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Abstract 
The family of Low Density Parity Check (LDPC) codes is a strong candidate to be 
used as Forward Error Correction (FEC) in future communication systems due to 
its strong error correction capability. Most LDPC decoders use the Message Pass-
ing algorithm for decoding, which is an iterative algorithm that passes messages 
between its variable nodes and check nodes. It is not until recently that computa-
tion power has become strong enough to make Message Passing on LDPC codes 
feasible. Although locally simple, the LDPC codes are usually large, which in-
creases the required computation power. Earlier work on LDPC codes has been 
concentrated on the binary Galois Field, GF(2), but it has been shown that codes 
from higher order fields have better error correction capability. However, the most 
efficient LDPC decoder, the Belief Propagation Decoder, has a squared complex-
ity increase when moving to higher order Galois Fields. Transmission over a 
channel with M-PSK signalling is a common technique to increase spectral effi-
ciency. The information is transmitted as the phase angle of the signal. 

The focus in this Master’s Thesis is on simplifying the Message Passing de-
coding when having inputs from M-PSK signals transmitted over an AWGN 
channel. Symbols from higher order Galois Fields were mapped to M-PSK sig-
nals, since M-PSK is very bandwidth efficient and the information can be found in 
the angle of the signal. Several simplifications of the Belief Propagation has been 
developed and tested. The most promising is the Table Vector Decoder, which is a 
Message Passing Decoder that uses a table lookup technique for check node op-
erations and vector summation as variable node operations. The table lookup is 
used to approximate the check node operation in a Belief Propagation decoder. 
Vector summation is used as an equivalent operation to the variable node opera-
tion. Monte Carlo simulations have shown that the Table Vector Decoder can 
achieve a performance close to the Belief Propagation. The capability of the Table 
Vector Decoder depends on the number of reconstruction points and the place-
ment of them. The main advantage of the Table Vector Decoder is that its com-
plexity is unaffected by the Galois Field used. Instead, there will be a memory 
space requirement which depends on the desired number of reconstruction points. 
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1 Introduction 
The family of Low Density Parity Check (LDPC) codes is a strong candidate to be 
used as Forward Error Correction (FEC) in future communication systems due to 
its strong error correction capability. Most LDPC decoders use the Message Pass-
ing algorithm for decoding, which is an iterative algorithm that passes messages 
between its variable nodes and check nodes. It is not until recently that computa-
tion power has become strong enough to make Message Passing on LDPC codes 
feasible. Although locally simple, the LDPC codes are usually large, which in-
creases the required computation power. Earlier work on LDPC codes has been 
concentrated on the binary Galois Field, GF(2), but it has been shown that codes 
from higher order fields have better error correction capability. However, the most 
efficient LDPC decoder, the Belief Propagation Decoder, has a squared complex-
ity increase when moving to higher order Galois Fields. In this thesis decoding 
with higher order Galois Fields and M-PSK signalling will be presented.  Trans-
mission over a channel with M-PSK signalling is a common technique to increase 
spectral efficiency. The information is transmitted as the phase angle of the signal. 

1.1 Purpose  
The focus in this Master’s Thesis is on simplifying the Message Passing decoding 
when having inputs from M-PSK signals transmitted over an AWGN channel. 
Symbols from higher order Galois Fields were mapped to M-PSK signals, since 
M-PSK is very bandwidth efficient and the information can be found in the angle 
of the signal. A special case is the use of only angular information as messages in 
the Message Passing algorithm. If it is possible to decode a received codeword 
from the channel using only angular information for its M-PSK symbols with the 
MP algorithm, then the performance will be compared with the Belief Propagation 
Decoder using Monte Carlo simulations. The Belief Propagation Decoder will be 
used as a benchmarking Decoder in this thesis together with a more theoretical 
Density Evolution analysis of the developed decoders. 

1.2 Methods and Sources 
The methods used in this thesis are Density Evolution analysis and computer 
based Monte Carlo simulations. The programs and algorithms for these simula-
tions and analysis have been developed in C++ and Matlab 7.0. 

The sources used in the project have mainly been scientific articles and books 
on the subject. Some web based sources have also been used. A list of references 
can be found on page 95. 

 

1.3 Structure of the Report 
The report will first describe the theoretical background of the used methods and 
algorithms, both basic telecommunication theory, theory about LDPC codes and 
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12  1 Introduction 

Message Passing decoding. The analysis method Density Evolution will also be 
described in detail. 

Next, the new, developed algorithms will be presented. After that, the simula-
tion and analysis results of the new algorithms will be presented and discussed. 

Finally, the results and conclusions of the simulations and analysis will be 
presented. 
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2 Theory and Background 
A brief overview of the required background will be given in this section. Basic 
theory in the areas of information theory, telecommunication systems and error 
detection will be overviewed in 2.1, 2.2, and 2.3. Additional information can be 
found in many books on the topic, for instance [1], [3], or [4]. LDPC codes will be 
explained a bit more in-depth in Section 2.4. 

2.1 Information Theory Concepts 
In order to fully understand LDPC codes, it is necessary to be familiar with two 
fundamental concepts from information theory, namely Rate and Capacity.  

Definition 1. The Rate, or Code Rate, is defined as the ratio between the informa-
tion data transmitted and the total amount of data transmitted by the code 
[5]. When the code has a fixed length n and using an alphabet of size M, 
the rate R is defined as 

n
MR log

= . 

The logarithm is usually in base 2, which gives the rate in bits per channel 
symbol. M is commonly M=2k, so the information symbol is a k-digit binary num-
ber [5].  

Example 1. 100 information bits will be transmitted. The code adds 25 parity 
bits for error correction, so a total of 125 bits will be  
transmitted. The rate of the code is 

8.0
125
100

==R . 

The channel is the medium used for information transmission between a 
sender and a receiver. It does not necessary mean a physical channel, like a cable 
or a radio channel, but it can also be a channel spanning over time, for example a 
memory storage facility– it can also be a more abstract channel used for simula-
tions and calculations, such as the Binary Erasure Channel or the Binary Symmet-
ric Channel [4]. 

In this thesis, the channel will be defined as a discrete, memoryless channel, 
which can be described by the triple (X, Y, W) where X and Y are finite sets defin-
ing the input and output alphabets and W is a stochastic transfer matrix. 

The channel capacity is explained as the highest possible mutual information 
between the sender and the receiver. That is, the more information that is known 
not to be distorted, the higher capacity the channel has. In mathematical terms, 
this can be described as  

{ })(:),(max)( XPPWPIWC
P

∈=  

where W is a known matrix defining the channel, X is a stochastic input variable 
with the distribution P(X). Before continuing, the entropy function H needs to be 
defined: 
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14  2 Theory and Background 

∑
∈

=
Yy

yPyPYH )(log)()(  

∑
∈

=
Yy

XyPXyPXYH )|(log)|()|(  

When the meaning of H is known, it will be possible to define I(P,W) as: 
)|()();(),( XYHYHYXIWPI −==  

I(P,W) and I(X;Y) are only different notations, one describing the mutual in-
formation using the channel matrix and probability distribution, the other using 
the stochastic input and output variables. For further details on the definition and 
calculation of channel capacity, see [4] or another book about information theory. 

The relationship between the code rate R and channel capacity C is explained 
in the Channel Coding Theorem [1].  

Definition 2. With every channel we can associate a “channel capacity” C. There 
exist error control codes such that information can be transmitted across 
the channel at rates less than C with arbitrary low bit error rate. 

Bear in mind that this theorem is valid for a sufficiently large code, but does not 
state how large a code has to be in order to be sufficient. Also, it does not imply 
how this code may look like.  

2.1.1 Additive White Gaussian Noise Channel 
The Additive White Gaussian Noise (AWGN) channel is a very common channel 
used for computer simulations, and is the only channel used in this thesis. It is a 
memoryless channel that adds white, Gaussian noise with spectral density N0/2 to 
the sent signal. A definition of white, Gaussian noise can be found in [2]. The 
received signal is  

)()()( ttstR Θ+= ,  

where s(t) is the sent signal, and Θ(t) is the noise. 
The capacity of the AWGN channel has been derived in earlier works ([2]) 

and is only dependent on the bandwidth, B, and Signal to Noise Ratio, P/N0

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

BN
PBCAWGN
0

1log  bits per second. 
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2.2 Telecommunication Concepts 15 

2.2 Telecommunication Concepts 
Telecommunication theory is dealing with sending information over a channel. 
This section will describe how the information is modulated to a signal, and how 
to detect the received signal. However, the first thing that will be dealt with is a 
simplified representation of signals, called the Vector Model.  This model repre-
sents periodic signals in a very convenient way by using coordinates in a vector 
space instead of time-dependent functions. 

2.2.1 Vector Spaces  
The first thing that is needed for the Vector Model is an orthonormal (ON) base 
for the vectors. This base can be derived from a signal set using Gram-Schmidt 
Orthogonalization [5].  

If the signal set has µ signals represented by time dependent functions, 
, and this signal set is spanning over an N-dimensional function space, 

then the signals can be linearly dependent. Gram-Schmidth Orthogonalization 
eliminates the dependencies and returns an independent ON base, , that 

can be used to represent the signals in the Vector Model. 

( ){ }µ 1=ii ts

( ){ }N
jj t

1=
φ

Assuming N ≤ µ, choose N signals from the set 
For i = 1,2,...,N, calculate 

1) ( ) { }1,,2,1,, −∈= ijss jiij Kφ . 

2)  ( ) ( ) ( )∑
−

=

−=
1

1

i

j
jijii tststg φ

3) ( ) ( )
i

i
i g

tgt =φ  

It can be noted that if only sinusoidal signals are used, then each frequency 
used can be represented as two dimensions, the In-phase (I) and Quadrature (Q) 
dimension. If only one frequency is used, it is possible to describe the vector 
space on a two-dimensional plot, the I/Q-plot. An illustration of an I/Q-plot of 
signals received over a 12dB AWGN channel using QPSK signalling (will be de-
scribed in Section 2.2.2), is presented in Figure 2.1. 

The angle and length of the vector is used often in this thesis. This is a repre-
sentation equal to the I/Q values, and are the absolute length of the I/Q-vector and 
the angle counted counter-clockwise starting from the positive I-axis. 
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16  2 Theory and Background 

 

Figure 2.1 I/Q-plot of QPSK signalling over an 12dB AWGN channel. 

2.2.2 Digital Modulation Techniques 
There are many modulation techniques used in the telecommunications industry, 
so this introduction will only describe the ones used in this thesis. A comprehen-
sive explanation, along with other modulation techniques, can be found in [5]. 

2.2.2.1 Binary Phase Shift Keying 

Binary Phase Shift Keying (BPSK or 2-PSK) has two possible symbols (0 
and 1) to transmit. The two signals representing the two possible symbols are 
simple sinusoidal signals with the only difference lying in their starting phases. 
Each symbol has a constant time interval, T (sending time).  

( )
⎪⎩

⎪
⎨
⎧

<≤=
elsewhere

TtTf
T
E

s c

0

02cos2
1

π  

( )
⎪⎩

⎪
⎨
⎧

<≤+=
elsewhere

TtTf
T
E

s c

0

02cos2
2

ππ  

E is the signal energy and fc is the carrier frequency, chosen so 2fcT is a positive 
integer. BPSK does not carry any information in the Quadrature dimension, which 
can be seen in Figure 2.2, so any noise in that dimension will not affect the detec-
tion (unless using a very bad detector). 
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Figure 2.2 Illustration of the BPSK Constellation. 

2.2.2.2 M-ary Phase Shift Keying 

It is possible to extend BPSK to more than two starting phases. In this case, the 
signals can be represented as M signals where  

Mi
elsewhere

Tti
M

Tf
T
E

s c
i K1

0

022cos2
=

⎪⎩

⎪
⎨
⎧

<≤⎟
⎠
⎞

⎜
⎝
⎛ +=

ππ  

This thesis will mainly use Quadriphase Shift Keying (QPSK or 4-PSK), with 
4 signals, and 8-PSK, with 8 signals. The I/Q-plots of QPSK and 8-PSK can be 
found in Figure 2.3 and Figure 2.4 respectively. 
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Figure 2.3 The QPSK (4-PSK) constellation. 
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Figure 2.4 The 8-PSK constellation. 

2.2.2.3 Additive White Gaussian Noise in the Vector Model 

The noise that is added when sending a signal over an AWGN channel, can also 
be incorporated into the Vector Model. Since the noise is white and Gaussian, it 
will affect all dimensions equally. In the Vector Model, this can be represented as 
adding an N-dimensional noise vector (assuming that the signal has N independent 
dimensions) to the signal vector. The elements of the noise vector are one-
dimensional, independent noise with a variance depending on the SNR for the 
channel. Figure 2.5 illustrates the differences between a sent signal, S, and a re-
ceived signal, R, over an AWGN channel that adds a two-dimensional noise vec-
tor, Θ, to the signal. More information can be found in [5]. 

 

 
Figure 2.5 The effect of noise on 8-PSK signals. 

R
S

Θ+= SR
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2.2.3 Detection 
This thesis does not consider detection problems, so instead of using the common 
filter bank detector [3], the detection is performed using the vector model for the 
received symbol. 
According to Bayes’ Rule, described in [6], the probability of deciding symbol si 
out of the possible set,  { }µ 1=∈ iisS , when receiving the signal m  is 

( ) ( ) ( )

( ) ( )∑
=

= µ

1j
jij

ii
i

sPsmp

sPsmp
sP . 

Of the µ different symbols, the Maximum Likelihood Detector will decide the 
sent symbol/signal to be 

( ){ }iSs
sPs

∈
= maxˆ . 

