
Effi cient Message Passing

Decoding Using Vector-based

Messages

MIKAEL GRIMNELL, MATS TJÄDER

FOI-R--1963--SE Scientifi c report Command and Control Systems

ISSN 1650-1942 February 2006

FOI

Swedish Defence Research Agency Phone: +46 13 37 80 00 www.foi.se

Command and Control Systems Fax: +46 13 37 81 00

P.O. Box 1165

SE-581 11 Linköping

FOI is an assignment-based authority under the Ministry of Defence. The core activities are research, method and technology develop-

ment, as well as studies for the use of defence and security. The organization employs around 1350 people of whom around 950 are

researchers. This makes FOI the largest research institute in Sweden. FOI provides its customers with leading expertise in a large number

of fi elds such as security-policy studies and analyses in defence and security, assessment of different types of threats, systems for control

and management of crises, protection against and management of hazardous substances, IT-security an the potential of new sensors.

FOI-R--1963--SE
ISSN 1650-1942

Scientific report
February 2006

Command and Control Systems

Mikael Grimnell, Mats Tjäder

Efficient Message Passing Decoding Using Vector-based
Messages

2

Issuing organization Report number, ISRN Report type
FOI – Swedish Defence Research Agency FOI-R--1963--SE Scientific report

Research area code
4. C4ISTAR
Month year Project no.
February 2006 I7068
Sub area code
41 C4I
Sub area code 2

Command and Control Systems
P.O. Box 1165
SE-581 11 Linköping

Author/s (editor/s) Project manager
Mikael Grimnell Hugo Tullberg
Mats Tjäder Approved by
 Martin Rantzer
 Sponsoring agency

 Scientifically and technically responsible
 Hugo Tullberg
Report title
Efficient Message Passing Decoding Using Vector-based Messages

Abstract

Low-Density Parity-Check (LDPC) codes provide strong error correction capability. Early LDPC-work concentrated
on the binary Galois Field, GF(2), but here we consider higher order alphabets, GF(q). The code symbols from
GF(q) are mapped to M-ary Phase Shift Keying (M-PSK) signals to yield higher spectral efficiency.

LDPC codes are commonly decoded using the Message Passing (MP) algorithm, which is an iterative algorithm that
passes messages between nodes in a graph representation of the code. Unfortunately, the computational
complexity of the optimal MP decoder, the Belief Propagation (BP) decoder, scales as the square of the order of the
used Galois Field.

To reduce complexity, we investigate a number of simplified MP decoders. Since the information of a PSK signal is
found in the phase angle, geometrical vectors and angles are used as messages in the decoders.

A promising simplification is the Table Vector Decoder, which approximates the check node operation of a BP
decoder by table lookup. The complexity of table-based decoders is unaffected by size of the used Galois Field. For
well-designed tables, the table-based decoders suffer only minor losses compared to the optimal Belief Propagation
(BP) decoders.

We also investigate the theoretical decoding properties using Density Evolution analysis.

Keywords
LDPC codes, M-PSK modulation, Message Passing decoding, Belief Propagation decoding, geometrical vectors,
low-complexity decoding, Density Evolution analysis

Further bibliographic information Language English

Also published as Master’s Thesis Report LiTH-ISY-EX-05/3741--SE at Linköping University

ISSN 1650-1942 Pages 96 p.

 Price acc. to pricelist

3

Utgivare Rapportnummer, ISRN Klassificering
FOI - Totalförsvarets forskningsinstitut FOI-R--1963--SE Vetenskaplig rapport

Forskningsområde
4. Ledning, informationsteknik och sensorer
Månad, år Projektnummer
Februari 2006 I7068
Delområde
41 Ledning med samband och telekom och IT-
system
Delområde 2

Ledningssystem
Box 1165
581 11 Linköping

Författare/redaktör Projektledare
Mikael Grimnell Hugo Tullberg
Mats Tjäder Godkänd av
 Martin Rantzer
 Uppdragsgivare/kundbeteckning

 Tekniskt och/eller vetenskapligt ansvarig
 Hugo Tullberg
Rapportens titel
Effektiv meddelandebaserad avkodning med vektormeddelanden

Sammanfattning

Low-Density Parity-Check- (LDPC-) koder har stark felrättningsförmåga. Tidigare arbete fokuserade på den binära
talkroppen, GF(2), men här undersöker vi högre ordningens talkroppar, GF(q). Kodade symboler från GF(q)
moduleras på M-är Phase Shift Keying (M-PSK) för att få högre spektraleffektivitet.

LDPC-koder avkodas vanligen med Message Passing- (MP-) algoritmen, en iterativ algoritm där meddelande
utväxlas mellan noderna i kodens grafrepresentation. Tyvärr beror beräkningskomplexiteten för den optimala MP-
avkodaren, Belief Propagation (BP), som kvadraten på ordningen av den använda talkroppen.

För att minska komplexiteten har ett antal förenklade MP-avkodare undersökts. Eftersom informationen hos en PSK-
signal överförs i fasvinkeln, har geometriska vektorer och vinklar använts som meddelanden i avkodarna.

Den mest lovande förenklingen är Vektortabellavkodaren, vilken approximerar operationen i check-noden hos en
BP-avkodare med en tabellsökning. Komplexiteten hos tabellbaserade avkodare är oberoende av den använda
talkroppens ordning. För välberäknade tabeller lider tabellbaserade avkodare endast mindre prestandaförluster
jämfört med den optimala BP-avkodaren.

Vi undersöker också kodernas teoretiska egenskaper med hjälp av Density Evolution-analys.

Nyckelord
LDPC-koder, M-PSK-modulation, Meddelandebaserad avkodning, Belief Propagation-avkodning, geometriska
vektorer, lågkomplexitetsavkodning, Density Evolution-analys

Övriga bibliografiska uppgifter Språk Engelska

Även publicerad examensarbetesrapport LiTH-ISY-Ex-05/3741--SE vid Linköpings universitet

ISSN 1650-1942 Antal sidor: 96 s.

Distribution enligt missiv Pris: Enligt prislista

FOI-R--1963--SE

5

Abstract
The family of Low Density Parity Check (LDPC) codes is a strong candidate to be
used as Forward Error Correction (FEC) in future communication systems due to
its strong error correction capability. Most LDPC decoders use the Message Pass-
ing algorithm for decoding, which is an iterative algorithm that passes messages
between its variable nodes and check nodes. It is not until recently that computa-
tion power has become strong enough to make Message Passing on LDPC codes
feasible. Although locally simple, the LDPC codes are usually large, which in-
creases the required computation power. Earlier work on LDPC codes has been
concentrated on the binary Galois Field, GF(2), but it has been shown that codes
from higher order fields have better error correction capability. However, the most
efficient LDPC decoder, the Belief Propagation Decoder, has a squared complex-
ity increase when moving to higher order Galois Fields. Transmission over a
channel with M-PSK signalling is a common technique to increase spectral effi-
ciency. The information is transmitted as the phase angle of the signal.

The focus in this Master’s Thesis is on simplifying the Message Passing de-
coding when having inputs from M-PSK signals transmitted over an AWGN
channel. Symbols from higher order Galois Fields were mapped to M-PSK sig-
nals, since M-PSK is very bandwidth efficient and the information can be found in
the angle of the signal. Several simplifications of the Belief Propagation has been
developed and tested. The most promising is the Table Vector Decoder, which is a
Message Passing Decoder that uses a table lookup technique for check node op-
erations and vector summation as variable node operations. The table lookup is
used to approximate the check node operation in a Belief Propagation decoder.
Vector summation is used as an equivalent operation to the variable node opera-
tion. Monte Carlo simulations have shown that the Table Vector Decoder can
achieve a performance close to the Belief Propagation. The capability of the Table
Vector Decoder depends on the number of reconstruction points and the place-
ment of them. The main advantage of the Table Vector Decoder is that its com-
plexity is unaffected by the Galois Field used. Instead, there will be a memory
space requirement which depends on the desired number of reconstruction points.

6 Abstract

FOI-R--1963--SE

Table of Contents
Abstract ..5

Table of Contents...7

List of Symbols ..9

1 Introduction ..11
1.1 Purpose... 11
1.2 Methods and Sources ... 11
1.3 Structure of the Report.. 11

2 Theory and Background..13
2.1 Information Theory Concepts.. 13

2.1.1 Additive White Gaussian Noise Channel...14
2.2 Telecommunication Concepts... 15

2.2.1 Vector Spaces ...15
2.2.2 Digital Modulation Techniques ..16
2.2.3 Detection..19

2.3 Error Correcting Codes ... 19
2.3.1 Group...19
2.3.2 Ring ...20
2.3.3 Field ...20
2.3.4 Galois Fields (Finite Fields) ...20
2.3.5 Addition in Vector Spaces ...21
2.3.6 Block Codes ..22
2.3.7 Hamming Distance ..23

2.4 Low Density Parity Check Codes.. 23

3 Methods and Algorithms ...27
3.1 Message Passing Decoding ... 27

3.1.1 Variable Node Update ...28
3.1.2 Check Node Update ..28
3.1.3 Stop Rule...29
3.1.4 Faster Decoding by Serializing Node Operations29

3.2 Belief Propagation Decoding .. 31
3.2.1 Check Node Update ..31
3.2.2 Variable Node Update ...32
3.2.3 Stop Rule Design...33

3.3 Non-binary LDPC Codes and M-PSK Modulation 34
3.4 Density Evolution .. 35

3.4.1 Main Idea...36
3.4.2 Performing Density Evolution ..37
3.4.3 One-Dimensional Approximation of Density Evolution......................39
3.4.4 EXIT Chart with M-PSK Signaling ...42

4 Angular Sum Decoding..47
4.1 Vector Summation in a Variable Node.. 49

FOI-R--1963--SE

7

8 Table of Contents

5 Table Decoder ..51
5.1 Variable Node Operation .. 51
5.2 Black Box Model for Check Node Operations............................... 51

5.2.1 Table Vector Decoder..52
5.2.2 Visualization of Output Values for the Angle Table...........................56

6 EXIT Chart Calculations for M-PSK ..59
6.1 Threshold Calculation with EXIT Chart ... 59

7 Simulations...63
7.1 Simulation Algorithm ... 63
7.2 Simulation Results .. 64

7.2.1 Belief propagation Decoder ...64
7.2.2 Angular Sum Decoder ...65
7.2.3 Angular Sum Decoder using Length Information66
7.2.4 Table Angle Decoder Using Floating Table.......................................67
7.2.5 Table Vector Decoder Using Floating Table68
7.2.6 Table Angle Decoder Using Fixed Table...69
7.2.7 Table Vector Decoder Using Fixed Table ...70

8 Results and Analysis ...73
8.1 Why Does Not Angular Summation Work?................................... 73
8.2 EXIT Chart Analysis.. 73
8.3 Simulations Results .. 74

8.3.1 Table Decoding with a Fixed Table ...74
8.3.2 2-PSK Simulations...75
8.3.3 4-PSK Simulations...76
8.3.4 8-PSK Simulations...80

8.4 Analysis of Simulation Results.. 80
8.5 Analysis of the Implementation ... 82
8.6 Future Work .. 83

8.6.1 Blackbox Modelling for Check Nodes Using Equations83
8.6.2 Density Evolution on the Table Decoder ...83

9 Conclusions..85
9.1 Angular Sum Decoder... 85
9.2 Table Decoder .. 85
9.3 Performance of the Table Angle- and Table Vector Decoder 85
9.4 EXIT Chart Calculations.. 86

Appendix A ...87

List of References ..95

FOI-R--1963--SE

List of Symbols

Θ Channel noise
σ Noise variance
µi i-th symbol point
B Channel bandwidth
C Channel capacity
2
id The geometrical squared Euclidian distance

E Signal energy
0

symbolf Pdf for the zero symbols from the channel

G Generator matrix
H Parity check matrix
M Alphabet size
m Received channel vector
mi Message Passing edge message
N Number of reconstruction points

N0 Channel noise nower
Pi Reconstruction probability vector point
R Rate
ri Reconstruction vector point

SNR Signal to Noise Ratio
SNRThreshold Signal to Noise Ratio threshold

T Symbol time
u Inbound check node message
v Inbound variable node message

FOI-R--1963--SE

9

10 List of Symbols

FOI-R--1963--SE

1 Introduction
The family of Low Density Parity Check (LDPC) codes is a strong candidate to be
used as Forward Error Correction (FEC) in future communication systems due to
its strong error correction capability. Most LDPC decoders use the Message Pass-
ing algorithm for decoding, which is an iterative algorithm that passes messages
between its variable nodes and check nodes. It is not until recently that computa-
tion power has become strong enough to make Message Passing on LDPC codes
feasible. Although locally simple, the LDPC codes are usually large, which in-
creases the required computation power. Earlier work on LDPC codes has been
concentrated on the binary Galois Field, GF(2), but it has been shown that codes
from higher order fields have better error correction capability. However, the most
efficient LDPC decoder, the Belief Propagation Decoder, has a squared complex-
ity increase when moving to higher order Galois Fields. In this thesis decoding
with higher order Galois Fields and M-PSK signalling will be presented. Trans-
mission over a channel with M-PSK signalling is a common technique to increase
spectral efficiency. The information is transmitted as the phase angle of the signal.

1.1 Purpose
The focus in this Master’s Thesis is on simplifying the Message Passing decoding
when having inputs from M-PSK signals transmitted over an AWGN channel.
Symbols from higher order Galois Fields were mapped to M-PSK signals, since
M-PSK is very bandwidth efficient and the information can be found in the angle
of the signal. A special case is the use of only angular information as messages in
the Message Passing algorithm. If it is possible to decode a received codeword
from the channel using only angular information for its M-PSK symbols with the
MP algorithm, then the performance will be compared with the Belief Propagation
Decoder using Monte Carlo simulations. The Belief Propagation Decoder will be
used as a benchmarking Decoder in this thesis together with a more theoretical
Density Evolution analysis of the developed decoders.

1.2 Methods and Sources
The methods used in this thesis are Density Evolution analysis and computer
based Monte Carlo simulations. The programs and algorithms for these simula-
tions and analysis have been developed in C++ and Matlab 7.0.

The sources used in the project have mainly been scientific articles and books
on the subject. Some web based sources have also been used. A list of references
can be found on page 95.

1.3 Structure of the Report
The report will first describe the theoretical background of the used methods and
algorithms, both basic telecommunication theory, theory about LDPC codes and

FOI-R--1963--SE

11

12 1 Introduction

Message Passing decoding. The analysis method Density Evolution will also be
described in detail.

Next, the new, developed algorithms will be presented. After that, the simula-
tion and analysis results of the new algorithms will be presented and discussed.

Finally, the results and conclusions of the simulations and analysis will be
presented.

FOI-R--1963--SE

2 Theory and Background
A brief overview of the required background will be given in this section. Basic
theory in the areas of information theory, telecommunication systems and error
detection will be overviewed in 2.1, 2.2, and 2.3. Additional information can be
found in many books on the topic, for instance [1], [3], or [4]. LDPC codes will be
explained a bit more in-depth in Section 2.4.

2.1 Information Theory Concepts
In order to fully understand LDPC codes, it is necessary to be familiar with two
fundamental concepts from information theory, namely Rate and Capacity.

Definition 1. The Rate, or Code Rate, is defined as the ratio between the informa-
tion data transmitted and the total amount of data transmitted by the code
[5]. When the code has a fixed length n and using an alphabet of size M,
the rate R is defined as

n
MR log

= .

The logarithm is usually in base 2, which gives the rate in bits per channel
symbol. M is commonly M=2k, so the information symbol is a k-digit binary num-
ber [5].

Example 1. 100 information bits will be transmitted. The code adds 25 parity
bits for error correction, so a total of 125 bits will be
transmitted. The rate of the code is

8.0
125
100

==R .

The channel is the medium used for information transmission between a
sender and a receiver. It does not necessary mean a physical channel, like a cable
or a radio channel, but it can also be a channel spanning over time, for example a
memory storage facility– it can also be a more abstract channel used for simula-
tions and calculations, such as the Binary Erasure Channel or the Binary Symmet-
ric Channel [4].

In this thesis, the channel will be defined as a discrete, memoryless channel,
which can be described by the triple (X, Y, W) where X and Y are finite sets defin-
ing the input and output alphabets and W is a stochastic transfer matrix.

The channel capacity is explained as the highest possible mutual information
between the sender and the receiver. That is, the more information that is known
not to be distorted, the higher capacity the channel has. In mathematical terms,
this can be described as

{ })(:),(max)(XPPWPIWC
P

∈=

where W is a known matrix defining the channel, X is a stochastic input variable
with the distribution P(X). Before continuing, the entropy function H needs to be
defined:

FOI-R--1963--SE

13

14 2 Theory and Background

∑
∈

=
Yy

yPyPYH)(log)()(

∑
∈

=
Yy

XyPXyPXYH)|(log)|()|(

When the meaning of H is known, it will be possible to define I(P,W) as:
)|()();(),(XYHYHYXIWPI −==

I(P,W) and I(X;Y) are only different notations, one describing the mutual in-
formation using the channel matrix and probability distribution, the other using
the stochastic input and output variables. For further details on the definition and
calculation of channel capacity, see [4] or another book about information theory.

