
FOI is an assignment-based authority under the Ministry of Defence. The core activities are research, method and technology development, as well as studies for the use
of defence and security. The organization employs around 1350 people of whom around 950 are researchers. This makes FOI the largest research institute in Sweden.
FOI provides its customers with leading expertise in a large number of fi elds such as security-policy studies and analyses in defence and security, assessment of dif-
ferent types of threats, systems for control and management of crises, protection against and management of hazardous substances, IT-security an the potential of new
sensors.

Ontological Interoperability

MARTIN EKLÖF, CHRISTIAN MÅRTENSON

FOI-R-- 1943 --SE Methodology report Command and Control Systems
ISSN 1650-1942 January 2006

FOI
Defence Research Agency Phone: +46 13 37 80 00 www.foi.se
Command and Control Systems Fax: +46 13 37 81 00
P.O. Box 1165
SE-581 11 Linköping

FOI-R--1943--SE
ISSN 1650-1942

Methodology report Command and Control Systems
January 2006

Martin Eklöf, Christian Mårtenson

Ontological Interoperability

2

Issuing organization Report number, ISRN Report type
FOI – Swedish Defence Research Agency FOI-R--1943--SE Methodology report

Research area code
4. C4ISTAR
Month year Project no.
January 2006 E79306
Sub area code
41 C4I
Sub area code 2

Command and Control Systems
P.O. Box 1165
SE-581 11 Linköping

Author/s (editor/s) Project manager
Martin Eklöf Tobias Horney
Christian Mårtenson Approved by
 Martin Rantzer
 Sponsoring agency
 FMV
 Scientifically and technically responsible
 Per Svensson
Report title
Ontological Interoperability

Abstract
Today, interoperability is a challenge for the Swedish Armed Forces (SwAF) and will probably remain so considering
the increased engagement in international operations. In order to facilitate interoperability, Sweden participates in the
Multilateral Interoperability Programme (MIP). MIP is a collaboration between several nations and manages the
development of a common information exchange data model for the C2 arena, named JC3IEDM. In order to enable
delivery of required information to the C2 domain, it is necessary that systems are compliant with the JC3IEDM. This
can be accomplished by integration of domain-specific ontologies with the JC3IEDM.

This study explores the fundamentals of ontology integration, involving activities such as identification of suitable
mappings between multiple ontologies, and automated translation of information between heterogeneous
representation formats. Also, this study covers high level perspectives of ontology integration, including ontology
management and tool support. The area of ontology integration has been explored in a multitude of research
projects world-wide, and it has close connections with the area of database schema integration. However, more
detailed studies and practical experiences are required in order to determine which methods and techniques are
suitable for use within SWaF, in enabling semantic interoperability between various domains and the C2 arena
(through the JC3IEDM).

Keywords
Interoperability, Ontology, JC3IEDM

Further bibliographic information Language English

ISSN 1650-1942 Pages 57 p.

 Price acc. to pricelist

3

Utgivare Rapportnummer, ISRN Klassificering
FOI - Totalförsvarets forskningsinstitut FOI-R--1943--SE Metodrapport

Forskningsområde
4. Ledning, informationsteknik och sensorer
Månad, år Projektnummer
Januari 2006 E79306
Delområde
41 Ledning med samband och telekom och IT-
system
Delområde 2

Ledningssystem
Box 1165
581 11 Linköping

Författare/redaktör Projektledare
Martin Eklöf Tobias Horney
Christian Mårtenson Godkänd av
 Martin Rantzer
 Uppdragsgivare/kundbeteckning
 FMV
 Tekniskt och/eller vetenskapligt ansvarig
 Per Svensson
Rapportens titel
Ontologisk Interoperabilitet

Sammanfattning
Interoperabilitet är en utmaning för dagens Försvarsmakt och kommer med stor sannolikhet att vara en svår fråga
även i framtiden, speciellt med tanke på Sveriges ökade engagemang utomlands. För att skapa förutsättningar för
interoperabilitet så deltar Sverige i Multilateral Interoperability Programme (MIP), ett samarbete mellan ett flertal
länder som syftar till att ta fram gemensamma datautbytesmodeller för ledningsområdet. Den senaste produkten
från MIP är JC3IEDM. I syfte att försörja ledningssystem med relevant information från skilda domäner är det viktigt
att system är kompatibla med JC3IEDM. Ett sätt att uppnå detta mål är att integrera domänspecifika ontologier med
JC3IEDM.

Detta projekt har utforskat grundläggande förutsättningar för integrering av ontologier, i form av aktiviteter för
identifiering av överlappande koncept och relationer, samt automatiserad översättning av information mellan skilda
representationssätt. Vidare har även mer övergripande perspektiv belysts såsom ”ontology management” och olika
former av verktygsstöd. Det finns mycket forskning relaterad till integrering av ontologier och området har även stark
koppling till integrering av databaser. Givet de verktyg och tekniker som existerar krävs det dock vidare arbete,
framförallt praktisk tillämpning, för att avgöra vilka lösningar som kan tillämpas inom Försvarsmakten i syfte att uppnå
semantisk interoperabilitet.

Nyckelord
Interoperabilitet, Ontologi, JC3IEDM

Övriga bibliografiska uppgifter Språk Engelska

ISSN 1650-1942 Antal sidor: 57 s.

Distribution enligt missiv Pris: Enligt prislista

Abstract

Today, interoperability is a challenge for the Swedish Armed Forces (SwAF) and will
probably remain so, especially considering the increased engagement in international
operations. Future Command & Control (C2) systems will require a high level of
interoperability, meaning that information from disparate domains should be consumable
in a seamless and automated fashion. In order to facilitate interoperability, Sweden
participates in the Multilateral Interoperability Programme (MIP), a collaboration
between several nations that manages the development of a common information
exchange data model for the C2 arena named JC3IEDM1. The purpose of the JC3IEDM
is to enable interoperability in the context of multinational, combined and joint
operations. Given this, it is crucial that systems are compliant with the JC3IEDM in
order to enable delivery of required information to the C2 domain. However, it is not
desirable that individual systems use the JC3IEDM for their internal representation of
information, since this most probably must meet other types of requirements concerning
level of abstraction and coverage. Individual domains will still require use of their
established standards, data and information models.

Traditionally, systems integration has mainly targeted the syntactic level and focused less
on the semantics of information. Given a dynamic and complex environment, where
systems from different domains exchange information in a seamless fashion, the inherent
meaning of information must be considered as well. It is important that the semantics of
information is defined explicitly and in a way that is accepted by all involved parties. An
ontology is a formal specification of a common conceptualization of a given domain and
is used to express information and knowledge in an unambiguous way. Through
integration of ontologies, semantic interoperability can be obtained across several
domains, which means that exchanged information is interpreted in an intended way and
ambiguities are avoided.

This study explores the area of ontology integration for the purpose of enabling
ontologies from diverse domains to be interoperable with the JC3IEDM. The
fundamentals of ontology integration is described in the form of processes for ontology
integration, comprising steps such as identification of suitable mappings between a set of
ontologies and automated translation of information between heterogeneous
representation formats. Also, this study explores high level perspectives of ontology
integration, including ontology management and tool support. The area of ontology
integration has been explored in a multitude of research projects world-wide.
Furthermore, it has close connections with the area of schema integration, which has
been explored extensively for the last decades within the database community. However,
more detailed studies and above all practical experiences are required in order to
determine which methods and techniques are suitable for use within SwAF, in enabling
semantic interoperability between various domains and the C2 arena (JC3IEDM).

1 Joint Command Control & Consultation Information Exchange Data Model

 6

 7

Table of Contents

1. Introduction.. 9
1.1 Purpose & scope ... 9
1.2 What is an ontology?.. 10
1.3 Ontology management... 12
1.4 Outline of report... 13

2. Ontology Integration.. 15
2.1 Terminology.. 15
2.2 Problem... 16
2.3 Schema vs. Ontology integration .. 17
2.4 General Process .. 19
2.5 Architectures .. 22

3. Ontology evolution & versioning... 25
3.1 Terminology.. 25
3.2 Ontology evolution process ... 25
3.3 Ontology versioning ... 27

4 Methods & Tools .. 29
4.1 Similarity discovery ... 29

4.1.1 Classification of techniques ...29
4.1.2 Examples – PROMPT ...31

4.2 Similarity representation & execution ... 34
4.2.1 Use of derived mappings ...35
4.2.2 Example – Semantic Bridge Ontology ..36

4.3 Tool support ... 39
4.3.1 MOMIS..39
4.3.2 PROMPT ...40
4.3.3 Chimaera..41
4.3.4 ONION ..41
4.3.5 Summary..42

5 Experiences from ontology integration... 45
5.1 Corporate Ontology Grid.. 45
5.2 Cyc... 46
5.3 Integrating C2IEDM and XBML ... 46
5.4 Integrating C2IEDM and OTH-T GOLD.. 47

6 Discussion... 49

7 Future work.. 51

8 References .. 53

 8

 9

1. Introduction
Today, interoperability of systems is a challenge for the Swedish Armed Forces, and
given the increased engagement in operations on an international scale, interoperability
will be even harder to reach and maintain in the future. In order to enable interoperability
at an international level, the Swedish Armed Forces participates in the Multilateral
Interoperability Program (MIP) [MIP] developing common information exchange data
models for the C2 (Command & Control) domain. The latest product from the MIP
collaboration is called JC3IEDM, which is an acronym for Joint Command Control &
Consultation Information Exchange Data Model.

In order for a C2-system to use information from different domains in a seamless and
automated fashion, systems producing the information must be compliant with the
JC3IEDM. It is, however, not desirable to enforce use of the JC3IEDM for the internal
information representation of the systems. Diverse domains will still be in need of
domain-specific data standards and information models. To cope with this, it is required
that a translation is made between local information representation formats and the
JC3IEDM.

Traditionally, integration of systems has mainly targeted the syntactic level and focused
less on the semantics of information. Given a dynamic and complex environment, where
information from a range of heterogeneous domains is exchanged, it is also crucial to
consider the inherent meaning of information. An ontology is a formal and explicit
specification of a conceptualization [Gruber 1993], and can be used to represent and
exchange knowledge about a domain in an unambiguous way. Through integration of
ontologies, originating from different domains, semantic interoperability can be achieved,
and thus, the likelihood of correct interpretation of information by various parties of a
large and complex organization increases.

1.1 Purpose & scope
The purpose of this study is to explore how heterogeneous ontologies may be integrated
to provide the basis for semantic interoperability. The overall aim is to enable systems
from diverse domains to provide information to the C2 arena through integration of
domain ontologies and the JC3IEDM. This report will address integration of ontologies
from a general perspective to gain better understanding of how integration in the context
of the JC3IEMD can be achieved. Further, it will provide insight into some high level
processes of concern when managing a set of integrated ontologies. Finally, hands-on
experiences from integration efforts involving C2IEDM2 will be described.

Figure 1 provides a conceptual view of the desired state resulting from the integration
process. A domain ontology expresses the semantics of a domain-specific information
system or database. This ontology is integrated with the JC3IEDM and a translator
provides means of changing the representation format of instances (data), thus enabling
the C2 enterprise to consume information from a specific domain and vice versa.

