A Matlab Toolbox for Analysis of
Multi/Hyperspectral Imagery

JORGEN AHLBERG

Algo = SEM (®MgxTteratigme’' 6 10%%;

SpectralModel = gmm(nComponents) ;

SpatialModel globalmodel (’ Subsampling’,5) ;

TrainingData hsi2vecs (SpatialModel, IM) ;

[Algo, SpectralModel] = run(Algo, SpectralModel, TrainingData) ;
Anomaly = hsianomaly (IM, SpectralModel, []) > Thres;

% X(:,:,[1 188

Ya= v / max (yCEies

v (1) = double (Anomaly) ;

imagesc (y)

FOl'is an assignment-based authority under the Ministry of Defence. The core activities are research, method and technology development, as well as studies for the use
of defence and security. The organization employs around 1350 people of whom around 950 are researchers. This makes FOI the largest research institute in Sweden.
FOI provides its customers with leading expertise in a large number of fields such as security-policy studies and analyses in defence and security, assessment of dif-
ferent types of threats, systems for control and management of crises, protection against and management of hazardous substances, IT-security an the potential of new
Sensors.

FOI
Defence Research Agency Phone: +46 1337 80 00 www.foi.se .
PO. Box 1165 Fax:  +4613378100 FOI-R--1962--SE  Technical report Sensor Technology

SE-58111 LINKOPING ISSN 1650-1942 March 2006




Jorgen Ahlberg

A Matlab Toolbox for Analysis of
Multi/Hyperspectral Imagery

FOI-R--1962--SE Technical report Sensor Technology
ISSN-1650-1942 March 2006






Issuing organisation
FOI — Swedish Defence Research Agency

Sensor Technology
P.O. Box 1165
SE-581 11 LINKOPING

)

eport number, ISRN Report type
FOI-R--1962--SE Technical report

Research area code

C'ISTAR
Month year Project no.
March 2006 E3082

Sub area code

Above water Surveillance, Target Acquisition and Reconnaissance

Sub area code 2

Author/s (editor/s)
Jorgen Ahlberg

’roject manager
Jorgen Ahlberg

Approved by
Mattias Severin
Head, Dept. of IR Systems

Sponsoring agency
Swedish Armed Forces

Scientifically and technically responsible
Gustav Tolt

Report title

A Matlab Toolbox for Analysis of Multi/Hyperspectral Imagery

Abstract

At the Department of IR Systems, Division of Sensor Technology, FOI, the ongoing research on analysis
of multi- and hyperspectral imaging indirectly results in software tools. Some of these tools, developed in
Matlab, are packed in a toolbox available internally at FOI. This report describes the toolbox and gives usage

examples.

Keywords

hyperspectral, multispectral, Matlab

Further bibliographic information Lapguage English
ISSN ISSN-1650-1942 Pages 28p.

Price acc. to pricelist

iii




Utgivare Rapportnummer, ISRN Klassificering
FOI — Totalforsvarets forskningsinstitut FOI-R--1962--SE Teknisk rapport

Sensorteknik Forskningsomr &de

Box 1165 Ledning, informationsteknik och sensorer

581 11 LINKOPING

Méanad ar Projektnummer
Mars 2006 E3082
Delomr &de

Spaningssensorer

Delomr &de 2

Forfattare/redakt or Projektledare
Jorgen Ahlberg Jorgen Ahlberg
Godk and av

Mattias Severin
Chef, Inst. for IR-system

Uppdragsgivare/kundbeteckning
FM

Tekniskt och/eller vetenskapligt ansvarig
Gustav Tolt

Rapportens titel
Mjukvara for analys av multi/hyperspektrala bilder

Sammanfattning

Pa institutionen for IR-system, FOI Sensorteknik, &r ett indirekt resultat av forskningen om analys av multi-
och hyperspektrala bilddata att en stor mangd mjukvaruverktyg tagits fram. Ett antal av dessa verktyg,
utvecklade i Matlab, har har satts samman till en "toolbox” som &r tillganglig internt FOIl. Denna rapport
beskriver mjukvaruverktygen och ger nagra exempel pa anvandning.

Nyckelord

hyperspektral, multispektral, Matlab

Ovriga bibliografiska uppgifter Spr 4k Engelska
ISSN ISSN-1650-1942 Antal sidor: 28 s.

Distribution enligt missiv Pris: Enligt prislista




FOI-R--1962--SE

Contents

1 Introduction
1.1 About the toolbox . . . . . ... ... o
1.1.1 Requirements . . . . ... ... ... L.
1.1.2 Projects . . . . . . ..o
1.2 About thereport . . . . . . . . ... ...
1.2.1 Purpose . . . . . . .
1.2.2 Prerequisites . . . . . .. .. ... .
1.23 Outline . ... ... ...
1.3 Hyper- and multispectral imaging . . . . . . . .. .. ... ...
1.3.1 Hyperspectral sensors . . . . ... ... ... ... ..

2 Overview of the Toolbox
2.1 Components . . . . . . . . ...
2.2 Future development . . . . . ... ... .. ... ... ... .

3 Basic Functionality
3.1 Hyperspectral data . . . . . .. ... ... oL
3.2 Hyperspectral images . . . . . . .. .. ... oL
3.2.1 Displaying hsimages . . . . . . .. ... .. ... ...
3.2.2 Creating new hyperspectral image files . . . . . . . . ..
3.2.3 How much memory does the image use? . . . . ... ..
3.24 Closing and saving . . . . . . .. ... ... ...
3.3 Files and file formats . . . . . .. ... ... ... L.