The relationship between the code rate R and channel capacity C is explained
in the Channel Coding Theorem [1].

Definition 2. With every channel we can associate a “channel capacity” C. There
exist error control codes such that information can be transmitted across
the channel at rates less than C with arbitrary low bit error rate.

Bear in mind that this theorem is valid for a sufficiently large code, but does not
state how large a code has to be in order to be sufficient. Also, it does not imply
how this code may look like.

2.1.1 Additive White Gaussian Noise Channel
The Additive White Gaussian Noise (AWGN) channel is a very common channel
used for computer simulations, and is the only channel used in this thesis. It is a
memoryless channel that adds white, Gaussian noise with spectral density N0/2 to
the sent signal. A definition of white, Gaussian noise can be found in [2]. The
received signal is

)()()(ttstR Θ+= ,

where s(t) is the sent signal, and Θ(t) is the noise.
The capacity of the AWGN channel has been derived in earlier works ([2])

and is only dependent on the bandwidth, B, and Signal to Noise Ratio, P/N0

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

BN
PBCAWGN
0

1log bits per second.

FOI-R--1963--SE

2.2 Telecommunication Concepts 15

2.2 Telecommunication Concepts
Telecommunication theory is dealing with sending information over a channel.
This section will describe how the information is modulated to a signal, and how
to detect the received signal. However, the first thing that will be dealt with is a
simplified representation of signals, called the Vector Model. This model repre-
sents periodic signals in a very convenient way by using coordinates in a vector
space instead of time-dependent functions.

2.2.1 Vector Spaces
The first thing that is needed for the Vector Model is an orthonormal (ON) base
for the vectors. This base can be derived from a signal set using Gram-Schmidt
Orthogonalization [5].

If the signal set has µ signals represented by time dependent functions,
, and this signal set is spanning over an N-dimensional function space,

then the signals can be linearly dependent. Gram-Schmidth Orthogonalization
eliminates the dependencies and returns an independent ON base, , that

can be used to represent the signals in the Vector Model.

(){ }µ 1=ii ts

(){ }N
jj t

1=
φ

Assuming N ≤ µ, choose N signals from the set
For i = 1,2,...,N, calculate

1) () { }1,,2,1,, −∈= ijss jiij Kφ .

2) () () ()∑
−

=

−=
1

1

i

j
jijii tststg φ

3) () ()
i

i
i g

tgt =φ

It can be noted that if only sinusoidal signals are used, then each frequency
used can be represented as two dimensions, the In-phase (I) and Quadrature (Q)
dimension. If only one frequency is used, it is possible to describe the vector
space on a two-dimensional plot, the I/Q-plot. An illustration of an I/Q-plot of
signals received over a 12dB AWGN channel using QPSK signalling (will be de-
scribed in Section 2.2.2), is presented in Figure 2.1.

The angle and length of the vector is used often in this thesis. This is a repre-
sentation equal to the I/Q values, and are the absolute length of the I/Q-vector and
the angle counted counter-clockwise starting from the positive I-axis.

FOI-R--1963--SE

16 2 Theory and Background

Figure 2.1 I/Q-plot of QPSK signalling over an 12dB AWGN channel.

2.2.2 Digital Modulation Techniques
There are many modulation techniques used in the telecommunications industry,
so this introduction will only describe the ones used in this thesis. A comprehen-
sive explanation, along with other modulation techniques, can be found in [5].

2.2.2.1 Binary Phase Shift Keying

Binary Phase Shift Keying (BPSK or 2-PSK) has two possible symbols (0
and 1) to transmit. The two signals representing the two possible symbols are
simple sinusoidal signals with the only difference lying in their starting phases.
Each symbol has a constant time interval, T (sending time).

()
⎪⎩

⎪
⎨
⎧

<≤=
elsewhere

TtTf
T
E

s c

0

02cos2
1

π

()
⎪⎩

⎪
⎨
⎧

<≤+=
elsewhere

TtTf
T
E

s c

0

02cos2
2

ππ

E is the signal energy and fc is the carrier frequency, chosen so 2fcT is a positive
integer. BPSK does not carry any information in the Quadrature dimension, which
can be seen in Figure 2.2, so any noise in that dimension will not affect the detec-
tion (unless using a very bad detector).

FOI-R--1963--SE

2.2 Telecommunication Concepts 17

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

In-Phase

Q
ua

dr
at

ur
e

Figure 2.2 Illustration of the BPSK Constellation.

2.2.2.2 M-ary Phase Shift Keying

It is possible to extend BPSK to more than two starting phases. In this case, the
signals can be represented as M signals where

Mi
elsewhere

Tti
M

Tf
T
E

s c
i K1

0

022cos2
=

⎪⎩

⎪
⎨
⎧

<≤⎟
⎠
⎞

⎜
⎝
⎛ +=

ππ

This thesis will mainly use Quadriphase Shift Keying (QPSK or 4-PSK), with
4 signals, and 8-PSK, with 8 signals. The I/Q-plots of QPSK and 8-PSK can be
found in Figure 2.3 and Figure 2.4 respectively.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

In-Phase

Q
ua

dr
at

ur
e

Figure 2.3 The QPSK (4-PSK) constellation.

FOI-R--1963--SE

18 2 Theory and Background

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

In-Phase

Q
ua

dr
at

ur
e

Figure 2.4 The 8-PSK constellation.

2.2.2.3 Additive White Gaussian Noise in the Vector Model

The noise that is added when sending a signal over an AWGN channel, can also
be incorporated into the Vector Model. Since the noise is white and Gaussian, it
will affect all dimensions equally. In the Vector Model, this can be represented as
adding an N-dimensional noise vector (assuming that the signal has N independent
dimensions) to the signal vector. The elements of the noise vector are one-
dimensional, independent noise with a variance depending on the SNR for the
channel. Figure 2.5 illustrates the differences between a sent signal, S, and a re-
ceived signal, R, over an AWGN channel that adds a two-dimensional noise vec-
tor, Θ, to the signal. More information can be found in [5].

Figure 2.5 The effect of noise on 8-PSK signals.

R
S

Θ+= SR

FOI-R--1963--SE

2.3 Error Correcting Codes 19

2.2.3 Detection
This thesis does not consider detection problems, so instead of using the common
filter bank detector [3], the detection is performed using the vector model for the
received symbol.
According to Bayes’ Rule, described in [6], the probability of deciding symbol si
out of the possible set, { }µ 1=∈ iisS , when receiving the signal m is

() () ()

() ()∑
=

= µ

1j
jij

ii
i

sPsmp

sPsmp
sP .

Of the µ different symbols, the Maximum Likelihood Detector will decide the
sent symbol/signal to be

(){ }iSs
sPs

∈
= maxˆ .

2.2.3.1 Soft Decisions

If a receiver is capable of deliver some kind of reliability information about its
decision, then the decision is called ’soft’. In this thesis, the soft decision used is
quite simple: sending directly the I and Q values, or equally length and angle, of
the received signal vector.

2.3 Error Correcting Codes
A good method for modulation and demodulation of signals is important to a
communication system. However, it does not stop errors to occur. When transmit-
ting over a channel, it is inevitable that sooner or later a symbol will be detected
as another symbol than the one sent. Error correcting codes can lower the risk of
errors even further. The symbols are coded using an error correcting code before
transmitted, and the received symbols can then be decoded and errors can be de-
tected or corrected up to a certain limit.

This thesis is dealing with LDPC codes, a family of very good error correct-
ing codes, so some very rudimentary concepts in the mathematics behind error
correction need to be explained. Further reading on the topic can be found in [1].

2.3.1 Group
A set is a collection of objects. A group, G, is a set of objects on which a defined
binary operation (denoted as ”·”) is defined. That is, the operation takes two ob-
jects from the set and returns a third object in the set. The operation must follow
the following rules:

1. It must be associative: Gcbacbacba ∈⋅⋅=⋅⋅ ,,)()(
2. An identity object, e, must exist: Gaeaeaae ∈=⋅=⋅ ,
3. An inverse must exist: Gaaeaaaa ∈=⋅=⋅ −−− 111 ,

If a group also satisfies the following rule 4, it is called a Commutative

group:

FOI-R--1963--SE

20 2 Theory and Background

4. Gbaabba ∈⋅=⋅ ,

The identity element for a commutative group is called the additive identity

element.

Example 2. The set of integers form a (infinite) group under addition, but not
multiplication since multiplication inverses does not exists in the
group.

2.3.2 Ring
A ring is a set of objects, R, following the rules:

1. Two binary operations are defined, ”+” and ”·”.
2. R is a commutative group under +. The additive identity element is labeled

“0”.
3. The operation · is associative.
4. The operation · distributes over +:

Gcbacbcacba ∈⋅+⋅=⋅+ ,,)()()(

A Commutative Ring also follows:

5. The operation · commutes: Gbaabba ∈⋅=⋅ ,
A ring with identity follows:

6. The operation · has an identity element, labelled ”1”.

Example 3. A ring is a set of integers under modulo m.

2.3.3 Field
A field is a set of objects, F, if [1]:

1. Two operations, + and ·, are defined
2. F is a commutative group under +. The additive identity element is labeled

“0”.
3. F-{0}, the field without the additive identity, is a commutative group under

·, with the multiplicative identity element labeled ”1”.
4. The operation · distributes over +:

Fcbacbcacba ∈⋅+⋅=⋅+ ,,)()()(

Example 4. Infinite fields are the set of all rational numbers and the set of all
real numbers.

2.3.4 Galois Fields (Finite Fields)
Finite Fields are usually called Galois Field, which are very important in the error
correction research. A Galois Field containing q elements is called a Galois Field

FOI-R--1963--SE

2.3 Error Correcting Codes 21

of order q and is usually denoted GF(q) [1]. A Galois field must be of order q=pk,
where p is a prime integer and k an integer.

2.3.4.1 GF(2)

GF(2) consists of the set {0,1} and the operations, + and · , are described in Table
2.1 and Table 2.2.

+ 0 1
0 0 1
1 1 0
Table 2.1 Additive operation under GF(2).

· 0 1
0 0 0
1 0 1
Table 2.2 Multiplicative operation under GF(2).

The addition and multiplication operation tables for GF(p) (p is a prime) can
be constructed from the set {0, 1, .., p - 1} by performing an addition modulo p
and multiplication modulo p.

2.3.4.2 Addition in GF(2)

Many error correcting codes contain addition of multiple elements. Addition in
GF(2) has a special property; the additive inverse, a-1, of an element, a, is the
element itself, that is, a=a-1.

A “proof” can be obtained by inspecting Table 2.1 and finding the cells
where the result is 0, then identify that both elements in the operation must be the
same.

Error correcting codes are often determining the value of an element by as-
suming that all elements should sum to 0 (the parity check). With N elements, the
equation would look like:

∑
=

=
N

k
ka

1
0 .

The additive inverse is the element itself, so this equation can be written as

1
1

1
1

1

−−

=

=+∑ aaa
N

k
k .

Since a+a-1=0 and a=a-1 this is equal to

1
2

aa
N

k
k =∑

=

2.3.5 Addition in Vector Spaces
Addition on higher order Galois fields (GF(pk) with k=2,3,…), can be seen as a
vector addition in k dimensions, each dimension corresponding to a GF(p) addi-

FOI-R--1963--SE

22 2 Theory and Background

tion. Fields of order pk is usually called extensions of fields of order p. This thesis
will repeatedly use fields of order 2k, which are k binary symbols collected to one
higher order symbol [1].

=+

Example 5. Adding the two symbols from GF(8) corresponding to 5 and 1 re-
sults in the symbol 4. The operations in each dimension is an additive
operation in GF(2).

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

1
0
0

0
0
1

1
0
1

415

2.3.6 Block Codes
A block encoder encodes k consecutive symbols from a data stream into n sym-
bols that is sent through the channel to the block decoder which (hopefully) de-
codes the received symbols back to the original data [1]. Generally, when working
with channel data in GF(q) the k length block to be encoded is in GF(qk), so the
operations possible are described in Section 2.3.3 and Section 2.3.4. Assuming
that the encoded data and the symbols sent on the channel are in GF(q), then the
code rate of a block code can easily be calculated to

n
k

n
q

R
k

q ==
log

.

Each message block (the block from the data stream) of length k is encoded to a
code word of length n. The set of all possible code words is denoted C, and there
are pk code words in C, but there are pn possible code words.

A linear block code with a k-sized message block and n-sized code word is
usually denoted as a (n, k) block code. An encoding/generator matrix for a block
code is usually denoted G, and its decoding/parity matrix, H.

Encoding is done by the matrix operation , where x is a vector con-
taining k bits and y will be a codeword containing n bits. The channel will add
some kind of noise. Assuming additive noise, the received signal will be

Gxy T=

Θ+= yz .

Decoding is made by finding the syndrome vector,
TTTT HyHHyzHs Θ+=Θ+==)(.

The encoder and decoder matrices are created so that a codeword multiplied
by the decoder will return 0.

0=TyH .

The syndrome vector will only depend on the errors introduced by the noise.
Also, every syndrome vector corresponds to a unique error pattern, so a simple
look-up table can be used to find the errors from the channel. A comprehensive
explanation can be found in [1].

FOI-R--1963--SE

2.4 Low Density Parity Check Codes 23

NOTE: This thesis will use the word frame instead of block, especially when
dealing with error rates (Frame Error Rate, FER) so that no confusion will be
made with Bit Error Rate, BER.

2.3.7 Hamming Distance
The definition of a Hamming Distance between two blocks, v and w, is the num-
ber of coordinates in GF(p) that are differing. That is, the number of differing
elements in a vector space where each dimension is in the base field GF(p) [1].

() { }1,,0,0,, −=≠= niwviwvd ii K .

The minimum distance, dmin, of a block code is the smallest distance between
any two possible code words. This measure is very important to a block code
since it affects two very important properties of block codes. For a linear code, the
all-zero word is a codeword, and therefore the minimum distance is the weight of
the codes minimum weight codeword.

1. A decoder can detect all errors, if the number of errors are less than, or

equal to ()1min −d .
2. A decoder can correct all errors, if the number of errors are less than, or

equal to
()

2
1min −d .

2.4 Low Density Parity Check Codes
A low density parity check (LDPC) code is usually a very large block code with a
sparse decoding matrix (very few non-zero elements), [13] [14]. It is often repre-
sented by a Tanner Graph, named after Michael Tanner, a pioneer in iterative de-
coding. The Tanner Graph has three types of components; the variable nodes, the
check nodes, and the edges. The Tanner Graph is implying a possibility to utilize
an iterative decoder when decoding LDPC codes.

Each variable is operating wherever its corresponding column in the H-
matrix has a 1, and each row is corresponding to a parity check function. In a
Tanner Graph, each symbol, or variable is represented by a variable node, and
each parity check function is represented by a check node. Wherever a row and
column is sharing a 1, the variable will be connected to a parity check function,
and this is represented by an edge between the corresponding variable node and
check node. An illustration of a parity check matrix and its corresponding Tanner
Graph can be seen in Figure 2.6. The variable nodes are here depicted by circles
and the check nodes by squares.

A very important factor to the performance of a LDPC code is its node de-

gree distribution. The distribution is defined as the distribution of edges for a node
type, so each LDPC code has a check node distribution (denoted dc) and a variable
node distribution (dv). Normally, a set of LDPC codes are distinguished by its
node distribution. If all check nodes have the same number of connected edges
and all variable nodes also have it (though, not necessary the same), then the code

FOI-R--1963--SE

24 2 Theory and Background

is called a regular LDPC code. The node distribution for a regular LDPC code is
written as (dv, dc). A very common regular code ensemble are the (3, 6)-LDPC
codes.

In the notation of the irregular variable degree, the different variable node
degrees are presented, together with how many of the total variable nodes that
have that degree. The same notation is used for the check node degree for irregu-
lar ensembles. This is illustrated in Example 6, were the node perspective of the
degree distribution is used. That is; how many nodes with a specific number of
edges are there in the graph. One other way of looking at it is with an edge per-
spective. Then the number of edges with a specific degree node is taken into ac-
count. This is illustrated in Example 7 for the same code as in Example 6. When
the weighting of the messages in the DE analysis is performed later on the edge
perspective is used.

Example 6. If an irregular ensemble with 3000 variable- and 1000 check nodes
is given. There are 600, 900 and 1500 degree 2, 4 and 16 variable
nodes, 300 and 700 degree 3 and 10 check nodes. The node perspec-
tive notation for this irregular ensemble looks like:
() 1642 3.05.02.0 λλλλ ++=x

() 103 7.03.0 ρρρ +=x

Where ρ3 is the degree three check node and λ16 is the degree 16
variable node.