2.2.3.1 Soft Decisions 

If a receiver is capable of deliver some kind of reliability information about its 
decision, then the decision is called ’soft’. In this thesis, the soft decision used is 
quite simple: sending directly the I and Q values, or equally length and angle, of 
the received signal vector. 

2.3 Error Correcting Codes 
A good method for modulation and demodulation of signals is important to a 
communication system. However, it does not stop errors to occur. When transmit-
ting over a channel, it is inevitable that sooner or later a symbol will be detected 
as another symbol than the one sent. Error correcting codes can lower the risk of 
errors even further. The symbols are coded using an error correcting code before 
transmitted, and the received symbols can then be decoded and errors can be de-
tected or corrected up to a certain limit. 

This thesis is dealing with LDPC codes, a family of very good error correct-
ing codes, so some very rudimentary concepts in the mathematics behind error 
correction need to be explained. Further reading on the topic can be found in [1]. 

2.3.1 Group 
A set is a collection of objects. A group, G, is a set of objects on which a defined 
binary operation (denoted as ”·”) is defined. That is, the operation takes two ob-
jects from the set and returns a third object in the set. The operation must follow 
the following rules:  
 

1. It must be associative: Gcbacbacba ∈⋅⋅=⋅⋅ ,,)()(  
2. An identity object, e, must exist: Gaeaeaae ∈=⋅=⋅ ,  
3. An inverse must exist: Gaaeaaaa ∈=⋅=⋅ −−− 111 ,  

 
If a group also satisfies the following rule 4, it is called a Commutative 

group: 
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4. Gbaabba ∈⋅=⋅ ,  

 
The identity element for a commutative group is called the additive identity 

element. 

Example 2. The set of integers form a (infinite) group under addition, but not 
multiplication since multiplication inverses does not exists in the 
group. 

2.3.2 Ring 
A ring is a set of objects, R, following the rules: 
 

1. Two binary operations are defined, ”+” and ”·”. 
2. R is a commutative group under +. The additive identity element is labeled 

“0”. 
3. The operation · is associative. 
4. The operation · distributes over +: 

Gcbacbcacba ∈⋅+⋅=⋅+ ,,)()()(  
 

A Commutative Ring also follows: 
 

5. The operation · commutes: Gbaabba ∈⋅=⋅ ,  
A ring with identity follows: 
 

6. The operation · has an identity element, labelled ”1”. 

Example 3. A ring is a set of integers under modulo m. 

2.3.3 Field 
A field is a set of objects, F, if [1]: 

1. Two operations, + and ·, are defined 
2. F is a commutative group under +. The additive identity element is labeled 

“0”. 
3. F-{0}, the field without the additive identity, is a commutative group under 

·, with the multiplicative identity element labeled ”1”. 
4. The operation · distributes over +: 

Fcbacbcacba ∈⋅+⋅=⋅+ ,,)()()(  

Example 4. Infinite fields are the set of all rational numbers and the set of all 
real numbers. 

 

2.3.4 Galois Fields (Finite Fields) 
Finite Fields are usually called Galois Field, which are very important in the error 
correction research. A Galois Field containing q elements is called a Galois Field 
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2.3 Error Correcting Codes 21 

of order q and is usually denoted GF(q) [1]. A Galois field must be of order q=pk, 
where p is a prime integer and k an integer.  

2.3.4.1 GF(2) 

GF(2) consists of the set {0,1} and the operations, + and · ,  are described in Table 
2.1 and Table 2.2. 

+ 0 1 
0 0 1 
1 1 0 
Table 2.1 Additive operation under GF(2). 

· 0 1 
0 0 0 
1 0 1 
Table 2.2 Multiplicative operation under GF(2). 

The addition and multiplication operation tables for GF(p) (p is a prime) can 
be constructed from the set {0, 1, .., p - 1} by performing an addition modulo p 
and multiplication modulo p. 

2.3.4.2 Addition in GF(2) 

Many error correcting codes contain addition of multiple elements. Addition in 
GF(2) has a special property; the additive inverse, a-1, of an element, a, is the 
element itself, that is, a=a-1.  

A “proof” can be obtained by inspecting Table 2.1 and finding the cells 
where the result is 0, then identify that both elements in the operation must be the 
same.  

Error correcting codes are often determining the value of an element by as-
suming that all elements should sum to 0 (the parity check). With N elements, the 
equation would look like: 

∑
=

=
N

k
ka

1
0 . 

The additive inverse is the element itself, so this equation can be written as 

1
1

1
1

1

−−

=

=+∑ aaa
N

k
k . 

Since a+a-1=0 and a=a-1 this is equal to  

1
2

aa
N

k
k =∑

=

 

2.3.5 Addition in Vector Spaces 
Addition on higher order Galois fields (GF(pk) with k=2,3,…), can be seen as a 
vector addition in k dimensions, each dimension corresponding to a GF(p) addi-
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tion. Fields of order pk is usually called extensions of fields of order p. This thesis 
will repeatedly use fields of order 2k, which are k binary symbols collected to one 
higher order symbol [1]. 

 

=+

Example 5. Adding the two symbols from GF(8) corresponding to 5 and 1 re-
sults in the symbol 4. The operations in each dimension is an additive 
operation in GF(2). 

 

⎟
⎟
⎟
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⎜
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⎝
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⎝

⎛

1
0
0

0
0
1

1
0
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2.3.6 Block Codes 
A block encoder encodes k consecutive symbols from a data stream into n sym-
bols that is sent through the channel to the block decoder which (hopefully) de-
codes the received symbols back to the original data [1]. Generally, when working 
with channel data in GF(q) the k length block to be encoded is in GF(qk), so the 
operations possible are described in Section 2.3.3 and Section 2.3.4. Assuming 
that the encoded data and the symbols sent on the channel are in GF(q), then the 
code rate of a block code can easily be calculated to 

n
k

n
q

R
k

q ==
log

. 

Each message block (the block from the data stream) of length k is encoded to a 
code word of length n. The set of all possible code words is denoted C, and there 
are pk code words in C, but there are pn possible code words. 

A linear block code with a k-sized message block and n-sized code word is 
usually denoted as a (n, k) block code. An encoding/generator matrix for a block 
code is usually denoted G, and its decoding/parity matrix, H.  

Encoding is done by the matrix operation , where x is a vector con-
taining k bits and y will be a codeword containing n bits. The channel will add 
some kind of noise. Assuming additive noise, the received signal will be 

Gxy T=

Θ+= yz . 

Decoding is made by finding the syndrome vector,  
TTTT HyHHyzHs Θ+=Θ+== )( . 

The encoder and decoder matrices are created so that a codeword multiplied 
by the decoder will return 0. 

0=TyH . 

The syndrome vector will only depend on the errors introduced by the noise. 
Also, every syndrome vector corresponds to a unique error pattern, so a simple 
look-up table can be used to find the errors from the channel. A comprehensive 
explanation can be found in [1]. 
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2.4 Low Density Parity Check Codes 23 

NOTE: This thesis will use the word frame instead of block, especially when 
dealing with error rates (Frame Error Rate, FER) so that no confusion will be 
made with Bit Error Rate, BER. 

2.3.7 Hamming Distance 
The definition of a Hamming Distance between two blocks, v and w, is the num-
ber of coordinates in GF(p) that are differing. That is, the number of differing 
elements in a vector space where each dimension is in the base field GF(p) [1]. 

( ) { }1,,0,0,, −=≠= niwviwvd ii K . 

The minimum distance, dmin, of a block code is the smallest distance between 
any two possible code words. This measure is very important to a block code 
since it affects two very important properties of block codes. For a linear code, the 
all-zero word is a codeword, and therefore the minimum distance is the weight of 
the codes minimum weight codeword. 

 
1. A decoder can detect all errors, if the number of errors are less than, or 

equal to ( )1min −d . 
2. A decoder can correct all errors, if the number of errors are less than, or 

equal to 
( )

2
1min −d . 

2.4 Low Density Parity Check Codes 
A low density parity check (LDPC) code is usually a very large block code with a 
sparse decoding matrix (very few non-zero elements), [13] [14]. It is often repre-
sented by a Tanner Graph, named after Michael Tanner, a pioneer in iterative de-
coding. The Tanner Graph has three types of components; the variable nodes, the 
check nodes, and the edges. The Tanner Graph is implying a possibility to utilize 
an iterative decoder when decoding LDPC codes. 

Each variable is operating wherever its corresponding column in the H-
matrix has a 1, and each row is corresponding to a parity check function. In a 
Tanner Graph, each symbol, or variable is represented by a variable node, and 
each parity check function is represented by a check node. Wherever a row and 
column is sharing a 1, the variable will be connected to a parity check function, 
and this is represented by an edge between the corresponding variable node and 
check node. An illustration of a parity check matrix and its corresponding Tanner 
Graph can be seen in Figure 2.6. The variable nodes are here depicted by circles 
and the check nodes by squares. 

 
A very important factor to the performance of a LDPC code is its node de-

gree distribution. The distribution is defined as the distribution of edges for a node 
type, so each LDPC code has a check node distribution (denoted dc) and a variable 
node distribution (dv). Normally, a set of LDPC codes are distinguished by its 
node distribution. If all check nodes have the same number of connected edges 
and all variable nodes also have it (though, not necessary the same), then the code 
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is called a regular LDPC code. The node distribution for a regular LDPC code is 
written as (dv, dc). A very common regular code ensemble are the (3, 6)-LDPC 
codes. 

In the notation of the irregular variable degree, the different variable node 
degrees are presented, together with how many of the total variable nodes that 
have that degree. The same notation is used for the check node degree for irregu-
lar ensembles. This is illustrated in Example 6, were the node perspective of the 
degree distribution is used. That is; how many nodes with a specific number of 
edges are there in the graph. One other way of looking at it is with an edge per-
spective. Then the number of edges with a specific degree node is taken into ac-
count. This is illustrated in Example 7 for the same code as in Example 6. When 
the weighting of the messages in the DE analysis is performed later on the edge 
perspective is used. 

Example 6. If an irregular ensemble with 3000 variable- and 1000 check nodes 
is given. There are 600, 900 and 1500 degree 2, 4 and 16 variable 
nodes, 300 and 700 degree 3 and 10 check nodes. The node perspec-
tive notation for this irregular ensemble looks like: 
( ) 1642 3.05.02.0 λλλλ ++=x   

( ) 103 7.03.0 ρρρ +=x   

Where ρ3 is the degree three check node and λ16 is the degree 16 
variable node.                                                                                                          

Example 7. The same code as in Example 6 is used. There are a total of 
(600·2) + (900·4) + (1500·16) = 28800 edges connected to a variable 
node. (600·2) edges are connected to a degree two variable node, 
(900·4) to a degree four and (1500·16) edges are connected to a degree 
16 variable node. This gives that 0.042, 0.125 and 0.83 ,as a fraction 
of 1, of the edges is connected to a degree two, four and sixteen vari-
able node respectively. The same types of calculations are performed 
for the edges connected to different check node degrees. 

The code rate is usually not directly calculated from the LDPC code, but a 
design rate can easily be calculated from the node distribution [8]. For a regular 
LDPC code, the design rate is 

c

v

d
d

r −= 1 . 

The actual rate of the code may be higher, since the rows in H may be de-
pendent on each other. 

Since a LDPC code is usually large, it will have a good chance of having a 
very large minimum distance, which makes the codes very good in correcting and 
detecting errors. In fact, a good LDPC code almost never decodes a codeword that 
has not been sent; it either corrects the received symbols to the correct codeword 
or just detects an error in transmission. 

Another advantage with a large, well designed, LDPC code is that its corre-
sponding Tanner Graph will have a large girth. The girth is defined as the mini-
mum number of edges that needs to be traversed to return to the starting point 
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2.4 Low Density Parity Check Codes 25 

without using the same edge twice. A large girth will make a Message Passing 
Decoder (will be described in Section 3.1) perform better. 

 

 

Figure 2.6 Example of a Tanner Graph and its corresponding decoding matrix. Note that 
this matrix is not a LDPC code since it is not sparse. 
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3 Methods and Algorithms 
This Section will present the pre-existing algorithms and evaluation methods that 
are being used in this thesis to create and evaluate LDPC decoders. First, a com-
mon algorithm family for decoding LDPC coded symbols, Message Passing De-
coders, is presented along with its most common algorithm, Belief Propagation. 
Next, Density Evolution, an abstract analysis method for measuring performance 
on code ensembles, is presented together with an one-dimensional approximate 
version, the Extrinsic Information Transfer (EXIT) chart algorithm. 

3.1 Message Passing Decoding 
Message Passing is a very effective decoding algorithm for decoding LDPC 
codes. It is an iterative and highly parallelizable algorithm, where the idea is to 
pass messages along the edges between the variable and check nodes in a Tanner 
Graph. Each node type is processing the incoming messages and a set of outbound 
messages are created according to a predefined function. The function is naturally 
different in the variable nodes and the check nodes. An important condition is that 
the outbound message on an edge may not depend on the incoming message on 
the same edge. This condition is known to be a trait of good message passing de-
coders. When the decoder is initialized, the variable node initializes all of its out-
bound edge messages with the initial message from the channel.  

There are three functions that need to be designed: 
1. Variable node update function 
2. Check node update function 
3. Stop rule(s) 
 
The following steps are performed during every Message Passing iteration:  

1. Update each check node and its outbound messages with the predefined 
check node function. 

2. Update each variable node and its outbound messages with the predefined 
variable node function. 

3. Check if the stop criterion has been fulfilled. If so, stop the decoder. 

Example 8. Assume binary input from the channel, {0, 1}. A very crude mes-
sage passing algorithm that only passes a binary message between the 
nodes will be used. 

Although the idea is simple, it can be complex when using other alphabets 
than GF(2). Additional information can be found in [13] and [14]. The following 
chapters will deal with the design of the node functions and the stop rules. 