4 Modelling
4.1 Background . . . . . .. ..o
4.2 Spectral models and their training . . . ... ... ... ...
4.2.1 Training mixture and cluster models . . . . . . .. ...
4.3 Segmenting a hyperspectral image . . . ... ... ... ....
4.4 Spatial Modelling . . . . . .. ... . oL oo

5 Detection
5.1 Anomaly detection . . . . . . ... ... L.
5.1.1 Running anomaly detection . . . . . .. ... ... ...
5.1.2  Some common anomaly detectors . . . . . ... ... ..
5.2 Signature-based target detection . . . . .. ... ... ... ..
5.2.1 Detectors . . . . . . ...
5.3 Performance measures . . . . . . ... ... ...
53.1 The ROCwclass . . .. ... ... .. .. ... ......

6 Miscellaneous Tools
6.1 Principal component analysis and transform . . . . . . ... ..
6.2 Regions of interest . . . . . . . . ... ... .. ... ... ..

I I R S e = T e T

w w W

N~ O O ot ot 3

o ©



FOI-R--1962--SE

7 Graphical User Interface
8 Example Application

Bibliography

vi

23

25

27



FOI-R--1962--SE

1 Introduction

1.1 About the toolbox

At the Department of IR Systems, Division of Sensor Technology, FOI, the
ongoing research on analysis of multi- and hyperspectral imaging indirectly re-
sults in software tools. Some of these tools, developed in Matlab, are packed
in a toolbox, the Hyperspectral Imaging Toolbox (HSI Toolbox), available in-
ternally at FOI.

1.1.1 Requirements

The toolbox requires Matlab version 7.1. Additionally, the graphical user in-
terface requires the Image Processing Toolbox.

1.1.2 Projects

The toolbox is developed during the projects ” Optronic Sensors” and ”Multi-
spectral IR- & EO-sensors” during 2004 and 2005, respectively. The toolbox
will continuously be further developed in the scope of the project ”Multi- and
Hyperspectral Reconnaissance” during 2006-2008, and the course of develop-
ment will be according to the needs within that project. All these projects are
sponsored by the Swedish Armed Forces Research & Development Programme,
and are parts of the European projects ” Spectral Imaging Techniques” (through
WEAO/CEPA) and later ”Hipod” (through EDA).

1.2 About the report

1.2.1 Purpose

This report describes the toolbox and gives usage examples. The purpose is to
provide a guide complemented by the User’s Guide and the Reference Manual
available both in the Matlab Help (after installing the toolbox) and on the HSI
Toolbox webpages on the FOI Intranet [1].

1.2.2 Prerequisites

The reader is assumed to have knowledge of Matlab programming and basic
linear algebra. The basic concepts of object oriented programming will also
help.

This documents corresponds to version 0.6.13 of the hsi toolbox.




FOI-R--1962--SE

1.2.3 Outline

Chapter 2 gives a brief overview of the toolbox. Chapter 3 describes the basics,
i.e., data formats and how to handle hyperspectral images. Chapter 4 treats
various spectral models that are exploited for detection in Chapter 5. Chap-
ter 6 briefly mentions some other tools available in the toolbox, and Chapter 7
describes the graphical user interface. Chapter 8, finally, describes an example
application developed using the HSI Toolbox.

1.3 Hyper- and multispectral imaging

Multi- and hyperspectral electro-optical sensors are sensors (cameras) that sam-
ple the incoming light at several (multispectral sensors) or many (hyperspec-
tral sensors) different wavelength bands. Compared to a consumer camera
that, typically, uses three wavelength bands, corresponding to the red, green
and blue colours, hyperspectral sensors sample the scene in a large number of
wavelength (or spectral) bands, often several hundred. Moreover, these spec-
tral bands can lie beyond the visible range, i.e., in the infrared domain. Each
pixel thus forms a (spectral) vector of measurements in the different bands.
This vector, the observed spectral signature, contains information on the ma-
terial(s) present in the scene, and can be exploited for detection, classification,
and recognition.

If an observed target spectrum deviates from observed background spectra,
this deviation can serve as a measure of anomaly. An anomaly detector is thus
a detector that detects pixels that ”stick out” from the background, without
any a priori knowledge about target or the background.

The theory for multi- and hyperspectral target and anomaly detection and
the detection methods implemented in the toolbox are treated in [3].

1.3.1 Hyperspectral sensors

The sensor (and the scene) can be characterized with respect to spatial, spec-
tral, radiometric and temporal resolution (and properties).

The spatial resolution and the distance from the sensor to the target deter-
mines whether a target can be spatially resolved or not. A spatially resolved
target covers at least one pixel completely, which means that the target pixel(s)
will be pure, in contrast the mized pixel of a sub-pizel target. Generally, sub-
pixel targets are very difficult to detect and must deviate substantially from the
surroundings in order to be distinguishable. Spatial resolution will therefore
be an important performance parameter.

The spectral resolution determines the number of spectral bands, while the
radiometric resolution determines the number of bits per sample and is limited
by the signal-to-noise ratio. The temporal resolution determines how often a
new pixel can be produced by the sensor.

In practical sensor design, trade-offs have to be made between spatial, spec-
tral and temporal resolution. An important issue is therefore to try to establish
optimal trade-offs with respect to scenarios and applications. In the final end,
tactical sensors must be both inexpensive and perform well with respect to
spatial, spectral and temporal information.