2 C2IEDM is the predecessor of JC3IEDM

 10

Figure 1. Conceptual view of integration of domain ontologies in the C2 enterprise.

1.2 What is an ontology?
Ontology is defined in dictionaries, e.g. in Merriam-Webster Online Dictionary
[MWOD], as

– a branch of metaphysics concerned with the nature and relations of being
– a particular theory about the nature of being or the kinds of existents

In computer science several areas refer to the term ontology, but the interpretation varies.
Within the area of Artificial Intelligence ontology is referred to as a specific perspective,
or an assumption, concerning the target application area to be represented. In Information
Systems Modeling, an ontology is a meta-model that facilitates common understanding of
a target system, early in the systems development process [Eklöf et al. 2004]. In
Information Science, an ontology is seen as the result of the effort to specify an
exhaustive and rigorous conceptual schema about a domain. Thus, an ontology is an
abstraction of the reality, or part of the reality. Typically, an ontology comprises a
hierarchical structure of relevant concepts and their relationships, but also rules that are
applicable for the modeled domain.

In recent years the Semantic Web has attracted a lot of attention from both the industry
and research communities. This can be explained by what the Semantic Web claims to
achieve:

“an extension of the current Web, in which information is given
well-defined meaning, better enabling computers and people to
work in cooperation.”. [Berners-Lee 2001]

A cornerstone of the Semantic Web is ontologies, which will promote shared
understanding, reuse of knowledge, precise searches for information etc. Given this, a
number of ontology languages have been developed to support the above mentioned
vision. Among the most widely used languages are RDF (Resource Description
Framework) [RDF] and OWL (Web Ontology Language) [OWL], which have reached

 11

recommendation status in the process of becoming a W3C (World Wide Web
Consortium) [W3C] standard. RDF is a simple data model used to refer to objects
(resources) and their inter-relations. RDF Schema is a vocabulary used for specifying
properties and classes of resources, including semantics for generalization hierarchies.
OWL is based on RDF and RDF Schema but provides some additional constructs, thus,
OWL is a more expressive language. E.g. in OWL it is possible to describe disjoint
classes, cardinality of properties, equality and much more.

Ontologies exist at different levels of abstraction. Usually three main categories of
ontologies are discussed in this context; upper level, mid level and domain ontology. The
purpose of an upper ontology is to represent concepts that are basic, universal (generic)
and of common sense. Concepts defined in the upper ontology should not be specific for
a particular domain, but be of use in several domains (ideally an arbitrary domain). The
common concepts specified by the upper ontology provide a knowledge base upon which
more specialized ontologies, mid and domain ontologies, can be built. In this way,
knowledge and semantics already specified in the upper ontology is reused and the
process of ontology integration is facilitated. A domain ontology specifies concepts that
are specific to a particular domain, whereas the mid ontology serves as a bridge between
universal concepts expressed in the upper ontology and domain-specific concepts in a
domain ontology [Eklöf et al. 2005]. Examples of ongoing initiatives to develop upper
ontologies are SUMO3 [SUMO] and DOLCE4 [DOLCE].

Ontologies can also be classified according to their expressiveness. [McGuiness 2003]
provides the following levels of expressiveness that can be used to classify ontologies:

– Controlled vocabulary: a list of terms
– Thesaurus: relations between terms are also provided, e.g. synonyms
– Informal taxonomy: an explicit hierarchy is defined (generalization and

specialization), but there is no strict inheritance
– Formal taxonomy: explicit hierarchy with strict inheritance
– Frames (classes): classes comprise sets of properties, which are inherited by

specializations
– Value restrictions: values of properties are restricted
– General logic constraints: using logical or mathematical formulas, values of

properties may be constrained by values of other properties
– First-order logic constraints: first-order logic constraints are allowed and

relations may be more detailed, e.g. disjoint classes or inverse relationships

Based on the levels presented above, Figure 2 provides a classification of a number of
well-known ontologies based on their expressiveness. Note the distinction made in this
figure between light-weight and heavy-weight ontologies.

3 SUMO – Suggested Upper Merged Ontology
4 DOLCE – a Descriptive Ontology for Linguistic and Cognitive Engineering

 12

Figure 2. Classification of common ontologies according to their expressiveness [reproduced from

Alexiev et al. 2005].

1.3 Ontology management
The exploitation of ontologies in information technology systems has proved successful.
An increasing number of applications rely on formal ontologies and the global interest in
the development of the Semantic Web promises even more to come. As a consequence,
the research focus has shifted from the development of tools for ontology creation to
techniques for handling multiple ontologies. These techniques constitute what is known
as ontology management.

The purpose of ontology management is twofold, to facilitate ontology reuse and
ontology interoperability. Ontology reuse is necessary to cut development costs.
Typically a lot of effort is spent on developing ontologies from scratch. If instead parts
from existing ontologies can be included, significant savings can be made. Ontology
interoperability, on the other hand, is a key feature for expanding the utilization of
knowledge. The goal is to enable automatic transfer of information between multiple
applications, which are possibly relying on different conceptualizations of the domain of
interest.

An ontology management system should comprise numerous functions in order to
support users when creating, modifying, querying and integrating ontologies. The main
components of ontology management can be divided into three categories: ontology
integration, ontology evolution and versioning, and storage and retrieval [Ding et al.
2001].

Ontology integration deals with the many aspects of combining multiple ontologies. The
role of the ontology management framework is to support the integration process in, e.g.,

– aligning different domain descriptions
– translating ontologies
– building ontologies from components

 13

– checking the result of integration
– performing inference and queries across multiple ontologies

Ontology evolution and versioning handles the different situations that arise when
ontologies are changed. The ontology management system should provide mechanisms to
maintain the various versions and highlight their differences.

Storage and retrieval are intrinsic parts of an ontology management environment.
Ontology libraries should allow uniform access to ontologies and provide pertinent
information about each one of them, such as their authors, domain, and documentation.
They should also support the import and reuse of ontologies, and let users extend and
customize ontologies developed by others [Noy & Musen 2004].

In a large-scale industrial setting additional requirements on the ontology management
solution may come into play. Scalability, availability, reliability and performance are
important issues usually not considered in academic prototypes, but potentially of great
interest in a commercial context [Das et al. 2001]. Likewise, security management with
the possibility to support different levels of access for different types of users can be
necessary to protect the integrity of data. On top of this, in some cases tools for
distributed multi-user collaboration would be useful, for instance when ontologists,
domain experts and end users need to work efficiently together from different geographic
locations.

1.4 Outline of report
The focus of this report is on exploring the possibilities of achieving ontological
interoperability, not to study techniques for ontological reuse. The obvious key enabler
for the creation of interoperability is ontology integration. However, in order to maintain
interoperability over time, ontology evolution and versioning must be considered as
ontologies change. Hence, the emphasis of this report is on ontology integration;
evolution and versioning is described more briefly, and storage and retrieval falls outside
the scope and is not further discussed.

Chapter 2 provides an overview of the area of ontology integration. First, a basic set of
definitions are provided that pin-point what ontology integration means. Second, the
fundamental problems that occur when integrating ontologies are explained briefly. Also,
the difference between ontology and database schema integration is explained. Finally, a
number of common architectures for ontology integration are described.

Chapter 3 provides an overview of how to manage ontology evolution and versioning.
This overview includes a basic set of definitions, a description of the ontology evolution
process, and finally, a description of how to manage different versions of an ontology.

Chapter 4 describes methods and tools that are used to support ontology integration. This
includes methods for discovery of similarities between a set of ontologies and how to
represent and use discovered similarities, i.e. mappings between ontologies. Further, this
chapter describes a number of tools of use in the ontology integration process.

 14

Chapter 5 dives into a selection of academic and industrial projects working on semantic
interoperability issues. Two projects are of generic interest and two are specifically
concerned with C2IEDM. Focus is on presenting experiences and lessons learned from
integration efforts.

Chapter 6 discusses ontology management from a high level perspective.

Chapter 7 proposes future work, primarily aimed at obtaining practical experience from
ontology integration in the context of the JC3IEDM.

 15

2. Ontology Integration
Historically, system integration has often targeted the syntactic level. However, the
fundamental meanings, or interpretations, of concepts have often been neglected. This
inherently leads to ambiguities, which prevent systems from being interoperable at the
semantic level. For example, consider two systems, interoperable at the syntactic level,
exchanging information concerning robots. The first system may interpret the concept of
“robot” as a system for automated assembly of components within the industry, whereas
the second system interprets the concept as a type of weapons system. Clearly, the
integration of these systems must include changes to the fundamental data models
employed.

In general, ontologies are considered applicable for resolving these kinds of conflicts, by
representing the semantics of information in an explicit way. If ontologies are used in the
systems development process, to form the basic agreement between involved parties, and
to represent information and knowledge of the target domain, the potential for true
semantic interoperability will increase. However, this assumes a global ontology,
accepted by all parties and applied in all system development projects. Experience shows
that this is not a viable option [Uschold & Gruninger, 2004]. Systems and users from
diverse domains will proclaim diverse requirements on the information contained within
such a universal ontology, and thus, the modeling and maintenance of the ontology will
become complex and unmanageable. Consequently, there is a strong need for
preservation of the semantics and structure contained within different ontologies, when
integrating systems from diverse domains. An ontology encodes an individual’s or
corporate perspective of the world, which inherently causes conflicts when integration of
different specifications is required. Even though ontologies are developed for a common
domain by different individuals or communities, the end result will differ due to
differences in the perception of the world [Maedche et al. 2003]. Thus, methods and
techniques for coupling of disparate ontologies are sought, i.e. methods for ontology
integration.

2.1 Terminology
Today, there is no consensus regarding the terminology used within the field of ontology
integration. [Noy & Musen 1999] defines ontology alignment as “… establishing
different kinds of mappings (or links) between two ontologies, hence preserving the
original ontologies.” Further, they define ontology merging as: “.. generate a unique
ontology from the original ontologies”. [Klein 2001] defines merging and integrating
equally, namely “Creating a new ontology from two or more existing ontologies with
overlapping parts, which can be either virtual or physical.” [Pinto 1999] defines
ontology integration as “Building an ontology, by assembling, extending, specializing and
adapting, other ontologies which are parts of the resulting ontology.” Further, the author
defines ontology merging as “Building an ontology, by merging different ontologies on
the same or similar subject into a single one that unifies all of them.”

 16

Regardless of the terminology used, two cases can be distinguished:

1. Combination where ontologies cover disparate subject areas
2. Combination where ontologies cover a common subject area

In addition to this, a second distinction can be made based on the definitions provided
above, namely:

1. The combination can be physical, i.e. a new ontology is created in the new
application domain and the old ones are discarded

2. The combination can be virtual, i.e. mappings are created, which are used in the
new application domain to translate between source ontologies

In the following report we will use the term ontology integration, which in this context
refers to combination of ontologies, covering similar abstractions. We also make a
distinction between physical and virtual integration. Considering the context of this
report, i.e. integration of heterogeneous system in the C2 arena (through use of the
JC3IEDM), virtual integration is the most interesting approach to consider. Note that
ontology integration refers to the complete process of combining two or more ontologies
and is made up of several activities.