Example 7. The same code as in Example 6 is used. There are a total of
(600·2) + (900·4) + (1500·16) = 28800 edges connected to a variable
node. (600·2) edges are connected to a degree two variable node,
(900·4) to a degree four and (1500·16) edges are connected to a degree
16 variable node. This gives that 0.042, 0.125 and 0.83 ,as a fraction
of 1, of the edges is connected to a degree two, four and sixteen vari-
able node respectively. The same types of calculations are performed
for the edges connected to different check node degrees.

The code rate is usually not directly calculated from the LDPC code, but a
design rate can easily be calculated from the node distribution [8]. For a regular
LDPC code, the design rate is

c

v

d
d

r −= 1 .

The actual rate of the code may be higher, since the rows in H may be de-
pendent on each other.

Since a LDPC code is usually large, it will have a good chance of having a
very large minimum distance, which makes the codes very good in correcting and
detecting errors. In fact, a good LDPC code almost never decodes a codeword that
has not been sent; it either corrects the received symbols to the correct codeword
or just detects an error in transmission.

Another advantage with a large, well designed, LDPC code is that its corre-
sponding Tanner Graph will have a large girth. The girth is defined as the mini-
mum number of edges that needs to be traversed to return to the starting point

FOI-R--1963--SE

2.4 Low Density Parity Check Codes 25

without using the same edge twice. A large girth will make a Message Passing
Decoder (will be described in Section 3.1) perform better.

Figure 2.6 Example of a Tanner Graph and its corresponding decoding matrix. Note that
this matrix is not a LDPC code since it is not sparse.

V7
C4

V1
C1

 V2

V5

V3 C2

V4

C3

V6

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

1010101
0101110
0110110
1001011

H

FOI-R--1963--SE

26 2 Theory and Background

FOI-R--1963--SE

3 Methods and Algorithms
This Section will present the pre-existing algorithms and evaluation methods that
are being used in this thesis to create and evaluate LDPC decoders. First, a com-
mon algorithm family for decoding LDPC coded symbols, Message Passing De-
coders, is presented along with its most common algorithm, Belief Propagation.
Next, Density Evolution, an abstract analysis method for measuring performance
on code ensembles, is presented together with an one-dimensional approximate
version, the Extrinsic Information Transfer (EXIT) chart algorithm.

3.1 Message Passing Decoding
Message Passing is a very effective decoding algorithm for decoding LDPC
codes. It is an iterative and highly parallelizable algorithm, where the idea is to
pass messages along the edges between the variable and check nodes in a Tanner
Graph. Each node type is processing the incoming messages and a set of outbound
messages are created according to a predefined function. The function is naturally
different in the variable nodes and the check nodes. An important condition is that
the outbound message on an edge may not depend on the incoming message on
the same edge. This condition is known to be a trait of good message passing de-
coders. When the decoder is initialized, the variable node initializes all of its out-
bound edge messages with the initial message from the channel.

There are three functions that need to be designed:
1. Variable node update function
2. Check node update function
3. Stop rule(s)

The following steps are performed during every Message Passing iteration:

1. Update each check node and its outbound messages with the predefined
check node function.

2. Update each variable node and its outbound messages with the predefined
variable node function.

3. Check if the stop criterion has been fulfilled. If so, stop the decoder.

Example 8. Assume binary input from the channel, {0, 1}. A very crude mes-
sage passing algorithm that only passes a binary message between the
nodes will be used.

Although the idea is simple, it can be complex when using other alphabets
than GF(2). Additional information can be found in [13] and [14]. The following
chapters will deal with the design of the node functions and the stop rules.

In order to keep track of the direction of a message, they will be named de-
pending on the direction. Messages going from a variable node to a check node
will be denoted u. Messages going from a check node to a variable node will be
denoted v. In an implemented version, the direction of the message can most of
the time be omitted, and the same (memory) space can be used for both directions.
Sometimes it is unclear what the direction the message has, for example in an

FOI-R--1963--SE

27

28 3 Methods and Algorithms

analytic calculation. These messages will be denoted w. When the calculation has
decided on a direction for the message, it will change w to the appropriate direc-
tion, u or v. Also, when messages are passed internally inside a node, w will be
used (Figure 3.1).

i , assume that all other incoming mes-

Figure 3.1 Message naming definitions.

3.1.1 Variable Node Update
The update function of a variable node is normally some kind of mean value, or a
value that correspond to a symbol that all incoming messages can agree upon.
Figure 3.2 is showing an example of a variable node update, where the outbound
message is the mean of all incoming messages.

Example 9. Assume the same decoder type as in Example 8. An updated out-
bound message will be the mean value of the other incoming mes-
sages, rounded to either 0 or 1.

Figure 3.2 Example of a variable node and a message update function.

3.1.2 Check Node Update
The check node performs the update according to some kind of error correction
scheme.

Example 10. Assume the same decoder as in Example 8. The check node needs
to perform some kind of correction, but how? When the check node
receives only correct messages, the parity check summation will be 0.
The summations are made in GF(2).

,

But if one or more of the incoming messages are incorrect, there will
be no way of knowing which one are wrong. The (probably) best as-
sumption that can be done is:
for each outbound message, u

∑ =
i

iw 0

u

v
w

⎭
⎬
⎫

⎩
⎨
⎧ ++

=
3

32
1

uuu
roundv channel

channelu v1

u2

u3

FOI-R--1963--SE

3.1 Message Passing Decoding 29

 , j all incoming edges except i.

3.1.3 Stop Rule
 types of stop rules that can be used, most of the time both

Example 11. We can set a maximum number of iterations to 80. As stated in
Ex

3.1.4 Faster Decoding by Serializing Node Operations
hat an algebraic

ng one node with m edges connected to it, we create n nodes
with

sages, vj, are correct and assign ui so that the parity check summation
will be 0. Since we are in GF(2), the following function can be used
(Figure 3.3)

∑=
j

ji vu

3210

3210 0

vvvu

wwww

++=
⇔

=+++

Figure 3.3 Example of a check node and its parity check function.

There are mainly two
are used in the same system. The first rule is allowing only a certain number of
iterations in the decoder, the other rule is to determine whether or not a codeword
has been detected and, in that case, make a pre-emptive stop.

ample 10, a check node with only correct input messages will not
change any of its messages. As a preemptive stop function, we can
sum all incoming messages in the check node and see if the result is 0.
If this is the case for all check nodes, then no corrections will be made
and we can assume that we have found a codeword and stop the de-
coder. The codeword can then be found by calculating all its symbols
from every variable node in the Tanner Graph. The symbol out of
every variable node is calculated as a mean value out of all the incom-
ing messages from all the edges to that node. But at this time all in-
coming messages to a variable node should be the same.

Before continuing, remember that it was stated in Section 2.3.1 t
operation in a group takes two arguments and returns one. When working with
message passing, updating each output message requires input from multiple
edges, all edges but itself. It is possible to create an algorithm that processes, for
each edge, the result of all other edges. However, this algorithm is very slow,
since it needs to loop through the messages several times. Assuming there are n
edges connected to a node, there are n incoming and n outbound messages. For
each outbound messages, about n-1 operations needs to be done, so the algorithm
would scale O(n2).

Instead of havi
 three edges connected to each one, with intermediate edges between these

nodes. Each outbound message will now only depend on two incoming messages,
but we will have additional messages between the nodes. An example with 5-

FOI-R--1963--SE

30 3 Methods and Algorithms

edged check node and its serialized version is illustrated in Figure 3.4. The mes-
sages, mi, consist of the inbound and outbound message, vi and ui, on that edge
while the internal messages will be denoted w.

m

1
m2

The algorithm will go from the left side to the right, updating the intermedi-
ate m

1 side of the chain (here we assume the left side).

ediate message w2 by operating on the already (in-

Repeat 3 and 4 for all nodes except the last one.

5. Update un by operating on the incoming intermediate message, wn-3, and

6. te un-1 by operating on the incoming intermediate message,

7. termediate message, wn-3, by operating on vn and vn-1.

un-2, by operating on

10. e by
operating on the intermediate message on the right hand side, wn-3, and vn-

2.

Figure 3.4 Serialization of a degree-5 node.

essages. When reaching the last node, it will update the outbound messages,
turn around and update the outbound messages and the intermediate messages
until it reaches the last node.

The algorithm:
. Start at the node at one

2. Update the intermediate message w1 by operating on v1 and v2.
3. Go to the next node.
4. Update the next interm

coming) intermediate message w1 and the inbound message, v3, attached to
the node.

vn-1.
Upda
wn-3, and vn.
Update the in

8. Go back to the node to the left of the current node.
9. Update the outbound message attached to the node,

the two intermediate messages attached to the node, wn-3 and wn-2.
 Update the intermediate message, wn-2, attached on the left hand sid

m3
m4
m5

 m

m m m

m1

2 3 4

5
ww1 2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

i

i
i v

u
m

FOI-R--1963--SE

3.2 Belief Propagation Decoding 31

Repeat

11. Update u2 by operating on v1 and the incoming intermediate message w1.
essage, w1.

s
onl
nalysis of the check node is possible to by only analysing two incoming mes-

sage

A very powerful Message Passing decoder is the Belief Propagation Decoder. The
ased. There are mainly two types of
probabilities for each symbol, and

ck node update is based on parity checks in GF(q), where the outbound
message, u, is the additive operation of v1 and v2

 Ratio messages are two-dimensional

 steps 8-10 for all remaining nodes, except the leftmost node.

12. Update u1 by operating on v2 and the incoming intermediate m

This algorithm gives two main advantages; the decoding complexity scale
y to O(n) since each incoming message is only used once, and performing the

a
s and one outbound message of a degree-three check node.

3.2 Belief Propagation Decoding

messages passed along edges are probability-b
Belief Propagation decoders, one passes real
the other one passes logarithmic probabilities. Davey and MacKay have, in [15],
described a method of using Belief Propagation in higher order Galois Fields us-
ing real probabilities. This thesis will use higher order Galois Fields extensively,
so real probabilities will be passed in the Belief Propagation Decoder. Logarith-
mic Likelihood Ratio will only be used in the DE analysis description part of this
thesis.

3.2.1 Check Node Update
The che

u=v +v . 1 2

The outbound message in the check node is the probability of the actual outbound
eing one of the M possible symbols. In the binary case, the outbound message b

Likelihood

()
()

It is possible to keep track of just one of the probabilities as a message
since)0 === uPuP , but we will keep both for clarity.

 table (Table 3.1), an

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=
=

=
1
0

uP
uP

Pu .

() (11−

To decide the outgoing message, we need to look at the binary additive op-
eration d decide the probabilities for getting a 0 and 1 respec-
tively

()
()

() () () ()
() () () ()⎟⎟⎠

⎞

⎝ ==+==⎠⎝ = 01101 2121 vPvPvPvPuP

 v1

⎜⎜
⎛ ==+==

=⎟⎟
⎞

⎜⎜
⎛ =

=
11000 2121 vPvPvPvPuP

Pu .

+ 0 1
0 0 1 v2
1 1 0

Table A it in GF(2). 3.1 dd ion

FOI-R--1963--SE

32 3 Methods and Algorithms

hig r der fields the probability calculations will become more complex,
but t sa principle applies. The calculations for q=22 are presented in Table

 v1

In he or
he me

3.2.

+ 0 1 2 3
0 0 1 2 3
1 1 0 3 2 v2 2 2 3 0 1
3 3 2 1 0

Table Ad on GF

)

3.2 diti in (4).

() () (() ()
) () () ()332

110

212

2121

==+=(21 =
00 +==+====

vPvPvP
vPvPP

vvPuP

vP

() () () () ()
() () () (2332

01101

2121

2121

==+==)
+==+====

vPvPvPvP
vPvPvPvPuP

() () () () ()
() () () (1302

31202

2121

2121

==+==)
+==+====

vPvPvPvP
vPvPvPvPuP

() () () () ()
() () () (0312

21303

2121

2121

==+==)
+==+====

vPvPvPvP
vPvPvPvPuP

Formally, this can be expressed as:

.

Obs de in GF(q), so the resulting v2 can be
found in the addition table (Table 3.2 for GF(4)).

3.2.2 Variable Node Update

d, the channel input needs to be

() () ())(,
1

0
21 qGFaiaivPivPauP

q

i
∈+==== ∑

−

=

erve that the addition v2=i+a is ma

The variable node message update works in a slightly different way than the
check node update functions. First of all, the result needs to be normalized to have
a proper probability distribution as a result. Secon
considered at some point.

The basic, binary two input- one output, algorithm can be viewed as

() () ()
() ()() ⎟⎟

⎠

⎞

21

normal-
ized by α.

)

⎜⎜
⎝

⎛
==
==

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=
=

=
11
001

1
0 21

uPuP
uPuP

vP
vP

Pv α
.

To ensure that the outbound message is a proper pdf, the message is

() (10 =+== vPvPα .

In a higher order field, each outgoing symbol probability can be expressed as

FOI-R--1963--SE

3.2 Belief Propagation Decoding 33

() () ()auPauPavP ====
1 21α

where

()∑
−

0i

The channel input can be treated as an input edge, but without updating it.
e, outbound, message for a symbol from a variable node on edge k of

dv edges can be fully expressed as

=

==
1q

ivPα .

A singl

() () () { kdrauPauPavP v }¬∈==== ∏ K11
r

rchannelk α

()∑
−

=

3.2.3 Stop Rule Design
Except of having a maximum number of allowed iterations, an additional stop rule
may be used. The second stop rule is based on deciding whether or not the most
probable code word is a correct code word by finding the most probable symbols
from the variable nodes, and see if they fulfil the parity check. If so, stop the de-

is can be expressed as stopping the decoder when

==
1

0

q

i

ivPα .

coder and declare success. Th
0ˆ =xH ,

where H is the sparse decoding matrix used and x̂ is a vector with the most
probable symbol from every variable node.

()Tnxxxx K21ˆ = ,

(){ } { })1(0mg axar −∈== qaaxPx K .

e k contains the symbol a and is
derived in a similar way as the message updates, but this time messages from all
edges are considered.

)

k
a

i

()axPk = is the probability that variable nod

() () (∏
−

====
1

=

q

auPauPaxP .

 a variable node, then send the most probable symbol along
with the actual message to the check nodes, where a GF(q)-parity check is per-
formed before updating the check node.

If the parity check is summed to 0 for all check nodes, then the decoder has
foun

0i
ichannel

In a decoder, this can be solved by determine the most probable symbol at the
same time as updating

d a valid code word and may stop.

FOI-R--1963--SE

34 3 Methods and Algorithms

3.3 Non-binary LDPC Codes and M-PSK Modulation
When using non-binary LDPC codes together with M-PSK modulation for data
transmission, the information data is processed accordingly (Figure 3.5 and Figure
3.6).

1. The n length binary information Data is mapped onto n/log2M length M-
ary symbol information data.

2. The symbol information data is encoded into codewords with the GF(M)
generator matrix for the LDPC code used.

3. The symbols of the codewords are M-PSK modulated to I/Q symbol vec-
tor representation.

4. The codewords is sent trough the channel and their symbol vectors are dis-
torted by the channel noise.

5. The received distorted vector symbols of the codewords is M-PSK De-
modulated into symbol representation.

6. The received codewords is decoded with a Message Passing algorithm for
higher order modulation formats (Section 3.2).

7. The M-ary data symbols of the decoded codewords are converted to their
binary representation, the binary data is sent to the user.

FOI-R--1963--SE

3.4 Density Evolution 35

M-ary
Data

Modulated
Symbols

Figure 3.5 Transmission of M-ary data when using LDPC codes together with M-PSK modu-
lation.

Figure 3.6 Example of 8-PSK modulation of binary data and its corresponding M-ary sym-
bol.

3.4 Density Evolution
Density Evolution (DE) is an algorithm used to analyse the performance of an
ensemble of LDPC codes with a certain degree distribution, regular or irregular,
when using Message Passing decoding. The algorithm only depends on degree
distribution of the nodes and the SNR of the channel, it is not performed on a spe-
cific LDPC code belonging to that ensemble. So DE does not for example depend
on the Tanner Graph representation of a Code. The ensemble of codes contains all
codes with the same degree distribution. The result of a Density Evolution calcu-
lation is the lowest SNR possible, the SNRThreshold, for which successful Message
Passing decoding is possible for an ensemble. Density Evolution returns a channel
performance measurement constrained to a specific code ensemble.