FOI-R--1962--SE

2 Overview of the Toolbox

2.1 Components

The toolbox essentially consists of a set of classes each encapsulating certain
functionalities. Additionally, there is a set of tools for common tasks, for
example, principal component analysis, viewing hyperspectral image data, and
file utilities for accessing imagery in the ENVT file formats.

The most basic functionalities include handling hyperspectral images (which
tend to occupy large amounts of space on disk or in memory), regions of interest
(typically, target masks), and receiver operating characteristics for assessing the
performance of detection algorithms.

On top of that, functionality for spectral models are available. In the lit-
erature, it is very common to model the spectral variation of a specific target
or background type as a linear subspace, a Gaussian distribution, a certain
direction in spectral vector space, or a Gaussian mixture model. Thus, classes
for each of these models have been implemented.

The different models often form the basis of target or anomaly detection
schemes, which can be exploited by the anomaly detection tool or the differ-
ent target detectors. The most common target detectors (ACE, ASD, AMF)
from the literature are implemented as detector classes. Anomaly detection is
executed by creating the suitable spectral model for the background, applying
a spatial model (local or global), and measure the fit of the model to each
investigated pixel.

For complex backgrund models, typically Gaussian mixture models or clus-
ter models, a set of training algorithms based on K-means or Expectation-
Maximization are available.

2.2 Future development

The future development of the toolbox is determined by the demands in cur-
rently ongoing and future projects. During 2006, methods for analysis of hy-
perspectral longwave (thermal) infrared imagery will be developed, including
atmospheric modelling and correction, and temperature-emissivity separation
(TES), as required by the EDA project HIPOD.

For easy reference, the classes or
functions discussed in the text
are noted in the margin like
this.






FOI-R--1962--SE

3 Basic Functionality

3.1 Hyperspectral data

In this toolbox, we distinguish between hyperspectral image format (hsi format)
and wvector format. Hyperspectral data stored in a 3D matrix or in an hsimage
object are typically in hsi format, which means that the first dimension is the
lines (rows) of the image, the second dimensions is the samples (columns), and
the third is the spectral bands. This is the same as for RGB images loaded
using imread.

Thus, if X containts hsi data, X(1,2,3) is the third spectral band in the
second sample in the first line.

Data in vector format is one or more (spectral) vectors in a 2D matrix.
Each column is a vector, and thus the first dimension is the spectral bands
and the second is the vector number. Commonly, one line of spectral data is
extracted from hsi data and transformed to vector format in order to facilitate
matrix operations.

If you have a function processing one spectral vector or a line of spectral
data, you do not even need to write the loop yourself. The function hsiapply
applies a function to all data in a hsi data cube and returns the result.

3.2 Hyperspectral images

When dealing with hyperspectral imagery, a common problem is the size of the
data. The hsimage class provides a solution to the problem by letting the user
access the data as if it were a 3D matrix loaded into the memory. An hsimage
object is always connected to a file and keeps a part of the data in memory.
When the user accesses different parts of the data, the correct parts of the file
are swapped into memory.

A function looping over a hyperspectral data cube does thus not need to
know if the data is stored in a 3D matrix or in an hsimage object. The hsimage
behaves like a 3D matrix in most, but not all, ways. The main difference is
that you cannot apply global operators, like +, =, *, /, or ’.

The files can be in ENVI or Matlab format. In both cases, they should be
accompanied by an ENVI header file describing the file format.

Assume in the following that we have a hyperspectral image stored in the
ENVI file image . img with the corresponding header file image .hdr. To create
an hsimage object from the file, write:

X = hsimage(’image.img’);

The variable X will act as a 3D matrix with the three dimensions correspond-
ing to the lines (rows), samples (columns), and spectral bands respectively (hsi
format, see above). Moreover, if you access a single pixel, e.g., X(3,4), a
spectral column vector will be returned.

Accessing a part of the image that is not loaded into memory will cause
the hsimage to load the requested part. If the currently loaded image data

5

hsimage



view

imagesc

hsiview

enviCreateIMG

hsiCreateImage

FOI-R--1962--SE

has been modified, it will automatically be written to file. However, to avoid
accidental file modification, hsimage objects are by default created in read-only
mode. You can change this using the FileMode option:

X = hsimage(’image.img’,’FileMode’,’rw’);

To get information about the image, simply type X. This will tell you the
dimensions of the image, the associated file name, and how much of the image
that is loaded into memory, for example like this:

X = [hsimage]

Properties:
FileName: C:/hsi/hstest.img
nBands: 15
nSamples: 800
nLines: 200

LinesInMemory: 100 (46 through 145)
BytesInMemory: 9 MB (50% of image)

FileMode: Read/write

DebugMode: 1

Viewdata: 100 x 400, bands [7 6 4]
FileFormat: envi

3.2.1 Displaying hsimages

To display an overview of the hsimage object X, use view(X). One or three
bands (given by the property DefaultBands) are loaded and subsampled to
a convenient size and displayed in an image window. A red rectangle marks
the part of the image that is loaded in memory, and by clicking in the window
you can load another part of the image. To view details of the image, use
view(X,2), which displays the overview and calls hsiview (see below) on the
part of the image data currently loaded in memory. If another part of data is
loaded, both windows are updated automatically.
To display the entire image (entire spectral band(s)) in detail, use

imagesc (X,BAND) }

To display three bands simultanesously, coded as red, green, and blue re-
spectively, use:

imagesc (X, [REDBAND, GREENBAND, BLUEBAND])

To view and examine hyperspectral image data (a 3D matrix or an hsimage
object), use the function hsiview which displays the image in the GUI descr-
bied in Chapter 7.