In order to keep track of the direction of a message, they will be named de-
pending on the direction. Messages going from a variable node to a check node 
will be denoted u. Messages going from a check node to a variable node will be 
denoted v. In an implemented version, the direction of the message can most of 
the time be omitted, and the same (memory) space can be used for both directions. 
Sometimes it is unclear what the direction the message has, for example in an 
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analytic calculation. These messages will be denoted w. When the calculation has 
decided on a direction for the message, it will change w to the appropriate direc-
tion, u or v. Also, when messages are passed internally inside a node, w will be 
used (Figure 3.1). 

 
i , assume that all other incoming mes-

 
Figure 3.1 Message naming definitions. 

3.1.1 Variable Node Update 
The update function of a variable node is normally some kind of mean value, or a 
value that correspond to a symbol that all incoming messages can agree upon. 
Figure 3.2 is showing an example of a variable node update, where the outbound 
message is the mean of all incoming messages. 

Example 9. Assume the same decoder type as in Example 8. An updated out-
bound message will be the mean value of the other incoming mes-
sages, rounded to either 0 or 1. 

 
Figure 3.2 Example of a variable node and a message update function. 

3.1.2 Check Node Update 
The check node performs the update according to some kind of error correction 
scheme.  

Example 10. Assume the same decoder as in Example 8. The check node needs 
to perform some kind of correction, but how? When the check node 
receives only correct messages, the parity check summation will be 0. 
The summations are made in GF(2).  

, 

But if one or more of the incoming messages are incorrect, there will 
be no way of knowing which one are wrong. The (probably) best as-
sumption that can be done is:  
for each outbound message, u

∑ =
i

iw 0

 

u 

v 
w 

⎭
⎬
⎫

⎩
⎨
⎧ ++

=
3

32
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uuu
roundv channel

channelu v1 

u2 

u3 
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  , j all incoming edges except i. 

 

3.1.3 Stop Rule 
 types of stop rules that can be used, most of the time both 

Example 11. We can set a maximum number of iterations to 80. As stated in 
Ex

3.1.4 Faster Decoding by Serializing Node Operations 
hat an algebraic 

ng one node with m edges connected to it, we create n nodes 
with

sages, vj, are correct and assign ui so that the parity check summation
will be 0. Since we are in GF(2), the following function can be used 
(Figure 3.3)  

∑=
j

ji vu

 

3210

3210 0

vvvu

wwww

++=
⇔

=+++

 
Figure 3.3 Example of a check node and its parity check function. 

There are mainly two
are used in the same system. The first rule is allowing only a certain number of 
iterations in the decoder, the other rule is to determine whether or not a codeword 
has been detected and, in that case, make a pre-emptive stop.  

ample 10, a check node with only correct input messages will not 
change any of its messages. As a preemptive stop function, we can 
sum all incoming messages in the check node and see if the result is 0. 
If this is the case for all check nodes, then no corrections will be made 
and we can assume that we have found a codeword and stop the de-
coder. The codeword can then be found by calculating all its symbols 
from every variable node in the Tanner Graph. The symbol out of 
every variable node is calculated as a mean value out of all the incom-
ing messages from all the edges to that node. But at this time all in-
coming messages to a variable node should be the same. 

Before continuing, remember that it was stated in Section 2.3.1 t
operation in a group takes two arguments and returns one. When working with 
message passing, updating each output message requires input from multiple 
edges, all edges but itself. It is possible to create an algorithm that processes, for 
each edge, the result of all other edges. However, this algorithm is very slow, 
since it needs to loop through the messages several times. Assuming there are n 
edges connected to a node, there are n incoming and n outbound messages. For 
each outbound messages, about n-1 operations needs to be done, so the algorithm 
would scale O(n2). 

Instead of havi
 three edges connected to each one, with intermediate edges between these 

nodes. Each outbound message will now only depend on two incoming messages, 
but we will have additional messages between the nodes. An example with 5-
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edged check node and its serialized version is illustrated in Figure 3.4. The mes-
sages, mi, consist of the inbound and outbound message, vi and ui, on that edge 
while the internal messages will be denoted w. 

m
 

1 
m2 

 

The algorithm will go from the left side to the right, updating the intermedi-
ate m

1 side of the chain (here we assume the left side). 

ediate message w2 by operating on the already (in-
 

Repeat 3 and 4 for all nodes except the last one. 
 

5. Update un by operating on the incoming intermediate message, wn-3, and 

6. te un-1 by operating on the incoming intermediate message,  

7. termediate message, wn-3, by operating on vn and vn-1. 

un-2, by operating on 

10. e by 
operating on the intermediate message on the right hand side, wn-3, and vn-

2. 

 

Figure 3.4 Serialization of a degree-5 node. 

essages. When reaching the last node, it will update the outbound messages, 
turn around and update the outbound messages and the intermediate messages 
until it reaches the last node. 

The algorithm: 
. Start at the node at one 

2. Update the intermediate message w1 by operating on v1 and v2. 
3. Go to the next node. 
4. Update the next interm

coming) intermediate message w1 and the inbound message, v3, attached to
the node. 
 

vn-1. 
Upda
wn-3, and vn. 
Update the in

8. Go back to the node to the left of the current node. 
9. Update the outbound message attached to the node, 

the two intermediate messages attached to the node, wn-3 and wn-2. 
 Update the intermediate message, wn-2, attached on the left hand sid

m3 
m4 
m5 

   m

m m m

m1 

2 3 4 

5 
ww1 2 
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Repeat
 

11. Update u2 by operating on v1 and the incoming intermediate message w1. 
essage, w1. 

s 
onl  
nalysis of the check node is possible to by only analysing two incoming mes-

sage

A very powerful Message Passing decoder is the Belief Propagation Decoder. The 
ased. There are mainly two types of 
probabilities for each symbol, and 

ck node update is based on parity checks in GF(q), where the outbound 
message, u, is the additive operation of v1 and v2

 Ratio messages are two-dimensional  

 steps 8-10 for all remaining nodes, except the leftmost node. 

12. Update u1 by operating on v2 and the incoming intermediate m
 

This algorithm gives two main advantages; the decoding complexity scale
y to O(n) since each incoming message is only used once, and performing the

a
s and one outbound message of a degree-three check node. 

3.2 Belief Propagation Decoding 

messages passed along edges are probability-b
Belief Propagation decoders, one passes real 
the other one passes logarithmic probabilities. Davey and MacKay have, in [15], 
described a method of using Belief Propagation in higher order Galois Fields us-
ing real probabilities. This thesis will use higher order Galois Fields extensively, 
so real probabilities will be passed in the Belief Propagation Decoder. Logarith-
mic Likelihood Ratio will only be used in the DE analysis description part of this 
thesis. 

3.2.1 Check Node Update 
The che

u=v +v . 1 2

The outbound message in the check node is the probability of the actual outbound 
eing one of the M possible symbols. In the binary case, the outbound message b

Likelihood

( )
( )

It is possible to keep track of just one of the probabilities as a message 
since )0 === uPuP , but we will keep both for clarity. 

 table (Table 3.1), an
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=
=

=
1
0

uP
uP

Pu . 

( ) ( 11−

To decide the outgoing message, we need to look at the binary additive op-
eration  d decide the probabilities for getting a 0 and 1 respec-
tively

( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )⎟⎟⎠

⎞

⎝ ==+==⎠⎝ = 01101 2121 vPvPvPvPuP

  v1

 

⎜⎜
⎛ ==+==

=⎟⎟
⎞

⎜⎜
⎛ =

=
11000 2121 vPvPvPvPuP

Pu . 

+ 0 1 
0 0 1 v2
1 1 0 

Table  A it  in GF(2).  3.1 dd ion
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hig r der fields the probability calculations will become more complex, 
but t sa  principle applies. The calculations for q=22 are presented in Table 
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Formally, this can be expressed as:  

. 

Obs de in GF(q), so the resulting v2 can be 
found in the addition table (Table 3.2 for GF(4) ). 

3.2.2 Variable Node Update 

d, the channel input needs to be 

( ) ( ) ( ) )(,
1

0
21 qGFaiaivPivPauP

q

i
∈+==== ∑

−

=

erve that the addition v2=i+a is ma

The variable node message update works in a slightly different way than the 
check node update functions. First of all, the result needs to be normalized to have 
a proper probability distribution as a result. Secon
considered at some point. 

The basic, binary two input- one output, algorithm can be viewed as  

( ) ( ) ( )
( ) ( )( ) ⎟⎟
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ized by α. 
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vP
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Pv α
. 

To ensure that the outbound message is a proper pdf, the message is 

( ) ( 10 =+== vPvPα . 

In a higher order field, each outgoing symbol probability can be expressed as 
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( ) ( ) ( )auPauPavP ====
1  21α

where 

( )∑
−

0i

The channel input can be treated as an input edge, but without updating it. 
e, outbound, message for a symbol from a variable node on edge k of 

dv edges can be fully expressed as 

=

==
1q

ivPα . 

A singl

( ) ( ) ( ) { kdrauPauPavP v }¬∈==== ∏ K11  
r

rchannelk α

( )∑
−

=

3.2.3 Stop Rule Design 
Except of having a maximum number of allowed iterations, an additional stop rule 
may be used. The second stop rule is based on deciding whether or not the most 
probable code word is a correct code word by finding the most probable symbols 
from the variable nodes, and see if they fulfil the parity check. If so, stop the de-

is can be expressed as stopping the decoder when 
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1

0

q

i

ivPα . 

coder and declare success. Th
0ˆ =xH ,  

where H is the sparse decoding matrix used and x̂ is a vector with the most 
probable symbol from every variable node. 
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e k contains the symbol a and is 
derived in a similar way as the message updates, but this time messages from all 
edges are considered. 
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 a variable node, then send the most probable symbol along 
with the actual message to the check nodes, where a GF(q)-parity check is per-
formed before updating the check node. 

If the parity check is summed to 0 for all check nodes, then the decoder has 
foun

0i
ichannel

In a decoder, this can be solved by determine the most probable symbol at the 
same time as updating

d a valid code word and may stop. 
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3.3 Non-binary LDPC Codes and M-PSK Modulation 
When using non-binary LDPC codes together with M-PSK modulation for data 
transmission, the information data is processed accordingly (Figure 3.5 and Figure 
3.6).  

1. The n length binary information Data is mapped onto n/log2M length M-
ary symbol information data. 

2. The symbol information data is encoded into codewords with the GF(M) 
generator matrix for the LDPC code used.  

3. The symbols of the codewords are M-PSK modulated to I/Q symbol vec-
tor representation. 

4. The codewords is sent trough the channel and their symbol vectors are dis-
torted by the channel noise. 

5. The received distorted vector symbols of the codewords is M-PSK De-
modulated into symbol representation. 

6. The received codewords is decoded with a Message Passing algorithm for 
higher order modulation formats (Section 3.2). 

7. The M-ary data symbols of the decoded codewords are converted to their 
binary representation, the binary data is sent to the user.  
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Figure 3.5 Transmission of M-ary data when using LDPC codes together with M-PSK modu-
lation. 

 
Figure 3.6 Example of 8-PSK modulation of binary data and its corresponding M-ary sym-
bol. 

3.4 Density Evolution 
Density Evolution (DE) is an algorithm used to analyse the performance of an 
ensemble of LDPC codes with a certain degree distribution, regular or irregular, 
when using Message Passing decoding. The algorithm only depends on degree 
distribution of the nodes and the SNR of the channel, it is not performed on a spe-
cific LDPC code belonging to that ensemble. So DE does not for example depend 
on the Tanner Graph representation of a Code. The ensemble of codes contains all 
codes with the same degree distribution. The result of a Density Evolution calcu-
lation is the lowest SNR possible, the SNRThreshold, for which successful Message 
Passing decoding is possible for an ensemble. Density Evolution returns a channel 
performance measurement constrained to a specific code ensemble.  

The results from Density Evolution can be used to compare different degree 
distributions to find the best code ensemble. Even though different ensembles 
have the same rate R, they will not perform equally. The degree distribution of the 
regular (3,6) ensemble is unique. But the realizations (connections between nodes) 
are different between different codes in the ensemble. In the case of the regular (3, 
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6) and (5, 10) ensembles, they have the same rate, R=0.5, but the regular (3, 6) 
ensemble have a smaller SNRThreshold than the regular (5, 10) ensemble. In fact the 
regular (3, 6) ensemble have the best SNRThreshold of all the R=0.5 ensembles. This 
means that there are codes with a regular (3, 6) degree distribution that perform 
better than any other regular R=0.5 LDPC code. 

3.4.1 Main Idea 
Density Evolution is an iterative algorithm performed on an ensemble of LDPC 
codes with a certain distribution, regular or irregular, for a fixed SNR value. In the 
DE algorithm the assumption is made that the code length is infinite. The reason 
for assuming this is that the Tanner Graph for the code can then be assumed to be 
cycle free. Infinite code lengths give infinite number of nodes. By assuming this, 
it is possible to assume that the code will have an infinite girth, i.e. it is cycle free. 
This means that a message has to travel an infinite length before returning to the 
same node, which basically means that the message is independent from messages 
previously sent from the node. 

By assuming a cycle free Tanner Graph for the code, the calculations of a 
single DE iteration can be seen as updating the outgoing pdfs from one check 
node and one variable node representative for regular ensembles. In the case of 
irregular ensembles one representative for each degree for the check- and variable 
nodes has to be updated. That is because for regular (dv, dc) ensembles of LDPC 
codes there are only two different node types, the dv -degree variable node, and 
the dc-degree check node. For irregular ensembles there are as many different 
node types as there are different node degrees for the variable- and check nodes 
(Section 2.4 and [12]). For irregular codes, the output densities from all the degree 
representatives for the variable- or check node are added, with the degree distribu-
tion (edge perspective) as weight factor. The idea of only updating one node rep-
resentative for each unique node type in the ensemble is the key approximation of 
DE, making it a tractable algorithm for analysing the performance of code ensem-
bles.  

