FOI-R--2006--SE July 2006

Technical report

Jan-Åke Dahlberg

An investigation of wind tunnel blockage effects on cup anemometer calibrations

System Technology SE-172 90 Stockholm

SWEDISH DEFENCE RESEARCH AGENCY

Systems Technology SE-164 90 Stockholm FOI-R--2006--SE

June 2006 ISSN 1650-1942

Technical report

Jan-Åke Dahlberg

An investigation of wind tunnel blockage effects on cup anemometer calibrations

Summary

An investigation of wind tunnel blockage effects on cup anemometer calibrations has been carried out. A slender anemometer body in combination with three rotors of different sizes have been calibrated in five different wind tunnels. Four wind tunnels were of the closed-test-section type and one wind tunnel of the open jet type. One of the closed tunnels had a significantly larger test section than the others and was used as a reference.

The smallest rotor was so small that blockage effects were negligible in the tunnels used and the large rotor so large that blockage effects were significant.

From each calibration of the three rotors the pulse frequency at 8 m/s was determined. The frequencies were normalised with the frequency for the smallest cup anemometer. The normalised frequencies were also normalised with the three frequencies from the largest wind tunnel in order to relate the frequencies to the "true" answer. These normalised figures were compared between the four tunnels.

The results were not as expected. The blockage effects in the three closed test sections were expected to be of similar magnitude and follow a common trend. The blockage effects in the open test section were expected to be lower in magnitude and of opposite sign.

The unexpected results could be explained by the test conditions. An important pre-requisite for a successful outcome of a test was that the flow influence from the presence of the test object should not influence the measurement of the reference wind speed. However due to budgetary limitations in the project it was not possible to use other set-ups than the standard set-up normally used . Significant influences, from the test object on the measurement of the tunnel reference wind speed, could therefore not be excluded.

Consequently, no general conclusions about blockage could be drawn. Provided that the frequency values from each tunnel are reliable, individual correction recommendations for each tunnel could be given.

The method is straight forward and easy to use. In spite of the fact that no general conclusions about blockage effects could be drawn, it can be assumed that the method works well provided that more efforts are put on the localization of the position to measure the undisturbed WT wind speed.

1 Contents

2
3
4
4
5
6
7
8
8
0
0
1
1
2
4
4

2 Introduction

It is a requirement [1] that cup anemometers used for wind turbine power performance measurements shall be calibrated. A calibration is usually carried out by exposing the cup anemometer to known wind speeds in a wind tunnel and the rotational speed, expressed as pulse frequency, from the anemometer is measured. The calibration results are usually expressed as slope and offset as a result from straight line fitting to the measured frequency and wind speed data sets.

The types of wind tunnels considered in this report are closed-measurement-section wind tunnels and an open-jet wind tunnel.

The dynamic pressure in the empty test section is calculated from pressure, measured in the settling chamber or elsewhere in the upstream part of the test section by means of Prandtl tubes, using a correction factor determined from a tunnel calibration.

The relationship from calibration is only valid for the empty test section and in the case of a blocking object in the test section the speed of the flow will be influenced. The closed measurement sections are surrounded by solid walls, which, in the case of an object blocking the flow, prevents it from freely expanding around the object. This will give rise to an actual increased wind speed.

In the case of a blocking object in the open jet test section the flow is free to expand and interact with the boundaries of still air around the jet. A blockage in an open jet test section will cause the actual wind speed to be reduced.

The objective of this project is to quantify blockage effects in wind tunnels.

3 Objectives

The primary objective is to assess the accuracy of wind speed measurements with cup anemometers. A secondary objective is to quantify blockage effects in wind tunnels and if possible improve or verify methods to correct for blockage when calibrating cup anemometers. This will be accomplished by:

- Calibrating cup-anemometers of different sizes in different wind tunnels
- Normalising and comparing the results

4 The test and evaluation procedure

A slender anemometer body in combination with cup rotors of different sizes where used. The tiniest rotor was sufficiently small for blockage effects to be negligible in the tunnels used. The biggest rotor was large enough for blockage effects to be significant.

Each of the three anemometer (rotor) set-ups was calibrated. The frequency output at 8 m/s was determined through a linear regression of frequency versus wind speed. The three frequency values thus obtained were normalised by the frequency output for the smallest rotor.

A basic assumption was that by relating the frequency output from the anemometer at a fixed wind speed the uncertainty of the relation between the different rotor sizes in one tunnel could be kept as small as possible.

The aim was not to search for an absolute calibration (i.e. the purpose was not to compare wind tunnels) because the blockage effects are probably much smaller than typical deviations between tunnels.