3.2.2 Creating new hyperspectral image files

To create a new file, use either enviCreateIMG to create an ENVI image file
or hsiCreateImage to create Matlab-files:

hsiCreateImage(’newimage’,’Size’, [100 100 10] )
or

enviCreateIMG(’newimage.img’,’Size’, [100 100 10] )



FOI-R--1962--SE

3.2.3 How much memory does the image use?

You can chose how much memory that should be available for the image on
creation, by using one of the options MaxBytesInMemory or MaxLinesInMemory:

X = hsimage(’image’,’MaxBytesInMemory’,1e8);
X = hsimage(’image’,’MaxLinesInMemory’,100) ;

The first example tells the image to keep approximately 100 MB of image
data in memory. The second example tells the image to keep 100 lines of
image data in memory. If you are going to access 50 lines of the image at a
time (for example, when examining 50 x 50 pixel local neighbourhoods), the
image should be able to keep at least 50 lines in memory, and preferrably more
to avoid uneccessary swapping.

3.2.4 Closing and saving

When you do not want to use the image anymore, close it and free the memory
using close(X). Note that clearing the variable X the ordinary way (clear X)
will not free the memory if X is not closed first! This is in analogy with file
handles — clearing a file handle will not close the file.

To close all hsimage objects, call closeall(X), where X is any hsimage
object.

3.3 Files and file formats

Two different file formats are currently supported. The first is the ENVI file
format, as defined in [2]. Tt is a very flexible file format, where each image con-
sists of two files, one data file and one header file. The header is an ASCII file
describing the format of the data file, and thus many file formats are supported
by describing them with a correct header file.

Header files can be read and written using the class enviheader .

Additionally, hyperspectral images can be stored as Matlab files. ENVI file
headers are still used, but instead of a data file there is a directory containing
one or more Matlab files. Each Matlab file contains a number of lines of data.

close

closeall

enviheader






FOI-R--1962--SE

4 Modelling

4.1 Background

Assume that we have a source (e.g., an electro-optical sensor) outputting a
sequence of samples (measurements). Having no knowledge of the inner work-
ings of the source, we regard the samples as realisations of a random variable
and use the samples to build a model of the source. The model also gives us a
measure telling us how well each new sample is described by the model (or, the
other way around, a distance from the new sample to the model). Note that
when the sensor is multi- or hyperspectral, the samples are multidimensional,
i.e., vector-valued and not scalar-valued.

A simple model would be to calculate the mean of the received samples
so far, and for each new sample, the deviation from the mean is computed. A
large deviation is to be regarded as an anomaly and the scheme is thus a simple
anomaly detector. Below, we will refer to the samples used for calculating the
model parameters as the training samples and the new samples as the test
sample(s).

Naturally, we might have some knowledge about the source that we can
exploit when selecting and training the model. For example, we might assume
that all samples are linear mixtures of a small set of pure signautres, so called
end-members.

Models are not necessarily trained from the actual sensor data, but might
also originate from simulations and/or libraries with spectral signatures. If we,
for example, are looking for certain materials in the scene and know their spec-
tral signatures, we can compare the test samples to those signatures and report
similar samples as detections. We call this signature-based target detection or
just target detection, as will be discussed in the next chapter.

A related term is clustering (or unsupervised classification), which is the
process of separating a set of vectors into different clusters or classes, as is
discussed in Section 4.3.

4.2 Spectral models and their training

Six different spectral models are available in the toolbox. They are imple-
mented as classes in the toolboxpath/hsi/models directory. The models are
typically created from a set of training vectors, e.g., M = spectralmodel (X)
where X is an m X n matrix containing n spectral vectors of dimensionality m.

e The basic spectral model (class spectralmodel ) is the superclass to all
other spectral models. It needs only one spectral vector to be created,
and this vector is stored as the mean or prototype for the model. The
distance measure from a test vector to the model is the squared Euclidean
distance. The spectralmodel class includes a number of basic functions
that are thus inherited (or overridden) by all other model classes:

9

spectralmodel



gaussianmodel

subspacemodel

spectralanglemodel

nearestneighbourmodel

mixturemodel

scm
gem
gmm

FOI-R--1962--SE

adapt Adapts an existing model to new data.

dim Returns the dimensionality of the model.

distance Computes the distance from one or more spectral vectors
to the model.

mean Returns the mean or prototype vector.
plot Plots the model.
reset Similar to the constructor.

update Updates the model by adding more data to the training set.

e The Gaussian model (class gaussianmodel ) models spectral vectors as

a Gaussian distribution in spectral space, i.e., as a mean vector and a
covariance matrix. The associated distance measure is the Mahalanobis
distance, i.e.,

dw(x,C) £ (x — p) T (x — p), (4.1)

where p is the mean vector, I is the covariance matrix, and x is the test
vector.

In order to create a Gaussian model, you can give a training set of spec-
tral vectors, a Gaussian distribution (class gaussian) or a mean and
covariance. The gaussianmodel also supports sequential updating, i.e.,
training vectors can be added and the model updated.

The subspace model (class subspacemodel ) creates a linear subspace
with a given maximum dimensionality m. If the training data does not
fit into an m-dimensional space, the m principal dimensions are used. The
associated distance measure is the squared Euclidean distance between
the test vector and and its projection onto the subspace.