The results from Density Evolution can be used to compare different degree
distributions to find the best code ensemble. Even though different ensembles
have the same rate R, they will not perform equally. The degree distribution of the
regular (3,6) ensemble is unique. But the realizations (connections between nodes)
are different between different codes in the ensemble. In the case of the regular (3,

LDPC
Encoding

M-PSK
Demodulation

LDPC
Decoding

M-PSK
Modulation

Channel
Noise M-ary

Data

FOI-R--1963--SE

36 3 Methods and Algorithms

6) and (5, 10) ensembles, they have the same rate, R=0.5, but the regular (3, 6)
ensemble have a smaller SNRThreshold than the regular (5, 10) ensemble. In fact the
regular (3, 6) ensemble have the best SNRThreshold of all the R=0.5 ensembles. This
means that there are codes with a regular (3, 6) degree distribution that perform
better than any other regular R=0.5 LDPC code.

3.4.1 Main Idea
Density Evolution is an iterative algorithm performed on an ensemble of LDPC
codes with a certain distribution, regular or irregular, for a fixed SNR value. In the
DE algorithm the assumption is made that the code length is infinite. The reason
for assuming this is that the Tanner Graph for the code can then be assumed to be
cycle free. Infinite code lengths give infinite number of nodes. By assuming this,
it is possible to assume that the code will have an infinite girth, i.e. it is cycle free.
This means that a message has to travel an infinite length before returning to the
same node, which basically means that the message is independent from messages
previously sent from the node.

By assuming a cycle free Tanner Graph for the code, the calculations of a
single DE iteration can be seen as updating the outgoing pdfs from one check
node and one variable node representative for regular ensembles. In the case of
irregular ensembles one representative for each degree for the check- and variable
nodes has to be updated. That is because for regular (dv, dc) ensembles of LDPC
codes there are only two different node types, the dv -degree variable node, and
the dc-degree check node. For irregular ensembles there are as many different
node types as there are different node degrees for the variable- and check nodes
(Section 2.4 and [12]). For irregular codes, the output densities from all the degree
representatives for the variable- or check node are added, with the degree distribu-
tion (edge perspective) as weight factor. The idea of only updating one node rep-
resentative for each unique node type in the ensemble is the key approximation of
DE, making it a tractable algorithm for analysing the performance of code ensem-
bles.

The main idea with density evolution is to update the probability density
function, pdf, of the messages between the nodes representatives, instead of the
messages themselves. The outbound densities from the node representatives will
then evolve during the iterations, and if the pdfs evolve in such a way that the
error goes to zero then the current SNR is not below the SNRThreshold.

The update of the outgoing pdf messages fu
k , fv

k+1 and f0 is illustrated for the
regular (3, 6) LDPC code ensemble in Figure 3.7, where k is the iteration index.
Here, f0, fu

k and fv
k+1 are the outbound pdf from the channel and the variable- and

check node representative, describing the Log Likelihood Ratio (LLR) of the
transferred messages. When LLR probabilities are used the mean of the pdf can
have values between -∞ and +∞.

FOI-R--1963--SE

3.4 Density Evolution 37

 1+k
vf

k
uf

k
uf

0f

()1,1 −= +
c

k
v

k
u dfFf

k
u

k
u

k
v ffff ⊗⊗=+ 01

6=cd

Figure 3.7 Pdf updates on the regular (3, 6) ensemble. Check node on top and variable node
below, dc=6 and dv=3.

3.4.2 Performing Density Evolution
The initial pdf, f 0 created from the messages received from the channel, depends
on the type of channel noise, order of modulation M, and the SNR. The channel is
assumed to be an AWGN channel, so the DE algorithm only depends on the SNR
from the channel and the analyzed node distribution. The initial pdf from the
channel is computed for the SNR under consideration. The DE algorithm is then
iterated a great number of times with this as the initial input to see if the error
probability Pe

k from the pdf of iteration k, fu
k, from the check node, converges to

zero when the number of iterations increases towards infinity (k → ∞). Pe
k is cal-

culated by integrating fu
k for all LLR values ≤ 0. This is the same as looking at the

SNR-values when the mean LLR mu
k of fu

k approaches infinity. The initial error
probability Pe

0
 from the channel is the Log Likelihood Ratio between the wrongly

detected messages and the number of transmitted symbols, and the Pe
k is that Log

Likelihood Ratio after k Message Passing iterations.

The basic algorithm for Density Evolution works according to the following
steps:

Preparations
1. Choose the ensemble to be analyzed, i.e. the node distribution.

FOI-R--1963--SE

38 3 Methods and Algorithms

2. Set the range of the AWGN { }max21 ... SNRSNRSNRSNRi = values to

be tested with DE. The SNRi is chosen as the lowest SNR value, and first to be
tested. Then the SNR values should increase to the largest in the range,
SNRmax.

3. Set the number of iterations n and an acceptable error threshold limit Pe

max
(biggest acceptable error). This should be 0 but is for practical reason set to a
value very close to zero.

Density evolution

4. Calculate the initial f 0 from the channel depending on the first SNR1 value in
the interval and the type of noise.

5. A) If regular ensemble: Iterate the algorithm n times. Update and fu

k and fv
k+1

every iteration. { }nk ...21∈
B) If Irregular ensemble: Iterate the algorithm n times. Update each pdf out
from each node representative for all the unique node degrees of the variable-
and check nodes. Calculate fu

k and fv
k+1 from the weighted calculations for the

pdfs [12]

6. Calculate the error Pe
n out of the final check node output fu

n. Stop the DE if
Pe

n ≤ Pe
max , the SNRThreshold has then been found. Otherwise increment i and

go back to step 4 (test next SNR)

If SNRThreshold is not found during these steps a different range of SNRi values

has to be defined and tested for the ensemble.

The node degree distribution and pdf update functions for an ensemble of

regular (3,6) codes is illustrated in Figure 3.7. The notation for node degree distri-
bution for an irregular ensemble of codes looks a little different. For irregular
codes there is more than one node degree distribution for the variable- and check
nodes.

One example of Density Evolution on a regular (3, 6) LDPC ensemble is il-
lustrated in Figure 3.8. The SNR value is here set to 1.73 dB, which appears to be
the SNRThreshold for that ensemble. That is because Pe

k →0 and mu
k → ∞ as k → ∞.

This SNRThreshold calculation concurs with the results calculated by Barry in [13].
The Likelihood ratio (LR) for the messages has here been transformed to the Log
Likelihood ratio (LLR) before calculating the pdf, which gives LLR values on the
horizontal axis in the figure.

FOI-R--1963--SE

3.4 Density Evolution 39

630 iterations

631

632

633

634

Figure 3.8 The outbound pdf of the messages as a function of SNR for the (3, 6) ensemble.
The number above each curve is the number of iterations for that curve.

3.4.3 One-Dimensional Approximation of Density Evolution
Since the update functions for fu

k and fv
k+1 in Section 3.4.1 and 3.4.2 are per-

formed on probability density functions, they are very complex and time consum-
ing when implemented. However, less complex algorithms that approximate DE
has been developed. These are one-dimensional analysis of LDPC codes, instead
of the multi-dimensional analysis in ordinary DE. Likelihood Ratios (real prob-
abilities) will be used instead of LLR for denoting the error probability in the
EXIT chart algorithm below.

3.4.3.1 The EXIT Chart Algorithm

A one-dimensional approximation of DE is the Extrinsic Information Transfer
chart algorithm, or the EXIT chart algorithm [10]. A one-dimensional variable
describing the extrinsic information transfer between the nodes are here sent be-
tween the check- and variable node representatives instead of the pdf for the mes-
sages. The information used in the EXIT chart calculations is the initial informa-
tion about the received messages from the channel (intrinsic information) and the
information about the messages from the previous iterations (extrinsic informa-
tion). Other one-dimensional analysis methods for LDPC Codes makes the as-
sumption that all pdfs sent between the representatives are Gaussian, the all Gaus-
sian approach [13][11]. This is not the case in the reality, because the update func-
tions in the check node make its outbound pdf messages non-Gaussian.

For the EXIT Chart algorithm, Gaussian distribution is only assumed for the
pdf of the messages sent from the variable node to the check node representative.
The pdf for the messages sent from the check node to the variable node represen-
tative is not assumed to be Gaussian distributed. So using the semi-Gaussian ap-
proach in the EXIT Chart calculations makes the results more accurate and closer
to those of the non-approximate DE. The main idea behind the EXIT chart algo-
rithm is to represent the pdf messages fu

k and fv
k+1 sent between the nodes, and fu

0

from the channel, with a corresponding one-dimensional variable for the intrinsic-
and extrinsic information. In other words describe the pdfs with scalars instead of
a multidimensional vector (discrete pdf) which otherwise represents the pdf in the

FOI-R--1963--SE

40 3 Methods and Algorithms

computer calculations. The scalars can be the corresponding error probability for
f, its mean or mutual information [10]. This approach gives calculations with sca-
lars instead of multidimensional calculations with discrete probability density
functions represented by vectors. From now on, EXIT chart calculations are as-
sumed to be performed with the error Pe corresponding to the pdf f.

The channel used is the AWGN, but the calculations are the same as for the
BSC channel. This can be done since the EXIT chart calculations depend on the
initial error, Pe

0, for the received messages from the channel, not the shape of their
pdf. The incoming (initial) pdf, f 0, from the channel is the probability distribution
of the incoming messages from the channel. If all the messages sent through the
channel is the ‘0’ M-PSK symbol, then because the distortion in the channel all
incoming messages will have different probabilities of being detected as the ‘0’
symbol with the Maximum Likelihood Detection. The greater the distortion of the
channel the more symbols will be more likely to be detected as any of the other
M-1 possible symbols rather then the correct ‘0’ with Maximum Likelihood (ML)
detection. This ratio between the number of wrongly detected symbols divided
with the number of correctly detected symbols is the calculated initial error Pe

0
from the channel for the sent symbols. This is the same as constructing a discrete
pdf, f 0, out of a great number of sent and received ‘0’ symbols from the AWGN
channel, and then calculate the initial error Pe

0 as the area of the pdf where
wrongly ML detection takes place.

The initial input,Pe
0 , to the EXIT chart algorithm is calculated for the initial

pdf, f 0, from the channel. For each iteration { }nk ...21∈ , a new outbound
message Pe

k+1 from the variable node representative is calculated from Pe
k and

Pe
0. The update function for a regular ensemble is Equation 3.1. The error prob-

ability information Pe
k+1 from the variable representative is calculated for each k

iteration. As in Density Evolution for an ensemble, a range of SNRi values are
tested with n iterations. The reason and background for using the initial error
probability Pe

0 as the extrinsic information for the initial pdf is described in [10].

() () () 11
0

11
)0(01

2
211

1
2
211

−−−−
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −−
−+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −+
−=

v
c

v
c

ddk
e

e

ddk
e

ee
k

e
P

P
P

PPP (3.1)

where and 0
e

in
e PP = n

e
Out

e PP =

Here dc and dv is the check- and variable node degree for the ensemble being ana-
lyzed. A regular (3,6) code would for example have dc= 6 and dv = 3.

3.4.3.2 Performing EXIT Chart Analysis

The EXIT chart calculations for a regular ensemble are performed in the follow-
ing steps:
Preparations

1. Choose the code ensemble to be analyzed, i.e. the node distribution.

FOI-R--1963--SE

3.4 Density Evolution 41

2. Define the to be tested in the
EXIT chart analysis.

{ }max21 ... SNRSNRSNRSNRi =

3. Define the maximum number of iterations, n, and an acceptable error limit
Pe

max.

EXIT chart Calculations

4. Calculate the initial Pe
0 corresponding to the pdf f 0 from the channel. f 0

depends on the type of noise and the first SNR1 value in the SNRi vector
from step 2.

5. Iterate algorithm Equation 3.1 n times with { }nk ...21∈ .

6. If Pe
n ≤ Pe

max, then SNRThreshold has been found, otherwise increment i and
go back to step 4 (test next SNR).

The result of the EXIT chart calculations is close to the result of the ordinary

Density Evolution, but the complexity of the calculations is much lower.
The result from EXIT chart calculations on an ensemble a given SNR can be

visually illustrated by printing the EXIT chart. One example of a printed EXIT
chart is given in Figure 3.9. In the EXIT chart, the incoming error from the algo-
rithm, Pin = Pe

k, is on the horizontal axis. The outgoing error, Pout = Pe
k+1, is on

the vertical axis. The initial Pe
0 from the channel is used as a starting point in the

diagram. Pe
k+1 can be expressed as a function of the incoming error as Pe

k+1 =
F(Pe

k). To make the EXIT chart easier to analyse, the inverse, F-1, of F is also
plotted in the chart. F-1 is a function of the outgoing error, and returns the incom-
ing error. The space between F and F-1 is called the decoding tunnel. The devel-
opment of Pe

k+1 depends on the previous Pe
k, and can be viewed in the chart for

each iteration k. If Pe
k+1< Pe

k for all k, then the error Pe
k+1 will approach zero as k

approaches infinity, then F-1 and F will never cross each other. The decoding tun-
nel is then open for all k [10]. The SNRThreshold for the ensemble is found as the
SNR when the decoding tunnel opens up from a closed state, and is open for all
iterations. In other words; the SNRThreshold is the SNR value giving an almost
closed decoding tunnel, so that just a little smaller value on the SNR will close it.
An open decoding tunnel will guarantee that the final decoding error Pe

n →0 when
n → ∞. In practical implementations the error becomes very small for only a cou-
ple of hundred iterations when the SNRThreshold is found.

FOI-R--1963--SE

42 3 Methods and Algorithms

Figure 3.9 EXIT chart for a regular (3, 6) code ensemble. The decoding tunnel is opened so
the set SNR value is above SNRThreshold.

3.4.4 EXIT Chart with M-PSK Signaling
This section will describe a practical algorithm for performing the EXIT chart
calculations on an ensemble of regular non binary LDPC codes using M-PSK
symbols. There are several algorithms which perform one-dimensional DE on
ensembles of codes, but EXIT calculations have proven to be one of the best
methods [10]. The results of performing EXIT chart calculations with the imple-
mentation in this Section will be presented in Section 6.

The first part of this section will describe how to calculate the initial pdf, f 0,
for the algorithm, and the second part will describe the basic EXIT chart calcula-
tions with the corresponding initial Likelihood Ratio, Ps

0. It is the Likelihood Ra-
tio of having detected symbol s as the initial symbol when s has been sent. Detec-
tion is made using an ML detector. The possible symbols are { }1...10 −∈ Ms .

3.4.4.1 Calculating the Initial pdf for the Zero M-PSK symbols

In M-PSK modulation one can view and process the modulated data in two differ-
ent ways, either as the M=2k different vector symbols, or as the M different length
k binary representations of the vector symbols. The two different representations
for 8-PSK symbols are illustrated in Figure 3.10.

FOI-R--1963--SE

3.4 Density Evolution 43

Figure 3.10 The symbols and their binary representation for 8-PSK.

EXIT chart is often calculated using binary representation of the symbols, as-
suming a Binary Symmetric Channel [9], where a total independence between the
incoming bits then can be assumed when calculating the initial pdf from the chan-
nel. However, when using non-binary symbols the incoming bits will not be inde-
pendent from the other k-1 bits representing the symbol. When, for example, 8-
PSK symbols with binary representation are used, every bit is dependent on two
other bits. Here some dependency calculations between the incoming bits have to
be made, which depends on the behaviour of the binary representations for the M
possible symbols when distorted by the noise in the channel. When updating the
pdfs of the k bits in the binary representation of the symbols, assumptions about
their dependency can be made by using different approaches. For instance, it is
possible to first update the pdfs independently and then create a mean pdf between
the bits and add it to the bits pdf.

A slightly different approach for performing EXIT chart on the symbol repre-
sentation of the M-PSK symbols will here be presented. The focus will be on the
symbol representation of the M possible symbols, where the possible symbols are

. First the M different initial pdfs, f { '1'...'1''0' −∈ Mi } 0
i, from the channel for

the M symbols are calculated. But when transmitting over the AWGN channel, all
the symbols in the M-PSK signalling constellation used will have the same pdf
(Figure 3.10). This gives that only one pdf has to be calculated for one symbol,
which is then valid as the pdf for all M possible symbol pdfs. This will allow the
simplification of only calculating and analysing the code for one of the M possible
M-PSK symbols that can be sent. Here, the symbol used for the EXIT chart analy-
sis is the zero symbol, ‘0’. The basic algorithm calculating the initial pdf for the
zero symbol, f0

0 is performed accordingly:

1) Set the SNR value to be tested in the symbol-wise Density evolution.
2) Transmit a large number of Zero M-PSK symbols over an AWGN channel

with the SNR from step 1. Store the received distorted zero symbols in a
vector Vmessages.

FOI-R--1963--SE

44 3 Methods and Algorithms

3) Calculate the probability vector Pi
0 from Vmessages (Appendix A.1), where

every element in Pi
0

 is the probability that the corresponding element in
Vmessages is the ‘0’ symbol.

4) Create a vector Vtemp with every column containing the number of each
unique zero symbol probabilities in P’0’. Sort the columns so the unique
zero probabilities lie in ascending order.