2.2 Problem
To better understand how to perform ontology integration, mechanisms causing conflicts
between ontologies should be examined. The process of ontology integration is
obstructed by several factors. [Klein 2001] defines two main levels of mismatches,
namely language level and ontology level mismatches. Language level mismatches are
caused by heterogeneous ways of specifying an ontology, e.g., constructs used to define
classes in different ontology languages. Ontology level mismatches refer to differences in
how a specific domain is modeled. Below, a brief description of these types of
mismatches is given, based primarily on [Klein 2001].

The main aspects of language level mismatches are syntax and expressivity. The syntax
employed by different ontology languages usually differs. For example, in RDFS5 the
following primitive is used to define a class of cars: <rdfs:Class ID=”Car”>, whereas in
OIL6 the following construct is used for the same purpose: class-def Car. In general,
these types of mismatches are easy to resolve. A more complicated issue is mismatches in
expressivity of ontology languages. For instance, in RDF Schema it is forbidden to define
cyclic inheritance relations, a feature that is allowed in OIL.

Ontology level mismatches occur when ontologies cover a common subject area. In these
cases problems arise even though the ontologies are represented in a common language.
[Klein 2001] envisions three main categories of ontology level mismatches:
conceptualization, explication and terminological mismatches. Conceptualization
mismatches refer to problems related to the fact that different modelers will interpret a

5 RDFS – Resource Description Framework Schema [RDF]
6 OIL – Ontology Inference Layer [OIL]

 17

domain differently. For example, conceptualization of a domain by different modelers
will produce different sets of classes and relations between those. Also, given the
application area of an ontology, the conceptualization of a domain will result in a
particular granularity, or abstraction level. Explication mismatches refer to problems
caused by the style of modeling chosen by the modeler, for instance, how concepts such
as time, action and plans are represented, or which modeling conventions are employed.
Terminological mismatches refer to cases when concepts are represented by different
names (synonyms), or when the meaning of a concept differs depending of context
(homonyms). Further, words from different natural languages (e.g. Swedish, English,
French) might be used to name concepts, or syntactic variations of the same word might
be used to name a concept [KnowledgeWeb]

Also, terminological mismatches address the occurrence of different encodings, e.g.,
representation of a date data type, or unit of measure for distances. Besides ontology
mismatches, versioning of ontologies is important to address. As source ontologies are
evolved over time, a versioning function is required to manage the influence on mappings
between ontologies. Figure 3 provides a classification of problems related to ontology
integration.

Figure 3. Classification of problems related to integration of ontologies [reproduced from Klein,

2001].

2.3 Schema vs. Ontology integration
The process of integrating ontologies shares several features with the process of schema
integration, which has been studied extensively within the database community. Since the
mid 80’s the integration of heterogeneous databases has been a topic of research and
today, solutions for schema integration are frequently used in various domains, e.g. in the
GIS domain [Fonseca 2001]. Database technology was introduced during the 1960’s and
has become the backbone in many information systems. The most widely adopted
structure of databases is the relational database. Other types of structures have also been
employed, for instance object-oriented databases [Alexiev et al. 2005]. The schema
integration process aims at building a global view of information based on a set of
independently developed schemas, to enable queries over a set of heterogeneous

 18

databases [CROSI]. Even though schema and ontology integration appear to originate
from the same problem, and the processes for accomplishing the integration is similar in
both cases, there are fundamental differences. However, as stated in [Shvaiko & Euzenat
2005], techniques developed for each problem domain can be of mutual benefit.

Above all, there is a clear separation between schema and ontology integration in terms
of how the semantics of information is handled. Typically, schema integration is carried
out at the syntactic level, whereas ontology integration also considers the inherent
meanings of concepts (the semantics) [CROSI]. Schemas and ontologies do share several
features when it comes to expressiveness, for example the ability to declare objects,
properties, aggregation, generalization and constraints. Entities in an ER (Entity-
Relationship) model are equivalent to classes in an ontology, and attributes and relations
are similar to relations or properties of an ontology. An ontology usually comprises a set
of constraints, which are declared to express meaning, and ultimately enable automated
reasoning. Constraints are most often not enforced to a similar extent in schemas. This
hinders the semantic integration of schemas since the semantics is implicit. It is desirable
to capture as much meaning as possible to facilitate schema or ontology integration
[Uschold & Gruninger 2004]. The semantics of a database schema is often specified at
design-time, but most often, it does not become a part of the database specification
[Shvaiko & Euzenat 2005]. Being semantically richer, ontologies are usually closer to the
modeler’s view of the world, compared to database schemas.

Also, there is a key difference in the intended purpose of developing a schema or an
ontology. A schema describes the contents of a database and is usually internal to an
information system. An ontology is developed to describe a particular domain and is most
often external to an information system [Fonseca 2001]. Ontologies are applied in various
settings, for instance to support interoperability, search, or to provide a software
specification. Schemas are mainly concerned with structuring of a database to support
queries. The primary role of an inference engine in the context of an ontology is to enable
derivation of new information. Optionally, the inference engine can be employed to
ensure the integrity of instances and to check consistency of the ontology itself. Database
engines are often optimized for query answering and consistency checking of data
(instances). Also, in the ontology domain, consistency checking can be performed with or
without instances and there is no sharp boundary between the ontology and the instances.
[Uschold & Gruninger 2004].

In order to identify similarities in a set of schemas, lexical and structural features of the
specifications are used. Approaches for ontology integration usually go beyond this level.
For instance, it is common to analyze semantic relationships in the source ontologies (e.g.
subclass-of or part-of relationships and properties of classes). The larger number of
constraints usually expressed in ontologies, compared with schemas, are used to discover
similarities [Noy 2004]. As stated in [Shvaiko & Euzenat 2005] the integration of
database schemas usually employs techniques that in practice are based on guessing the
semantics of the specifications. Ontology matching utilizes the semantics that is explicitly
encoded in the specifications. Thus, the richer semantics found in ontologies cater for
efficient, and possibly semi-automated, approaches to similarity discovery.

 19

The difference in how schemas and ontologies treat semantics can be illustrated by
comparing XML and RDF Schema. In general, XML is geared towards describing the
structure of documents and focuses less on how the contained information is interpreted.
This is an efficient solution in settings where the content of documents is known
beforehand, but less efficient in dynamic environments where systems are integrated
more sporadically and the contents of documents is not known in advance. Thus, XML
Schema is useful for describing hierarchical structures, but does not provide extensive
semantics for elements, or relations among elements. The semantics is stated implicitly
and thus, the interpretation can vary extensively between different individuals or
machines. In RDF, the semantics of information is declared in an explicit way,
facilitating a common interpretation among a group of individuals or machines. Consider
the following XML structure:

<person>
 <name>Martin<name>
</person>
<iso8601date>
 <W3Cprofiledate>2003-09-30</W3Cprofiledate>
</iso8601date>

A human is capable of grasping that <name> is related to <person> in the form of a
”hasName” relation, whereas <W3Cprofiledate> is a specific type of <iso8601date>.
However, the semantics is implicit and hard for a machine to deduce. In RDF <person> is
explicitly linked to <name> by a “hasName” predicate, and <W3Cprofiledata> is
declared to subsume <iso8601date>. Here, the explicitly defined semantics caters for
common interpretation of concepts.

More recent work also shows the benefit of using ontologies in the process of integrating
database schemas. See for example [Cruz et al. 2004 or An et al. 2005], where the
integration of XML Schemas, which inherently do not represent the semantics of
information, is improved by incorporation of ontologies, thus bringing the pure syntactic
matching of XML Schemas to the semantic level. Ontologies can associate semantics
with data in databases, which will facilitate the process of integration. Thus, a number of
database problems can be solved more easily by use of ontologies, e.g. federated
databases, data warehousing and information integration.

2.4 General Process
This section describes common activities in the process of integrating ontologies. The
description provided here assumes that a suite of tools are applied to facilitate the
process. It is possible to perform ontology integration “by-hand”, but this is a time-
consuming and costly endeavor. However, it is important to highlight the importance of
human intervention in the process, preferably by subject matter experts that are familiar
with the domains under consideration.

 20

Figure 4. Activities of the ontology integration process according to [CROSI].

In Figure 4 activities of the ontology integration process, according to [CROSI], are
outlined. In the pre-integration step the syntax of the source ontologies is unified, thus
removing conflicts caused by syntactic heterogeneity. Also, the scope of the integration
effort is determined and external sources are gathered, e.g. lexicons. In order to enable
automation in the next phase, similarity discovery, source ontologies need a common
representation language. The pre-integration phase may be automated to some extent by
using ontology language conversion tools, for instance converting a DAML-OIL file to
its corresponding representation in OWL. The uniformly represented source ontologies
will then undergo similarity discovery in order to determine the correspondence. This
phase of the process is aided by semi-automated tools, which will guide, preferably, a
domain expert in defining the correspondences. Some tools, e.g. iPROMPT [PROMT]
and Chimaera [Chimaera] create a new, merged ontology based on the source ontologies,
whereas others, e.g. MOMIS [MOMIS] and ONION [Mitra et al. 2000], define mappings
between ontologies (in section 4.3 these tools are described further). In the next phase,
similarity representation, a formal way of representing identified correspondences,
mappings, is chosen. The chosen approach will influence the potential for automation in
the next phase, similarity execution. Similarity execution may produce a concrete global
ontology (merge of source ontologies), a virtual global view of source ontologies, a set of
articulation rules, and/or a query rewriting formula [CROSI].

[Maedche et al. 2003] provides an alternate view of the same process that also covers
ontology evolution, see Figure 5. In this approach there are two separate dimensions, a
vertical and a horizontal. The features of the horizontal dimension influence all aspects of
the vertical one. The dimensions are elaborated further below.

The phases of the vertical dimension are more or less identical to the phases defined
above, i.e.:

1. Lift & normalization: this phase refers to the activity of bringing source
ontologies to a common representation format.

 21

2. Similarity: this phase defines methods for identifying similarities between source
ontologies.

3. Semantic Bridging: this phase covers establishment of the actual bridges between
classes and properties of the source ontologies, based on the result from the
similarity identification.

4. Execution: this phase will transform instances of a source ontology into the
equivalent representation of another source ontology.

5. Post-processing: this phase takes the results from the execution phase in order to
check and improve the quality of the transformation results.

However, the approach also considers more long term aspects such as ontology evolution
and means of improving the quality of the integration process. The following aspects are
managed in the horizontal dimension:

1. Evolution: this aspect covers means of managing the logical axioms defined in the
semantic bridging phase to reflect changes made to the source ontologies.

2. Cooperative Consensus Building: this aspect treats the process of obtaining a
common agreement concerning the bridging axioms between domains involved in
the integration process.

3. Domain Knowledge & Constraints: this aspect refers to the possibility to provide
background knowledge into the process of similarity evaluation, e.g. use of lexical
ontologies to find similar concepts.

4. Graphical User Interface: mapping of ontologies is a complex task that requires
input from humans, possessing a deep understanding of the target domains. Thus,
extensive support for visualization is required to build a robust and effective
integration process.