The spectral angle model (SAM) (class spectralanglemodel ) is essen-
tially the same as the subspacemodel, but the distance measure is the
angle between the test vector and the subspace.

The nearest neighbour model (class nearestneighbourmodel ) is some-
what special in that the model stores all given training data. When the
distance measure is computed, the Euclidean distance is computed from
each of the training vectors to the test vector, and the minimum is re-
turned. This model is thus quite unsuitable for global spatial models (see
Section 4.4).

The mixture model (class mixturemodel ) is used for cluster models and
mixture models. A cluster model is a composite model where each com-
ponent is a spectral model, for example a Gaussian model. A cluster
model is typically used for classification, where each cluster (component)
represents one class. A mizture model on the other hand represents one
class, but can represent a much more complicated structure than, for ex-
ample, a Gaussian distribution or a linear subspace. The most commonly
used mixture model is the Gaussian mixture model.

A mixturemodel is created by by stating the type and number of com-
ponents, for example:

M = mixturemodel (gaussianmodel,4) ;

In order to provide a simple interface for creating cluster and mixture
models, there are three functions scm , gem , and gmm for creating spheri-
cal cluster models, Gaussian cluster models, and Gaussian mizture models
respectively. For example, M = gem(5) ; creates a Gaussian cluster model
with five components/clusters.

10



FOI-R--1962--SE

4.2.1 Training mixture and cluster models

The Linde-Buzo-Gray (LBG) algorithm is a K-means method for computing a LBG
set of cluster prototypes. Its objective is to minimize

N
Do k=l (4.2)
i=1 x€C,

where IV is the number of classes, by assigning class labels to all training
samples and assigning a prototype vector (u;) to each class C;. This is done
by iteratively computing the mean vectors

1

and then assign each training vector to the class with the nearest prototype
vector, i.e., let x € C; when i = argmin ||x — p,||?.

Classification Expectation-Mazimization (CEM) is very similar to LBG/K- cemM
means, but instead of using the squared Euclidean distance the Mahalanobis
distance is used. Each class thus has a mean vector p and a covariance matrix
T'. CEM can be regarded as an extension of LBG or as a simplification of EM
(see below).

Stochastic Expectation-Mazimization (SEM) is similar to CEM with two sEM
exceptions. First, each class is assigned a weight, and, second, the class labels
are in each step are random. SEM is typically used for training a mixture
model, i.e., a probability distribution function

N
n=1

Ezpectation-Mazimization (EM) is used for training a mixture model rather EM
than a cluster model. It does not use discrete class labels, instead each training
sample is assigned a probability for each component of the mixture model.

The classes above are subclasses to algorithm and are thus invoked in the algorithm
same way, for example:

% Create an algorithm instance.
A = SEM(’MaxIterations’,10,’ConvergeAt’,0.01,’Plot’,3);

% Select model to be trained by the algorithm.
M = gmm(5);

% Run the algorithm on the data X.
A,M = run(A,M,X);

4.3 Segmenting a hyperspectral image

In order to segment a hyperspectral image, i.e., perform spectral clustering,
we can use a spherical or a Gaussian cluster model, and train it using LBG or
CEM (respectively). Often it is not necessary to use all the pixels of the image
for training, but a small subset is quite enough (a few hundreds or thousands
pixels chosen at random).
Then, we use the function hsiclassify to classify each pixel. In the ex- hsiclassify
ample below, the image data in X is segmented into N clusters.

11



globalmodel

FOI-R--1962--SE

% Create an algorithm instance.
A = CEM(’MaxIterations’,100);

% Select 1\}% of the image pixels for training the model.
G = globalmodel(’Subsampling’,10);
G = update(G,X);

% Train the cluster model on the data X.
[A,M] = run(A,gem(N),getvecs(G));

% Classify all pixels in X and display result.
L = hsiclassify(X,M);
imagesc(L);

4.4 Spatial Modelling

The spectral models discussed above typically require spatial models for def-
inition of training data. Here, we disregard spatial patterns, and thus the
spatial models basically only tell us where to collect data to train our spectral
model(s). To measure a distance from a test pixel signature to, for exam-
ple, the background model, we need to define the spatial area that represents
the background, i.e., what pixel signatures to chose as training vectors for the
model. We define the following areas (illustrated in Figure 4.1):

e The center pizel is the pixel we are currently examining.
e The global background is the entire available image.

e The local background contains all pixels within a distance of ny pixels
from the center pixel. Typically, but not necessarily, the neighbourhood
is square. Pixels within a distance ng pixels, the guard distance, from
the center pixel might be excluded from the local background.

e The target area contains the pixels within a certain distance from the
center pixel. Each pixel is weighted as to reflect the likelihood of the
target stretching to the pixel. Commonly, a Gaussian distribution is
used. The resulting value should be normalized so that it sums to 1 over
all target area pixels. In the current implementation, the target area is
the center pixel only.

From the global and/or local background, we can build the background
model B or even several background models if we perform a clustering of the
background. The target signature x is estimated as the weighted average of
the target area pixels. Given a target probe 7, that can be a single signature
vector or a representation of a class, we then measure d(x, B) and d(x,7T), as
mentioned above.

A global model is useful when statistics on the entire scene is necessary
(for example, end-member extraction) or when the model is advanced enough
to handle a complex scene (for example, a Gaussian mixture model). Global
models also have the advantage that they are not re-trained for each pixel.