The main idea with density evolution is to update the probability density 
function, pdf, of the messages between the nodes representatives, instead of the 
messages themselves. The outbound densities from the node representatives will 
then evolve during the iterations, and if the pdfs evolve in such a way that the 
error goes to zero then the current SNR is not below the SNRThreshold. 

The update of the outgoing pdf messages fu
k , fv

k+1 and f0 is illustrated for the 
regular (3, 6) LDPC code ensemble in Figure 3.7, where k is the iteration index. 
Here, f0, fu

k  and  fv
k+1  are the outbound pdf from the channel and the variable- and 

check node representative, describing the Log Likelihood Ratio (LLR) of the 
transferred messages. When LLR probabilities are used the mean of the pdf can 
have values between -∞ and +∞.  
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Figure 3.7 Pdf updates on the regular (3, 6) ensemble. Check node on top and variable node 
below, dc=6 and dv=3. 

3.4.2 Performing Density Evolution 
The initial pdf, f 0 created from the messages received from the channel, depends 
on the type of channel noise, order of modulation M, and the SNR. The channel is 
assumed to be an AWGN channel, so the DE algorithm only depends on the SNR 
from the channel and the analyzed node distribution. The initial pdf from the 
channel is computed for the SNR under consideration. The DE algorithm is then 
iterated a great number of times with this as the initial input to see if the error 
probability Pe

k from the pdf of iteration k, fu
k, from the check node, converges to 

zero when the number of iterations increases towards infinity (k → ∞). Pe
k is cal-

culated by integrating fu
k for all LLR values ≤ 0. This is the same as looking at the 

SNR-values when the mean LLR mu
k of fu

k approaches infinity. The initial error 
probability Pe

0
 from the channel is the Log Likelihood Ratio between the wrongly 

detected messages and the number of transmitted symbols, and the Pe
k is that Log 

Likelihood Ratio after k Message Passing iterations.  
 

The basic algorithm for Density Evolution works according to the following 
steps: 

Preparations 
1. Choose the ensemble to be analyzed, i.e. the node distribution. 
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2. Set the range of the AWGN { }max21 ... SNRSNRSNRSNRi =  values to 

be tested with DE. The SNRi is chosen as the lowest SNR value, and first to be 
tested. Then the SNR values should increase to the largest in the range, 
SNRmax. 

 
3. Set the number of iterations n and an acceptable error threshold limit Pe

max 
(biggest acceptable error). This should be 0 but is for practical reason set to a 
value very close to zero. 
 
Density evolution 

4. Calculate the initial f 0 from the channel depending on the first SNR1 value in 
the interval and the type of noise.  

 
5. A) If regular ensemble: Iterate the algorithm n times. Update and fu

k and fv
k+1  

every  iteration.  { }nk ...21∈
B) If Irregular ensemble: Iterate the algorithm n times. Update each pdf out 
from each node representative for all the unique node degrees of the variable- 
and check nodes. Calculate fu

k and fv
k+1 from the weighted calculations for the 

pdfs [12] 
 

6. Calculate the error Pe
n out of the final check node output fu

n. Stop the DE if 
Pe

n ≤ Pe
max , the SNRThreshold has then been found. Otherwise increment i and 

go back to step 4 (test next SNR) 
 
If SNRThreshold is not found during these steps a different range of SNRi values 

has to be defined and tested for the ensemble.  
 
The node degree distribution and pdf update functions for an ensemble of 

regular (3,6) codes is illustrated in Figure 3.7. The notation for node degree distri-
bution for an irregular ensemble of codes looks a little different. For irregular 
codes there is more than one node degree distribution for the variable- and check 
nodes.  

One example of Density Evolution on a regular (3, 6) LDPC ensemble is il-
lustrated in Figure 3.8. The SNR value is here set to 1.73 dB, which appears to be 
the SNRThreshold for that ensemble. That is because Pe

k →0 and mu
k → ∞ as k → ∞. 

This SNRThreshold calculation concurs with the results calculated by Barry in [13]. 
The Likelihood ratio (LR) for the messages has here been transformed to the Log 
Likelihood ratio (LLR) before calculating the pdf, which gives LLR values on the 
horizontal axis in the figure. 
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Figure 3.8 The outbound pdf of the messages as a function of SNR for the (3, 6) ensemble. 
The number above each curve is the number of iterations for that curve. 

3.4.3 One-Dimensional Approximation of Density Evolution 
Since the update functions for fu

k and fv
k+1 in Section 3.4.1 and 3.4.2 are per-

formed on probability density functions, they are very complex and time consum-
ing when implemented. However, less complex algorithms that approximate DE 
has been developed. These are one-dimensional analysis of LDPC codes, instead 
of the multi-dimensional analysis in ordinary DE. Likelihood Ratios (real prob-
abilities) will be used instead of LLR for denoting the error probability in the 
EXIT chart algorithm below.  

3.4.3.1 The EXIT Chart Algorithm 

A one-dimensional approximation of DE is the Extrinsic Information Transfer 
chart algorithm, or the EXIT chart algorithm [10]. A one-dimensional variable 
describing the extrinsic information transfer between the nodes are here sent be-
tween the check- and variable node representatives instead of the pdf for the mes-
sages. The information used in the EXIT chart calculations is the initial informa-
tion about the received messages from the channel (intrinsic information) and the 
information about the messages from the previous iterations (extrinsic informa-
tion). Other one-dimensional analysis methods for LDPC Codes makes the as-
sumption that all pdfs sent between the representatives are Gaussian, the all Gaus-
sian approach [13][11]. This is not the case in the reality, because the update func-
tions in the check node make its outbound pdf messages non-Gaussian.  

For the EXIT Chart algorithm, Gaussian distribution is only assumed for the 
pdf of the messages sent from the variable node to the check node representative. 
The pdf for the messages sent from the check node to the variable node represen-
tative is not assumed to be Gaussian distributed. So using the semi-Gaussian ap-
proach in the EXIT Chart calculations makes the results more accurate and closer 
to those of the non-approximate DE. The main idea behind the EXIT chart algo-
rithm is to represent the pdf messages fu

k and fv
k+1 sent between the nodes, and fu

0 

from the channel, with a corresponding one-dimensional variable for the intrinsic- 
and extrinsic information. In other words describe the pdfs with scalars instead of 
a multidimensional vector (discrete pdf) which otherwise represents the pdf in the 
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computer calculations. The scalars can be the corresponding error probability for 
f, its mean or mutual information [10]. This approach gives calculations with sca-
lars instead of multidimensional calculations with discrete probability density 
functions represented by vectors. From now on, EXIT chart calculations are as-
sumed to be performed with the error Pe corresponding to the pdf f.  

The channel used is the AWGN, but the calculations are the same as for the 
BSC channel. This can be done since the EXIT chart calculations depend on the 
initial error, Pe

0, for the received messages from the channel, not the shape of their 
pdf.  The incoming (initial) pdf, f 0, from the channel is the probability distribution 
of the incoming messages from the channel. If all the messages sent through the 
channel is the ‘0’ M-PSK symbol, then because the distortion in the channel all 
incoming messages will have different probabilities of being detected as the ‘0’ 
symbol with the Maximum Likelihood Detection. The greater the distortion of the 
channel the more symbols will be more likely to be detected as any of the other 
M-1 possible symbols rather then the correct ‘0’ with Maximum Likelihood (ML) 
detection. This ratio between the number of wrongly detected symbols divided 
with the number of correctly detected symbols is the calculated initial error Pe

0 
from the channel for the sent symbols. This is the same  as constructing a discrete 
pdf, f 0, out of a great number of sent and received ‘0’ symbols from the AWGN 
channel, and then calculate the initial error Pe

0 as the area of the pdf where 
wrongly ML detection takes place.    

The initial input,Pe
0 , to the EXIT chart algorithm is calculated for the initial 

pdf, f 0, from the channel. For each iteration { }nk ...21∈ , a new outbound 
message Pe

k+1 from the variable node representative is calculated from Pe
k and 

Pe
0. The update function for a regular ensemble is Equation 3.1. The error prob-

ability information Pe
k+1 from the variable representative is calculated for each k 

iteration. As in Density Evolution for an ensemble, a range of SNRi values are 
tested with n iterations. The reason and background for using the initial error 
probability Pe

0 as the extrinsic information for the initial pdf is described in [10]. 
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where  and   0
e

in
e PP = n

e
Out

e PP =

 
Here dc and dv is the check- and variable node degree for the ensemble being ana-
lyzed. A regular (3,6) code would for example have dc= 6 and dv = 3. 

3.4.3.2 Performing EXIT Chart Analysis 

The EXIT chart calculations for a regular ensemble are performed in the follow-
ing steps: 
Preparations 

1. Choose the code ensemble to be analyzed, i.e. the node distribution. 
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2. Define the   to be tested in the 
EXIT chart analysis. 

{ }max21 ... SNRSNRSNRSNRi =

3. Define the maximum number of iterations, n, and an acceptable error limit 
Pe

max. 
 
EXIT chart Calculations 

4. Calculate the initial Pe
0 corresponding to the pdf f 0 from the channel. f 0 

depends on the type of noise and the first SNR1 value in the SNRi vector 
from step 2.  

5. Iterate algorithm Equation 3.1 n times with { }nk ...21∈ .  

6. If  Pe
n ≤ Pe

max, then SNRThreshold has been found, otherwise increment i and 
go back to step 4 (test next SNR). 

 
The result of the EXIT chart calculations is close to the result of the ordinary 

Density Evolution, but the complexity of the calculations is much lower. 
The result from EXIT chart calculations on an ensemble a given SNR can be 

visually illustrated by printing the EXIT chart. One example of a printed EXIT 
chart is given in Figure 3.9. In the EXIT chart, the incoming error from the algo-
rithm, Pin = Pe

k, is on the horizontal axis. The outgoing error, Pout = Pe
k+1, is on 

the vertical axis. The initial Pe
0 from the channel is used as a starting point in the 

diagram. Pe
k+1 can be expressed as a function of the incoming error as Pe

k+1 = 
F(Pe

k). To make the EXIT chart easier to analyse, the inverse, F-1, of F is also 
plotted in the chart. F-1 is a function of the outgoing error, and returns the incom-
ing error. The space between F and F-1 is called the decoding tunnel. The devel-
opment of Pe

k+1 depends on the previous Pe
k, and can be viewed in the chart for 

each iteration k. If Pe
k+1< Pe

k for all k, then the error Pe
k+1 will approach zero as k 

approaches infinity, then F-1 and F will never cross each other. The decoding tun-
nel is then open for all k [10]. The SNRThreshold for the ensemble is found as the 
SNR when the decoding tunnel opens up from a closed state, and is open for all 
iterations. In other words; the SNRThreshold is the SNR value giving an almost 
closed decoding tunnel, so that just a little smaller value on the SNR will close it. 
An open decoding tunnel will guarantee that the final decoding error Pe

n →0 when 
n → ∞. In practical implementations the error becomes very small for only a cou-
ple of hundred iterations when the SNRThreshold is found. 
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Figure 3.9 EXIT chart for a regular (3, 6) code ensemble. The decoding tunnel is opened so 
the set SNR value is above SNRThreshold. 

3.4.4 EXIT Chart with M-PSK Signaling 
This section will describe a practical algorithm for performing the EXIT chart 
calculations on an ensemble of regular non binary LDPC codes using M-PSK 
symbols. There are several algorithms which perform one-dimensional DE on 
ensembles of codes, but EXIT calculations have proven to be one of the best 
methods [10]. The results of performing EXIT chart calculations with the imple-
mentation in this Section will be presented in Section 6. 

The first part of this section will describe how to calculate the initial pdf, f 0, 
for the algorithm, and the second part will describe the basic EXIT chart calcula-
tions with the corresponding initial Likelihood Ratio, Ps

0. It is the Likelihood Ra-
tio of having detected symbol s as the initial symbol when s has been sent. Detec-
tion is made using an ML detector. The possible symbols are { }1...10 −∈ Ms . 

3.4.4.1 Calculating the Initial pdf for the Zero M-PSK symbols 

In M-PSK modulation one can view and process the modulated data in two differ-
ent ways, either as the M=2k different vector symbols, or as the M different length 
k binary representations of the vector symbols. The two different representations 
for 8-PSK symbols are illustrated in Figure 3.10. 
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Figure 3.10 The symbols and their binary representation for 8-PSK. 

EXIT chart is often calculated using binary representation of the symbols, as-
suming a Binary Symmetric Channel [9], where a total independence between the 
incoming bits then can be assumed when calculating the initial pdf from the chan-
nel. However, when using non-binary symbols the incoming bits will not be inde-
pendent from the other k-1 bits representing the symbol. When, for example, 8-
PSK symbols with binary representation are used, every bit is dependent on two 
other bits. Here some dependency calculations between the incoming bits have to 
be made, which depends on the behaviour of the binary representations for the M 
possible symbols when distorted by the noise in the channel. When updating the 
pdfs of the k bits in the binary representation of the symbols, assumptions about 
their dependency can be made by using different approaches. For instance, it is 
possible to first update the pdfs independently and then create a mean pdf between 
the bits and add it to the bits pdf. 