Figure 5. Activities of the ontology integration process according to [Maedche et al. 2003].

 22

It is important to acknowledge that integration of ontologies is an iterative process that
requires infrastructure support, standardized procedures and guidelines. Derived
mappings will require evolution over time as domain-specific ontologies are changed or
replaced.

2.5 Architectures
In almost every ontology integration approach, a “bridging ontology” is used to explicitly
define the semantics of source ontologies. However, the application of the bridging
ontology differs. Generally, three basic architectures are found [Wache et al. 2001] (see
Figure 6):

1. Single ontology approach
2. Multiple ontologies approach
3. Hybrid approach

Figure 6. Common architectures in ontology integration approaches [reproduced from Wache et al.

2001].

In the single ontology approach, the semantics of information sources are expressed in a
common shared ontology. The main area of application for this approach is when the
abstractions of information sources are similar, i.e. the target domains are modeled in
more or less the same way. This is not ideal considering the fact that development of
ontologies is often influenced by the developer’s view of things, background, knowledge

 23

etc. Moreover, the single ontology approach is also hampered by changes in the
conceptualizations of the information sources, which will occur at some point in time.
Changes at the local level must in these cases be reflected at the global level as well
[Wache et al. 2001].

In the multiple ontology approach each information source has its own local ontology.
The local ontologies are inter-linked using formalized mappings, defining corresponding
concepts of the source ontologies. A set of mappings must be provided for each link
established between information sources. The approach may seem trivial, but mapping
between ontologies, having varying levels of abstraction and different views of the
domains, is complex. The mappings must also be maintained over time to reflect changes
in the conceptualization of information sources [Wache et al. 2001].

The hybrid ontology approach aims at overcoming the problems of the aforementioned
approaches. In this approach, the local ontologies are developed using a global shared
vocabulary. The shared vocabulary may constitute a basic definition of terms from the
target domain, or a more detailed ontology. Since the local ontologies share a common
vocabulary they are easily comparable, meaning that the mappings between local
ontologies are more easily extracted. The hybrid ontology approach overcomes the main
drawbacks of the single and multiple ontology approaches, but the model is based on the
assumption that ontologies will be developed from scratch when a new information
source is integrated. Thus, the approach does not cope with reuse of existing ontologies
[Wache et al. 2001].

Another interesting approach is ontology clustering. Instead of sharing a common, single
ontology, multiple and smaller shared ontologies may be applied. In ontology clustering,
specialized ontologies are organized in clusters, each of which employs a shared
ontology. The clusters are organized in hierarchical fashion with the most general cluster
in the top of the hierarchy. Lower level clusters extend concepts defined in higher level
clusters in order to obtain the desirable level of detail [Visser & Tamma 1999]. The use
of clusters for ontology integration has been employed in the ONION approach,
described briefly in section 2.5.

 24

 25

3. Ontology evolution & versioning
Creating an ontology is most often a very complex task. The development process
involves end-users as well as ontology and domain experts, and there are many aspects to
consider in making the model both complete and consistent. When the work is finally
done and the ontology is put into use, this is unfortunately not likely to be the end of the
efforts. The ontology usually still contains minor (or major) errors, and it will probably
not cover all situations that are waiting in future applications. Over time various updates
of the ontology will be needed. When different applications rely on the same ontology,
updates can lead to systems malfunctioning and data corruption. Additional
complications arise when other ontologies depend on the ontology that is being updated,
leading to inconsistencies that can be hard to trace. Therefore, a methodology for dealing
with ontology change and multiple versions of ontologies is needed.

3.1 Terminology
In literature, ontology change management comes in two flavors, as ontology evolution
and ontology versioning. The two notions are inspired by their counterparts in database
schema management. Schema evolution is the ability of updating a schema without
losing the possibility to access data conforming to the old schema. Schema versioning is
the ability to access both old and new data, but through different versions of the schema
interface. The adaptation of these concepts to the world of ontologies is not
straightforward [Noy & Klein 2003]. For example, ontologies do not make the distinction
between ontologies and instances as clear as databases do between schemas and
instances. The ontology itself is often used as data, making evolution in the sense of
database schema impossible. Ontologies are also more often reused, possibly by a large
number of applications and other ontologies. To make all dependent artifacts conform
simultaneously to a change is therefore seldom viable. Hence, evolving an ontology
means also maintaining a new version, and the two notions become indistinguishable.

In this report we will treat ontology evolution as a subprocess of ontology versioning, and
use the following definitions:

Ontology evolution is ”the process of modifying an ontology in response to a certain
change in the domain or its conceptualization” [Flouris & Plexousakis 2005].

Ontology versioning is “the ability to handle changes in ontologies by creating and
managing different variants of it” [Noy & Klein 2003].

3.2 Ontology evolution process
In [Stojanovic et al. 2002] ontology evolution is described as a process in six phases
(Figure 7). The process is cyclic, since the last phase – the validation of the introduced
changes – can reveal the need for additional changes due to introduced inconsistencies.

 26

Figure 7. Ontology evolution [reproduced from Stojanovic et al. 2002].

Change Capturing
The initial step is to capture the changes that need to be implemented. The causes of
changes can be divided into three categories [Noy & Klein 2003]:

1. Changes in the domain. Sometimes the actual domain that the ontology are trying
to capture change and the ontology has to be altered correspondingly. An example
could be two military units that are merged into one, or the introduction of a new
type of aircraft.

2. Change in conceptualization. A change of perspective of the world might
influence the way the conceptualization should be made. For example, when
driving in urban terrain, houses may be considered as simple obstacles. When
taking the perspective of a soldier on foot, the houses could instead be viewed as
something that offers sheltered passage.

3. Change in specification. If the translation of an ontology is made into a
representation form with different expressive capabilities, the ontology might
have to be changed in order to preserve its current semantics.

The change capturing can either be done in a top-down fashion, where the changes are
identified by e.g. an engineer as requirements for developing a new application, or in a
bottom-up fashion through change discovery. Change discovery is performed by
analyzing the behavior of the system. If changes in the system data or in the system usage
patterns are discovered, ontology refinement can automatically be inferred and suggested
to the ontology engineer.

Change Representation
The changes identified in the capturing step must somehow be expressed in an
unambiguous way in order to be correctly implemented. Some changes can be quite

 27

complicated, using a number of simpler changes as building blocks. It is common to use a
dedicated taxonomy or ontology for the representation of the changes [Haase et al. 2004].

Semantics of Change
This phase deals with the effects of the changes to the ontology itself. The task is to
enable careful and systematic resolution of the changes to ensure consistency. As an
example, consider the concept of a “Leopard” with the property “carries ammunition”. It
is clear from the context that we are dealing with a Leopard-tank. However, changing the
ontology by deleting this property would make the concept of “Leopard” equally well
refer to the animal.

Change Implementation
The objective of change implementation is to perform and keep track of the requested
changes. Before changes take place though, the implementer should be presented a list of
all consequences in order to prevent unwanted effects.

Change Propagation
When the modifications are implemented the effects are propagated to applications,
application data and dependent ontologies. The change propagation phase is meant to
recognize these effects and deal with them appropriately. Applications may need to be
updated and in order to handle new inconsistencies in dependent ontologies, new
evolution processes may have to be initiated.

Change Validation
Even though the preceding phases are carried out with care, there can be numerous
situations where the changes need to be reversed. For instance, all implications of the
changes might not have been fully understood or were just implemented for experimental
reasons. By creating detailed evolution logs the ontology engineer should be able to
completely re-create the initial ontology.

3.3 Ontology versioning
Instead of propagating implemented changes of an ontology to all dependent systems, the
ontology can be split into different versions. This allows voluntary conformation to the
changes and a much more flexible architecture. On the other hand, if the different
versions are not compatible, interoperability may be lost. To support interoperability
between multiple versions, an ontology versioning methodology is needed.

Ontology versioning includes mechanisms for identification of the different versions, for
describing their relations and degree of compatibility. A desired feature to achieve is
transparent access, to automatically relate versions with data sources, applications and
other depended elements [Flouris & Plexousakis 2005].

In the ideal case the creation of new versions of an ontology is always accompanied by
detailed change specifications. The compatibility of two different versions can then be
traced as a sequence of changes. However, in a highly distributed development
environment, as the case of the Semantic Web, this traced information cannot be taken

 28

for granted. In such a case tools are needed for automatic or semi-automatic version
comparison [Noy & Klein 2003].

 29

4 Methods & Tools
Today, no ontology management framework exists that supports all the necessary steps of
the processes described in the previous chapters. Methods developed are most often
devoted to various subtasks, and are produced by people or groups working
independently and with different goals. Summing the efforts, it is clear that the field of
ontology integration is the most mature. However, many aspects of versioning overlap
with integration. For instance, establishing mappings between different versions is an
integration task. Similarly, techniques for capturing differences between versions
resemble the approaches of similarity discovery, although the objectives are opposite.

Most researchers agree that a fully automated process for ontology integration is not
plausible for the time being [Noy 2004]. In most situations a human is needed to assert
that relationships between mapped concepts are true. It is desirable to involve domain
experts in the process that have specific knowledge of the domain/domains under
consideration. Today, the mapping of two or more ontologies is usually an interactive
process where the domain expert has the final decision on how to define the mappings
[Dou et al. 2004]. However, there are methods and techniques that can be employed to
simplify the process significantly.

4.1 Similarity discovery
This section describes classes of techniques for discovery of mappings in the ontology
integration process. Moreover, two examples are provided to highlight some basic
features of these techniques. Note that the purpose is not to provide a complete
description of available methods, but rather highlight some general characteristics of
techniques for ontology mapping. The reader is referred to [CROSI] or [KnowledgeWeb]
for an in-depth description of techniques.

4.1.1 Classification of techniques
The mapping of two or more source ontologies is a semi-automated process requiring
input from a user. Even though the process is not completely automated, using available
tools and techniques for this task it to prefer over manual mapping. Tools for semi-
automatic ontology mapping usually benefit from the following features of ontology
specifications [Noy 2004]:

– Concept names and natural-language descriptions
– Class hierarchies
– Property definitions (domains, ranges and restrictions)
– Instances of classes
– Class descriptions

In Figure 8 a classification of schema-based matching approaches is provided. Even
though this classification refers to approaches for schemata matching, corresponding
approaches can be found for ontology mapping. [Shvaiko & Euzenat 2005] makes a
distinction between heuristic and formal techniques and between implicit and explicit
approaches. Heuristic techniques make qualified guesses of relations among similar

 30

labels or graph structures, whereas formal techniques employ model theoretic semantics
to validate assertions made. Implicit techniques are based on syntactic features, whereas
explicit techniques consider the underlying semantics of terms.

Figure 8. Classification of schema matching approaches [reproduced from CROSI].

Another important distinction is element-level versus structure level approaches. This is
referred to as local and global approaches in [KnowledgeWeb]. Local methods are fairly
simple, operating on a limited scale of the ontology structure (element level), whereas
global methods consider the entire structure of ontologies when discovering similarities
(structure level). For instance, a global method can be applied to aggregate the result
from basic local methods to yield the similarity estimate. In [KnowledgeWeb] a
comprehensive description of local and global methods is given. Also, [CROSI] makes an
in-depth analysis of available methods in this area.