5) Divide all the elements in Vtemp with the total number of zero symbols sent
in step 2. The resulting vector can be used as the discrete pdf, 0

'0'

~f for the
received messages from the AWGN channel. With each element in 0

'0'

~f
giving the Likelihood Ratio that the received messages have one of the
unique zero probabilities of being the zero symbol.

Example 12. After step 3; if the first column in Vtemp is 13 and the smallest ele-
ment in P’0’ is 0.1, then there are 13 received messages with 0.1 prob-
ability of being the ‘0’ symbol. After step 4; if 1000 symbols were
sent in step 2 the first element in

'
0

0'

~f should be 13/1000 = 0.013. Here
1.3 % of the received symbols have 0.1 probability of being the zero
symbol.

In the EXIT Chart calculations in Section 3.4.4.2 0
'0'

~f will be used as the ap-
proximated discrete pdf for the received distorted zero M-PSK symbols from the
channel. An illustrative example of 0

'0'

~f for 1000 AWGN distorted zero 8-PSK
symbols with channel SNR=9.5dB is presented in Figure 3.11.

Figure 3.11 The pdf for 1000 8-PSK symbols with SNR =9.5dB. The notation on the axis is
Likelihood Ratio.

FOI-R--1963--SE

3.4 Density Evolution 45

3.4.4.2 EXIT Chart Calculations for a LDPC Code with M-PSK Symbols

After the discrete probability density function 0
'0'

~f for the M-PSK symbols is cal-
culated in Section 3.4.4.1, its corresponding error probability Pe

0 can be calculated
with Equation 3.2.

∑=
5.0

0

0
'0'

0 ~fPe (3.2)

In other words; sum all elements of with probabilities (LR) value on the hori-
zontal axis equal or below 0.5 (Figure 3.11).

0
'0'

~f

The EXIT chart calculations for a LDPC code with M-PSK symbols are per-
formed according to the following steps:

1) The Exit chart calculations from Section 3.4.3 are executed with the Pe
0

calculated out of Equation 3.2, with Pe
0 being the one-dimensional repre-

sentative for . 0
'0'f

2) If the check in step 6 in the EXIT Chart calculation (Section 3.4.3) is not
fulfilled, a new SNRi range is selected and new and P0

'0'

~f e
0 are calculated.

3) These Pe
0 are again used in step 4-6 in the EXIT Chart algorithm from

Section 3.4.3.

These steps are performed until the SNRThreshold for the analysed ensemble is
found.

FOI-R--1963--SE

46 3 Methods and Algorithms

FOI-R--1963--SE

4 Angular Sum Decoding
In this section we present a Message Passing decoder for the vector representation
of the M possible M-PSK symbols, using the angle and length as information of
the M-PSK symbols. When sending M-PSK signals, the symbol information will
be represented by the angle, while the length of the received vector can be seen as
some kind of reliability information. The parity check will be made by requiring
that the sum of all angles in a check node will sum to 0 mod 2π. This summation
requirement is the cause of the name of the decoder, Angular Sum Decoder.

The aim is to keep the messages and decoding simple for the decoder, and to
see whether or not this type of decoder is possible to create. Since this approach is
a simplification of a Belief Propagation decoder, it will probably need a higher
SNR in order to keep the same BER as the Belief Propagation decoder. An inter-
esting version of the Angular Sum Decoder is to only pass the angular information
as messages in the Message Passing algorithm and assume the length of the vector
to be 1. This version will need to send less information and thereby become less
complex.

If a working Angular Sum Decoder can be constructed, the messages sent be-
tween the nodes in the Message Passing algorithm will contain significantly less
information than in the Belief Propagation algorithm. Instead of sending a prob-
ability vector of length M, only scalars representing the angles (and lengths) are
sent as messages between the nodes. Also, the calculations in the nodes will be
much less complex than in a Belief Propagation decoder. If a successful decoder
can be constructed, the version without length information would probably require
a higher SNR to work since it is strapped on the reliability information.

As described in Section 3.1.4, message operations can be described by two
input and one output message. Outbound messages from variable nodes and check
nodes respectively, will be calculated as:

• Variable node: { }21arg iuiu eev +=

• Check node: π2mod)(21 vvu +−=

where u and v are the angles of the messages. If length information is consid-
ered, update operations are performed as:

• Variable node:

o Angle Update: }arg{ 21
21

uiu eUeUv +=

o Length Update: 21
21

uu eUeUV +=

• Check node:

o Angle Update: π2mod)(21 vvu +−=

o Length Update: { }21,min VVU =

Where u and v are the angles of the messages and U and V are the lengths of
the messages. Figure 4.1 and Figure 4.2 illustrate the variable node and check

FOI-R--1963--SE

47

48 4 Angular Sum Decoding

node operations. u and v denote the vector messages that have angle u and v and
length U and V respectively.

In essence, the operation in the variable node is just a vector summation
(Figure 4.1), while the operations in the check node (Figure 4.2) are a bit more
complex. The angular summation made in the check node is very simple, but the
question lies in how to adjust the length. The approach made in this decoder is
quite simple: Find the least reliable information (the shortest length) and set the
length of output to it.

Figure 4.1 Length and angle calculations of the outgoing message vectors from the variable
nodes. Here v is calculated out of three incoming messages (one from the channel and two
from check nodes).

Figure 4.2 Length and angle calculations of the outbound message vectors from the check
nodes.

FOI-R--1963--SE

4.1 Vector Summation in a Variable Node 49

4.1 Vector Summation in a Variable Node
As mentioned in Section 3.1.1, a variable node update should be something all
edges should agree upon. When dealing with Belief Propagation, they determine
the probabilities of the symbols. When two edges agree that a specific symbol has
a high probability, the outbound probability for that symbol will be higher, while
two edges agreeing on a low probability of a symbol, it will have a lower out-
bound probability. This behaviour should also be found in the approximate decod-
ers and vector summation will do that.

As a matter of fact, given that two probability vectors are representing two
vectors from the channel, a summation of these two vectors returns a vector that
has a probability vector that is exactly the one that would be returned from a Be-
lief Propagation variable node operation on the first two probability vectors. The
proof of this can be found in Appendix A.3. That is, having two vectors taken
from an AWGN channel using M-PSK signaling,

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

A

A
A Q

I
m ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

B

B
B Q

I
m ,

and adding them,

BAC mmm += ,

will be equivalent to

() () ()
() ()∑

−

=

= 1

0

q

j
BjAj

BiAi
Ci

mmPmmP

mmPmmP
mmP .

Having this proof, it is safe to determine that a vector summation in the vari-
able node is equivalent to a Belief Propagation message update. This operation
will be used as a variable node operation in the Angular Sum Decoder as well as
the Table Decoder described in Section 5.

FOI-R--1963--SE

50 4 Angular Sum Decoding

FOI-R--1963--SE

5 Table Decoder
Simulations performed on the Angular Sum Decoder from Section 4 indicated that
this type of decoder would not work (simulation results in Section 7.2.2). Due to
this, an alternative solution for MP decoding with angle and length messages
needs to be found. As discussed in Section 8.1 the node operations that need to be
changed are the operations in the check node. However, since the aim is still to
send geometrical vectors, it is possible to reuse the variable node functions de-
scribed in Section 4.

The solution lies in finding an alternative check node operation which gives
an error correcting Message Passing decoder when using angle and length mes-
sages for the M-PSK symbols. This problem can be approached with a Black Box
Model for the operations in the check node. As described in Section 3.1.4, it is
possible to serialize a check node with any number of edges into a concatenated
system of degree three check nodes, so the Black Box algorithm only needs to be
designed for check node with two inputs and one output.

5.1 Variable Node Operation
As discussed in Section 4.1, making a vector summation is equivalent to a Belief
Propagation variable node operation, so the Table Decoder will also use vector
summation in the variable nodes.

5.2 Black Box Model for Check Node Operations
The main idea with the black box approach is to use the knowledge about how the
probability vector messages sent to and from a degree three check node in the
Belief Propagation decoder are processed. This can be done by trying to create
check node calculations that imitates check node calculations for Belief Propaga-
tion, but instead of messages based on probabilities, geometrical vectors are being
used as messages. One way of creating the check node functions for geometrical
vectors is to start with a Belief Propagation check node, but immediately inside
the node, convert the messages from probabilities to geometrical vectors. On the
outbound side, the opposite conversion is made. Now, all that needs to be made is
to design some kind of function that makes the entire check node a good approxi-
mation of the original Belief Propagation check node, and then remove the con-
versions and pass the geometrical vectors as messages between the nodes (Figure
5.1).

FOI-R--1963--SE

51

52 5 Table Decoder

Belief Propagation

Check Node Update
AP

BP

CP

Figure 5.1 Approximation of a Belief Propagation check node update.

The internal messages, ma, mb, and mc, consist of either angle and length
(vector) information, or just the angle information. The angle/vector to probability
conversion is described in Appendix A.1.

There is one problem left to deal with before designing the function f(ma,mb)
in Figure 5.1. It is the conversion from probabilities to geometrical vectors. There
is no good analytical way to convert from arbitrary probabilities, but an approxi-
mate method can be used, which only allows a limited number of probabilities in
a quantified probability space. The allowed probabilities can be found by convert-
ing a number of geometrical vectors to probability vectors. The number of vectors
converted gives the number of reconstruction points used to convert from prob-
ability vectors to geometrical vectors, which also gives how fine the quantization
will be.

Our proposed decoder will be designed as a four-dimensional table. The di-
mensions represent the angles and lengths of the two incoming signals. A simpler
decoder does not keep the length information, so it can be represented as a two-
dimensional table. The elements in the tables are the reconstruction points. An
illustrative example of a two-dimensional table is presented in Figure 8.9.

5.2.1 Table Vector Decoder
When implementing the Table Vector decoder with the algorithm presented in the
beginning of Section 5.2, we need to decide which { }8,4,2∈M it will operate on.
We also need to decide a SNR that it will assume to receive from the channel.

Next, the vector space need to be quantified into a set of allowed points. The
suggested strategy for doing this is to first decide a set of allowed angles, prefera-
bly A = a · M angles (where a is a positive integer) evenly spread. This will allow
each ‘correct’ angle (angle where a signal point is located) to be represented in the

PC

f(ma, mb)

Probability
to Angle

and Length

Probability
to Angle

and Length

Angle and
Length to
Probability

ma

PA

mc

mb

PB

FOI-R--1963--SE

5.2 Black Box Model for Check Node Operations 53

set. Deciding upon a set of L allowed lengths is also suggested, which are l · k
where l ={1,2,….L}, and k is a fixed length. If only one length is allowed (for ex-
ample length 1), then the decoder is called the Table Angle decoder. The points in
the vector set are the reconstruction points rj. More strategies, and a concise dis-
cussion of the placement of reconstruction points, can be found in Section 8.5.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

In-Phase

Q
ua

dr
at

ur
e

Figure 5.2 Reconstruction points for 4 lengths and 8 angles.

Now, a quantified vector space containing N=AL reconstruction points has
been developed. Next thing to do is to find the corresponding probability distribu-
tions Pj for these points (see Appendix A.1). Each vector space point rj will now
have one corresponding probability space point Pj (Figure 5.3). It is possible to
have one reconstruction point in the origin, which would give an additional recon-
struction point (N=AL+1).

Figure 5.3 Each vector space point corresponds to one probability space point.

r1 r2 rj … … rN

P1 P2 Pj … … PN

FOI-R--1963--SE

54 5 Table Decoder

Figure 5.4 Probability Table, check node operation on probability space points. The return
values need to be adjusted so they too belong to the probability space points.

The probability space is a known space (calculated in Appendix A.1). The
parity check made for two incoming probability distributions is known, (Section
3.2.1). Now, a table of all possible outbound probabilities using all possible com-
binations of two inbound probabilities from the allowed set can be built (Figure
5.4). At this point, the probability table is not a proper algebraic operation table,
since the outbound probabilities are not necessary from the set of allowed prob-
abilities. This can be solved by, instead of returning the real outbound probability,
return the probability from the allowed set that is closest to the real one. In other
words quantize the real outbound probability distributions to the allowed probabil-
ity distributions (reconstruction points rj). There are several ways of deciding the
closest point; the algorithm used in this thesis decides the closest reconstruction
points, rj, by calculating the closest minimum squared Euclidian distance:

.

,

})({min

1

0

1

0

1

0

2

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=

−=

−

−

−

=
∑

M
k

k

k

M
out

out

out

M

a

a
k

a
outPout

P

P
P

P

P
P

PPP
k

M

M

The probability table is now only containing probabilities from the allowed
set, Pj, which makes it possible to perform algebraic operation with its elements.
Not only that, but since all probabilities are from the allowed set, each one of

P1 P2 … Pi … PN

P1 P11 P21 … Pi1 … PN1

P2

Pj

P21 P22 … Pi2 … PN2

:
:
:

PN

:
:
:

P1j P2j Pij… PNj…

…
 …
 …
 …

P1N P2N PiN… PNN…

…
 …
 …
 …

FOI-R--1963--SE

5.2 Black Box Model for Check Node Operations 55

them corresponds to a point, rj, in the vector space which allows us to create a
table that is a copy of the probability table, but contains the corresponding geo-
metrical vectors instead. This table is all we need when making an approximation
of the parity check summation described in Section 3.2.1. The Vector Table used
in Vector Decoding is built according to the following steps.

1. Decide M and an appropriate SNR.
2. Decide allowed lengths and angles and create a table of allowed vectors ri

with them.
3. Calculate the probability distributions Pj from the allowed vectors ri (Ap-

pendix A.1), having M possible symbols and the decided SNR.
4. Build a probability table (Figure 5.4). Quantify the outbound probability

vectors to the closest allowed probability vectors Pj in the probability ta-
ble.

5. Replace the probability vectors Pj in the probability table with the corre-
sponding vector rj , gives the corresponding Vector Table (Figure 5.5).

Figure 5.5 Vector Table of check node operation on vector space points.

The incoming messages to the parity check node need to be quantified into
the allowed vector points rj. This can also be done by finding the minimum
squared Euclidian distance between the incoming messages va and vb to the closest
reconstruction points rj (Figure 5.6).

r1 r2 … ri … rN

r1 r11 r21 … rj1 … rN1

r2

rj

r21 r22 … rj2 … rN2

:
:
:

rN

:
:
:

r1j r2j rij… …

…
 …
 …
 …

r1N r2N rjN… rNN…

…
 …
 …
 …

FOI-R--1963--SE

56 5 Table Decoder

ra va

Figure 5.6 Check node operation on two arbitrary geometrical vectors as inbound messages.

One unfortunate effect is that the Vector Table will probably be less correct if
using a different SNR. That is because the SNR level of the incoming messages
from the channel will effect the conversion from vector representation into prob-
ability vector representation. Also, the amount of different possible signals sent
will affect the conversion, so a different M requires a different Vector Table.
However, it will be shown in Section 8.3.1 that once the Vector Table is calcu-
lated for a specified M and a sufficiently high SNR, it will be possible to change
the channel SNR with a little or no degradation of the performance. From now on,
a decoder with a table having only angular information will be called Angle Table
Decoder, and one with length information as well will be called Vector Table De-
coder. The family of these two decoders will be called Table Decoder.

5.2.2 Visualization of Output Values for the Angle Table
If only angles are used for creating a table, it is possible to visualize it with a 3-
dimensional surface plot. The result is a very peculiar shaped surface with very
sharp edges, see Figures 5.7 and 5.8. The figures show the inbound angles to the
check node on the x- and y axis, and the outbound angle from the check node on
the z-axis. These tables are made for 4- and 8-PSK over an AWGN channel with
SNR at 6 dB and 13 dB respectively. The inbound angles to the check node are on
the horizontal axes, ranging from 0 to 2π. The resulting outbound angle is the an-
gle on the vertical axis. Some of the edges in the figure are 2π jumps, since the
output angle is shown in the interval – π to + π.

Vector
tablevb u

Quant.

Quant.
rb

FOI-R--1963--SE

5.2 Black Box Model for Check Node Operations 57

Figure 5.7 3-D surface plot of the angle tables used in the Table Angle Decoder for 4-PSK

Figure 5.8 3-D surface plot of the angle tables used in the Table Angle Decoder for 8-PSK.

FOI-R--1963--SE

58 5 Table Decoder

FOI-R--1963--SE

6 EXIT Chart Calculations for M-PSK
This section contains the results from EXIT chart calculation for an ensemble of
regular (3, 6) LDPC codes when using M-PSK symbols. The theory and algo-
rithms from Section 3.4.3 and 3.4.4 are used in the following EXIT chart calcula-
tions. The purpose of this section is to calculate the SNRThreshold of the ensemble of
non-binary regular (3, 6) LDPC Codes when using M-PSK symbols.