A slightly different approach for performing EXIT chart on the symbol repre-
sentation of the M-PSK symbols will here be presented. The focus will be on the 
symbol representation of the M possible symbols, where the possible symbols are 

. First the M different initial pdfs, f { '1'...'1''0' −∈ Mi } 0
i, from the channel for 

the M symbols are calculated. But when transmitting over the AWGN channel, all 
the symbols in the M-PSK signalling constellation used will have the same pdf 
(Figure 3.10). This gives that only one pdf has to be calculated for one symbol, 
which is then valid as the pdf for all M possible symbol pdfs. This will allow the 
simplification of only calculating and analysing the code for one of the M possible 
M-PSK symbols that can be sent. Here, the symbol used for the EXIT chart analy-
sis is the zero symbol, ‘0’. The basic algorithm calculating the initial pdf for the 
zero symbol, f0

0 is performed accordingly: 
 

1) Set the SNR value to be tested in the symbol-wise Density evolution. 
2) Transmit a large number of Zero M-PSK symbols over an AWGN channel 

with the SNR from step 1. Store the received distorted zero symbols in a 
vector Vmessages. 
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3) Calculate the probability vector Pi
0 from Vmessages (Appendix A.1), where 

every element in Pi
0

 is the probability that the corresponding element in 
Vmessages is the ‘0’ symbol.  

4) Create a vector Vtemp with every column containing the number of each 
unique zero symbol probabilities in P’0’. Sort the columns so the unique 
zero probabilities lie in ascending order.  

5) Divide all the elements in Vtemp with the total number of zero symbols sent 
in step 2. The resulting vector can be used as the discrete pdf, 0

'0'

~f  for the 
received messages from the AWGN channel. With each element in 0

'0'

~f  
giving the Likelihood Ratio that the received messages have one of the 
unique zero probabilities of being the zero symbol. 

Example 12. After step 3; if the first column in Vtemp is 13 and the smallest ele-
ment in P’0’ is 0.1, then there are 13 received messages with 0.1 prob-
ability of being the ‘0’ symbol. After step 4; if 1000 symbols were 
sent in step 2 the first element in 

'
0

0'

~f  should be 13/1000 = 0.013. Here 
1.3 % of the received symbols have 0.1 probability of being the zero 
symbol.    

In the EXIT Chart calculations in Section 3.4.4.2 0
'0'

~f  will be used as the ap-
proximated discrete pdf for the received distorted zero M-PSK symbols from the 
channel. An illustrative example of 0

'0'

~f  for 1000 AWGN distorted zero 8-PSK 
symbols with channel SNR=9.5dB is presented in Figure 3.11.  

 
Figure 3.11 The pdf for 1000 8-PSK symbols with SNR =9.5dB. The notation on the axis is 
Likelihood Ratio.  
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3.4.4.2 EXIT Chart Calculations for a LDPC Code with M-PSK Symbols  

After the discrete probability density function 0
'0'

~f  for the M-PSK symbols is cal-
culated in Section 3.4.4.1, its corresponding error probability Pe

0 can be calculated 
with Equation 3.2.  
 

∑=
5.0

0

0
'0'

0 ~fPe                        (3.2) 

In other words; sum all elements of   with probabilities (LR) value on the hori-
zontal axis equal or below 0.5 (Figure 3.11). 

0
'0'

~f

 
The EXIT chart calculations for a LDPC code with M-PSK symbols are per-
formed according to the following steps:    
 

1) The Exit chart calculations from Section 3.4.3 are executed with the Pe
0 

calculated out of Equation 3.2, with Pe
0 being the one-dimensional repre-

sentative for .  0
'0'f

2) If the check in step 6 in the EXIT Chart calculation (Section 3.4.3) is not 
fulfilled, a new SNRi  range is selected and new  and P0

'0'

~f e
0 are calculated. 

3) These Pe
0 are again used in step 4-6 in the EXIT Chart algorithm from 

Section 3.4.3.  
 
These steps are performed until the SNRThreshold for the analysed ensemble is 
found. 
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4 Angular Sum Decoding 
In this section we present a Message Passing decoder for the vector representation 
of the M possible M-PSK symbols, using the angle and length as information of 
the M-PSK symbols. When sending M-PSK signals, the symbol information will 
be represented by the angle, while the length of the received vector can be seen as 
some kind of reliability information. The parity check will be made by requiring 
that the sum of all angles in a check node will sum to 0 mod 2π. This summation 
requirement is the cause of the name of the decoder, Angular Sum Decoder. 

The aim is to keep the messages and decoding simple for the decoder, and to 
see whether or not this type of decoder is possible to create. Since this approach is 
a simplification of a Belief Propagation decoder, it will probably need a higher 
SNR in order to keep the same BER as the Belief Propagation decoder. An inter-
esting version of the Angular Sum Decoder is to only pass the angular information 
as messages in the Message Passing algorithm and assume the length of the vector 
to be 1. This version will need to send less information and thereby become less 
complex. 

If a working Angular Sum Decoder can be constructed, the messages sent be-
tween the nodes in the Message Passing algorithm will contain significantly less 
information than in the Belief Propagation algorithm. Instead of sending a prob-
ability vector of length M, only scalars representing the angles (and lengths) are 
sent as messages between the nodes. Also, the calculations in the nodes will be 
much less complex than in a Belief Propagation decoder. If a successful decoder 
can be constructed, the version without length information would probably require 
a higher SNR to work since it is strapped on the reliability information. 

As described in Section 3.1.4, message operations can be described by two 
input and one output message. Outbound messages from variable nodes and check 
nodes respectively, will be calculated as:  

• Variable node: { }21arg iuiu eev +=          

• Check node:     π2mod)( 21 vvu +−=     

where u and v are the angles of the messages. If length information is consid-
ered, update operations are performed as: 

• Variable node:  

o Angle Update:  }arg{ 21
21

uiu eUeUv +=

o Length Update:  21
21

uu eUeUV +=   

• Check node:     

o Angle Update: π2mod)( 21 vvu +−=     

o Length Update: { }21,min VVU =   

Where u and v are the angles of the messages and U and V are the lengths of 
the messages. Figure 4.1 and Figure 4.2 illustrate the variable node and check 
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node operations. u  and v  denote the vector messages that have angle u and v and 
length U and V respectively. 

In essence, the operation in the variable node is just a vector summation 
(Figure 4.1), while the operations in the check node (Figure 4.2) are a bit more 
complex. The angular summation made in the check node is very simple, but the 
question lies in how to adjust the length. The approach made in this decoder is 
quite simple: Find the least reliable information (the shortest length) and set the 
length of output to it. 

 
Figure 4.1 Length and angle calculations of the outgoing message vectors from the variable 
nodes. Here v is calculated out of three incoming messages (one from the channel and two 
from check nodes). 

 
Figure 4.2 Length and angle calculations of the outbound message vectors from the check 
nodes. 
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4.1 Vector Summation in a Variable Node 
As mentioned in Section 3.1.1, a variable node update should be something all 
edges should agree upon. When dealing with Belief Propagation, they determine 
the probabilities of the symbols. When two edges agree that a specific symbol has 
a high probability, the outbound probability for that symbol will be higher, while 
two edges agreeing on a low probability of a symbol, it will have a lower out-
bound probability. This behaviour should also be found in the approximate decod-
ers and vector summation will do that.  

As a matter of fact, given that two probability vectors are representing two 
vectors from the channel, a summation of these two vectors returns a vector that 
has a probability vector that is exactly the one that would be returned from a Be-
lief Propagation variable node operation on the first two probability vectors. The 
proof of this can be found in Appendix A.3. That is, having two vectors taken 
from an AWGN channel using M-PSK signaling,  
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Having this proof, it is safe to determine that a vector summation in the vari-
able node is equivalent to a Belief Propagation message update. This operation 
will be used as a variable node operation in the Angular Sum Decoder as well as 
the Table Decoder described in Section 5. 
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5 Table Decoder 
Simulations performed on the Angular Sum Decoder from Section 4 indicated that 
this type of decoder would not work (simulation results in Section 7.2.2). Due to 
this, an alternative solution for MP decoding with angle and length messages 
needs to be found. As discussed in Section 8.1 the node operations that need to be 
changed are the operations in the check node. However, since the aim is still to 
send geometrical vectors, it is possible to reuse the variable node functions de-
scribed in Section 4.  

The solution lies in finding an alternative check node operation which gives 
an error correcting Message Passing decoder when using angle and length mes-
sages for the M-PSK symbols. This problem can be approached with a Black Box 
Model for the operations in the check node. As described in Section 3.1.4, it is 
possible to serialize a check node with any number of edges into a concatenated 
system of degree three check nodes, so the Black Box algorithm only needs to be 
designed for check node with two inputs and one output.  

5.1 Variable Node Operation 
As discussed in Section 4.1, making a vector summation is equivalent to a Belief 
Propagation variable node operation, so the Table Decoder will also use vector 
summation in the variable nodes.  

5.2 Black Box Model for Check Node Operations 
The main idea with the black box approach is to use the knowledge about how the 
probability vector messages sent to and from a degree three check node in the 
Belief Propagation decoder are processed. This can be done by trying to create 
check node calculations that imitates check node calculations for Belief Propaga-
tion, but instead of messages based on probabilities, geometrical vectors are being 
used as messages. One way of creating the check node functions for geometrical 
vectors is to start with a Belief Propagation check node, but immediately inside 
the node, convert the messages from probabilities to geometrical vectors. On the 
outbound side, the opposite conversion is made. Now, all that needs to be made is 
to design some kind of function that makes the entire check node a good approxi-
mation of the original Belief Propagation check node, and then remove the con-
versions and pass the geometrical vectors as messages between the nodes (Figure 
5.1). 
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Figure 5.1 Approximation of a Belief Propagation check node update. 

The internal messages, ma, mb, and mc, consist of either angle and length 
(vector) information, or just the angle information. The angle/vector to probability 
conversion is described in Appendix A.1. 

There is one problem left to deal with before designing the function f(ma,mb) 
in Figure 5.1. It is the conversion from probabilities to geometrical vectors. There 
is no good analytical way to convert from arbitrary probabilities, but an approxi-
mate method can be used, which only allows a limited number of probabilities in 
a quantified probability space. The allowed probabilities can be found by convert-
ing a number of geometrical vectors to probability vectors. The number of vectors 
converted gives the number of reconstruction points used to convert from prob-
ability vectors to geometrical vectors, which also gives how fine the quantization 
will be. 

Our proposed decoder will be designed as a four-dimensional table. The di-
mensions represent the angles and lengths of the two incoming signals. A simpler 
decoder does not keep the length information, so it can be represented as a two-
dimensional table. The elements in the tables are the reconstruction points. An 
illustrative example of a two-dimensional table is presented in Figure 8.9. 

5.2.1 Table Vector Decoder 
When implementing the Table Vector decoder with the algorithm presented in the 
beginning of Section 5.2, we need to decide which { }8,4,2∈M  it will operate on. 
We also need to decide a SNR that it will assume to receive from the channel. 

Next, the vector space need to be quantified into a set of allowed points. The 
suggested strategy for doing this is to first decide a set of allowed angles, prefera-
bly A = a · M angles (where a is a positive integer) evenly spread. This will allow 
each ‘correct’ angle (angle where a signal point is located) to be represented in the 
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5.2 Black Box Model for Check Node Operations 53 

set. Deciding upon a set of L allowed lengths is also suggested, which are l · k 
where l ={1,2,….L}, and k is a fixed length. If only one length is allowed (for ex-
ample length 1), then the decoder is called the Table Angle decoder. The points in 
the vector set are the reconstruction points rj. More strategies, and a concise dis-
cussion of the placement of reconstruction points, can be found in Section 8.5. 
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Figure 5.2 Reconstruction points for 4 lengths and 8 angles. 

Now, a quantified vector space containing N=AL reconstruction points has 
been developed. Next thing to do is to find the corresponding probability distribu-
tions Pj for these points (see Appendix A.1). Each vector space point rj will now 
have one corresponding probability space point Pj (Figure 5.3). It is possible to 
have one reconstruction point in the origin, which would give an additional recon-
struction point (N=AL+1). 

 

 

Figure 5.3 Each vector space point corresponds to one probability space point. 

r1 r2 rj … … rN 

P1 P2 Pj … … PN 
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Figure 5.4  Probability Table, check node operation on probability space points. The return 
values need to be adjusted so they too belong to the probability space points. 

The probability space is a known space (calculated in Appendix A.1). The 
parity check made for two incoming probability distributions is known, (Section 
3.2.1). Now, a table of all possible outbound probabilities using all possible com-
binations of two inbound probabilities from the allowed set can be built (Figure 
5.4). At this point, the probability table is not a proper algebraic operation table, 
since the outbound probabilities are not necessary from the set of allowed prob-
abilities. This can be solved by, instead of returning the real outbound probability, 
return the probability from the allowed set that is closest to the real one. In other 
words quantize the real outbound probability distributions to the allowed probabil-
ity distributions (reconstruction points rj). There are several ways of deciding the 
closest point; the algorithm used in this thesis decides the closest reconstruction 
points, rj, by calculating the closest minimum squared Euclidian distance:  
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The probability table is now only containing probabilities from the allowed 
set, Pj, which makes it possible to perform algebraic operation with its elements. 
Not only that, but since all probabilities are from the allowed set, each one of 
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5.2 Black Box Model for Check Node Operations 55 

them corresponds to a point, rj, in the vector space which allows us to create a 
table that is a copy of the probability table, but contains the corresponding geo-
metrical vectors instead. This table is all we need when making an approximation 
of the parity check summation described in Section 3.2.1. The Vector Table used 
in Vector Decoding is built according to the following steps. 

1. Decide M and an appropriate SNR. 
2. Decide allowed lengths and angles and create a table of allowed vectors ri 

with them. 
3. Calculate the probability distributions Pj from the allowed vectors ri (Ap-

pendix A.1), having M possible symbols and the decided SNR. 
4. Build a probability table (Figure 5.4). Quantify the outbound probability 

vectors to the closest allowed probability vectors Pj in the probability ta-
ble. 