The selection of the position to measure the wind tunnel reference speed had to be made with greatest care. The speed measured in the selected position was to be influenced minimally by the presence of the anemometer. A new reference position, located further upstream from the test object would eventually be necessary to find.

The uniformity of the flow within the rotor swept area was also essential. One way to check if horizontal gradients were present was to carry out the calibration procedure with the anemometer running both clock wise (CW) and counter clock wise (CCW).

The test and evaluation procedures are summarized below:

- Calibrate the anemometers repeatedly in the range 7-9 m/s
- Follow the calibration sequence 8, 7, 8, 9, 9, 8, 7 and 8 m/s
- Calibrate CW and CCW
- Do not apply blockage corrections
- Repeat calibrations of the reference anemometer
- Establish the average frequency output at 8 m/s from each set-up
- Normalise the frequencies with the reference (smallest rotor)
- Compare the results between tunnels

5 Cup-rotors of different sizes

A series of rotors of different sizes have been produced. The cups are conical in shape and the arm radii to cup diameters ratios are similar. The rotors are used together with a slender body.

Figure 1 - The cup anemometers lying on the front of a Volvo car provides an impression of the cup sizes. The largest rotor (on the left) could unfortunately not be used because it was too heavy and could jeopardize the anemometer shaft and bearings.

Table	1- Anemo	meter rotor	dimensions
1 4010	1 1 11101110		annenoromo

Configu-	Outer	Radius to	Cup	R/D	Swept	Swept area	Total
ration	radius	center of	diameter,		area	support+body	$[m^2]$
	[mm]	cup, R	D [mm]		rotor	$[m^2]$	
		[mm]			$[m^2]$		
Small Black	74	47	54	0.86	0.0074	0.0090	0.0164
(SB)							
Big Black	174	105	139	0.75	0.0442	0.0090	0.0532
(BB)							
Red (R)	271	167	207	0.81	0.1031	0.0090	0.1121
Biggest Red							
not used							

6 The wind tunnels

The main dimensions and type of wind tunnels used in this investigation are summarized in the table below:

Tunnel	Width m	Height m	Cross section m ²	Test section
FOI-LT5	0.9	0.68	0.61	Closed
DEWI (Oldenburg)	1.0	0.8	0.8	Open
Gävle WT	3.0	1.5	4.5	Closed
IDR/UPM	0.9	0.9	0.81	Closed
CRES	0.8	0.8	0.64	Closed

Table 2 - Wind tunnel dimensions

Details about how the reference wind speeds are measured are summarized in the table below:

Table 3 - Distance from rotor centre (tunnel centre) to reference point (Prandtl-tube-head) [m]

Tunnel	windward	sideway	above/below	radial	Note
			center		
FOI-LT5	0.833	0.45	0	0.95	Only static pressure.
					Total pressure is
					measured further
					upstream in the
					settling chamber
DEWI	0.7	0.4	0.3	0.86	Prandtl-tube-head
Gävle WT					Wind speed
					determined by WT
					fan RPM
IDR/UPM	0.2	0.25	0.15	0.35	Prandtl-tube-head
CRES	0.375	0.22	0.23	0.49	Prandtl-tube-head

7 Results

In the following chapters the results from calibration in different wind tunnels are presented together with appropriate graphs and photos.

7.1 FOI results

The pictures below show the three rotors used mounted in FOI-LT5.

Figure 2 - Small Black rotating CW

Figure 3 - Big Black rotating CW

Figure 4 - Red rotating CW.

Figure 5 - The graph shows an example of result from the red configuration. The wind speed in LT5 can be set to approximate wind speeds and the measurement system measures the actual wind speed. The final result from this calibration is the frequency output at 8 m/s i.e. 28.179 Hz.

Configurations	frequency at 8 m/s	Ratio CW/CCW	SB	BB	R
050618_233434, SB-CW, freq(8)=98,272	98,272	1,0232	98,272		
050619_001017, SB-CCW, freq(8)=96,046	96,046		96,046		
050619_004817, BB-CW, freq(8)=47,864	47,864	1,0283		47,864	
050619_011953, BB-CCW, freq(8)=46,547	46,547			46,547	
050619_224755, SB-CW, freq(8)=98,686	98,686	1,0280	98,686		
050619_231527, SB-CCW, freq(8)=96,000	96,000		96,000		
050620_004857, R-CW, freq(8)=28,820	28,820	1,0227			28,820
050620_012020, R-CCW, freq(8)=28,179	28,179				28,179
050620_020246, SB-CW, freq(8)=98,241	98,241	1,0272	98,241		
050620_023542, SB-CCW, freq(8)=95,639	95,639		95,639		
		Average	97,147	47,205	28,500
		Normalised	1	0,4859	0,2934

Table 4- The calibration results from tests in FOI-LT	3
---	---

Note the 2.5% difference in frequency for CW and CCW direction of rotation. This is caused by a wind gradient across the projected test area. This effect is known and compensated for during normal cup anemometer calibrations.