Element-level approaches
String-based techniques are basic ways of comparing concept names, originating from
disparate ontologies. The approach assumes that semantically similar concepts have
similar syntactic features. More advanced forms of string similarity evaluation also
consider textual descriptions associated with concepts and properties. This can be
augmented with analysis of pronunciation, or soundex (a phonetic algorithm for indexing
of names based on their pronunciation) to gain better performance [CROSI].

Language-based techniques consider concept names as words in natural language. The
techniques are based on Natural Language Processing (NLP), which utilizes
morphological properties of words, e.g. tokenization of words (OWL-based
representation will become [OWL, based, representation]). Usually, language-based
techniques are applied prior to string-based analysis [Shvaiko & Euzenat 2005].

 31

More complex approaches for deriving the mappings do not utilize name similarity, but
rather focus on the internal structure of concepts in the source ontologies. Constraint-
based techniques facilitate similarity discovery by analyzing datatypes, cardinality etc. of
a concept’s attributes [Shvaiko & Euzenat 2005]. Also, in this type of analysis, different
contexts can be applied that differentiate distinct types of relations among concepts, i.e.
particular relations are included in the analysis while the importance of others is
suppressed [CROSI].

In addition to these techniques, resources external to source ontologies can be used. The
matching procedure may utilize synonyms and hypernyms as defined in generic thesauri,
such as WordNet [WordNet], to provide meaning for concepts in the ontologies. Also,
mappings produced in earlier mapping sessions can be reused. This is based on the idea
that ontologies to be integrated share several features with already integrated ontologies.
This is especially true for ontologies covering a common domain [Shvaiko & Euzenat
2005].

Structure-level approaches
An ontology forms a hierarchical structure which can be represented by a tree with
labeled nodes. By analyzing this graph, such as data type properties of classes, or a
concept’s relations to other concepts, similarities can be discovered [CROSI]. Graph-
based techniques assume that two concepts, originating from different but similar
ontologies, may also have neighbors that are similar.

Taxonomy-based techniques analyze the graph structures of source ontologies, but only
consider the specialization relation. For example, if the super-concepts of two concepts
are similar, the concepts themselves are similar to each other. Likewise, if the sub-
concepts of two concepts are similar, the concepts themselves are also similar.

The integration of ontologies can be facilitated by a repository of structures. In this case,
pair-wise similarities of structures of ontologies are stored in addition to the ontologies
themselves. The structure of an ontology refers to number of nodes, maximum path
length etc. When ontologies are matched, the structures of these are compared with
structures in the repository to find similarities. This will avoid a full mapping procedure
in case the structures are dissimilar, and further, it enables reuse of existing mappings
[Shvaiko & Euzenat 2005].

Other approaches rely on analysis of instances derived from source ontologies. In this
way the underlying semantics of the ontologies are obtained by looking at how instances
are classified. The assumption made in this case is that instances having similar semantics
might share certain features [CROSI]. These techniques are usually applicable if a
relatively complete set of instances is available.

4.1.2 Examples – PROMPT
In the following sections two examples are given to highlight how algorithms for
discovery of mappings operate at the local scale (element level) and at the global scale
(structure level). The algorithms presented here are implemented in an application named

 32

PROMPT [PROMPT], which is a plug-in for the Protégé ontology development
framework [Protégé].

Local Method - iPROMPT
The PROMPT application includes an algorithm called iPROMPT that operates on the
local scale (element level). In iPROMPT, a merged ontology is created based on two
source ontologies. As a start, an initial list of matches is produced. This is based purely
on lexical similarity of class names

iPROMPT defines a set of operators to be applied in the process of ontology merging;
these are:

– Merge classes. Merges two separate classes that are considered to be
equivalent

– Merge slots. Merges properties of classes that are considered to be
equivalent

– Merge instances. Merges equivalent instances, originating from separate
source ontologies

– Shallow copy. Copies a class of the source ontology to the merged ontology,
including properties of the class

– Deep copy. Copies a class of the source ontology to the merged ontology,
including all parents of the class

In the subsequent section the merge classes operation is described in greater detail.
Consider having two source ontologies as described in Figure 9. The lexical analysis has
suggested merging of the Person and PERSON classes and the user has decided to follow
that suggestion. In this case the following actions are performed:

– A new class, C, is created in the merged ontology, Om. If the term used for
the classes in the source ontologies are equal, this term is used for naming
C, otherwise the user will choose a name. In our example C will be named
Person.

– For each superclass, S, of Person and PERSON, already represented in Om,
make S parent of C. The same process is carried out for subclasses. Since
there are no inherited classes in our example, the merged ontology, Om, will
remain the same.

– For each property, P, of Person and PERSON in the source ontologies, such
as affiliation and workplace, that is not represented in Om copy P to Om. For
each P in Om, associated with C, attach P to C. In the example, the
affiliation, manages, workplace and leader_of properties are copied to Om
and attached to C.

– Check the linguistic similarity of properties copied and attached to C in Om.
If properties are similar suggest merging of these. In the example there are
no linguistic similarities of the properties. However, since they represent
equal concepts, for instance affiliation and workplace, they can be merged
by the user at a later time.

 33

– Check the linguistic similarity of pairs of superclasses and subclasses to C.
If similar terms are used, suggest merging of these classes. Since there are
no inherited classes in the example ontologies, the merged ontology will
remain the same.

– Check for duplicate paths from C to parent classes. If redundancies are
identified, suggest removal of paths.

Figure 9. Example ontologies.

The merged ontology after applying iPROMPT, at the end of the first iteration, is
presented in Figure 10. At this stage the Person concept has four different properties.
However, these will be merged in subsequent iterations of the algorithm.

Figure 10. Result from iPROMPT after the first iteration.

Global Method - AnchorPROMPT
The AnchorPROMPT algorithm uses non-local contexts for semantic matching.
AnchorPROMPT suggests a set of semantically similar concepts to be merged from two
source ontologies based on a set of anchors, which are pairs of related concepts already
identified. The anchors can be identified through lexical analysis as described above (the
iPROMPT algorithm).

 34

An ontology can be seen as a directed labeled graph, where each class is represented by a
node, and relations between classes are represented by directed edges. In order to identify
semantically similar concepts, AnchorPROMPT traverses this graph based on provided
anchors. Consider two anchors, originating from two source ontologies:

– A1 and B2 are equivalent concepts of the sources O1 and O2 respectively
– C1 and D2 are equivalent concepts of the sources O1 and O2 respectively

In this case the algorithm will traverse the path from concept A1 to concept C1 in O1, and
the path from concept B2 to concept D2 in O2, in parallel. Along this route, similar terms
are identified.

Consider the case when two different ontologies, representing the structure of
organizations, should be merged, see Figure 9. At this point of the process a set of
anchors have been identified; these are:

– Person and PERSON represents equivalent terms
– Company and COMPANY represents equivalent terms

Based on these anchors, the algorithm should find other related terms in the source
ontologies. To do this, all paths from Person to Company and from PERSON to
COMPANY are generated. Given the example in Figure 9 a pair of paths is:

– Person – Department – Company
– PERSON – DIVISION – COMPANY

A pair of paths of equal length, is processed in parallel and for every pair of terms that
are visited during the traversal, a similarity score is incremented. In this case the
similarity score for the pair Department – DIVISION is incremented. The algorithm
processes each pair of paths of equal length for the predefined anchors in this way, and
increments the similarity score of pair of terms successively. In the end, the pair of terms
that appear in the same position on all paths traversed will get the highest score. It is
assumed that if pairs of similar concepts are connected to a second pair of similar
concepts, it is likely that these concepts are also similar. The idea is to produce a large
number of suggestions for concepts to be merged based on a minimal input, the set of
anchors. In our example the algorithm will recommend merge of the Department and
DIVISION classes.

4.2 Similarity representation & execution
This section describes how mappings, defined in the similarity discovery phase, can be
represented and used. A high level view of some interesting approaches is provided with
a more detailed study of a framework called MAFRA.

 35

4.2.1 Use of derived mappings
At a minimum, it should be possible to execute requests such as [Uschold & Gruninger
2004]:

“Given this message, encoded using ontology A, please return a
translated message encoded using ontology B. And please use
this particular mapping and that particular translation engine”

The expressive power of ontologies gives rise to the opportunity to represent mappings in
a formal way. Thus, the mappings can be used by an inference engine to automatically
translate between source ontologies. There are several approaches available for
representing and utilizing the mappings to enable translation between ontologies. In [Dou
et al. 2004] a system called OntoMerge is described, which uses an inference engine to
perform translation between source ontologies. Within the OntoMerge framework,
classes and properties of source ontologies are related through bridging axioms (formal
logical expressions). In this context, an axiom should be seen as a translation rule, e.g.
translate a class in one source ontology to the equivalent class in a second source
ontology. The axioms are managed by an inference engine, which enables the coupling of
source ontologies.

Other approaches utilize ontologies to declare mappings between source ontologies.
[Crubezy & Musen 2004] defines a Mapping Ontology, whereas [Maedche et al. 2003]
describes a Semantic Bridge Ontology. Common for these approaches is that instances
based on such ontologies define actual mappings between source ontologies. A set of
instances, defining a particular mapping, can be used by a tool (e.g. an inference engine)
to perform the actual translation. A similar approach is described in [RDFT]. In this case
a mapping meta-ontology named RDFT (RDF Transformation) is defined that is used to
integrate disparate vocabularies.

Another interesting approach is that of [Euzenat, 2004]. In this work an API for ontology
alignment has been implemented, mainly targeting OWL and RDFS ontologies. This API
can be embedded in a Java application to provide means of managing mappings between
two ontologies. Functions for extracting the alignment (mapping) through customized
algorithms are provided, but also functions for outputting the alignment to various
formats. The output can then be used to perform the actual translation between source
ontologies. The API can also produce stylesheets that an XSLT-engine can process in
order to carry out the transformation. A more interesting option is to produce rule sets in
SWRL (Semantic Web Rule Language), which an inference engine can process in order
to carry out the transformation. In this case the underlying semantics is managed more
thoroughly, compared with the more or less syntactic transformations made by an XSLT-
engine.

When considering ontology integration in the context of the JC3IEDM, an important
issue to address is the type of mappings that are relevant. A highly expressive language is
capable of representing complex relationships (mappings) between integrated ontologies.
On the other hand great expressiveness may require vast computing capacity in the

 36

translation process, and mappings will be harder to maintain over time. Thus, it is
important to resolve the requirements that the JC3IEDM will impose on similarity
representation.

4.2.2 Example – Semantic Bridge Ontology
In the following section the Semantic Bridge Ontology (SBO), presented in [Maedche et
al. 2003], is explained further based on a simple example. When using the MAFRA
framework in order to map source and target ontologies, an instance of the SBO ontology
is created that comprises instances of semantic bridges. The semantic bridges contain the
required information to perform transformation of instances between source and target
ontologies. In Figure 11 an example of ontology integration by means of the SBO is
given.

Figure 11. Example ontologies, integrated by means of the Semantic Bridge Ontology (SBO).