Yet another spatial model is to segment the image and use different back-
ground models for different parts of the image. This corresponds to the class
conditional RX detector described in Section 5.1.

In the hsi toolbox, three classes are used for spatial modelling. The class
globalmodel provides data from the entire image, but it can also be subsam-
pled or be limited to certain lines/bands/samples.

12



FOI-R--1962--SE

n.

Wmmlﬂmn Target area . Potential target I:‘ Potential target Local neighbourhood

Figure 4.1: Target area, guard distance, and local neighbourhood.

However, in most cases, the class hsblock is preferrable, and globalmodel
will probably disappear from future versions of the toolbox. A hsblock is
defined in relation to an hsimage and acts like one, representing a selected
subset of the hsimage data. For example, assume that X is an hsimage. Then,

B = hsblock(X11:20,11:20,[1 2 71)

will create a hsblock of the size 10 x 10 x 3, and accessing B(1,2,3) will be
the same as accessing X(11,12,7).
The class 1localmodel is defined by its width and guard distance, and each 1localmodel
time it is updated with respect to an image position, the local background data
is copied to the localmodel object. For example:

% Create a local model with width 11 and guard distance 3.
M = localmodel(5,3);

% Extract the local background around the pixel at (12,34) in

% the hsimage X.
M = getvecs(M,X,12,34);

13






FOI-R--1962--SE

5 Detection

Target detection is, in this context, about finding pixels (samples, spectral
vectors) in images that

e do not correspond to some model of the background spectral signature
and/or
e do correspond to a target model.

The case when a target model is available, we here refer to as signature-
based target detection, while the process of detecting an unknown target is called
anomaly detection. Target detection is discussed in Section 5.2 and anomaly
detection in Section 5.1.

In our notation, the detector is a function

D: RN — {true false}, (5.1)

telling if a (spectral) test vector is a target or not. However, the detectors
implemented in this toolbox is a function

d: RN - R, (5.2)
and the user has to select a threshold so that D = d > t.

5.1 Anomaly detection

Anomaly detection is the case when we do not know the spectral signature of
the target, and we try to find pixels that deviate from the background. We use
a background model B, a distance measure d(-), and a threshold ¢. We regard
a pixel x as an anomaly if d(x, B) > ¢, and the detector is thus given by

D(x|B) = [d(x,B) > t]. (5.3)

To exemplify, assume that we record the mean vector of a set of training
samples. The model consists of the mean vector p, and the distance measure
is the Euclidean distance, i.e.,

D(x|B) = [[x — | > 1] (5.4)

Thus, a model for the background signature is needed, as well as a spatial
model, i.e., from where to choose the spectral vectors to train the model. For
example, we could use a local model (estimating the background signature from
a local neighbourhood only) or a global model (using all available image data).
Spatial models are discussed in 4.4.

Then, in order to measure the distance from each pixel signature to the
background model, we need a distance measure. The choice of distance measure
is restricted, or even determined, by the model used for the background and
thus the assumptions about background spectral distribution.

Finally, we need to set the threshold ¢. A high threshold will give few
detections, reducing the detection rate (DER), but also the false-alarm rate
(FAR).

15



FOI-R--1962--SE

5.1.1 Running anomaly detection
To run an anomaly detection algorithm, use hsianomaly, for example
Y = hsianomaly( X, gaussianmodel(m,C), [] );

The output is an image Y where each pixel is an anomaly score. If a target
mask is available, for example on the file roi.txt the ROC curve can be
computed (and plotted):

Yt = extract( ROI(C’roi.txt’), Y );\\
ROC( Y, Yt );

5.1.2 Some common anomaly detectors

e Distance from feature space (DFFS): The background is modelled as a
linear N-dimensional subspace.

Y = hsianomaly( X, subspacemodel(N), globalmodel )

e Global RX: The background is modelled as a Gaussian distribution com-
mon for the entire image.

Y = hsianomaly( X, gaussianmodel, globalmodel )

e Local RX: The background is modelled as a Gaussian distribution adapted
to the local neighbourhood of each pixel.

Y = hsianomaly( X, gaussianmodel, localmodel(10,3) )

e Gassian cluster RX (GCRX) or class conditional RX: The image is clus-
tered spectrally into N clusters and the (Mahalanobis) distance to the
nearest cluster is used as the anomaly score.

% Select training algorithm.
A = CEM(’MaxIterations’,10);

% Select spatial model, i.e., how to pick training
% vectors.

G = globalmodel(’Subsampling’,10);
G = update(G,X);
% or

G = hsblock(X,1:10:size(X,1),1:10:size(X,2));

% Train the background model.
[A,M] = run(A,gcm(N),getvecs(G));

% Run the anomaly detection.
Y = hsianomaly(X,M)

o Gassian mizture model (GMM): A spectral distribution is estimated for
the image, and the negative log-likelihood for each pixel is used as anom-
lay score.