5. Replace the probability vectors Pj in the probability table with the corre-
sponding vector rj , gives the corresponding Vector Table (Figure 5.5). 

 

 

Figure 5.5 Vector Table of check node operation on vector space points. 

The incoming messages to the parity check node need to be quantified into 
the allowed vector points rj. This can also be done by finding the minimum 
squared Euclidian distance between the incoming messages va and vb to the closest 
reconstruction points rj  (Figure 5.6).  
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ra va 

Figure 5.6 Check node operation on two arbitrary geometrical vectors as inbound messages. 

One unfortunate effect is that the Vector Table will probably be less correct if 
using a different SNR. That is because the SNR level of the incoming messages 
from the channel will effect the conversion from vector representation into prob-
ability vector representation. Also, the amount of different possible signals sent 
will affect the conversion, so a different M requires a different Vector Table. 
However, it will be shown in Section 8.3.1 that once the Vector Table is calcu-
lated for a specified M and a sufficiently high SNR, it will be possible to change 
the channel SNR with a little or no degradation of the performance. From now on, 
a decoder with a table having only angular information will be called Angle Table 
Decoder, and one with length information as well will be called Vector Table De-
coder. The family of these two decoders will be called Table Decoder. 

5.2.2 Visualization of Output Values for the Angle Table 
If only angles are used for creating a table, it is possible to visualize it with a 3-
dimensional surface plot. The result is a very peculiar shaped surface with very 
sharp edges, see Figures 5.7 and 5.8. The figures show the inbound angles to the 
check node on the x- and y axis, and the outbound angle from the check node on 
the z-axis. These tables are made for 4- and 8-PSK over an AWGN channel with 
SNR at 6 dB and 13 dB respectively. The inbound angles to the check node are on 
the horizontal axes, ranging from 0 to 2π. The resulting outbound angle is the an-
gle on the vertical axis. Some of the edges in the figure are 2π jumps, since the 
output angle is shown in the interval – π to + π.  
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5.2 Black Box Model for Check Node Operations 57 

 

Figure 5.7 3-D surface plot of the angle tables used in the Table Angle Decoder for 4-PSK 

 

Figure 5.8 3-D surface plot of the angle tables used in the Table Angle Decoder for 8-PSK. 

 
 
 
 
 
 
 
 
 
 
 
 

 
FOI-R--1963--SE 



58  5 Table Decoder 

 
 

 
FOI-R--1963--SE 



 

6 EXIT Chart Calculations for M-PSK 
This section contains the results from EXIT chart calculation for an ensemble of 
regular (3, 6) LDPC codes when using M-PSK symbols. The theory and algo-
rithms from Section 3.4.3 and 3.4.4 are used in the following EXIT chart calcula-
tions. The purpose of this section is to calculate the SNRThreshold of the ensemble of 
non-binary regular (3, 6) LDPC Codes when using M-PSK symbols. 

6.1 Threshold Calculation with EXIT Chart 
The results that will be presented here are calculated with the pdf for the zero 
symbols ‘0’ (of M possible symbols) as in Section 3.4.4, not its binary representa-
tion 000. When using the EXIT chart algorithm from Section 3.4.3 to calculate the 
SNRThreshold, the first SNR to be tested was -4dB, then the SNR value was in-
creased by 0.1 dB every time the algorithm was iterated until SNRmax was reached 
according to this algorithm. If the SNRThreshold  is- or is not found the procedure in 
the algorithm is followed. The number of symbols transmitted over an AWGN 
channel in each analysis to compute the initial pdf from the channel is 100 000. 
The number of iterations n in each EXIT chart calculation is 1000. No more is 
needed since after only a couple of hundred iterations the error probability Pe

n has 
already converged. The SNRThreshold of an ensemble of regular (3, 6) LDPC codes 
with M-PSK modulation for M={2, 4, 8} is presented in Table 6.1. Only 7 SNR 
values near the SNRThreshold  for each M are presented, even though many more 
values were tested. 

 Figure 6.1 shows an illustrative example of how the initial error, Pe
0 , is cal-

culated out of all received zero symbols from the channel, using the initial pdf, f 0. 
The EXIT chart for the ensemble with the modulation- and  AWGN channel pa-
rameters M=2 and SNR = -2dB is presented in Figure 6.2. Notice that the decoding 
tunnel is open and that 12 iterations will make the Pe

k very small, so Pout
n will 

converge towards zero. Pe
0 is the Likelihood Ratio between the black area and the 

total area (gray and black). The black area is the amount of sent ‘0’ symbols 
through the AWGN channel that will be detected as another of the M-1 possible 
symbols with a Maximum Likelihood detector.  
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Figure 6.1 100 000  symbols with AWGN noise added (horizontal axis) and the probability of 
them being the zero symbol (vertical axis). The symbols are sorted in ascending order with 
respect to their probability to be the zero symbol. M=2, SNR=-2 dB, n=1000, Pe

0 =0.0367.

 
Figure 6.2 EXIT chart for the same parameters as in Figure 6.1. 
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6.1 Threshold Calculation with EXIT Chart 61 

M SNR nP0  

2 -2.5 0.2577 
2 -2.4 0.2570 
2 -2.3 0.2562 
2 -2.2 0 
2 -2.1 0 
2 -2.0 0 
2 -1.9 0 
2 -1.8 0 
2 -1.7 0 
2 -1.6 0 
4 2.7 0.2612 
4 2.8 0.2599 
4 2.9 0.2591 
4 3.0 0.2583 
4 3.1 0.2575 
4 3.2 0 
4 3.3 0 
4 3.4 0 
4 3.5 0 
4 3.6 0 
8 7.8 0.2633 
8 7.9 0.2625 
8 8.0 0.2611 
8 8.1 0.2601 
8 8.2 0.2590 
8 8.3 0.2583 
8 8.4 0.2573 
8 8.5 0.2564 
8 8.6 0 
8 8.7 0 
Table 6.1 Threshold calculations whit EXIT chart algorithm for an ensemble of regular (3,6) 
LDPC codes  with M-PSK symbols for different M. Number of EXIT chart iterations is n = 
1000, and the amount of distorted symbols used to calculate the pdf f0 for the symbols is 
100 000. The SNRThreshold  for the three different modulation levels are -2.2, 3.2 and 8.6 dB. 
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7 Simulations 
In this section the results from simulations with the Angular Sum Decoder, Table 
Vector Decoder, Table Angle Decoder and the Belief Propagation Decoder are 
presented. The use of the term Table Decoder will refer to both the Table Angle- 
and Table Vector Decoder. The simulation results presented in this Section will be 
analyzed and discussed in Section 8.3. 80 Message Passing decoding iterations 
per decoding session were always used in the simulations. All simulations have 
been made using the same LDPC code [18], which is a regular, (3, 6) LDPC code 
of length 504.  

The simulations were made using Monte Carlo simulations in Matlab where 
data was transmitted over an AWGN channel with various SNR values. The result 
consists of trace of BER and FER for the different setups. Up to 500000 code-
words were transmitted through the AWGN channel and decoded with the tested 
decoder every decoder simulation. If less “bumpiness” for some of the curves in 
this section is needed, more codewords have to be sent during the decoder simula-
tion.  

When a Table Decoder uses a “floating table” it calculates and uses a new 
angle- or vector table for each channel SNR. These tables have to be pre-
calculated and stored. This also results in additional bookkeeping during simula-
tions/decoding. When a Table Decoder uses a “fixed table” only one table is cal-
culated and used for each order of modulation, M, for all shifting channel SNR. 
This table is calculated with an SNR giving a very low BER when using the corre-
sponding floating table for the order of modulation used. A fixed table gives much 
less data to store and less calculations to be made for the Table Decoder. 

7.1 Simulation Algorithm 
The same basic simulation algorithm was used for all the different decoders 
tested. It consists of a preparation step and an iterated simulation step. 

Preparations for the decoder simulations 
1. Choose the PSK modulation alphabet, M={2, 4, 8} (order of modulation). 
2. Choose the LDPC code to be used in the simulation, which gives the gen-

erator matrix G and the parity check matrix H.  
3. Set the SNR for the AWGN channel. 
4. Set the number of codewords to be sent through the channel. A large 

amount of codewords sent and received in the simulation gives better pro-
tection against quick random changes in decoding performance.  

5. Set a maximum number of MP iterations for the decoder. 
Steps performed each iteration for the decoder simulation 

1. Generate a codeword with a generator matrix G, using random input data. 
Input data is evenly distributed in {0, …, M-1}. 

2. Modulate the codeword symbols to the M-PSK constellation, with symbol 
‘0’ at angle = 0, going counter-clockwise (Section 3.3). 
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3. Transmit the modulated codeword through the AWGN channel (Section 
2.2.2.3) 

4. Receive the modulated codeword. 
a. If using Belief Propagation, transform the received symbols to 

probability vectors (Appendix A.1). 
b. If using the Angular Summation- or the Table Decoder, the vector 

representation of the messages received from the channel is used as 
messages (Section 4 and 5). 

5. Try to decode the received codeword using the Message Passing algorithm 
with the used LDPC code and decoder. The general Message Passing de-
coding algorithm is described in more detail in Section 3.1. Stop the de-
coding if the maximum number of iterations is reached or if a codeword is 
found. 

6. Compare the generated codeword from step 1 with the decoded in step 5. 
Determine if the codeword is properly decoded. If not, count the number 
of bits that differ and adjust FER and BER. 

7.2 Simulation Results 
In this section the simulation results will be presented for the different decoders 
together with some modifications on the construction of the tables used in the 
Table Decoders. The main focus in the simulations was on Table Decoders using 
4-PSK signalling. This is because 2-PSK signalling with Table Decoders is not 
that interesting because of bad error correcting- and complexity performance 
compared to the Belief Propagation Decoder. Even though simulations for 8-PSK 
signalling with Table Decoders are very interesting, they are also very time-
consuming (further discussion in Section 8.3). 

7.2.1 Belief propagation Decoder 
The simulation results for the Belief Propagation (Section 3.2) are presented in 
this Section. M-PSK signaling was used (Section 3.3), and different order of M-
PSK modulation on the symbols are 2, 4 and 8. The results are presented in Figure 
.1.  7 
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7.2 Simulation Results 65 

 
Figure 7.1 Simulations with Belief Propagation Decoder for the regular (3,6) LDPC  code 
with codeword length 504 and M-PSK modulation. The maximum number of iterations is 80. 

7.2.2 Angular Sum Decoder 
The simulations with the Angular Sum Decoder (Section 4) was performed for {2, 
4, 8}-PSK. The results were very poor. The Angular Sum Decoder failed to de-
code a correct codeword, even for very large SNR. Even when the SNR was set to 
a level so only one of all the received symbols in the codeword was incorrectly 
detected, the decoder still failed to decode the codeword. Figure 7.2 visualizes the 
performance of the decoder for iterations 0-9. 2-PSK signalling was used and only 
one symbol was initially on the left hand side of the Q-axis.  

This led us to the conclusion that the approach of Angular Sum Decoding 
presented in Section 4 with M-PSK symbols do not work.  
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Figure 7.2 Decoding BPSK symbols with Angular Sum Decoder and the regular (3,6) LDPC 
code with codeword length 504, from iteration 0 to 9. Only one of all the symbols in the 
codeword is wrong in iteration 0, i.e. a very large SNR is used. The horizontal axes are the 
In-Phase signal and the vertical axes are the Quadrature signals. 

7.2.3 Angular Sum Decoder using Length Information 
The simulations in this section were carried out in the same way as with the An-
gular Sum Decoder, but with node operations that also updated the length (Section 
4).  

The result from decoding with added length information was as bad as decod-
ing with only angle information. This lead us to question whether there is some-
thing fundamentally wrong with Message Passing decoding using the algorithms 
described in Section 4. This will be further discussed in Section 8.1.  
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7.2.4 Table Angle Decoder Using Floating Table 
Simulations with the Table Angle Decoder from Section 5.2 were made using a 
floating table. The number of possible angles was set to 512. This relatively small 
number of reconstruction points was chosen because of the large amount of time it 
took to create the different tables for shifting channel SNR. 512 was the highest 
number of reconstruction points that still kept table creation time fast enough. The 
512 reconstruction points are evenly distributed on the unit circle. The results for 
different M-PSK signalling are presented in Figure 7.3. 
 

 
Figure 7.3 Simulations with Table Angle Decoder for the regular (3,6) LDPC code with 
codeword length 504 using floating table and M ={2, 4, 8}. The number of angles (recon-
struction points) is 512. The maximum number of iterations is 80. 
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7.2.5 Table Vector Decoder Using Floating Table 
The simulations with the Table Vector Decoder described in Section 5.2 were 
made using 512 reconstruction points. Now, in the Table Vector Decoder, the 
angular resolution is lower, but there are different amplitudes (lengths) which 
represents different reliabilities for the message. The Table Angle Decoder has 
higher angular resolution but all messages have the same reliability. The recon-
struction points in the vector tables for 4-PSK used in this simulation were built 
with 16 different lengths and 32 angles, evenly distributed in the vector plane (see 
Figure 5.2 for an example). The created tables had a reconstruction point in the 
origin in the vector plane. The simulation results are presented in Figure 7.4.  
 

 
Figure 7.4 Simulations with Table Vector decoder for the regular (3,6) LDPC code with 
codeword length 504 and a floating table. The number of reconstruction points is 512, with 
16 different angles and 32 different lengths.  
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7.2.6 Table Angle Decoder Using Fixed Table 
In a real implementation of a Table Angle Decoder, it will not be preferable to 
calculate and keep multiple tables in storage (one for each SNR). Because then a 
different vector table for the decoder have to be calculated for each SNR value the 
channel is expected to have (Section 7.2.4 and Section 7.2.5). These simulations 
will instead create one angle table (fixed table) based on an SNR value which 
gives very low BER  in Section 7.2.4 and 7.2.5 for the different M-PSK used. The 
reconstruction points (possibly angles) used in the tables are evenly distributed on 
the unit circle. These fixed tables (one for every M = (2,4,8)) are the used in the 
Table Angle Decoders for all shifting channel SNR. The results from the simula-
tions are presented in Figure 7.5. 