First, the ontologies to be integrated are specified according to the following construct:

<Mapping rdf:ID=”mapping”>
 <relatesSourceOntology rdf:resource=”&Ontology_1;”/>
 <relatesTargetOntology rdf:resource=”&Ontology_2;”/>
 <hasBridge rdf:resource=”#System-System”/>
</Mapping>

Ontology_2 in Figure 11 comprises a System class that is subsumed by the
ArmoredVehicle and Aircraft classes. However, in this ontology the System class is
abstract, i.e. when instances are created either an ArmoredVehicle or Aircraft is created.

 37

In the example we are interested in transforming an instance of Ontology_1 to its
corresponding representation in Ontology_2, thus Ontology_1 is the source and
Ontology_2 the target. Ontology_2 defines a System class which could either be an
ArmoredVehicle or an Aircraft, depending on the value of the type attribute. Thus, it is
necessary to define two alternative ConceptBridges, namely System - ArmoredVehicle
and System - Aircraft. In order to determine which ConceptBridge to use, a
SemanticBridgeAlt is defined according to the following:

<SemanticBridgeAlt rdf:ID=”ArmoredVehicleOrAircraft”>
 <hasBridge>
 <Seq ordinal=”1”><bridge rdf:resource=”#System-
 ArmoredVehicle”/></Seq>
 </hasBridge>
 <hasBridge>
 <Seq ordinal=”2”><bridge rdf:resource=”#System-
 Aircraft”/></Seq>
 </hasBridge>
</SemanticBridgeAlt>

The alternative ConceptBridges are defined according to the following constructs:

<ConceptBridge rdf:ID=”System-ArmoredVehicle”>
 <subBridgeOf rdf:resource=”#System-System”/>
 <relatesSourceEntity rdf:resource=”#System”/>
 <relatesTargetEntity rdf:resource=”#ArmoredVehicle”/>
 <whenVerifiedCondition rdf:resource=”#isArmoredVehicle”/>
</ConceptBridge>

<ConceptBridge rdf:ID=”System-Aircraft”>
 <subBridgeOf rdf:resource=”#System-System”/>
 <relatesSourceEntity rdf:resource=”#System”/>
 <relatesTargetEntity rdf:resource=”#Aircraft”/>
</ConceptBridge>

The alternative ConceptBridges subsumes the System – System ConceptBridge and thus,
they inherit its transformation of attributes. In addition to this, the System –
ArmoredVehicle bridge defines a condition, isArmoredVehicle, to determine if the
instance being translated is an ArmoredVehicle. The ConceptBridges are tested
(executed) in the context of the SemanticBridgeAlt, which means that the System –
ArmoredVehicle bridge is tested first. If the isArmoredVehicle condition is not true the
System – Aircraft bridge is unconditionally executed, i.e. the System should be translated
to an Aircraft. The isArmoredVehicle condition is defined according to the following
construct:

 38

<Condition rdf:ID=”isArmoredVehicle”>
 <putServiceArgument>
 <MapArg><from>1</from><to rdf:resource=”#type”/></MapArg>
 </putServiceArgument>
 <putServiceArgument>
 <MapArg><from>pattern</from><to>AV</to></MapArg>
 </putServiceArgument>
 <inService>CascadeAndMatch</inService>
</Condition>

The construct states that the value of the type attribute should be compared with “AV”,
which is the code used for an armored vehicle in Ontology_1. In case this comparison is
true, the System instance will be translated to an ArmoredVehicle instance.

The definition of how to transform class attributes is provided in the System – System
ConceptBridge. Next, the construct for transforming the id attribute in this bridge is
presented. This translation is defined by an AttributeBridge relating the source attribute
with the target attribute. Further it defines a transformation to be used, in this case the
copyId transformation.

<AttributeBridge rdf:ID=”id-id”>
 <relatesSourceEntity rdf:resource=”#id”/>
 <relatesTargetEntity rfd:resource=”#id”/>
 <accordingToTransformation rdf:resource=”#copyId”/>
</AttributeBridge>

The CopyId transformation is defined according to the following:

<Transformation rdf:ID=”copyId”>
 <mapSourceArgument>
 <MapArg><from rdf:resource:”#id”/>
 <to>sourceString</to></MapArg>
 </mapSourceArgument>
 <mapTargetArgument>
 <MapArg><from>targetString</from>
 <to rdf:resource=”#id”/> </MapArg>
 </mapTargetArgument>
 <inService>CopyString</inService>
</Transformation>

In this case the value of the id attribute of a System instance, derived from Ontology_1, is
copied to the id attribute of a System instance (ArmoredVehicle or Aircraft), derived from
Ontology_2. This is accomplished by using a built-in service of the inference engine,
which is called CopyService. Handling the ownedBy attribute of the System class in
Ontoloy_1 is more complex. This attribute refers to an instance of the Organization class,
but its equivalent representation in Ontology_2 is an ordinary attribute, noOwners, of
type integer. This is managed by the following AttributeBridge and associated
Transformation:

 39

<AttributeBridge rdf:ID=”owners”>
 <relatesSourceEntity rdf:ownedBy=”#id”/>
 <relatesTargetEntity rfd:noOwners=”#id”/>
 <accordingToTransformation rdf:resource=”#countOwners”/>
</AttributeBridge>

<Transformation rdf:ID=”countOwners”>
 <putServiceArgument>
 <MapArg><from>relation</from>
 <to rdf:resource=”#ownedBy”/></MapArg>
 </putServiceArgument>
 <mapTargetArgument>
 <MapArg><from>count</from>
 <to rdf:resource=”#noOwners”/></MapArg>
 </mapTargetArgument>
 <inService>CountRelations</inService>
</Transformation>

In this case an alternative built-in service of the inference engine is utilized, namely
CountRelations. This service counts the number of relations a System instance has to
Organization instances. The result is used to assign a number to the noOwners attribute
of an instance of the System class, derived from Ontology_2.

4.3 Tool support
There are numerous tools available to support the process of ontology integration.
Providing an in-depth description and assessment of these tools is beyond the scope of
this report. However, to give some insights concerning the prospects of applying this
technology in near future, a short description of some common tools within this area is
given below. The reader is encouraged to read [CROSI], [KnowledgeWeb] and [Shvaiko
& Euzenat 2005] for a more comprehensive description on the subject.

4.3.1 MOMIS
MOMIS is an acronym for Mediator envirOnment for Multiple Information Sources and
is a framework for integration of heterogeneous information sources. Based on structured
or unstructured content, MOMIS establishes a mediation schema used to provide a
uniform query interface for the user. Components of the MOMIS framework are
illustrated in Figure 12. The content of a source is translated to the ODL language by a
wrapper. The mediator is responsible of breaking up a global query into sub-queries for
connected sources. Further, it is responsible for assembly of the results provided by the
sources through their wrappers [MOMIS].

 40

Figure 12. Architecture of the MOMIS framework.

4.3.2 PROMPT
PROMPT is a suite of tools for multi-ontology management, available as an extension to
the Protégé ontology-editing environment. See [Protégé] for further information
regarding this environment. The tools suite comprises four separate components, whose
functionality is integrated through the Protégé environment. iPROMPT is an interactive
ontology merging tool, AnchorPROMPT is a tool for discovery of similarities based on
graphs, PROMPTDiff is a tool for discovery of differences between two versions of the
same ontology, and PROMPTFactor is used for extraction of subparts of an ontology
[PROMPT]. Figure 13 provides a snapshot of the user-interface of PROMPT.

 41

Figure 13. User-interface of PROMPT, ontology merging tool.

4.3.3 Chimaera
Chimaera is a tool for ontology merging and diagnostics provided by means of a browser-
based user-interface. The tool checks for similarities of class and property names in order
to produce a list of candidates to be merged. Based on this list the user makes the final
decision on which classes and/or properties that should be merged. Also, Chimaera
provides an alternative view that outlines parts of the merged ontology that might contain
conflicts, and thus requires rearrangement. The Chimaera tool is available on-line at
[Chimaera].

4.3.4 ONION
In the ONION framework two types of ontologies exists. First, source ontologies, which
are ontologies considered for integration. Second, articulation ontologies, which represent
articulation rules that bridge the source ontologies. The articulation ontologies utilize
clustering, i.e. a hierarchy of ontologies. The articulation ontology used for a specific
mapping can in turn constitute a source ontology in another articulation ontology
(mapping), e.g. the ART 1-2 articulation ontology in Figure 14 is a source ontology in the
mapping expressed by the ART 1-2-3 articulation ontology. ONION employs a top-down
strategy for the articulation ontologies, where the root node (the most general ontology) is

 42

created first and subsumed (or specialized) by new articulation ontologies as needed
[Mitra et al. 2001].

Figure 14. Articulation ontologies in the ONION framework.

4.3.5 Summary
Table 1 summarizes some properties of the ontology integration tools presented in the
previous section.

Table 1. Summary of features of some common ontology integration tools
[reproduced after Alexiev et al. 2005].

 MOMIS PROMPT Chimaera ONION
Integration
paradigm Combination Merging Merging Combination

Mapping
pattern

Single shared
ontology - - Clustering

User model Global - - Global
Mapping
support

Class; property;
constraints - - Class;

property
Degree of
automation Semi-automatic Semi-automatic Semi-automatic Semi-

automatic

Interoperability Custom
wrappers

Any language
supported by
Protégé

Any language
supported by
OntoLingua

n/a

Visualization
support - Ontology using

Protégé n/a n/a

Evaluating
ontology Manual Manual

Semi-automatic
using diagnostic
tests

n/a

Integration paradigm states what kind of end result that is achieved when applying the
tool, e.g. PROMPT creates a new, merged ontology based on provided source ontologies,
whereas MOMIS generates a set of mapping rules that are applied to translate between
source ontologies. The mapping pattern property refers to the architecture that is applied
to achieve ontology integration. See section 2.5 for more information on possible
architectures. User model defines what “view” is provided when using the integration
results, i.e. the user either sees information from the perspective of his own local

 43

ontology, or from the perspective of a common (global) ontology. Mapping support
defines the mapping types that are allowed. Degree of automation states if the approach
supports manual, semi-automatic or automatic integration. Interoperability refers to the
type of ontology languages that each approach is capable of managing. Visualization
support describes means of visualization that could aid the user in the integration process.
Finally, evaluating ontology defines the method used to evaluate the result from the
integration process.

Two main categories of ontology integration approaches are described in table 1. First,
MOMIS and ONION create a set of mapping rules, and thus, create a virtual integration.
Second, PROMPT and Chimaera creates a concrete, merged ontology based on the input.
There is also a difference as far as the employed architecture in the virtual integration
approaches is concerned. MOMIS uses a single shared ontology, whereas ONION
employs clustering of ontologies. None of the approaches presented here represent a fully
automated process for ontology integration. All approaches require input from a user,
preferably having some knowledge of the domain/domains captured by the source
ontologies.

Note that the tools mentioned here are more or less research prototypes. However, the
PROMPT tools are implemented as plug-ins to the Protégé ontology environment, which
has been used extensively within various communities. Thus, PROMPT in Protégé is
possibly the most widespread and used tool for ontology integration today. Besides the
tools described above the following tools/frameworks are worth mentioning:
OBSERVER [OBSERVER], KRAFT [KRAFT] and GLUE [GLUE]. For a
comprehensive list of information/ontology integration projects world-wide see
[Integration].