7.2 DEWI results

Configuration	f/Hz at 8 m/s	Ratio CW/CCW	SB	BB	Red
SB CW	94,8850	0,9968	94,8850		
SB CCW	95,1883		95,1883		
BB CW	44,8799	0,9955		44,8799	
BB CCW	45,0841			45,0841	
SB CW	94,8505	0,9959	94,8505		
SB CCW	95,2434		95,2434		
RCW	26,6284	0,9978			26,6284
RCCW	26,6868				26,6868
SB CW	94,8166	0,9955	94,8166		
SB CCW	95,2429		95,2429		
		Average	95,0378	44,9820	26,6576
		DEWI norm.	1	0,47331	0,28049

Table 5- The calibration results from the tests carried out by DEWI

7.3 CRES results

Table 6- The calibration results from the tests carried out by	CRES
--	------

Configuration	Frequency at 8m/s	Ratio CCW/CW	SB	BB	BR
Small black CW	96.8230	1.0079	96.8230		
Small black CCW	97.5866		97.5866		
Big black CW	46.2537	1.0122		46.2537	
Big black CCW	46.8197			46.8197	
Big red CW	27.5274	1.0211			27.5274
Big red CCW	28.1075				28.1075
Small black CW2	96.7693	1.0047	96.7693		
Small black CCW2	97.2223		97.2223		
Small black CW3	96.3990	1.0112	96.3990		
Small black CCW3	97.4789		97.4789		
		Average	97.0465	46.5367	27.8175
		Normalised	1.0000	0.4795	0.2866

7.4 IDR/UPM results

	frequency at	Ratio			
Configuration	8 m/s	CW/CCW	SB	BB	R
Cupset SB CW Freq(8)=95,183	95,1826	0,9904	95,1826		
Cupset SB CCW Freq(8)=96,101	96,1011		96,1011		
Cupset BB CW Freq(8)=45,358	45,3579	1,0089		45,3579	
Cupset BB CCW Freq(8)=44,957	44,9569			44,9569	
Cupset BR CW Freq(8)=26,217	26,2173	0,9985			26,2173
Cupset BR CCW Freq(8)=26,258	26,2579				26,2579
		Average	95,6419	45,1574	26,2376
		Normalised	1	0,4722	0,2743

Table 7 - The calibration results from the tests carried out by IDR/UPM

7.5 Gävle WT results

The Gävle wind tunnel at Gävle University is mainly used for building aerodynamics.

Figure 6 – The test section of the Gävle wind tunnel.

Figure 7 – The small black rotor.

Figure 8 – The big black rotor

Figure 9 – The largest red rotor in the Gävle WT. Blockage approx. 2.5%

	frequency at 8	Patio			
	nequency at o	Raliu			
Configuration	m/s	CW/CCW	SB	BB	R
130829_SB_CW, Freq(8)=94,416	94,416	0,9983	94,416		
133607_SB_CCW, Freq(8)=94,572	94,572		94,572		
135830_BB_CW, Freq(8)=44,295	44,295	1,0024		44,295	
141950_BB_CCW, Freq(8)=44,190	44,190			44,190	
144432_SB_CW, Freq(8)=94,499	94,499	0,9990	94,499		
150420_SB_CCW, Freq(8)=94,598	94,598		94,598		
152653_R_CW, Freq(8)=26,224	26,224	1,0102			26,224
154811_R_CCW, Freq(8)=25,961	25,961				25,961
160946_SB_CW, Freq(8)=94,439	94,439	0,9999	94,439		
162953_SB_CCW, Freq(8)=94,452	94,452		94,452		
		Average	94,496	44,243	26,092
		Normalised	1	0,4682	0,2761

Table 8 - The calibration results from the tests in the Gävle WT.

8 Comparisons

The normalized frequency ratios can now be compared between the tunnels. The comparison assumes as a first approximation that the blockage effects for the smallest anemometer is negligible in all tunnels. The comparison is also based on the assumption that the blockage effects are negligible for all rotor sizes in the large Gävle tunnel.

Table 9 – The final comparison between the tunnels.

Wind Tunnel	Test cross section area m2	SB 0,0164 1	BB 0,0532 6	R 0,1121 14
Gavle	4,5	1	0,4682	0,2761
LT5	0,61	1	0,4859	0,2934
DEWI	0,80	1	0,4733	0,2805
IDR	0,81	1	0,4722	0,2743
CRES	0,64	1	0,4795	0,2866
LT5/Gavle		1	1,0378	1,0624
DEWI/Gavle		1	1,0109	1,0158
IDR/Gavle		1	1,0084	0,9935
CRES/Gavle		1	1,0241	1,0379

Figure 10 - A graphical representation of the values in Table 9 together with the formula given in the next chapter.