6.1 Threshold Calculation with EXIT Chart
The results that will be presented here are calculated with the pdf for the zero
symbols ‘0’ (of M possible symbols) as in Section 3.4.4, not its binary representa-
tion 000. When using the EXIT chart algorithm from Section 3.4.3 to calculate the
SNRThreshold, the first SNR to be tested was -4dB, then the SNR value was in-
creased by 0.1 dB every time the algorithm was iterated until SNRmax was reached
according to this algorithm. If the SNRThreshold is- or is not found the procedure in
the algorithm is followed. The number of symbols transmitted over an AWGN
channel in each analysis to compute the initial pdf from the channel is 100 000.
The number of iterations n in each EXIT chart calculation is 1000. No more is
needed since after only a couple of hundred iterations the error probability Pe

n has
already converged. The SNRThreshold of an ensemble of regular (3, 6) LDPC codes
with M-PSK modulation for M={2, 4, 8} is presented in Table 6.1. Only 7 SNR
values near the SNRThreshold for each M are presented, even though many more
values were tested.

 Figure 6.1 shows an illustrative example of how the initial error, Pe
0 , is cal-

culated out of all received zero symbols from the channel, using the initial pdf, f 0.
The EXIT chart for the ensemble with the modulation- and AWGN channel pa-
rameters M=2 and SNR = -2dB is presented in Figure 6.2. Notice that the decoding
tunnel is open and that 12 iterations will make the Pe

k very small, so Pout
n will

converge towards zero. Pe
0 is the Likelihood Ratio between the black area and the

total area (gray and black). The black area is the amount of sent ‘0’ symbols
through the AWGN channel that will be detected as another of the M-1 possible
symbols with a Maximum Likelihood detector.

FOI-R--1963--SE

59

60 6 EXIT Chart Calculations for M-PSK

Figure 6.1 100 000 symbols with AWGN noise added (horizontal axis) and the probability of
them being the zero symbol (vertical axis). The symbols are sorted in ascending order with
respect to their probability to be the zero symbol. M=2, SNR=-2 dB, n=1000, Pe

0 =0.0367.

Figure 6.2 EXIT chart for the same parameters as in Figure 6.1.

FOI-R--1963--SE

6.1 Threshold Calculation with EXIT Chart 61

M SNR nP0

2 -2.5 0.2577
2 -2.4 0.2570
2 -2.3 0.2562
2 -2.2 0
2 -2.1 0
2 -2.0 0
2 -1.9 0
2 -1.8 0
2 -1.7 0
2 -1.6 0
4 2.7 0.2612
4 2.8 0.2599
4 2.9 0.2591
4 3.0 0.2583
4 3.1 0.2575
4 3.2 0
4 3.3 0
4 3.4 0
4 3.5 0
4 3.6 0
8 7.8 0.2633
8 7.9 0.2625
8 8.0 0.2611
8 8.1 0.2601
8 8.2 0.2590
8 8.3 0.2583
8 8.4 0.2573
8 8.5 0.2564
8 8.6 0
8 8.7 0
Table 6.1 Threshold calculations whit EXIT chart algorithm for an ensemble of regular (3,6)
LDPC codes with M-PSK symbols for different M. Number of EXIT chart iterations is n =
1000, and the amount of distorted symbols used to calculate the pdf f0 for the symbols is
100 000. The SNRThreshold for the three different modulation levels are -2.2, 3.2 and 8.6 dB.

FOI-R--1963--SE

62 6 EXIT Chart Calculations for M-PSK

FOI-R--1963--SE

7 Simulations
In this section the results from simulations with the Angular Sum Decoder, Table
Vector Decoder, Table Angle Decoder and the Belief Propagation Decoder are
presented. The use of the term Table Decoder will refer to both the Table Angle-
and Table Vector Decoder. The simulation results presented in this Section will be
analyzed and discussed in Section 8.3. 80 Message Passing decoding iterations
per decoding session were always used in the simulations. All simulations have
been made using the same LDPC code [18], which is a regular, (3, 6) LDPC code
of length 504.

The simulations were made using Monte Carlo simulations in Matlab where
data was transmitted over an AWGN channel with various SNR values. The result
consists of trace of BER and FER for the different setups. Up to 500000 code-
words were transmitted through the AWGN channel and decoded with the tested
decoder every decoder simulation. If less “bumpiness” for some of the curves in
this section is needed, more codewords have to be sent during the decoder simula-
tion.

When a Table Decoder uses a “floating table” it calculates and uses a new
angle- or vector table for each channel SNR. These tables have to be pre-
calculated and stored. This also results in additional bookkeeping during simula-
tions/decoding. When a Table Decoder uses a “fixed table” only one table is cal-
culated and used for each order of modulation, M, for all shifting channel SNR.
This table is calculated with an SNR giving a very low BER when using the corre-
sponding floating table for the order of modulation used. A fixed table gives much
less data to store and less calculations to be made for the Table Decoder.

7.1 Simulation Algorithm
The same basic simulation algorithm was used for all the different decoders
tested. It consists of a preparation step and an iterated simulation step.

Preparations for the decoder simulations
1. Choose the PSK modulation alphabet, M={2, 4, 8} (order of modulation).
2. Choose the LDPC code to be used in the simulation, which gives the gen-

erator matrix G and the parity check matrix H.
3. Set the SNR for the AWGN channel.
4. Set the number of codewords to be sent through the channel. A large

amount of codewords sent and received in the simulation gives better pro-
tection against quick random changes in decoding performance.

5. Set a maximum number of MP iterations for the decoder.
Steps performed each iteration for the decoder simulation

1. Generate a codeword with a generator matrix G, using random input data.
Input data is evenly distributed in {0, …, M-1}.

2. Modulate the codeword symbols to the M-PSK constellation, with symbol
‘0’ at angle = 0, going counter-clockwise (Section 3.3).

FOI-R--1963--SE

63

64 7 Simulations

3. Transmit the modulated codeword through the AWGN channel (Section
2.2.2.3)

4. Receive the modulated codeword.
a. If using Belief Propagation, transform the received symbols to

probability vectors (Appendix A.1).
b. If using the Angular Summation- or the Table Decoder, the vector

representation of the messages received from the channel is used as
messages (Section 4 and 5).

5. Try to decode the received codeword using the Message Passing algorithm
with the used LDPC code and decoder. The general Message Passing de-
coding algorithm is described in more detail in Section 3.1. Stop the de-
coding if the maximum number of iterations is reached or if a codeword is
found.

6. Compare the generated codeword from step 1 with the decoded in step 5.
Determine if the codeword is properly decoded. If not, count the number
of bits that differ and adjust FER and BER.

7.2 Simulation Results
In this section the simulation results will be presented for the different decoders
together with some modifications on the construction of the tables used in the
Table Decoders. The main focus in the simulations was on Table Decoders using
4-PSK signalling. This is because 2-PSK signalling with Table Decoders is not
that interesting because of bad error correcting- and complexity performance
compared to the Belief Propagation Decoder. Even though simulations for 8-PSK
signalling with Table Decoders are very interesting, they are also very time-
consuming (further discussion in Section 8.3).

7.2.1 Belief propagation Decoder
The simulation results for the Belief Propagation (Section 3.2) are presented in
this Section. M-PSK signaling was used (Section 3.3), and different order of M-
PSK modulation on the symbols are 2, 4 and 8. The results are presented in Figure
.1. 7

FOI-R--1963--SE

7.2 Simulation Results 65

Figure 7.1 Simulations with Belief Propagation Decoder for the regular (3,6) LDPC code
with codeword length 504 and M-PSK modulation. The maximum number of iterations is 80.

7.2.2 Angular Sum Decoder
The simulations with the Angular Sum Decoder (Section 4) was performed for {2,
4, 8}-PSK. The results were very poor. The Angular Sum Decoder failed to de-
code a correct codeword, even for very large SNR. Even when the SNR was set to
a level so only one of all the received symbols in the codeword was incorrectly
detected, the decoder still failed to decode the codeword. Figure 7.2 visualizes the
performance of the decoder for iterations 0-9. 2-PSK signalling was used and only
one symbol was initially on the left hand side of the Q-axis.

This led us to the conclusion that the approach of Angular Sum Decoding
presented in Section 4 with M-PSK symbols do not work.

FOI-R--1963--SE

66 7 Simulations

Figure 7.2 Decoding BPSK symbols with Angular Sum Decoder and the regular (3,6) LDPC
code with codeword length 504, from iteration 0 to 9. Only one of all the symbols in the
codeword is wrong in iteration 0, i.e. a very large SNR is used. The horizontal axes are the
In-Phase signal and the vertical axes are the Quadrature signals.

7.2.3 Angular Sum Decoder using Length Information
The simulations in this section were carried out in the same way as with the An-
gular Sum Decoder, but with node operations that also updated the length (Section
4).

The result from decoding with added length information was as bad as decod-
ing with only angle information. This lead us to question whether there is some-
thing fundamentally wrong with Message Passing decoding using the algorithms
described in Section 4. This will be further discussed in Section 8.1.

FOI-R--1963--SE

7.2 Simulation Results 67

7.2.4 Table Angle Decoder Using Floating Table
Simulations with the Table Angle Decoder from Section 5.2 were made using a
floating table. The number of possible angles was set to 512. This relatively small
number of reconstruction points was chosen because of the large amount of time it
took to create the different tables for shifting channel SNR. 512 was the highest
number of reconstruction points that still kept table creation time fast enough. The
512 reconstruction points are evenly distributed on the unit circle. The results for
different M-PSK signalling are presented in Figure 7.3.

Figure 7.3 Simulations with Table Angle Decoder for the regular (3,6) LDPC code with
codeword length 504 using floating table and M ={2, 4, 8}. The number of angles (recon-
struction points) is 512. The maximum number of iterations is 80.

FOI-R--1963--SE

68 7 Simulations

7.2.5 Table Vector Decoder Using Floating Table
The simulations with the Table Vector Decoder described in Section 5.2 were
made using 512 reconstruction points. Now, in the Table Vector Decoder, the
angular resolution is lower, but there are different amplitudes (lengths) which
represents different reliabilities for the message. The Table Angle Decoder has
higher angular resolution but all messages have the same reliability. The recon-
struction points in the vector tables for 4-PSK used in this simulation were built
with 16 different lengths and 32 angles, evenly distributed in the vector plane (see
Figure 5.2 for an example). The created tables had a reconstruction point in the
origin in the vector plane. The simulation results are presented in Figure 7.4.

Figure 7.4 Simulations with Table Vector decoder for the regular (3,6) LDPC code with
codeword length 504 and a floating table. The number of reconstruction points is 512, with
16 different angles and 32 different lengths.

FOI-R--1963--SE

7.2 Simulation Results 69

7.2.6 Table Angle Decoder Using Fixed Table
In a real implementation of a Table Angle Decoder, it will not be preferable to
calculate and keep multiple tables in storage (one for each SNR). Because then a
different vector table for the decoder have to be calculated for each SNR value the
channel is expected to have (Section 7.2.4 and Section 7.2.5). These simulations
will instead create one angle table (fixed table) based on an SNR value which
gives very low BER in Section 7.2.4 and 7.2.5 for the different M-PSK used. The
reconstruction points (possibly angles) used in the tables are evenly distributed on
the unit circle. These fixed tables (one for every M = (2,4,8)) are the used in the
Table Angle Decoders for all shifting channel SNR. The results from the simula-
tions are presented in Figure 7.5.

Figure 7.5 Simulations with Table Angle decoder for the regular (3,6) LDPC code with
codeword length 504 and a fixed table. The angle resolutions for the tables are noted in the
figure.

FOI-R--1963--SE

70 7 Simulations

7.2.7 Table Vector Decoder Using Fixed Table
For the same reason as in Section 7.2.6, a fixed table is created and used for every
order of modulation M in the Table Vector Decoder. The simulations were made
for 4-PSK when having evenly distributed angles and lengths, and a reconstruc-
tion point in the origin in the vector plane. The simulation results are presented in
Figure 7.6. The simulation results for 4-PSK when having evenly distributed an-
gles and lengths but with no reconstruction point in the origin is presented in
Figure 7.7. Finally the results for 8-PSK simulation with evenly distributed angles
and lengths but with no reconstruction point in the origin in the vector plane is
presented in Figure 7.8.

Figure 7.6 Simulations with Table Vector decoder for the regular (3,6) LDPC code with
codeword length 504 and a fixed table and 4-PSK. The number of possible angles and lengths
in the tables is denoted L and A in the figure.

FOI-R--1963--SE

7.2 Simulation Results 71

Figure 7.7 Simulations with Table Vector decoder for the regular (3,6) LDPC code with
codeword length 504 and a fixed table and 4-PSK. The number of possible angles and lengths
in the tables is denoted L and A in the figure.

Figure 7.8 Simulations with Table Vector decoder for the regular (3,6) LDPC code with
codeword length 504 and a fixed table and 8-PSK. The number of possible angles and lengths
in the tables is denoted L and A in the figure.

FOI-R--1963--SE

72 7 Simulations

FOI-R--1963--SE

8 Results and Analysis
This section will analyze the results from the simulations in Section 7. Sugges-
tions on future work will also be given.

8.1 Why Does Not Angular Summation Work?
Here, we will try to give an explanation why Angular Sum Decoding does not
work. It is not a proof in any sense, only a short discussion of our way of thinking
when we stopped developing it.

To begin with, LDPC codes are using finite fields, while the Angular Sum
Decoder is not. It is possible to decode with the Angular Sum Decoder using an
LDPC code as long as only the all-zero codeword is sent, since this codeword also
exist in this decoder. The all-zero codeword corresponds to sending the zero an-
gles for all the codewords symbols.

The parity check in this decoder is a modulo 2π summation of the incoming
nodes. As long as this summation is made using a finite set of possible angles (N
angles), it will work in a ring. A finite set can be assumed when using computers,
since only a fixed number of decimals are stored. It may not be clear that it is a
ring, but if all elements are multiplied by N/2π, the elements would be integers
ranging from 0 to N. The summation can be made as a modulo N summation. As
mentioned in Example 3, a modulo summation of integers is a ring. N can be
made very large and thus make the angle precision be close to infinite.

Out of the N possible angles, only M angles are corresponding to a symbol,
and problems occur when another angle is received. It is possible to quantify the
angle to the closest symbol angle, but in that case all channel information (soft
information) is lost and only the symbol itself (hard information) can be passed as
messages in the decoder. Another approach is to make all angles correspond to a
symbol, thus getting an N-sized alphabet. This is what is done in the Angular Sum
Decoder.

The problem with increasing the alphabet is that an uncoded signal would
have an error probability that is corresponding to the distance between the angles.
Having a very large set of allowed angles would require a very large SNR in order
to get a low BER. In essence, an infinitely small angular difference would require
an infinite SNR to get an arbitrary small error, and no coding would be able to fix
that.

8.2 EXIT Chart Analysis
Because of the lack of working equations in the check node for the Table Angle-
and Table Vector Decoder it was not possible to perform EXIT chart Analysis on
these decoders. It is probably possible to perform EXIT chart analysis on the table
based Table Angle- and Table Vector Decoder, but this will most certainly be a
complex and time demanding solution and is beyond this thesis work. The main
idea behind EXIT chart analysis of Table Vector- and Table Angle Decoder is
briefly discussed together with possible approximations in Section 8.6.2. In this
Master Thesis work, the EXIT chart analysis performed is on the ensemble when

FOI-R--1963--SE

73

74 8 Results and Analysis

using Belief Propagation (Section 3.2). The result is presented in Table 8.1. The
analysis was made on the vector symbol representation instead of the binary rep-
resentation of the M-PSK symbols (Section 3.3). The EXIT chart algorithm and
calculation results are presented in Section 3.4.4 and Section 6. As expected, in-
creasing the M possible M-PSK symbols on the unit circle for the modulation will
increase the SNRThreshold for the ensemble used. When the symbols lie close to each
other when modulated, a large SNR is needed to separate them at detection.

It seems like the increase for the SNRThreshold is linear when going from 2-PSK
to 4-PSK, and from 4-PSK to 8-PSK. In both cases the SNRThreshold is increased by
5.4 dB (Table 8.1).

M SNRThreshold

2 -2.2
4 3.2
8 8.6

Table 8.1 SNRThreshold for 2-, 4 – and 8-PSK using a regular (3,6) LDPC ensemble with Belief
Propagation.

8.3 Simulations Results
The simulations in Section 7 were performed with the purpose of producing com-
parable results for the Belief Propagation-, Table Angle- and Table Vector De-
coder, using different order of M-PSK modulated symbols. Some modifications
on the Table Angle- and Table Vector Decoder were tested to see how they af-
fected the simulation results (different tables). The three decoders with their modi-
fications could then be compared using the simulation results. First, a comparison
will be made on the SNR needed for low decoding error using the different de-
coders. Next, a complexity comparison between the decoders will be made. The
regular (3, 6) LDPC code [18] used in these simulations is a code optimized for
BPSK, but it does not matter since only the relative results between the decoders
are of interest here. The main focus on the curves in the figures should be at BER
>10-5, because when having BER lower than 10-5, small random errors will have a
large impact on the local appearance of the curve. The local “jumps” in the curves
depends on an insufficient number of simulations. If, say, another million simula-
tions (codewords sent and decoded) were executed, the resulting curves can then
be expected to be smoother. This is of minor importance here, the general shape
of the curves is still clear for simulations with
500 000 codewords. The use of the term Table Decoders refer to both the Table
Angle Decoders and Table Vector Decoders.