A = SEM(’MaxIterations’,10);

G = hsblock(X,1:10:size(X,1),1:10:size(X,2));
[A,M] = run(A,gmm(N),getvecs(G));

Y = hsianomaly(X,M)

16



FOI-R--1962--SE

5.2 Signature-based target detection

A signature-based algorithm for target detection searches for pixels that are
similar to a target probe. The target probe is a model of a certain target sig-
nature 7, i.e., the spectral signature of the target or target class is known.
In contrast, the anomaly detection discussed above assumes no such knowl-
edge. Basically, we measure the distance from a pixel signature to the target
model. That is, we can classify pixel x as a target pixel if d(x,7) < ¢t and the
corresponding detector is thus

D(X|T) = [d(x,T) < t]. (5.5)

Usually, we incorporate background suppression in our target detection
scheme in order to enhance detection performance. There are basically three
ways of doing this:

e Separate thresholds. First, run an anomaly detector
Da(x|B) =[d(x,B) >ta]. (5.6)

All pixels marked as anomalies are then investigated by the target detec-
tor

The advantage is that several different target detectors can be applied to
only a small amount of the test samples.

e Direct comparison. Run the anomaly detector and the target detector
on all test samples and use the compare the results:

(5.8)

D(x|B,T) = [d(X’T) > t}

d(x,B)

e Combined detector. For certain models, a combined detector D(x|B,T)
can be derived. That is, instead of measuring a distance to the target
and a distance to the background, a joint measure is derived.

5.2.1 Detectors

Depending on what knowledge we have about targets and backgrounds, we can
use different models, and thus different detectors.

e The simplest detector is the Adaptive Matched Filter (AMF) implemented
through the class AMF. The target model is an example signature, and
the background model is the Gaussian distribution. The AMF detector
is created from examples of target and background signatures.

D = AMF(’Targets’,T,’Backgrounds’,B);

e Modelling the targets as well as the background as Gaussian distributons,
the Gaussian cluster model is used, and hsiclassify used to discriminate
between target and background pixels.

e Modelling the background as a Gaussian distribution and targets as a
linear subpace, we get the Adaptive Coherence/Cosine Detector (ACE)
implemented in the class ACE. The ACE detector is created in the same
way as the AMF detector.

17

AMF

ACE



ASD

detector

FOI-R--1962--SE

e Modelling the background as a linear subspace, we can model the tar-
get(s) as a single example signature using Orthogonal Subspace Projection
(OSP). This is a special case of the ASD detector.

e Extending OSP, we can model both targets and backgrounds as linear
subspaces using Adaptive Subspace Detection (ASD) implemented by the
class ASD. It is created by examples and a maximum dimensionality of
the target subspace. Setting the maximum dimensionality to 1, we get
the OSP detector.

D = ASD(’Targets’,T, ’Backgrounds’,B, ’MaxDim’ ,N) ;

All detectors above are subclasses to detector and used according to a
common interface. They can be run in global or local mode, where the global
mode requires that background examples are given when creating the detector.
The detector is then simpy applied to the image data as:

Y = apply(D,X);

In local mode, a local model needs to be given (see Section 4.4). The
background model is then fitted to the local neighbourhood of each examined
pixel, for example:

Y = apply(D,X,’Local’,localmodel(10,3));

5.3 Performance measures

By changing the threshold t above, the detection rate (DER) and the false
alarm rate (FAR) can be varied. FAR and DER correspond to the probabilites
of detection (Pp(t)) and false alarm (Pra(t)), respectively.

Unfortunately, both are increased (decreased) simultaneously whereas the
wish would be to increase the detection rate and still keep the false alarm rate
low. Thus, FAR and DER must be related to be meaningful—it is easy to
create a detector with 100% detection rate if no requirement is set on the false
alarm rate.

There are a few common ways of presenting the performance of a detector:

e The Receiver Operating Characteristics (ROC) is a graph with FAR and
DER on the axes, and a curve showing DER as a function of FAR (found
by varying the threshold), i.e., a parametric curve

w-()-(2). e

where ¢ is varied so that FAR and DER goes from zero to one.

e The FAR at first detection (FFD) is the false alarm rate when the first
pixel of a certain target is detected, giving an indication of the minimum
achievable FAR for that type of target, detector, and so on.

e The Area Under Curve (AUC) is the integral of the ROC, giving one
scalar value describing the performance of the detector. Since the per-
formance of the detector at high FAR is less interesting, the integral is
sometimes computed over an interval FAR = [0, I], for example AUCy 1
is defined by f:i;l DER(t)dt, where the limits ¢, are defined sp that
FAR(t.) = c.

18



FOI-R--1962--SE

5.3.1 The ROC class

Plotting of ROC curves is implemented through the class ROC. By creating
an instance, either a graph is plotted or an ROC object is created for later
plotting. For example, assume that X is a multispectral image, that R is an ROI
object (see Section 6.2) describing the known positions of targets, and that D
is a detector. The following code will run the detector and extract the target
detection values:

Y
T

apply(D,X);
extract(R,Y);

To plot an ROC curve, type ROC(Y,T). To create an ROC object, type P =
ROC(Y,T), and plot it using the plot function. Examples:

% Plot an ROC curve.
ROC(Y,T,’YScale’,’linear’);

% Create an ROC object.
P = ROC(Y,T,’YScale’,’linear’);

% Plot it in two different ways.
plot(P,’XScale’,’linear’,’Legend’ ,R.Names)
plot(P,’YScale’,’log’,’XScale’,’log’)

To compute the AUC in an interval [0, I], use A = AUC(P,I);.

19






FOI-R--1962--SE

6 Miscellaneous Tools

A number of tools for processing hyperspectral images are available in the
toolbox. The function hsiintegratebands is useful for reducing the number
of bands by merging (summing) bands. hsifindbands is used to find bands
within certain wavelength ranges. To search for end-members in an image, the
N-FINDR algorithm is implemented in the function hsinfindr .