The black line in Figure 10 is a recommendation from [2]. The authors suggest "When all is lost as far as finding blockage corrections for some unusual shapes that needs to be tested in a tunnel, use the following formula"

$$\frac{WS + \Delta WS}{WS} = 1 + \frac{1}{4} \frac{Model _ frontal _ area}{Test \ section \ area}$$
(1)

9 Conclusions and Discussion

The results presented in Figure 10 were not the expected. The blockage effects in the three closed test sections were initially assumed to be of similar magnitude and follow a common trend. The blockage effects in the open test section were expected to be lower in magnitude and of opposite sign.

The unexpected results could be explained by the test conditions. As outlined in section 4 an important pre-requisite for a successful outcome of the test was that the flow influence from the presence of the test object should not influence the measurement of the reference wind speed. However due to budgetary limitations in the project it was not possible to use other set-ups than the standard set-up. As can be seen from Table 3 the distance from the rotor centre to the wind speed measurement positions were in some cases very small compared to the outer dimensions of the test objects. Significant influences, from the test object on the measurement of the tunnel wind speed, could therefore not be excluded.

Hence, no general conclusions about blockage can be drawn. Provided that the frequency values from each tunnel and especially the reference tunnel (Gävle WT) are reliable, then individual correction recommendations for each tunnel can be given as:

- FOI should apply a correction which is about 30% larger than suggested by (1)
- If CRES applies a correction according to formula (1) a reasonably good correction will be obtained.
- The results suggests that DEWI should apply a correction which is about half as large as indicated by (1).
- In the setup used by IDR/UPM, the Prandtl tube seems to be located in a position such that blockage effects in measurements are compensated to some extent.

The method to calibrate anemometers of different sizes and normalize the results is straight forward and easy to use and in spite of the fact that no general conclusions about blockage effects could be drawn it is a belief that the method works well provided that more efforts are put on the localization of the position to measure the undisturbed WT wind speed.

10 References

- [1] MEASNET; <u>http://www.measnet.org/</u>
- [2] Rae, William. H. Jr, Pope Alan, "Low-Speed Wind Tunnel Testing", ISBN 0-471-87402-7

Issuing organization	Report number	Report type			
FOI – Swedish Defence Research Agency	FOI-R2006SE	Technical report			
Systems Technology	Programme Areas				
SE-164 90 Stockholm	Civil applications				
	Month year	Project no.			
	June 2006	B827507			
	Subcategories				
	76 Wind Energy				
	Subcategories 2				
Author	Project manager				
Jan-Åke Dahlberg	Jan-Åke Dahlberg				
	Approved by				
	Monica Dahlén				
	Sponsoring agency				
	European Commission - NNE5-2001-831				
	Swedish Energy Agency. P	ically responsible			
Report title (In translation)					
An investigation of wind tunnel blockage effects on cun anemometer calibrations					
Abstract (not more than 200 words)					
An investigation of wind tunnel blockage effects on cup anemometer calibrations has been performed. A slender					
anemometer body in combination with three different cup anemometer rotors of different sizes have been calibrated					
In five different wind tunnels. Four wind tunnels were of the closed-test-section type and one wind tunnel of the open					

jet type. One of the closed tunnels had a significantly larger test section than the others and was used as a reference.

The smallest rotor was so tiny that blockage effects were negligible in the tunnels used. The large rotor was sufficiently large for blockage effects to be significant.

The results were not the expected. The blockage effects in the three closed test sections were initially assumed to be of similar magnitude and follow a common trend. The blockage effects in the open test section were expected to be lower in magnitude and of opposite sign.

The unexpected results could be explained by the test conditions. Due to budgetary limitations in the project it was not possible to use other set-ups for measuring the reference wind speed than the standard set-up. Significant influences, from the test object on the measurement of the tunnel wind speed, could therefore not be excluded. Hence, no general conclusions about blockage could be drawn. Provided that the frequency values from each tunnel were reliable, then individual correction recommendations for each tunnel could be given:

The method to calibrate anemometers of different sizes and normalize the results is straight forward and easy to use and in spite of the fact that no general conclusions about blockage effects could be drawn it is a belief that the method works well provided that more efforts are put on the localization of the position to measure the undisturbed WT wind speed.

Keywords

cup anemometer wind tunnel blockage calibration

Further bibliographic information	Language English
	Pages 15 p.