8.3.1 Table Decoding with a Fixed Table
Simulations with Table Decoding using a fixed table independent of the SNR
changes of the channel were performed in Section 7.2.6 and Section 7.2.7. This
was done to see if the SNR used to design the table needs to be equal to the actual
SNR of the channel in order for the decoder to perform well. If it is necessary to
recalculate the table, or store several versions of the table (floating table, one per

FOI-R--1963--SE

8.3 Simulations Results 75

SNR), then it could be argued that this type of decoder is too complex to justify its
decoding performance. The SNR used to calculate the angle- and vector table
were 6.4 dB. The results are presented in Figure 8.1 for 4-PSK.

Figure 8.1 Table Angle Decoder and Table Vector Decoder performance for fixed and float-
ing tables. Order of modulation is 4-PSK.

From Figure 8.1 one can draw the concussion that the performance of the decoder
is approximately the same for both a fixed and floating table vector- and angle
tables for 4-PSK. Because of this, the Table Decoders using fixed tables will from
now on be used when comparing decoding performances. This is because the
lesser complexity in these decoders compared with the ones using a multiple set
of tables (that is, a floating table) for each possible SNR. From now on, the terms
Table Vector- and Table Angle Decoder will refer to Table Decoders with fixed
tables. The possibility to use fixed instead of floating tables in the Table Decoders
will give a large improvement of the decoders due to the reduced complexity.

8.3.2 2-PSK Simulations
In this section two different decoders are compared for 2-PSK symbols in Figure
8.2. It is possible to see that the Table Angle Decoder needs approximately 2 dB
more than the Belief Propagation Decoder to achieve the same BER. 2-PSK is not
a good case for using a Table Decoder, since a Belief Propagation Decoder can be
made very simple, and it is the best known decoder. This is why Table Decoding
on 2-PSK is only presented very briefly, just to show that it works, although not
very good compared to the Belief Propagation Decoder.

FOI-R--1963--SE

76 8 Results and Analysis

Figure 8.2 2-PSK simulations with the Belief Propagation- and Table Angle Decoder.

8.3.3 4-PSK Simulations
The first result that was noted when running 4-PSK was that it did not matter if a
fixed table, designed for a sufficiently high SNR, was used instead of a floating
table designed for every shifting SNR (Figure 8.1). This lead to the conclusion
that it is possible to use a single fixed table designed for a specific M-PSK signal-
ling with approximately the same error correction performance. Another thing that
was noted was that there seemed to be a limit on how many angles that was
needed. When the Table Angle Decoder was used, this limit was measured to 32
angles. In Figure 8.3, it can be seen that all three table designs have almost the
same performance. The differences can be explained by the relatively low number
of simulations (codewords sent) that were made. In Figure 8.4, the simulation
using 32A, 16L (Table Vector Decoder) can be considered as a “refined” Table
Angle Decoder, now with 16 lengths as well. This increases performance by 0.5-
0.7 dB

When simulating using the Table Vector Decoder, the reconstruction points
could not be removed as easily. Figure 8.4 shows the effects of cutting the number
of lengths and angle to half, thus reducing the number of reconstruction points to
¼. A large drop in performance was noted immediately. Since 8L, 16A is worse
than 1L, 32A, it indeed seems like 32A is the minimum angular resolution needed
for 4-PSK.

 A very important thing was discovered when trying to improve the Table
Vector Decoder. Removing reconstruction points from the origin gave an increase
in performance with up to 1dB when using 4-PSK (Figure 8.5). These reconstruc-
tion points were placed evenly in the range of { }2,,00625.0 K . Tests with other
placements (with and without points in the origin) did not give as good results.

FOI-R--1963--SE

8.3 Simulations Results 77

Finally, it was noted that an increase in the number of reconstruction points
could give an increase in performance. The results of having 2048 instead of 512
reconstruction points in the Table Vector Decoder can be seen in Figure 8.6.
However, it was not easy to find a good placement of the reconstruction points,
and it is probably possible to find points that give better results. The best Table
Decoder found was the Table Vector Decoder using 2048 reconstruction points. It
was performing about 1dB worse than the Belief Propagation Decoder (Figure
8.7).

Figure 8.3 Comparison of fixed table, floating table, and reduced number of reconstruction
points for 4-PSK.

FOI-R--1963--SE

78 8 Results and Analysis

Figure 8.4 4-PSK simulations with fixed and floating tables, and reduced numbers of recon-
struction points. All tables have reconstruction points in the origin.

Figure 8.5 4-PSK simulation with and without reconstruction points in the origin.

FOI-R--1963--SE

8.3 Simulations Results 79

Figure 8.6 4-PSK simulations without reconstruction points in the origin.

Figure 8.7 Comparison between the Belief Propagation Decoder and the best Table Decoder
found.

FOI-R--1963--SE

80 8 Results and Analysis

8.3.4 8-PSK Simulations

}

In Figure 8.8, the BER curves as function of SNR for the three different decoders
depending on SNR when using 8-PSK signalling are presented. The Table Vector
Decoder needs approximately 1 dB more than the Belief Propagation Decoder to
achieve the same BER. The Table Vector Decoder performs approximately 2 dB
better than the Table Angle Decoder. The Table Angle- and Table Vector Decoder
both have 512 reconstruction points but with different placement in the plane as in
the 4-PSK case. There is an increase in the time that it takes to make the table
when using higher order modulations, which made it difficult to make many simu-
lations using 8-PSK. However, a Table Vector Decoder that performed about 1 dB
worse than the Belief Propagation was found. The lengths were placed evenly in
the range { . The decoding itself is, however, much faster than Be-
lief Propagation, which makes this Table Vector Decoder a very interesting ap-
proximation of the Belief Propagation Decoder.

333.1,,333.0 K

Figure 8.8 8-PSK simulations with Belief Propagation, Table Angle Decoder, and Table Vec-
tor Decoder.

8.4 Analysis of Simulation Results
With the results from Section 8.3, we will now analyze the decoding performance
for the three decoders for M={2, 4, 8}, with BER as the quality parameter, de-
pending on the SNR. From the diagrams in Section 8.3, we can see that, not very
surprisingly, the Belief Propagation Decoder performs better than the Table De-
coders. It is to be expected, since the Table Decoder is an approximation of the
Belief Propagation Decoder, with information loss in the quantization made on the
messages in The Table Decoder (Section 5.2.1). With a larger amount of recon-
struction points, and/or with good reconstruction point placement, the perform-
ance of the Table Decoder gets closer to the Belief Propagation Decoder. An en-

FOI-R--1963--SE

8.4 Analysis of Simulation Results 81

couraging result from the simulations in Section 8.3.1 is that the Table Decoder
only needs to store one pre-calculated table. The performance gap is slim between
Table Decoders with a fixed table and Table Decoders with floating tables.

An illustrative figure describing the similar appearance between the angle ta-
bles created for different SNR but for the same M is presented in Figure 8.9. The
surfaces are approximately the same, but the surface for the 3 dB plot is more
rugged.

Figure 8.9 The angle tables for 3 dB and 6 dB over 4-PSK signaling.

A very interesting result is also that the Table Vector Decoder performs sig-
nificantly better than the Table Angle Decoder for all SNR, even though they both
have 512 reconstruction points, just with different placement in the plane. The
Table Vector decoder performs better when there is no reconstruction points in the
zero point in the plane. This could have something to do with that it is better for
the decoder to quantize messages to a vector other than the null vector, because
the point in the origin gives no information about the probability of a symbol. In
other words; it is better that the decoder guesses on the possible symbol, even
with very little information, than to “say” that the message could be any of the
possible symbol with equal possibility (null vector). Much could probably be
gained by careful design of the Table Decoders fixed table, regarding the place-
ment and amount of reconstruction points. The above implies that it would be
possible to optimize a Table Vector Decoder (the best Table Decoder) for an M
and a channel by placing the limited reconstruction points in a certain pattern on
plane. This Table Vector Decoder would probably perform close to the Belief
Propagation Decoder with respect to the BER if the number of reconstruction
points is sufficiently large.

The next quality parameter to take into consideration when comparing the
best Table Decoder, the Table Vector Decoder, with the Belief Propagation De-
coder is the decoding complexity for the decoders. Decoding complexity is an
important quality parameter because it gives a measurement of the time and space
(hardware implementation) consumption for the decoding algorithm. When con-
sidering this quality parameter, the advantage of the Table Vector Decoder starts
to show. The increasing decoding complexity of the Belief Propagation algorithm
when going from 2-PSK to 4- and 8-PSK is far from linear [15]. Belief Propaga-
tion with 4-PSK symbols is four times more complex than for 2-PSK, and Belief

FOI-R--1963--SE

82 8 Results and Analysis

Propagation for 8-PSK is 16 times as complex as for 2-PSK. The Table Decoders
have constant decoding complexity for 2-, 4- and 8-PSK symbols, so if one only
looks at the decoding complexity it is obvious that the largest complexity gain
when changing from a Belief Propagation- to a Table Decoder is achieved for 8-
PSK. In the 2-PSK case the Belief Propagation Decoder is less complex than the
Table Decoder. That is because BPSK is a special case since it has only 2 prob-
abilities which can be expressed as a single Likelihood Ratio [13].

There is log-linear loss in decoding performance (BER) when using Table
Vector decoding instead of Belief Propagation decoding for 2-, 4- and 8-PSK. The
loss for the best Table Vector Decoders tested in Section 7.2 in SNR about 1 dB
for 4-PSK and 8-PSK. One could therefore argue that The Table Vector Decoder
for 8-PSK is the best choice of the three decoders, since this decoder gives the
best complexity gain comparing to the SNR loss when going from Belief Propaga-
tion to Table Vector Decoding. The Table Vector Decoder is probably a better
choice than the Belief Propagation Decoder even in the 4-PSK case. It is possible
to improve the results for 4-PSK and 8-PSK even further by running more simula-
tions and finding a better reconstruction point placement. However, using 2-PSK
gives the Belief Propagation a clear advantage since it has a smaller decoding er-
ror and a less complex decoder than the Table Vector Decoder. In this thesis, we
have not simulated much at all using 2-PSK signalling, since there is no gain to be
made in this case by changing from Belief Propagation to Table Decoding.

8.5 Analysis of the Implementation
There are many aspects to consider when designing a Table Decoder. In this chap-
ter, we will try to bring focus to some important discoveries we made when we
made our Table Decoder. It is not a complete description of our system, but a dis-
cussion of some problems and solutions we found on the way.

The calculation complexity of the Table Decoder only depends on the LDPC
code it is designed to decode, not on the number of reconstruction points (size of
the table). However, the memory requirements are based on the number of recon-
struction points. More precisely, it needs O(N2) memory cells where N is the
number of reconstruction points in the table.

Although our implementation actually sends real value angles and lengths, it
is possible to minimize the messages sent between the nodes by only sending the
indices of the reconstruction points. Doing this will limit the information that
needs to be passed between the nodes in the decoder to log2N bits.

The design of the reconstruction points can have a great impact on the decod-
ing performance. A good example can be found in Figure 8.8, which shows a gap
between using only angles and using angles and lengths in 8-PSK signalling.

Some notes for good reconstruction point design:
1. Use even length differences. Having two inputs to the variable node point-

ing in the same direction should always increase the length. The length is a
reliability measure, and having two pointing in the same direction should
increase the reliability.

FOI-R--1963--SE

8.6 Future Work 83

2. Make sure there are lengths on both sides of 1, this greatly improves the
decoder. If all values are less than 1, most inputs will start at the maximum
possible length, and cannot improve.

3. Use a multiple of M angles. Split the angles evenly into M groups and dis-
tribute each group around a constellation point. Distribute all groups in the
same way. Doing so will make the decoder act the same way regardless of
the symbol received. Our implementation spread all angles evenly around
the unit circle.

4. Avoid putting reconstruction points in the origin. According to our simula-
tions, they will make the error correcting capabilities worse.

8.6 Future Work
Simulations were done using a large number of reconstruction point constella-
tions. However, it is very likely that there exist constellations that have better er-
ror correcting performances. Using methods for designing Vector Quantizers
(VQs) one could probably find the optimal set of reconstruction points.

8.6.1 Blackbox Modelling for Check Nodes Using Equations
An alternative solution to the table lookup presented in Section 5.2.1 is to find an
equation depending on va, vb, SNR and M, which returns u. This should give ap-
proximately the same result as if the Table Vector Decoder method was used. The
advantage with an equation approach instead of a table lookup approach for the
decoder is that it is then not necessary to store a Table for each different M and
SNR, just an equation depending on these variables. If an equation is found that
approximates the Belief Propagation Decoder very well, it may lead to a decoder
with less complexity than the Table Decoder and the Belief Propagation Decoder.

The surfaces in Figures 5.7 and 5.8 have numerous flat surfaces. It is difficult
to describe them in a single function, but it is possible that using neural networks
or linear discriminant functions [6] can be a good approach for calculating them
fast.

8.6.2 Density Evolution on the Table Decoder
It would be of great interest to calculate the SNRThreshold for different ensembles
using the Table Angle- and Table Vector Decoder. These analysis results could
then be compared with the results for the Belief Propagation Decoder (Section
8.2) for the different ensembles. But to perform a more exact Density Evolution
analysis one would need the Variable- and Check node functions, since the Den-
sity Evolution algorithm is developed out of these functions [19]. We have devel-
oped the variable node function but not the check node function. Density Evolu-
tion will probably be possible if Black box Modelling Using Equations (Section
8.6.1) is first developed for the Table Angle- and Table Vector Decoder. This
would give the check node function needed to perform the Density Evolution.

An alternative solution that could work would be to use tables for the angles
like in the Table Angle Decoder, and from all the resulting Angle combinations
out of the check node Develop the discrete message pdf for every Density Evolu-

FOI-R--1963--SE

84 8 Results and Analysis

tion iteration. This approach will probably result in rather complex and time de-
manding computer calculations for 4- and 8-PSK. It is annoying to have to wait
for the computer during time demanding calculations, but since DE is an analysis
tool, not a decoding method, it only has to be performed once to establish the
threshold.

 Density Evolution could probably be performed using table representation of
the check node function. However, it would probably have to be a fairly large
table (high resolution) to give useful results.

FOI-R--1963--SE

9 Conclusions
The main focus in this Master’s Thesis has been to create a Message Passing de-
coder that uses angles, and possibly lengths, as the messages. Two decoder types
were constructed and one of them, the Table Decoder, was decoding correctly
when angles only, and angles with lengths, were used.

9.1 Angular Sum Decoder
The first approach, using a decoder with simple angular summations (Section 4),
did not produce any successful results at all (Section 7.2.2). Although not mathe-
matically proven, it is not likely that a decoder using angular summation will
work (Section 8.1). One important result from this decoder was made. In Section
4.1, it was proven that vector summation is equivalent to the variable node opera-
tion made in Belief Propagation, when the probability distributions are taken from
the channel.

9.2 Table Decoder
The approach to solve the problem encountered in Section 9.1 was to imitate a
Belief Propagation Decoder (Section 3.2) by using a pre-calculated lookup table
(Section 5) with angle and length inputs. This approach made decoding possible,
but demanded a higher SNR than Belief Propagation. The performance gap is
however reducible, and improvements to the decoder have been discussed Section
8.5 and Section 8.6.1. It was also showed in Section 8.3.1 that only one fixed table
per modulation type (M-PSK) has to be pre-calculated as long as the SNR used to
calculate the fixed table is sufficiently high. The fixed table can then be used for
all SNR values on the channel for a specified modulation. This gives a large com-
plexity gain for the decoder. An extra advantage is that the complexity of this de-
coder is constant, regardless of modulation technique (e.g. {2, 4, 8}-PSK), which
gives the decoder an advantage over the Belief Propagation Decoder, since its
complexity has a quadratic increase for higher order modulation. These two de-
coders are called Table Angle- and Table Vector Decoder.

9.3 Performance of the Table Angle- and Table Vector De-
coder

The Table Vector Decoder performs significantly better than the Table Angle De-
coder (Section 8.3), while both can be designed to have the same complexity.
However, it takes a great deal of reconstruction point design to make a good Table
Vector Decoder. In some cases, the performance is decreased even if extra recon-
struction points are added. However, the table only needs to be designed once.
With a careful design and a proper amount of reconstruction points in the vector
table, the Table Vector Decoder could probably perform very close to the Belief
Propagation Decoder, with far less decoding complexity in the 8-PSK case (Sec-
tion 8.4).