6.1 Principal component analysis and transform

Principal component analysis (PCA) is a popular tool in remote sensing. It is
implemented in the three functions hsipca , hsipct , and hsiinvpct . hsipca
analyses an image, i.e., finds the principal components and the associated vari-
ances. hsipct also performs the analysis, but moreover, it transforms the
image by projecting it on all or some of the principal components. hsiinvpct
reconstructs the original image (or an approximation thereof).

6.2 Regions of interest

When assessing the performance of detection algorithms, some kind of ground
truth is needed, for example a target mask pointing out the pixels belonging
to the target(s). Such masks are here implemented by the ROI class. An
ROI object stores information about one or more region of interest, where each
region typically represent a target. The information stored is pixel coordinates,
RGB color (for visualization), and name. An ROI object can be used to mask
an images and to extract specific signatures, and it can also be manipulated
by cropping and selection. The ROI class uses an ASCII file format identical
to ENVTI’s export format.
Some examples of usage:

% Read a ROI from file.
R = ROI(’roifile.txt’);

% Extract all target signatures from an image.
T = extract(R,X);

% Extract a specific target.
T = extract(select(R,’Tank decoy’),X);

% Create a target mask
M = mask(R,zeros(n,m),1);

21

hsiintegratebands

hsifindbands

hsinfindr

hsipca
hsipct

hsiinvpct

ROI






FOI-R--1962--SE

7 Graphical User Interface

The toolbox includes a simple graphical user interface (GUI) to facilitate ex-
amination of hyperspectral data.

To see an overview of an hsimage object X, type view (X). This will display a
grayscale or colour image (according to the hsimage’s DefaultBands property.
If the image is large, it will be subsampled to a convenient size. A red rectangle
marks the part of the image that is loaded into memory, and to load another
part, the user can click on the part to be loaded.

Typing view(X,2) also invokes hsiview on the part of X loaded into mem-
ory. hsiview can be called on any data in hyperspectral image format and
displays the image data in a figure window, see Figure 7.1. The image can be
zoomed in and out, and by selecting Point Examination Mode, spectral signa-
tures in specific pixels can be examined. When a pixel is clicked, its signature is
plotted in a separate window (Figure 7.3, left), and the variable SpectralData
is assigned this signature in the main Matlab workspace. In area examination
mode, see Figure 7.2, an entire area can be selected, plotted (Figure 7.3, right)
and assigned to SpectralData).

By selecting the appropriate menu item, spectral models can be trained on
the selected data and exported to the main workspace.

B batest: main display =S

fam O "1-!
1

Figure 7.1: The main display of an hyperspectral image. Three bands corresponding
to red, green, and blue are renderred. The buttons are Zoom In, Zoom Out, Point
Examination Mode, and Area Examination Mode.

23

view

hsiview



FOI-R--1962--SE

ot Mk dpiey Sim X
it Backgrour Mok
sntedd N

w3 reghbour Model
ST Mo
S Modd

Figure 7.2: The main display of an hyperspectral image in Area Examination Mode. A
spectral model can be created from the marked area.

Bl e v e TR e i (o= %]
[/ T e e T e i g o [ T e e Tuk femnn wnaes e .

R By gl 55T AR
1700 o ————r~
| rvrar Dule |
I 1 b Tz
— 1290 | L M Dt {1
| \ ] |
d VoA |
[ |
| |
| |
| A
| . |
- | |
- | 1
0| | e f |
Ly | ] W i C L T W W "

Figure 7.3: Left: The spectral signature of the pixel at the cross in the main display
(Point Examination Mode). Right: The spectral signatures of the pixels within the
marked area in the main display (Area Examination Mode).

24



FOI-R--1962--SE

8 Example Application

A demonstration application for target detection and operator support has
been created using the HSI Toolbox. It is described briefly in [5], and will be
more thoroughly treated in a report during spring 2006. The application reads
(a sequence of) multispectral images and trains and updates background and
target models on the incoming data. The user can chose to merge clusters
representing different aspects of the same class (e.g., grass in shadow and grass
in sunlight) and to name the classes.

The application is shown in Figure 8.1, with a segmented image (a simu-
lated MultimIR [4] image). In Figure 8.2 (top) anomaly detection based on
a Gaussian mixture model is illustrated. Note the two detected vehicles. In
Figure 8.2 (bottom) the image is segmented using a Gaussian cluster model.

-

Fip Quite Ve
Bl idMHe 4o |2

G -
WILE

Azat

\F]

Fuireit

Figure 8.1: The GUI of the example application.



FOI-R--1962--SE

Figure 8.2: Top: Anomaly detection using a Gaussian mixture as background model.
Bottom: Segmentation using a Gaussian cluster model.

26



FOI-R--1962--SE

Bibliography

[1]
2]

3]

http://intranet.foi.se/templib/pages/NormalPage.aspx?id=31188

RSI Inc., ”Appendix B: ENVI File Formats,” ENVI User’s Guide, pp.
879-882.

J. Ahlberg and I. Renhorn, Multi- and Hyperspectral Target and Anomaly
Detection, Scientific report FOI-R--1526--SE, Swedish Defence Research
Agency, 2004.

J. Ahlberg et al., Multispectral EO- & IR-sensors 2005, User report FOI-
R~-1815--SE, Swedish Defence Research Agency, 2005.

O. Brattberg and J. Ahlberg, ”Analysis of Multispectral Reconnaissance
Imagery for Target Detection and Operator Support,” Proc. Swedish Sym-
posium on Image Analysis, Umea, Sweden, pp. 17-20, 2006. FOI-S--2168--
SE

27