 44

 45

5 Experiences from ontology integration
The tools described in the previous section are all more or less academic prototypes.
Although both PROMPT and Chimaera are publicly available, and PROMPT is
continuously updated with new versions (currently version 2.4.8), there are almost no
industrial use-cases or experiences available concerning their use. Real life ontology
integration projects seem so far to mainly have used manual methods or developed their
own dedicated tools. Once again, turning to the more mature field of databases as a
comparison, we find a rich plethora of schema matching algorithms but still little
information on how to build a system that can be used in practice [Bernstein et al. 2004].

In the following paragraphs we present some of the few interesting findings we have
made referring to ontology integration efforts. The first two are of generic interest, and
the following two discuss integration projects involving C2IEDM.

5.1 Corporate Ontology Grid
The Corporate Ontology Grid (COG) project develops methods and technology for the
deployment of an Information Grid using ontologies in an industrial setting. One of the
main objectives is to “demonstrate the technological innovation of automatically
translating data between data formats on the grid by way of a semantic mapping to a
central ontology”. The project is sponsored by the European Union and the results are
meant to be disseminated to Europe’s corporations. Many publications, such as white
papers, scientific publications, and deliverables, are available on the project’s homepage
[COG]. Some of the initial experiences are also available as a book [Alexiev et al. 2005].

One of the partners in the COG project is the Italian car producer Fiat, who contributed to
the study with a real-life use-case. The goal was to achieve semantic interoperability
between the various data sources in their production system. A central ontology was
created onto which the formats of the different sources were mapped. This resulted in the
ability to locate and query distributed information through a single data-view, and
automatically translate and transfer data between the sources spread throughout the
enterprise. The information model was built using existing applications, data sources and
input from domain experts.

The following is a selection of best practices and lessons learned from the COG project,
outlined in [Alexiev et al. 2005]:

• Domain vs. application modeling. One problematic issue when constructing the
shared ontology was how to balance the trade-off between domain and application
interests. Defining the mapping of an application to the ontology was more easily
accomplished if the ontology was modified to match the data view of the
application. However, this implied worse conformance to the domain, eventually
resulting in problems when integrating other applications. Similar trade-off
complications did also occur when integrating data sources to the ontology.

 46

• Quality of global model depends on local models. The global ontology was in part
created on the basis of local data schemas (reverse-engineering). Hence, it was
important that these schemas were well-documented and well-understood, which
was not always the case. Much time was spent together with end-users in order to
catch the proper meanings of all data.

• Automation is hard to achieve in real-life situations. This statement is primarily

due to the fact that data sources were created in Italian and the ontology in
English. This made many techniques for automatic similarity discovering
impossible to use.

5.2 Cyc
Cyc, developed by Cycorp Inc., is the world's largest and most complete general
knowledge base and common-sense reasoning engine [CYC]. Over the last two decades a
large number of ontologies have been integrated with Cyc in order to extend the
knowledge base. Some experiences of the integration work are presented in [Reed &
Lenat 2002]. The authors claim that the major work is not to solve issues concerning
upper ontologies:

“Much to-do has been made – by everyone from Aristotle to Sowa – about what the upper
ontology (in which the most abstract and general sorts of concepts are defined) should
be. But we have found empirically that most of the “action” – the minute-by-minute work
of ontology mapping – is performed primarily at the middle and lower levels of the
ontology”

Another lesson learned refers to Cycorp’s efforts in integrating Open Directory in Cyc.
The Open Directory is a huge web topic taxonomy available in RDF, and is free to update
by anyone [Open Directory]. For the integration a semi-automatic tool was developed.
However, as the Open Directory is continuously updated, the instance IDs change over
time and mappings are lost or corrupted. The maintenance burden proved to be too heavy
and the integration project was postponed until a fully automatic method can be
developed.

The integration of WordNet in Cyc proved to be more successful. WordNet is an English
lexical knowledge base with almost 150,000 words and phrases [WordNet]. The problem
of continuous updates is shared with Open Directory, but WordNet handles this in a more
systematic manner as backward compatibility is tracked by a versioning program.

5.3 Integrating C2IEDM and XBML
The US Army has developed an unambiguous language for their command and control
systems, called the Battle Management Language (BML). For interoperability purposes a
process has been initiated to map BML to C2IEDM. The process is described in [Turnitsa
et al. 2004].

The team designing the process recognized two different approaches for the integration,
top-down and bottom-up mapping. The top-down approach starts the mapping by

 47

considering associated concepts, larger semantic entities in which data is given in a
broader context. In the next step tables are mapped, and finally possible missing
properties are identified. The bottom-up approach reverses this process and starts with the
mapping of simple properties. The structuring of these into tables and associated concepts
is dealt with in a later step when they are needed for the applications.

The advantage of the top-down approach is that the mapping of larger entities of related
concepts divides the problem into sub-classes, which reduces the overall complexity. The
drawback is that there is a larger risk of mismappings between complex entities than
between simple properties. In the case of integrating BML and C2IEDM the team chose
to go top-down, as the structural similarities between the two ontologies were judged to
be sufficient.

A lesson learned from the integration work so far (2004) is the additional complications
due to the fact that the BML is only given as an instantiated relational database without
an explicit data model. This leads to differences in the abstraction level of the models,
which has to be handled with special care. Another experience is not to underestimate the
value of learning the models well. As the C2IEDM is of considerable size, this can take
some time. The authors report that “even an experienced data modeler needs four to six
weeks to understand the data model and an additional two to four weeks of practice with
the model to understand the practical applicability.”

5.4 Integrating C2IEDM and OTH-T GOLD
Over-The-Horizon targeting GOLD (OTH-T GOLD) is a messaging format for the
exchange of target information, supported by e.g. the US Global Command and Control
System. The mapping between C2IEDM and the OTH-T GOLD ontologies has
simultaneously been the focus of two independent research teams. Their shared
experiences are summarized in [Dorion et al. 2005].

The authors’ main observation is that differences in expressivity make life hard for
ontology engineers. If one model misses the complete semantics to cover a certain
concept, semantic loss is inevitable when pushing information back and forth. It is
emphasized that “the ontologist has to make assumptions on the acceptable level of
semantic loss”. On the other hand, if a model is extensive enough to capture all detailed
aspects of the domain, the complexity itself can be a problem and the risk for ontologists
making mistakes is increased.

Another pitfall pointed out is that even though a mapping seems self-evident in one
context, it may fail in covering another. The authors state that to handle this, “higher level
and more abstract semantic concepts must be known in order to succeed in mapping
ontologies together”.

The final experience is a warning not to let the tools be part of the ontology. An example
of this is a proposition in MIP of adding a NODE entity to C2IEDM in order to simplify
database-to-database replication. Apart from being conceptually unappealing, this can
lead to problems when using other tools.

 48

 49

6 Discussion
The mapping of heterogeneous information representation formats is a crucial capability
in enabling interoperability of defense-related systems. Ontologies are the key ingredient
in creating this capability by providing an explicit and common specification of
knowledge contained within a domain. Having this specification, the integration with
other domains is simplified since the inherent meaning of information is common
(shared) and specified in a formal way.

As stated several times before, the field of ontology management as a whole is immature
and tool support is still fairly weak. Available tools are targeting specific problems areas,
such as similarity identification and execution, but do not usually cover the perspectives
of higher level management. This does not mean that one can simply overlook these
issues when pursuing an ontology integration task. Choices made when designing
mappings may influence how easy the ontology will be to change in the future and how
easily the changes may be documented. The importance of performing traceable changes
depends on the context of the ontology in question. If it has several dependent ontologies
and changes are likely to be frequent, it could be wise to adopt a versioning methodology
and a standardized model for denoting changes. Given the increased interest in recent
years in ontologies, and the Semantic Web in particular, increased tool support for
ontology management will probably be a reality in the near future.

The need for semantic interoperability solutions most often originates from the need of
two or more applications to exchange data. The prevailing solution for this during the
nineties was to state a standard data model for everyone to adhere to. However, this
simple and theoretically appealing idea proved hard to realize. [Rosenthal et al. 2004]
discusses some experienced successes and failures of this integration philosophy in a
military context. The lessons learned are that very large enterprises cannot hope to
construct a single data model, and that agreement of large data models is much more
likely when participants are few. The authors are devoted supporters of the new data
strategy of the US Department of Defense, which emphasizes that data model standards
should not be peremptory top-down directives, but developed and agreed upon in certain
Communities of Interests (COI). The term COI is used to describe a collaborative group
of data owners and producers who must exchange information in pursuit of their shared
interests, and who therefore must have a shared vocabulary for the information they
exchange. Determining the participants and scope of such a COI is a delicate matter but
of vital importance for the success of any integration effort. A recipe for the creation of
COIs in a NATO environment can be found in [Lasschuyt 2003].

The decision of the Swedish Armed Forces to participate in MIP means joining a large
COI and compulsory adherence to the MIP solution, including the use of JC3IEDM for
C2 information exchange. This does not mean that the local C2 data model must be based
on JC3IEDM. Neither must information exchange between national C2 systems and other

 50

types of systems7, forming other potential COIs, use the MIP solution. The suitability of
JC3IEDM as the one and only information exchange model within C2 is strongly
questioned in [Lasschuyt et al. 2004]. The authors claim that in its current form, the
model is unbalanced in its levels of detail and too large to be practical. On the other hand,
JC3IEDM also has many advantages. It is inherently extendible and has a strong support
in the community. In [Turnitsa & Tolk 2005] C2IEDM is evaluated as an
interoperability-enabling ontology between the communities of C2 and Modeling and
Simulation. The conclusion is that even if there is room for improvements, the model
supports almost all basic needs for such a semantic bridge.

7 For an overview of the different information domains relevant for data exchange with Swedish C2
systems, see [Mårtenson & Svensson 2005].

 51

7 Future work
This study shows the broadness of the area of ontology management. Numerous research
projects have produced a range of solutions and tools in order to accomplish semantic
interoperability through integration of ontologies. Also, the database community has put
a lot of efforts into enabling database schema integration during the last decades, an area
that has much in common with integration of ontologies. Given this, the inevitable next
step would be to gain more specific hands-on experiences from integration of the
JC3IEDM with one or more domain-specific ontologies (databases). This work is
motivated by the following factors: there are no extensive experiences from integration
efforts involving the JC3IEDM reported in the literature and it is hard to evaluate the
applicability of proposed solutions for ontology integration without practical experiences.
We propose the following activities for the next phase of the project:

1. Identify one or more suitable ontologies to be integrated with the JC3IEDM. If no
suitable ontologies exist, these have to be developed (based on some existing
system)

2. Apply existing tools for the similarity identification phase on selected ontologies
and the JC3IEDM. In this step a mapping will be established

3. Use tools and existing solutions for similarity execution in order to accomplish
automated translation. In this step a formal way of representing the mapping will
be chosen, and an appropriate translation implementation will be selected

4. Demonstrate translation of instances from source (domain) to target (JC3IEDM)
ontology

5. Evaluate the applicability of applied tools and solutions:
o The benefits of using semi-automated tools for similarity identification
o The level of expressivity required for formal representation of the

mapping, i.e. the most beneficial approach given trade-off between
expressiveness and computability

o Effectiveness of applied translation approach

 52

 53

8 References

[Alexiev et al. 2005] Alexiev V., M. Breu, J. de Bruijn, D. Fensel, R. Lara, and H. Lausen,
 Information Integration with Ontologies, John Wiley & Sons Ltd,
 Chichester, England, 2005.