FOI-R--1963--SE

85

86 9 Conclusions

9.4 EXIT Chart Calculations
The method of using a table lookup made it unfeasible to analyze the Table De-
coders with Density Evolution or EXIT chart. But analysis was made on the regu-
lar (3, 6) ensemble [18] for Belief Propagation (Section 8.2), and showed that the
specific code used throughout the thesis was a good one, even for higher fields.

FOI-R--1963--SE

Appendix A
A.1 Conversion from Vector (Angle and Length) Represen-
tation to Probability Representation

FOI-R--1963--SE

1...10 −∈ M
Let be the vectors on the unit circle representing the M possible M-PSK sym-
bols for i . Let

im
{ } m be an arbitrary vector on the vector plane

and
m

P be the M-length probability vector, where all of its elements)|(mmP ii are

the probabilities that mi is sent given that im is received.
When sending through a channel with noise,

the angle and length of the symbol will be distorted in a certain way depending on
the SNR and the type of channel noise Θ. The received signal vector m

{ 110 ... −∈ Mi mmmm }

received rep-
resenting the distorted M-PSK message will then with great probability point at
another point in the vector plane then the sent mi. This is illustrated by an example
in Figure A.1. Depending on the noise distortion on msent, the probability changes
that mreceived is one of the mi possible M-PSK symbols. There is one joint probabil-
ity for each possible symbol m)|(recievedii mmP i, i.e. the probability that that one of
each M possible symbols mi is sent, when mreceived is the received vector.

Figure A.1 Sending the 8-PSK ‘1’ symbol through a channel with Gaussian noise.

Θ+=
=

1Re

]00000010[
mm

P

ceived

Sent

m1

]0019.00000.00000.00001.0..
..0033.01665.07156.01125.0[

Re =cievedP

mReceived

87

88 Appendix

When having an arbitrary vector m in the vector plane, m can be represented
by a probability vector mP (Equation A.1.1). Here m is the general case of mre-

ceived.

() () ()[]mmPmmPmmPP MMm 111100 −−= K (A.1.1)

With length M, and each element in the vector giving the probability for m
being one of the M possible M-PSK vectors .

im

mP can be calculated by calculating every element)|(mmP ii in Equation
A.1.1 for every { 1...10 }−∈ Mi with the following equations:

First the geometrical distances from the vector point of id m to all M possi-
ble symbol points for on the unit circle is calculated with Equation A.1.2.
(Figure A.2)

im

 22
ii mmd −= (A.1.2)

m2

d1

m2 d2 d0

m0d3

m3

Figure A.2 The geometrical distances to the four different signal points mi where
. { }3,2,1,0∈i

The following holds if the noise is AWGN with known noise variance σ.

 () 2

2

2

2
1 σ

πσ

id

i emmP
−

= (A.1.3)

Bayes’ rule gives:

() () ()

() ()∑
−

=

= 1

0

M

j
jj

ii
i

mPmmP

mPmmP
mmP (A.1.4)

FOI-R--1963--SE

A.1 Conversion from Vector Representation 89
 to Probability Representation

where and is the probability that and is sent. Inserting
Equation A.1.3 into Equation A.1.4 and assuming that all symbols have equal
probability to be sent gives

)(imP)(jmP im jm

()

⇔

=

∑
−

=

−

−

1

0

2

2

2

2

2

2

2
1

2
1

M

j

d

d

i
j

i

e

e
mmP

σ

σ

πσ

πσ

()
∑
−

=

−

−

=
1

0

2

2

2

2

2

2

M

j

d

d

i
j

i

e

emmP
σ

σ

 (A.1.5)

Equation A.1.5 and Equation A.1.2 are used to calculate every element
)(mmP i in mP (Equation A.1.1) for { }1...10 −∈ Mi .

FOI-R--1963--SE

A.2 Conversion from Probability Representation to Vector
(Angle and Length) Representation

The conversion from probability representation mP of M-PSK symbols into vector
representation m on the vector plane is achieved by first rewriting Equation A.1.5
to (11).

()

() (){ }

⇔

¬−==−+

⇔

=

−
−

∈

−

−
−

=

−

∑

∑

iNU
mmP

eee

mmP
ee

i

d
d

Uj

d

i

d
M

j

d

i
ij

i
j

100
2

2

2

2

2

2

2

2

2

2

2
22

21

0

2

K
σ

σσ

σ
σ

()
() 0

1 2

2

2

2

22 =
−

+
−

∈

−

∑ σσ
ij d

i

i

Uj

d

e
mmP

mmP
e (A.2.1)

Setting up a system of equations with Equation A.2.1 for
, gives a nonlinear system of equations Equation A.2.2. { 1...10 −∈ Mi }

For simplicity the following notations are used:

()
2

2

2σ
id

i

ii

ee

mmPp
−

=

=

By setting up all equations for every i, the following equations are received.

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

=
−

+++

=++
−

+

=+++
−

−
−

−

−

−

01

0
1

0
1

1
1

1
10

11
1

1
0

110
0

0

M
M

M

M

M

e
p

pee

ee
p

p
e

eee
p

p

K

LLL

K

K

 (A.2.2)

Given the joint probabilities , it is not possibly to develop Equation A.2.2
into an explicit solution for . A numerical solution with the Newton Raphson
method is also very difficult to achieve because of the extreme nonlinearity of the
system of equations with respect to .

ip

id

id

FOI-R--1963--SE

90

A.3 Proof That Vector Addition is Equal to Variable Node
Operation in Belief Propagation

Assume M-PSK signalling over an AWGN channel with constant variance σ2 and
equal probability for all signals to be sent.
Let I denote the In-phase signal value in the vector model, and Q denote the
Quadrature signal value.

Bayes’ Rule returns the probability that symbol mi was sent, given that the
received signal is Am .

() () ()

() ()∑
−

=

= 1

0

M

j
jjA

iiA
Ai

mPmmP

mPmmP
mmP . (A.3.1)

Equal probability to send all signals gives () () imPmP i ∀= , so

() ()
()∑

−

=

= 1

0

M

j
jA

iA
Ai

mmP

mmP
mmP .

AWGN channel gives

() 2

2

2

2
1 σ

πσ

Aid

iA emmP
−

=

where is the distance between symbol i’s constellation point and the re-
ceived signal vector

2
Aid

Am .

⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛−++

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−=

M
iQ

M
iIQI

M
iQ

M
iId

AAAA

AAAi

ππ

ππ

2sin22cos21

2sin2cos

22

22
2

(Ai mmP) can be simplified further:

() ()
() ∑∑∑ −

=

−

−

−

=

−

−

−

=

===
1

0

2

2

1

0

2

2

1

0

2

2

2

2

2

2

2

2

2
1

2
1

M

j

d

d

M

j

d

d

M

j
jA

iA
Ai

Aj

Ai

Aj

Ai

e

e

e

e

mmP

mmP
mmP

σ

σ

σ

σ

πσ

πσ
 (A.3.2)

FOI-R--1963--SE

91

92 Appendix

2

2

2σ
Aid

e
−

can be rewritten as

()
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ++−

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛−++−

−

==
2

2

222

22

2

2

2sin2cos

2
12

2sin22cos21

2
σ

ππ

σ
σ

ππ

σ

M
iQ

M
iI

QI
M

iQ
M

iIQI

d

AA

AA

AAAA

Ai

eeee

inserted in Equation A.3.2 gives:

()
()

()
∑∑
−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ++−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ++−

==

1

0

2sin2cos

2sin2cos

1

0

2sin2cos

2
1

2sin2cos

2
1

2

2

2

2

22

2

2

22

M

j

M
jQ

M
jI

M
iQ

M
iI

M

j

M
jQ

M
jI

QI

M
iQ

M
iI

QI

Ai
AA

AA

AA

AA

AA

AA

e

e

ee

eemmP

σ

ππ

σ

ππ

σ

ππ

σ

σ

ππ

σ

Variable node operations in a Belief Propagation Decoder are performed as a
symbol by symbol probability multiplications, whit normalized results. Assuming
the probabilities are taken from the channel, this would look like:

() () { }101
−∈ MimmPmmP BiAi K

α
 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

B

B
B

A

A
A Q

I
m

Q
I

m

and α is set so

() () 111

0
=∑

−

=

M

i
BiAi mmPmmP

α
, that is

() ()∑
−

=

=
1

0

M

i
BiAi mmPmmPα .

So, the symbol probability function would look like:

() () () ()
() ()∑

−

=

= 1

0

1
M

j
BjAj

BiAi
BiAi

mmPmmP

mmPmmP
mmPmmP

α

where

FOI-R--1963--SE

A.3 Proof that Vector Addition is Equal to Variable 93
 Node Operation in Belief Propagation

() ()

∑∑
−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

=

1

0

2sin2cos

2sin2cos

1

0

2sin2cos

2sin2cos

2

2

2

2

M

k

M
kQ

M
kI

M
iQ

M
iI

M

j

M
jQ

M
jI

M
iQ

M
iI

BiAi
BB

BB

AA

AA

e

e

e

emmPmmP

σ

ππ

σ

ππ

σ

ππ

σ

ππ

=

() ()

()BABA

M
iQQ

M
iII

M

j

M

k

M
kQ

M
kI

M
jQ

M
jI

M
iQ

M
iI

M
iQ

M
iI

QQIIMF
e

e

e

BABA

BBAA

BBAA

,,,,,

2

2

2

2sin2cos

1

0

1

0

2sin2cos2sin2cos

2sin2cos2sin2cos

σ

σ

ππ

σ

ππππ

σ

ππππ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛++⎟

⎠
⎞

⎜
⎝
⎛+

−

=

−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

=

∑∑

.

The function F is introduced to simplify the notation.
Adding this to Equation A.3.1 leads to

() ()
() ()

() ()

()

() ()

()

==

∑

∑
−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛++⎟

⎠
⎞

⎜
⎝
⎛+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛++⎟

⎠
⎞

⎜
⎝
⎛+

−

=
1

0

2sin2cos

2sin2cos

1

0

,,,,,
,,,,,

2

2

M

j BABA

M
jQQ

M
jII

BABA

M
iQQ

M
iII

M

j
BjAj

BiAi

QQIIMF
eQQIIMF

e

mmPmmP

mmPmmP

BABA

BABA

σ
σ

σ

ππ

σ

ππ

() ()

() ()
()Ci

M

j

M
jQQ

M
jII

M
i

QQ
M

i
II

mmP

e

e
BABA

BABA

=

∑
−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛++⎟

⎠
⎞

⎜
⎝
⎛+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛++⎟

⎠
⎞

⎜
⎝
⎛+

1

0

2sin2cos

2
sin

2
cos

2

2

σ

ππ

σ

ππ

when

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

BA

BA

C

C
C QQ

II
Q
I

m .

That is, adding together two vectors that are delivered from M-PSK signalling
from an AWGN channel is equal to the Variable Node Operation in a Belief
Propagation Decoder.

FOI-R--1963--SE

94 Appendix

FOI-R--1963--SE

List of References
[1] Stephen B. Wicker. Error Control Systems (1995). Prentice Hall, Inc

[2] Simon Haykin (1988). Digital Communications. John Wiley & Sons.

[3] John B. Anderson. Digital Transmission Engineering (1998). IEEE
Press.

[4] Raymond W. Young (2002). A First Course in Information Theory.
Kluwer Academic / Plenum Publishers.

[5] Mikael Olofsson, Thomas Ericson, Robert Forchheimer and Ulf Hen-
riksson (2003). Basic Telecommunication. University of Linköping.

[6] Richard O. Duda, Peter E. Hart and David G (2001). Stork. Pattern
Classification. John Wiley & Sons, Inc.

[7] Lars Ahlin and Jens Zander (1998). Principles of Wireless Communica-
tions. Studentlitteratur Lund.

[8] Thomas J. Richardson and Rüdiger L. Urbanke. The Capacity of Low-
Density Parity-Check Codes under Message Passing Decoding. IEEE
Trans. Inform. Theory, vol. 47, NO. 2 Febr. 2001.

[9] Sae- Young Chung, Thomas J. Richardson and Rüdiger L. Urbanke.
Analysis Of Sum- Product Decoding Of Low- Density Parity- Check
Codes Using A Gaussian Approximation. IEEE Trans. Inform. Theory.
Sept 19. 2000.

[10] Masoud Ardakani and Frank R. Kschischang. A More Accurate One-
Dimensional Analysis and Design Of Irregular LDPC Codes. IEEE
Trans. Inform. Theory, vol 52, NO. Dec. 2004.

[11] Masoud Ardakani . Efficient Analysis, Design and Decoding of Low-
Density Parity- Check Codes. Doctor of Philosophy Thesis, The Edward
S. Rogers Sr. Department, University of Toronto. Pp. 10-26, 56-92,
136-142. 2004.

[12] Ravi Narayanaswami. Coded Modulation with Low Density Parity
Check Codes. Master of Science Thesis, Texas A&M University. pp.
25-38. June. 2001.

[13] John R. Barry. Low- Density Parity- Check Codes. Georgia Institute of
Technology. Oct. 5. 2001.

[14] Thomas J. Richardson and Rüdiger L. Urbanke. The Renaissance Of
Gallager’s Low- Density Parity- Check Codes. IEEE Communications
Magazine. Aug. 2003.

[15] Matthew C. Davey and David MacKay. Low- Density Parity Check
Codes over GF(q). IEEE Communications Letters. Vol 2, NO 6, June
1998.

[16] Igor V. Kozintsev. Signal Processing, Software
http://www.kozintsev.net/. Oct 31, 2005.

FOI-R--1963--SE

95

http://www.kozintsev.net/

96 List of References

[17] David J. C. MacKay. Error Correcting Codes
http://www.inference.phy.cam.ac.uk/ Oct 31, 2005.

[18] David J.C. MacKay.
http://www.inference.phy.cam.ac.uk/mackay/codes/252.252.3.252. Oct
31, 2005

[19] Wang Lin, Xiao Juan and Guanro Chen. Density Evolution method and
threshold decision for irregular LDPC codes. IEEE Communications,
Circuits and Systems. Volume 1. 2004.

FOI-R--1963--SE

http://www.inference.phy.cam.ac.uk/mackay/codes/252.252.3.252

	RapportGT2.pdf
	RapportGT2.pdf
	Introduction
	Purpose
	Methods and Sources
	Structure of the Report

	Theory and Background
	Information Theory Concepts
	Additive White Gaussian Noise Channel

	Telecommunication Concepts
	Vector Spaces
	Digital Modulation Techniques
	Binary Phase Shift Keying
	M-ary Phase Shift Keying
	Additive White Gaussian Noise in the Vector Model

	Detection
	Soft Decisions

	Error Correcting Codes
	Group
	Ring
	Field
	Galois Fields (Finite Fields)
	GF(2)
	Addition in GF(2)

	Addition in Vector Spaces
	Block Codes
	Hamming Distance

	Low Density Parity Check Codes

	Methods and Algorithms
	Message Passing Decoding
	Variable Node Update
	Check Node Update
	Stop Rule
	Faster Decoding by Serializing Node Operations

	Belief Propagation Decoding
	Check Node Update
	Variable Node Update
	Stop Rule Design

	Non-binary LDPC Codes and M-PSK Modulation
	Density Evolution
	Main Idea
	Performing Density Evolution
	One-Dimensional Approximation of Density Evolution
	The EXIT Chart Algorithm
	Performing EXIT Chart Analysis

	EXIT Chart with M-PSK Signaling
	Calculating the Initial pdf for the Zero M-PSK symbols
	EXIT Chart Calculations for a LDPC Code with M-PSK Symbols

	Angular Sum Decoding
	Vector Summation in a Variable Node

	Table Decoder
	Variable Node Operation
	Black Box Model for Check Node Operations
	Table Vector Decoder
	Visualization of Output Values for the Angle Table

	EXIT Chart Calculations for M-PSK
	Threshold Calculation with EXIT Chart

	Simulations
	Simulation Algorithm
	Simulation Results
	Belief propagation Decoder
	Angular Sum Decoder
	Angular Sum Decoder using Length Information
	Table Angle Decoder Using Floating Table
	Table Vector Decoder Using Floating Table
	Table Angle Decoder Using Fixed Table
	Table Vector Decoder Using Fixed Table

	Results and Analysis
	Why Does Not Angular Summation Work?
	EXIT Chart Analysis
	Simulations Results
	Table Decoding with a Fixed Table
	2-PSK Simulations
	4-PSK Simulations
	8-PSK Simulations

	Analysis of Simulation Results
	Analysis of the Implementation
	Future Work
	Blackbox Modelling for Check Nodes Using Equations
	Density Evolution on the Table Decoder

	Conclusions
	Angular Sum Decoder
	Table Decoder
	Performance of the Table Angle- and Table Vector Decoder
	EXIT Chart Calculations