 
Figure 7.5 Simulations with Table Angle decoder for the regular (3,6) LDPC code  with 
codeword length 504 and a fixed table. The angle resolutions for the tables are noted in the 
figure. 
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7.2.7 Table Vector Decoder Using Fixed Table  
For the same reason as in Section 7.2.6, a fixed table is created and used for every 
order of modulation M in the Table Vector Decoder. The simulations were made 
for 4-PSK when having evenly distributed angles and lengths, and a reconstruc-
tion point in the origin in the vector plane. The simulation results are presented in 
Figure 7.6. The simulation results for 4-PSK when having evenly distributed an-
gles and lengths but with no reconstruction point in the origin is presented in 
Figure 7.7. Finally the results for 8-PSK simulation with evenly distributed angles 
and lengths but with no reconstruction point in the origin in the vector plane is 
presented in Figure 7.8. 
 

 
Figure 7.6 Simulations with Table Vector decoder for the regular (3,6) LDPC code with 
codeword length 504 and a fixed table and 4-PSK. The number of possible angles and lengths 
in the tables is denoted L and A in the figure. 
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Figure 7.7 Simulations with Table Vector decoder for the regular (3,6) LDPC code with 
codeword length 504 and a fixed table and 4-PSK. The number of possible angles and lengths 
in the tables is denoted L and A in the figure. 

 

 
 
Figure 7.8 Simulations with Table Vector decoder for the regular (3,6) LDPC code with 
codeword length 504 and a fixed table and 8-PSK. The number of possible angles and lengths 
in the tables is denoted L and A in the figure. 
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8 Results and Analysis 
This section will analyze the results from the simulations in Section 7. Sugges-
tions on future work will also be given. 

8.1 Why Does Not Angular Summation Work? 
Here, we will try to give an explanation why Angular Sum Decoding does not 
work. It is not a proof in any sense, only a short discussion of our way of thinking 
when we stopped developing it. 

To begin with, LDPC codes are using finite fields, while the Angular Sum 
Decoder is not. It is possible to decode with the Angular Sum Decoder using an 
LDPC code as long as only the all-zero codeword is sent, since this codeword also 
exist in this decoder. The all-zero codeword corresponds to sending the zero an-
gles for all the codewords symbols. 

The parity check in this decoder is a modulo 2π summation of the incoming 
nodes. As long as this summation is made using a finite set of possible angles (N 
angles), it will work in a ring. A finite set can be assumed when using computers, 
since only a fixed number of decimals are stored. It may not be clear that it is a 
ring, but if all elements are multiplied by N/2π, the elements would be integers 
ranging from 0 to N. The summation can be made as a modulo N summation. As 
mentioned in Example 3, a modulo summation of integers is a ring. N can be 
made very large and thus make the angle precision be close to infinite. 

Out of the N possible angles, only M angles are corresponding to a symbol, 
and problems occur when another angle is received. It is possible to quantify the 
angle to the closest symbol angle, but in that case all channel information (soft 
information) is lost and only the symbol itself (hard information) can be passed as 
messages in the decoder. Another approach is to make all angles correspond to a 
symbol, thus getting an N-sized alphabet. This is what is done in the Angular Sum 
Decoder. 

The problem with increasing the alphabet is that an uncoded signal would 
have an error probability that is corresponding to the distance between the angles. 
Having a very large set of allowed angles would require a very large SNR in order 
to get a low BER. In essence, an infinitely small angular difference would require 
an infinite SNR to get an arbitrary small error, and no coding would be able to fix 
that. 

8.2 EXIT Chart Analysis 
Because of the lack of working equations in the check node for the Table Angle- 
and Table Vector Decoder it was not possible to perform EXIT chart Analysis on 
these decoders. It is probably possible to perform EXIT chart analysis on the table 
based Table Angle- and Table Vector Decoder, but this will most certainly be a 
complex and time demanding solution and is beyond this thesis work. The main 
idea behind EXIT chart analysis of Table Vector- and Table Angle Decoder is 
briefly discussed together with possible approximations in Section 8.6.2. In this 
Master Thesis work, the EXIT chart analysis performed is on the ensemble when 
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using Belief Propagation (Section 3.2). The result is presented in Table 8.1. The 
analysis was made on the vector symbol representation instead of the binary rep-
resentation of the M-PSK symbols (Section 3.3). The EXIT chart algorithm and 
calculation results are presented in Section 3.4.4 and Section 6. As expected, in-
creasing the M possible M-PSK symbols on the unit circle for the modulation will 
increase the SNRThreshold for the ensemble used. When the symbols lie close to each 
other when modulated, a large SNR is needed to separate them at detection. 

It seems like the increase for the SNRThreshold is linear when going from 2-PSK 
to 4-PSK, and from 4-PSK to 8-PSK. In both cases the SNRThreshold is increased by 
5.4 dB (Table 8.1).  

M SNRThreshold

2 -2.2 
4 3.2 
8 8.6 

Table 8.1 SNRThreshold for 2-, 4 – and 8-PSK using a regular (3,6) LDPC ensemble with Belief 
Propagation. 

8.3 Simulations Results 
The simulations in Section 7 were performed with the purpose of producing com-
parable results for the Belief Propagation-, Table Angle- and Table Vector De-
coder, using different order of M-PSK modulated symbols. Some modifications 
on the Table Angle- and Table Vector Decoder were tested to see how they af-
fected the simulation results (different tables). The three decoders with their modi-
fications could then be compared using the simulation results. First, a comparison 
will be made on the SNR needed for low decoding error using the different de-
coders. Next, a complexity comparison between the decoders will be made. The 
regular (3, 6) LDPC code [18] used in these simulations is a code optimized for 
BPSK, but it does not matter since only the relative results between the decoders 
are of interest here. The main focus on the curves in the figures should be at BER 
>10-5, because when having BER lower than 10-5, small random errors will have a 
large impact on the local appearance of the curve. The local “jumps” in the curves 
depends on an insufficient number of simulations. If, say, another million simula-
tions (codewords sent and decoded) were executed, the resulting curves can then 
be expected to be smoother. This is of minor importance here, the general shape 
of the curves is still clear for simulations with  
500 000 codewords. The use of the term Table Decoders refer to both the Table 
Angle Decoders and Table Vector Decoders. 

8.3.1 Table Decoding with a Fixed Table 
Simulations with Table Decoding using a fixed table independent of the SNR 
changes of the channel were performed in Section 7.2.6 and Section 7.2.7. This 
was done to see if the SNR used to design the table needs to be equal to the actual 
SNR of the channel in order for the decoder to perform well. If it is necessary to 
recalculate the table, or store several versions of the table (floating table, one per 
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SNR), then it could be argued that this type of decoder is too complex to justify its 
decoding performance. The SNR used to calculate the angle- and vector table 
were 6.4 dB. The results are presented in Figure 8.1 for 4-PSK. 

 
Figure 8.1 Table Angle Decoder and Table Vector Decoder performance for fixed and float-
ing tables. Order of modulation is 4-PSK.  

From Figure 8.1 one can draw the concussion that the performance of the decoder 
is approximately the same for both a fixed and floating table vector- and angle 
tables for 4-PSK. Because of this, the Table Decoders using fixed tables will from 
now on be used when comparing decoding performances. This is because the 
lesser complexity in these decoders compared with the ones using a multiple set 
of tables (that is, a floating table) for each possible SNR. From now on, the terms 
Table Vector- and Table Angle Decoder will refer to Table Decoders with fixed 
tables. The possibility to use fixed instead of floating tables in the Table Decoders 
will give a large improvement of the decoders due to the reduced complexity. 

8.3.2 2-PSK Simulations  
In this section two different decoders are compared for 2-PSK symbols in Figure 
8.2. It is possible to see that the Table Angle Decoder needs approximately 2 dB 
more than the Belief Propagation Decoder to achieve the same BER. 2-PSK is not 
a good case for using a Table Decoder, since a Belief Propagation Decoder can be 
made very simple, and it is the best known decoder. This is why Table Decoding 
on 2-PSK is only presented very briefly, just to show that it works, although not 
very good compared to the Belief Propagation Decoder. 
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Figure 8.2 2-PSK simulations with the Belief Propagation- and Table Angle Decoder. 

8.3.3 4-PSK Simulations   
The first result that was noted when running 4-PSK was that it did not matter if a 
fixed table, designed for a sufficiently high SNR, was used instead of a floating 
table designed for every shifting SNR (Figure 8.1). This lead to the conclusion 
that it is possible to use a single fixed table designed for a specific M-PSK signal-
ling with approximately the same error correction performance. Another thing that 
was noted was that there seemed to be a limit on how many angles that was 
needed. When the Table Angle Decoder was used, this limit was measured to 32 
angles. In Figure 8.3, it can be seen that all three table designs have almost the 
same performance. The differences can be explained by the relatively low number 
of simulations (codewords sent) that were made. In Figure 8.4, the simulation 
using 32A, 16L (Table Vector Decoder) can be considered as a “refined” Table 
Angle Decoder, now with 16 lengths as well. This increases performance by 0.5-
0.7 dB 

When simulating using the Table Vector Decoder, the reconstruction points 
could not be removed as easily. Figure 8.4 shows the effects of cutting the number 
of lengths and angle to half, thus reducing the number of reconstruction points to 
¼. A large drop in performance was noted immediately. Since 8L, 16A is worse 
than 1L, 32A, it indeed seems like 32A is the minimum angular resolution needed 
for 4-PSK. 

 

 A very important thing was discovered when trying to improve the Table 
Vector Decoder. Removing reconstruction points from the origin gave an increase 
in performance with up to 1dB when using 4-PSK (Figure 8.5). These reconstruc-
tion points were placed evenly in the range of { }2,,00625.0 K . Tests with other 
placements (with and without points in the origin) did not give as good results.  
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Finally, it was noted that an increase in the number of reconstruction points 
could give an increase in performance. The results of having 2048 instead of 512 
reconstruction points in the Table Vector Decoder can be seen in Figure 8.6. 
However, it was not easy to find a good placement of the reconstruction points, 
and it is probably possible to find points that give better results. The best Table 
Decoder found was the Table Vector Decoder using 2048 reconstruction points. It 
was performing about 1dB worse than the Belief Propagation Decoder (Figure 
8.7). 

 
Figure 8.3 Comparison of fixed table, floating table, and reduced number of reconstruction 
points for 4-PSK. 
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Figure 8.4 4-PSK simulations with fixed and floating tables, and reduced numbers of recon-
struction points. All tables have reconstruction points in the origin. 

 
Figure 8.5 4-PSK simulation with and without reconstruction points in the origin. 
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Figure 8.6 4-PSK simulations without reconstruction points in the origin. 

 

 
Figure 8.7 Comparison between the Belief Propagation Decoder and the best Table Decoder 
found. 
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8.3.4 8-PSK Simulations 

 

}

In Figure 8.8, the BER curves as function of SNR for the three different decoders 
depending on SNR when using 8-PSK signalling are presented. The Table Vector 
Decoder needs approximately 1 dB more than the Belief Propagation Decoder to 
achieve the same BER. The Table Vector Decoder performs approximately 2 dB 
better than the Table Angle Decoder. The Table Angle- and Table Vector Decoder 
both have 512 reconstruction points but with different placement in the plane as in 
the 4-PSK case. There is an increase in the time that it takes to make the table 
when using higher order modulations, which made it difficult to make many simu-
lations using 8-PSK. However, a Table Vector Decoder that performed about 1 dB 
worse than the Belief Propagation was found. The lengths were placed evenly in 
the range { . The decoding itself is, however, much faster than Be-
lief Propagation, which makes this Table Vector Decoder a very interesting ap-
proximation of the Belief Propagation Decoder. 

333.1,,333.0 K

 
Figure 8.8 8-PSK simulations with Belief Propagation, Table Angle Decoder, and Table Vec-
tor Decoder. 

8.4 Analysis of Simulation Results 
With the results from Section 8.3, we will now analyze the decoding performance 
for the three decoders for M={2, 4, 8}, with BER as the quality parameter, de-
pending on the SNR. From the diagrams in Section 8.3, we can see that, not very 
surprisingly, the Belief Propagation Decoder performs better than the Table De-
coders. It is to be expected, since the Table Decoder is an approximation of the 
Belief Propagation Decoder, with information loss in the quantization made on the 
messages in The Table Decoder (Section 5.2.1). With a larger amount of recon-
struction points, and/or with good reconstruction point placement, the perform-
ance of the Table Decoder gets closer to the Belief Propagation Decoder. An en-
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couraging result from the simulations in Section 8.3.1 is that the Table Decoder 
only needs to store one pre-calculated table. The performance gap is slim between 
Table Decoders with a fixed table and Table Decoders with floating tables.  

An illustrative figure describing the similar appearance between the angle ta-
bles created for different SNR but for the same M is presented in Figure 8.9. The 
surfaces are approximately the same, but the surface for the 3 dB plot is more 
rugged.  
 

 

Figure 8.9 The angle tables for 3 dB and 6 dB over 4-PSK signaling. 

