described below
equation (26).

16



0.05

—0.05

(b) error at T' =1

Fig. 9. log(Ly — error) = —1.87 on the left domain with 2807 nodes and
log(Ly — error) = —2.22 on the right domain with 861 nodes for u; + u, + 2u, = 0.
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—0.02

—0.04

(b) error at T'=1

Fig. 10. log(Ls — error) = —1.98 on the left subdomain with 2807 nodes and
log (Lo —error) = —2.42 on the right subdomain with 861 nodes for u; —uz+2u, = 0.

The calculations are shown in Figure 10. We obtain similar error levels as we
did for the previous case on coarse meshes (see Table 3). However, for fine
meshes, only one eleventh of the nodes are used for the HOFDM in the sixth-
order case. This implies that the efficiency of the hybrid method is even better
in this case.
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UFVM (whole domain) || Hybrid(UFVM+HOFDM (2nd)) || Hybrid(UFVM+HOFDM(6th))
Nodes ‘ err ‘ q Nodes ‘ err ‘ q Nodes ‘ err ‘ q
1410 —1.36 1019 —1.35 977 —1.43
(704 + 315) (704 + 273)
5569 —1.96 | 2.01 4078 —1.96 | 2.02 3422 —1.94 | 1.87
(2807 + 1271) (2807 4 615)
22331 —2.49 | 1.76 15270 —2.47 | 1.78 12840 —2.50 | 1.95
(11139 + 4131) (11139 + 1701)
78543 | —2.96 | 1.72 51350 —2.97 | 1.90 43800 —2.97 | 1.76
(39119 + 12231) (39119 + 4681)
138113 | —3.15 | 1.58 92241 —3.15 | 1.43 75357 —-3.15 | 1.57
(69126 + 23115) (69126 + 6231)
Table 3

Convergence rates for approximations to u; — u; + 2u, = 0 on two subdomains.

The hybrid method is intended for problems where one needs the UFVM in a
relatively small part of the computational domain. To estimate the efficiency
of the hybrid method we therefore consider a case with one domain (of unit
size) where UFVM is used is coupled in the x-direction to [ such unit domains
where HOFDM is used (see Figure 13 below). We compare that calculation
with a case where UFVM is used on the whole (I + 1 unit domains large)
computational domain. We estimate the efficiency for large [ as

I x Ngorpm + Nurvme _ Nuorpum (27)

Y

Effici =1 =
clency li)Ic?o (l + 1) X NUFVM NUFVM

where Ngorpum, Nurvy denote the number of flops for the finite difference
and finite volume calculation respectively.

For a triangular mesh, the number of edges are three times the number of
nodes. This means that 15 + 15+ 1 = 31 flops per node are required for
the UFVM computation of the sum of the x and y gradients. As mentioned
above, the second-order and sixth-order finite difference methods require 7
and 19 flops respectively for the same task.

In Figures 11 and 12 we can see the result where we for simplicity have used the
data (number of flops) from Tables 2 and 3 respectively. Both hybrid methods
are more efficient than the UFVM method. Due to the low operation count,
the hybrid using the second-order finite difference method is very efficient. For
a vanishing grid-size, the hybrid using the sixth-order finite difference method
will be the most efficient choice.

Note that the efficiency gain discussed above is almost “one-dimensional”
due to the mesh refinement in the z-direction only. That limitation is due
to the fact that we need co-located nodes at the interface. For a more multi-
dimensional case (which will appear in most applications), for example with
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Fig. 11. Estimated efficiency for rightgoing waves, the “source to far field” case.

251

O
20
-5~ 2nd order

= (O 6th order
S 151
oy @)
c
@ ’
(&)
£ 101 QN\@/@
i

5 O)

0 | | | | |

3 35 4 4.5 5 55

log10(Nodes)
Fig. 12. Estimated efficiency for leftgoing waves, the “far field to source” case.

the UFVM in a convex domain surrounded by a structured mesh, even more
efficiency can be gained.

Next, we consider the hybrid method on the large domain [—1, 10] x [0, 1] at
t = 10. Only 6948 grid points are required to obtain the error level —2.14, see

Figure 13. To reach the same error level we need 30824 grid points when using
the UFVM.

3.4 Complex geometry

The UFVM works well on unstructured grids in complex geometries. To illus-
trate that, we exclude a part of the left subdomain shaped like a NACA0012
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Fig. 13. The total log(Ly — error) = —2.14 for u; + uy + 10uy, = 0.
log(Ls — error) = —2.20 on the left subdomain [—1,0] x [0,1] with 2807 nodes
and log(Lg — error) = —2.13 on the right subdomain [0, 10] x [0, 1] with 101 x 41
nodes.

Fig. 14. Unstructured mesh for the airfoil.

airfoil with length 0.2. The unstructured mesh easily handles the geometrical
complexity, see Figure 14. To decide whether we have inflow or outflow on the
airfoil, we consider the sign of (a,b) - 7. We specify u on an inflow boundary
where (a,b)-7 < 0. Note that the unit outward-pointing normal 7, points into
the airfoil shaped cut-out. On an outflow boundary where (a,b) -7 > 0 we do
not impose any boundary conditions.

The UFVM is used on the left subdomain while the HOFDM is used on the
right. The calculations for waves propagating from the lower-left corner and
the lower-right corner are displayed in Figures 15 and 16, respectively. In both
cases, the airfoil shaped cut-out does not introduce a significant amount of
error.
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Fig. 15. Waves propagating from lower-left corner. log(Ly — error) = —1.99 on the
left domain with 3172 nodes and log(Lg — error) = —2.27 on the right domain with
861 nodes.
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Fig. 16. Waves propagating from lower-right corner. log(Ly — error) = —1.99 on the
left subdomain with 3172 nodes and log(Lg —error) = —2.42 on the right subdomain
with 861 nodes.
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4 Extensions to three dimensions and parabolic problems

The hybrid method described in this paper can be extended to three dimen-
sions by interfacing hexahedra from the structured side with pyramids on the
unstructured side. Stability is obtained by modifying the corresponding two-
dimensional finite volume norm (choose the dual grid properly) to match the
two-dimensional finite difference norm.

Parabolic or incompletely parabolic problems (e.g. the Navier-Stokes equa-
tions) with second derivatives do not present a major problem for this tech-
nique. All the essential steps are in principal included and discussed in this
paper. The additional difficulties for parabolic problems are of a more gen-
eral nature (more complex algebra, additional stiffness, time step limitations,
accuracy of penalty terms at the interface, etc.) and are not coupled to this
specific procedure.

To maintain uniform accuracy and avoid reflections in the near interface region
is very important in many applications. To acomplish that one can adjust
the stretching on the structured mesh side, the size of the finite volumes on
the unstructured side and the order of accuracy on both sides to arrive at
comparable accuracy.

5 Conclusions

A stable hybrid method for hyperbolic problems that combines the unstruc-
tured finite volume method with the high order finite difference method has
been developed.

The main tools in the development of the stable interface procedure were the
use of SBP operators, weak imposition of interface conditions and the energy
method. The stability at the interface was obtained by modifying the dual
grid of the unstructured finite volume method close to the interface.

The calculations show that the hybrid method is efficient and accurate. The
numerical experiments support that the interface treatment is truly stable.

Extensions to three dimensions and parabolic problems have been discussed.
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