[An et al. 2005] An Y., A. Borgida, and J- Mylopoulos, Constructing Complex Semantic
 Mappings Between XML Data and Ontologies, Proceedings of
 ISWC2005, 2005.

[Berners-Lee 2001] Berners-Lee T., J. Hendler, and O. Lassila, The Semantic Web, Scientific
 American, http://www.scientificamerican.com, accessed 2006-01-13.

[Bernstein et al. 2004] Bernstein P. A., S. Melnik, M. Petropoulos, and C. Quix,

Industrial-Strength Schema Matching, SIGMOD record 33(4), 2004

[Chimaera] Chimaera homepage, http://www.ksl.stanford.edu/software/chimaera/,
 accessed 2006-01-13.

[COG] The Corporate Ontology Grid project, http://www.cogproject.org,

accessed 2006-01-13.

[CROSI] CROSI – Capturing Representing and Operationalising Semantic
 Integration (semantic integration technologies survey),
 http://eprints.ecs.soton.ac.uk/10842/01/crosi-survey.pdf, accessed 2006-
 01-13.

[Crubezy & Musen Crubezy M., and M. Musen, Ontologies in Support of Problem
2004] Solving, In Handbook of Ontologies, Springer-Verlag, Berlin,
 Germany, 2004.

[Cruz et al. 2004] Cruz I., H. Xiao, and F. Hsu, An Ontology-Based Framework for XML
 Semantic Integration, Proceedings of IDEAS2004, 2004.

[Cyc] Homepage of Cycorp Inc., http://www.cyc.com/, accessed 2006-01-13.

[Das et al. 2001] Das A., W. Wu, and D. L. McGuinness, Industrial Strength Ontology

Management, Proceedings of SWWS, 2001.

[Ding et al. 2001] Ding Y., D. Fensel, M. Klein, and B. Omelayenko,
 Ontology management: survey, requirements and direction,

On-To-Knowledge project, 2001, http://www.ontoknowledge.org/.

[DOLCE] a Descriptive Ontology for Linguistic and Cognitive Engineering,
 http://www.loa-cnr.it/DOLCE.html, accessed 2006-01-13.

[Dorion et al. 2005] Dorion E., C Matheus, M Kokar, Towards a Formal Ontology for

Military Coalitions Operation, Proceedings of 10th ICCRTS, 2005.

 54

[Dou et al. 2004] Dou D., D. McDermott, and P. Qi, Ontology Translation on the Semantic
 Web, LNCS Journal of Data Semantics II, 35-57, 2004.

[Eklöf et al. 2004] Eklöf M., P. Hörling, P. Svan, R. Suzic, and C-H, Yi, Information &
 Knowledge Management for NBI (Network-Based Intelligence), FOI-R—
 1417—SE, 2004.

[Eklöf et al. 2005] Eklöf M., R. Suzic, and C-H. Yi, Network-Based Intelligence (NBI) –
 Knowledge Base Development and Use, FOI-R—1757—SE, 2005.

[Euzenat, 2004] Euzenat J., An API for ontology alignment, International Semantic Web
 Conference, 2004.

[Flouris & Plexousakis Flouris G., and D. Plexousakis, Handling Ontology Change: Survey and
2005] Proposal for a Future Research Direction, TR-362, FORTH-ICS, 2005.

[Fonseca 2001] Fonseca T., Ontology-driven Geographic Information Systems, PhD
 Thesis, http://www.spatial.maine.edu/~fred/fonseca_2001.pdf, accessed
 2006-01-13.

[GLUE] Machine learning to find semantic mappings in web documents,
 http://www-faculty.cs.uiuc.edu/%7eanhai/research.html, accessed
 2006-01-18.

[Gruber 1993] Gruber T. R., A translation approach to portable ontology specification,
 Knowledge Acquisition 5(2), 199-220, 1993.

[Haase et al. 2004] Haase P., Y. Sure and D. Vrandecic, D3.1.1 Ontology Management and

Evolution – Survey, Methods and Prototypes, Deliverable in the SEKT
project, 2004, http://www.sekt-project.com/.

[Integration] Data Integration Projects World-Wide,
 http://www.ifi.unizh.ch/stff/pziegler/IntegrationProjects.html, accessed
 2006-01-18.

[Klein 2001] Klein M., Combining and relating ontologies: an analysis of problems
 and solutions, Proceedings of IJCAI-01, 2001.

[KnowledgeWeb] KnowledgeWeb, State of the art on ontology alignment,
 http://knowledgeweb.semanticweb.org/, accessed 2006-01-13.

[KRAFT] Knowledge Reuse and Fusion/Transformation,
 http://www.csd.abdn.ac.uk/%7eapreece/Research/KRAFT.html, accessed
 2006-01-18.

[Lasschuyt 2003] Lasschuyt E, Information Interoperability Domains, RTO-SCI-137/9
 available on http://www.rta.nato.int

[Lasschuyt et al. 2004] Lasschuyt E., M. van Henken, W. Treurniet, and M. Visser,
 How to Make an Effective Information Exchange Data Model,

RTO-IST-042/9

 55

[Maedche et al. 2003] Maedche A., B. Motik, N. Silva, and R. Volz, MAFRA – A MApping
 FRAmework for Distributed Ontologies, Proceedings of the EKAW
 2002.

[McGuiness 2003] McGuiness L., Ontologies come of age, In Spinning the Semantic Web,
 MIT Press, Cambridge, MA, 2003.

[MIP] Multilateral Interoperability Programme, http://www.mip-site.org/,
 accessed 2006-01-13.

[Mitra et al. 2000] Mitra P., G. Wiederhold, and M. Kersten, A Graph-Oriented Model for
 Articulation of Ontology Interdependencies, Proceedings of Conference
 on Extending Database Technology, 2000.

[Mitra et al. 2001] Mitra P., G. Wiederhold, and S. Decker, A Scalable Framework for the
 Interoperation of Information Sources, Proceedings of SWWS’01, 2001.

[MOMIS] Mediator envirOnment for Multiple Information Sources,
 http://dbgroup.unimo.it/Momis/, accessed 2006-01-13.

[MWOD] Merriam-Webster Online Dictionary, http://www.m-w.com/, accessed
 2006-01-13.

[Mårtenson & Mårtenson C., and P. Svensson, “Kartläggning av informationsdomäner
Svensson 2005] för LedsystT i perspektivet FMLS 2010”, FOI Memo 1201, 2005

[Noy, 2004] Noy N., Semantic Integration: a survey of ontology-based approaches,
 SIGMOD record, 33(4), 65-70, 2004.

[Noy & Klein 2003] Noy N., and M. Klein, Ontology evolution: Not the same as schema

evolution, Knowledge and Information Systems, 5, 2003.

[Noy & Musen 1999] Noy N., and M. Musen, An Algorithm for Merging and Aligning
 Ontologies: Automation and Tool Support, Proceedings of AAAI-99,
 1999.

[Noy & Musen 2004] Noy N., and M. Musen, Ontology versioning in an ontology management

framework, IEEE Intelligent Systems, 2004.

[OBSERVER] Ontology Based System Enhanced with Relationships for
 Vocabulary hEterogeneity Resolution,
 http://siul02.si.ehu.es/OBSERVER/, accessed 2006-01-18.

[OIL] Ontology Inference Layer, http://www.ontoknowledge.org/oil/, accessed
 2006-01-13.

[Open Directory] Open directory project, http://dmoz.org/, accessed 2006-01-23

[OWL] Web Ontology Language, http://www.w3.org/2004/OWL/, accessed
 2006-01-13.

 56

[Pinto 1999] Pinto H., Some Issues on Ontology Integration, Proceedings of IJCAI-99,
 1999.

[PROMPT] the PROMPT tab for Protégé,
 http://protege.stanford.edu/plugins/prompt/prompt.html, accessed 2006-
 01-13.

[Protégé] Protégé ontology environment, http://protege.stanford.edu/, accessed
 2006-01-13.

[RDF] Resource Description Framework, http://www.w3.org/RDF/, accessed
 2006-01-13.

[RDFT] Resource Description Framework Transform,
 http://zoe.mathematik.uni-
 osnabrueck.de/QAT/Transform/RDFTransform/, accessed 2006-01-13.

[Reed & Lenat 2002] Reed S. L., and D. B. Lenat, Mapping Ontologies into Cyc,

Proceedings of AAAI, 2002.

[Rosenthal et al. 2004] Rosenthal A., L. Seligman, and S. Renner, From semantic integration to
semantics management: case studies and a way forward,
SIGMOD record 33(4), 44-50, 2004

[Shvaiko & Euzenat Shvaiko P., and J. Euzenat, A Survey of Schema-Based Matching
2005] Approaches, Journal of Data Semantics IV, 146-171, 2005.

[Stojanovic et al. 2002] Stojanovic L., A. Maedche, B. Motik, and N. Stojanovic, User-Driven

Ontology Evolution Management, Proceedings of EKAW, 2002.

[SUMO] Suggested Upper Merged Ontology, http://ontology.teknowledge.com/,
 accessed 2006-01-13.

[Tolk 2005] Tolk, A., A Layered Web Services Architecture to Adapt Legacy Systems
 to the Command & Control Information Exchange Data Model
 (C2IEDM), Proceedings of European Simulation Interoperability
 Workshop, 2005.

[Turnitsa & Tolk 2005] Turnitsa C., and A. Tolk, Evaluation of the C2IEDM as an

Interoperability-Enabling Ontology, Proceedings of SIW-05, 2005.

[Turnitsa et al. 2004] Turnitsa C., S. Kovurri, A. Tolk, L. DeMasi, V. Dobbs and
 W. P. Sudnikovich, Lessons Learned from C2IEDM Mappings within
 XBML, Proceedings of Fall Simulation Interoperability Workshop, 2004.

[Uschold & Gruninger Uschold, M., and M. Gruninger, Ontologies and semantics for
2004] seamless connectivity, SIGMOD record 33(4), 58-64, 2004.

[Visser & Tamma 1999] Visser, P., and V. Tamma, An Experience with Agent-based
 Ontology Clustering, IJCAI-99, 1999.

 57

[W3C] World Wide Web Consortium, http://www.w3.org/, accessed
 2006-01-13.

[Wache et al. 2001] Wache H., T. Vögele, U. Visser, H. Stuckenschmidt, G. Schuster, H.
 Neumann, and S. Hubner, Ontology-Based Integration of Information –
 A Survey of Existing Approaches, Proceedings of IJCAI-01, 2001.

[WordNet] Online lexical reference system, http://wordnet.princeton.edu/, accessed
 2006-01-16.