A very interesting result is also that the Table Vector Decoder performs sig-
nificantly better than the Table Angle Decoder for all SNR, even though they both 
have 512 reconstruction points, just with different placement in the plane. The 
Table Vector decoder performs better when there is no reconstruction points in the 
zero point in the plane. This could have something to do with that it is better for 
the decoder to quantize messages to a vector other than the null vector, because 
the point in the origin gives no information about the probability of a symbol. In 
other words; it is better that the decoder guesses on the possible symbol, even 
with very little information, than to “say” that the message could be any of the 
possible symbol with equal possibility (null vector). Much could probably be 
gained by careful design of the Table Decoders fixed table, regarding the place-
ment and amount of reconstruction points. The above implies that it would be 
possible to optimize a Table Vector Decoder (the best Table Decoder) for an M 
and a channel by placing the limited reconstruction points in a certain pattern on 
plane. This Table Vector Decoder would probably perform close to the Belief 
Propagation Decoder with respect to the BER if the number of reconstruction 
points is sufficiently large. 

The next quality parameter to take into consideration when comparing the 
best Table Decoder, the Table Vector Decoder, with the Belief Propagation De-
coder is the decoding complexity for the decoders. Decoding complexity is an 
important quality parameter because it gives a measurement of the time and space 
(hardware implementation) consumption for the decoding algorithm. When con-
sidering this quality parameter, the advantage of the Table Vector Decoder starts 
to show. The increasing decoding complexity of the Belief Propagation algorithm 
when going from 2-PSK to 4- and 8-PSK is far from linear [15]. Belief Propaga-
tion with 4-PSK symbols is four times more complex than for 2-PSK, and Belief 
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Propagation for 8-PSK is 16 times as complex as for 2-PSK. The Table Decoders 
have constant decoding complexity for 2-, 4- and 8-PSK symbols, so if one only 
looks at the decoding complexity it is obvious that the largest complexity gain 
when changing from a Belief Propagation- to a Table Decoder is achieved for 8-
PSK. In the 2-PSK case the Belief Propagation Decoder is less complex than the 
Table Decoder. That is because BPSK is a special case since it has only 2 prob-
abilities which can be expressed as a single Likelihood Ratio [13]. 

There is log-linear loss in decoding performance (BER) when using Table 
Vector decoding instead of Belief Propagation decoding for 2-, 4- and 8-PSK. The 
loss for the best Table Vector Decoders tested in Section 7.2 in SNR about 1 dB 
for 4-PSK and 8-PSK. One could therefore argue that The Table Vector Decoder 
for 8-PSK is the best choice of the three decoders, since this decoder gives the 
best complexity gain comparing to the SNR loss when going from Belief Propaga-
tion to Table Vector Decoding. The Table Vector Decoder is probably a better 
choice than the Belief Propagation Decoder even in the 4-PSK case. It is possible 
to improve the results for 4-PSK and 8-PSK even further by running more simula-
tions and finding a better reconstruction point placement. However, using 2-PSK 
gives the Belief Propagation a clear advantage since it has a smaller decoding er-
ror and a less complex decoder than the Table Vector Decoder. In this thesis, we 
have not simulated much at all using 2-PSK signalling, since there is no gain to be 
made in this case by changing from Belief Propagation to Table Decoding. 

8.5 Analysis of the Implementation 
There are many aspects to consider when designing a Table Decoder. In this chap-
ter, we will try to bring focus to some important discoveries we made when we 
made our Table Decoder. It is not a complete description of our system, but a dis-
cussion of some problems and solutions we found on the way. 

The calculation complexity of the Table Decoder only depends on the LDPC 
code it is designed to decode, not on the number of reconstruction points (size of 
the table). However, the memory requirements are based on the number of recon-
struction points. More precisely, it needs O(N2) memory cells where N is the 
number of reconstruction points in the table.  

Although our implementation actually sends real value angles and lengths, it 
is possible to minimize the messages sent between the nodes by only sending the 
indices of the reconstruction points. Doing this will limit the information that 
needs to be passed between the nodes in the decoder to log2N bits.  

The design of the reconstruction points can have a great impact on the decod-
ing performance. A good example can be found in Figure 8.8, which shows a gap 
between using only angles and using angles and lengths in 8-PSK signalling.  

Some notes for good reconstruction point design: 
1. Use even length differences. Having two inputs to the variable node point-

ing in the same direction should always increase the length. The length is a 
reliability measure, and having two pointing in the same direction should 
increase the reliability. 
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2. Make sure there are lengths on both sides of 1, this greatly improves the 
decoder. If all values are less than 1, most inputs will start at the maximum 
possible length, and cannot improve. 

3. Use a multiple of M angles. Split the angles evenly into M groups and dis-
tribute each group around a constellation point. Distribute all groups in the 
same way. Doing so will make the decoder act the same way regardless of 
the symbol received. Our implementation spread all angles evenly around 
the unit circle. 

4. Avoid putting reconstruction points in the origin. According to our simula-
tions, they will make the error correcting capabilities worse. 

8.6 Future Work 
Simulations were done using a large number of reconstruction point constella-
tions. However, it is very likely that there exist constellations that have better er-
ror correcting performances. Using methods for designing Vector Quantizers 
(VQs) one could probably find the optimal set of reconstruction points. 

8.6.1 Blackbox Modelling for Check Nodes Using Equations 
An alternative solution to the table lookup presented in Section 5.2.1 is to find an 
equation depending on va, vb, SNR and M, which returns u. This should give ap-
proximately the same result as if the Table Vector Decoder method was used. The 
advantage with an equation approach instead of a table lookup approach for the 
decoder is that it is then not necessary to store a Table for each different M and 
SNR, just an equation depending on these variables. If an equation is found that 
approximates the Belief Propagation Decoder very well, it may lead to a decoder 
with less complexity than the Table Decoder and the Belief Propagation Decoder.  

The surfaces in Figures 5.7 and 5.8 have numerous flat surfaces. It is difficult 
to describe them in a single function, but it is possible that using neural networks 
or linear discriminant functions [6] can be a good approach for calculating them 
fast. 

 

8.6.2 Density Evolution on the Table Decoder 
It would be of great interest to calculate the SNRThreshold for different ensembles 
using the Table Angle- and Table Vector Decoder. These analysis results could 
then be compared with the results for the Belief Propagation Decoder (Section 
8.2) for the different ensembles. But to perform a more exact Density Evolution 
analysis one would need the Variable- and Check node functions, since the Den-
sity Evolution algorithm is developed out of these functions [19]. We have devel-
oped the variable node function but not the check node function. Density Evolu-
tion will probably be possible if Black box Modelling Using Equations (Section 
8.6.1) is first developed for the Table Angle- and Table Vector Decoder. This 
would give the check node function needed to perform the Density Evolution. 

An alternative solution that could work would be to use tables for the angles 
like in the Table Angle Decoder, and from all the resulting Angle combinations 
out of the check node Develop the discrete message pdf for every Density Evolu-
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tion iteration. This approach will probably result in rather complex and time de-
manding computer calculations for 4- and 8-PSK. It is annoying to have to wait 
for the computer during time demanding calculations, but since DE is an analysis 
tool, not a decoding method, it only has to be performed once to establish the 
threshold. 

 Density Evolution could probably be performed using table representation of 
the check node function. However, it would probably have to be a fairly large 
table (high resolution) to give useful results.  
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9 Conclusions 
The main focus in this Master’s Thesis has been to create a Message Passing de-
coder that uses angles, and possibly lengths, as the messages. Two decoder types 
were constructed and one of them, the Table Decoder, was decoding correctly 
when angles only, and angles with lengths, were used. 

9.1 Angular Sum Decoder 
The first approach, using a decoder with simple angular summations (Section 4), 
did not produce any successful results at all (Section 7.2.2). Although not mathe-
matically proven, it is not likely that a decoder using angular summation will 
work (Section 8.1). One important result from this decoder was made. In Section 
4.1, it was proven that vector summation is equivalent to the variable node opera-
tion made in Belief Propagation, when the probability distributions are taken from 
the channel. 

9.2 Table Decoder 
The approach to solve the problem encountered in Section 9.1 was to imitate a 
Belief Propagation Decoder (Section 3.2) by using a pre-calculated lookup table 
(Section 5) with angle and length inputs. This approach made decoding possible, 
but demanded a higher SNR than Belief Propagation. The performance gap is 
however reducible, and improvements to the decoder have been discussed Section 
8.5 and Section 8.6.1. It was also showed in Section 8.3.1 that only one fixed table 
per modulation type (M-PSK) has to be pre-calculated as long as the SNR used to 
calculate the fixed table is sufficiently high. The fixed table can then be used for 
all SNR values on the channel for a specified modulation. This gives a large com-
plexity gain for the decoder. An extra advantage is that the complexity of this de-
coder is constant, regardless of modulation technique (e.g. {2, 4, 8}-PSK), which 
gives the decoder an advantage over the Belief Propagation Decoder, since its 
complexity has a quadratic increase for higher order modulation. These two de-
coders are called Table Angle- and Table Vector Decoder.  

9.3 Performance of the Table Angle- and Table Vector De-
coder 

The Table Vector Decoder performs significantly better than the Table Angle De-
coder (Section 8.3), while both can be designed to have the same complexity. 
However, it takes a great deal of reconstruction point design to make a good Table 
Vector Decoder. In some cases, the performance is decreased even if extra recon-
struction points are added. However, the table only needs to be designed once. 
With a careful design and a proper amount of reconstruction points in the vector 
table, the Table Vector Decoder could probably perform very close to the Belief 
Propagation Decoder, with far less decoding complexity in the 8-PSK case (Sec-
tion 8.4).  
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9.4 EXIT Chart Calculations 
The method of using a table lookup made it unfeasible to analyze the Table De-
coders with Density Evolution or EXIT chart. But analysis was made on the regu-
lar (3, 6) ensemble [18] for Belief Propagation (Section 8.2), and showed that the 
specific code used throughout the thesis was a good one, even for higher fields. 
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Appendix A 
A.1 Conversion from Vector (Angle and Length) Represen-
tation to Probability Representation 
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1...10 −∈ M
Let  be the vectors on the unit circle representing the M possible M-PSK sym-
bols for i . Let 

im
{ } m  be an arbitrary vector on the vector plane 

and 
m

P  be the M-length probability vector, where all of its elements )|( mmP ii  are 

the probabilities that mi is sent given that im  is received.  
When sending  through a channel with noise, 

the angle and length of the symbol will be distorted in a certain way depending on 
the SNR and the type of channel noise Θ. The received signal vector m

{ 110 ... −∈ Mi mmmm }

received rep-
resenting the distorted M-PSK message will then with great probability point at 
another point in the vector plane then the sent mi. This is illustrated by an example 
in Figure A.1. Depending on the noise distortion on msent, the probability changes 
that mreceived is one of the mi possible M-PSK symbols. There is one joint probabil-
ity  for each possible symbol m)|( recievedii mmP i, i.e. the probability that that one of 
each M possible symbols mi is sent, when mreceived is the received vector. 
 

  
Figure A.1 Sending the 8-PSK ‘1’ symbol through a channel with Gaussian noise. 
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When having an arbitrary vector m  in the vector plane, m  can be represented 
by a probability vector mP  (Equation A.1.1). Here m  is the general case of mre-

ceived. 

( ) ( ) ( )[ ]mmPmmPmmPP MMm 111100 −−= K                          (A.1.1) 

With length M, and each element in the vector giving the probability for m  
being one of the M possible M-PSK vectors .  

im

mP  can be calculated by calculating every element )|( mmP ii  in Equation 
A.1.1 for every { 1...10 }−∈ Mi  with the following equations: 

First the geometrical distances  from the vector point of id m  to all M possi-
ble symbol points for  on the unit circle is calculated with Equation A.1.2. 
(Figure A.2) 

im

       22
ii mmd −=                             (A.1.2)  
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Figure A.2 The geometrical distances to the four different signal points mi where 
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The following holds if the noise is AWGN with known noise variance σ.   
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Bayes’ rule gives: 
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       to Probability Representation 

where and is the probability that  and  is sent. Inserting 
Equation A.1.3 into Equation A.1.4 and assuming that all symbols have equal 
probability to be sent gives  

)( imP )( jmP im jm
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Equation A.1.5 and Equation A.1.2 are used to calculate every element 
)( mmP i  in mP  (Equation A.1.1) for { }1...10 −∈ Mi .    
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A.2 Conversion from Probability Representation to Vector 
(Angle and Length) Representation 
 
The conversion from probability representation mP  of M-PSK symbols into vector 
representation m  on the vector plane is achieved by first rewriting Equation A.1.5 
to (11). 
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Setting up a system of equations with Equation A.2.1 for 
, gives a nonlinear system of equations Equation A.2.2. { 1...10 −∈ Mi }

For simplicity the following notations are used: 
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By setting up all equations for every i, the following equations are received. 
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Given the joint probabilities , it is not possibly to develop Equation A.2.2 
into an explicit solution for . A numerical solution with the Newton Raphson 
method is also very difficult to achieve because of the extreme nonlinearity of the 
system of equations with respect to . 
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A.3 Proof That Vector Addition is Equal to Variable Node 
Operation in Belief Propagation 
 
Assume M-PSK signalling over an AWGN channel with constant variance σ2 and 
equal probability for all signals to be sent. 
Let I denote the In-phase signal value in the vector model, and Q denote the 
Quadrature signal value. 

Bayes’ Rule returns the probability that symbol mi was sent, given that the 
received signal is Am . 
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inserted in Equation A.3.2 gives: 
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Variable node operations in a Belief Propagation Decoder are performed as a 
symbol by symbol probability multiplications, whit normalized results. Assuming 
the probabilities are taken from the channel, this would look like: 
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The function F is introduced to simplify the notation.  
Adding this to Equation A.3.1 leads to 
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That is, adding together two vectors that are delivered from M-PSK signalling 
from an AWGN channel is equal to the Variable Node Operation in a Belief 
Propagation Decoder. 
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