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Chapter 1

Introduction

Most of the work performed by the Reverberation Chamber (RC) community has been
focused on characterising the RC. Important contributions to the understanding of the
electromagnetic environment in the RC has been given by many within the community
including Kostas and Boverie [1], Hill [2], [3] and Lehman [4]. Characterising the
chamber is an essential property in quantifying the magnitude of the stress we put
onto our Equipment Under Test (EUT) during a Radiated Susceptibility Test (RST).

The outcome of a Radiated Susceptibility Test (RST) does however also depend
on how efficiently the electromagnetic field couples to the most fragile components in
the Equipment Under Test (EUT). Hill [2], [3] does here provide important theoretical
understanding. Hill derives, outgoing from a plane wave description, an expression
for the power absorbed by an antenna placed in the RC, and makes the important
statement that an EUT is nothing but a lossy impedance-mismatched antenna. The
most critical components in the EUT can be seen as nothing else than loads to the
antennas which the EUT constitutes.

When the RST is performed at an Open Area Test Site (OATS) or in an Anechoic
Chamber (AC) the result is strongly affected by from which direction the EUT is
irradiated as well as the polarisation in use. That can physically be described by
the directivity and the receiving polarisation of the EUT, as well as the polarisation
of the electromagnetic field incident on the EUT. The quantitative importance of
the directivity and the receiving polarisation of the EUT, has experimentally been
shown by Coupling Measurements (CM) [5], [6], but also by true high level Radiated
Susceptibility Testing (RST) [5], [7].

A relevant question is if the directivity and receiving polarisation of the EUT will
affect the result of an RST in the RC, and/or are there any other similar parameters
affecting the outcome of an RST in an RC? It seems to be generally accepted within
the community that the directivity of the EUT does not affect the outcome of an
RST in the RC. Some say that ”the RC washes out the directivity”. The expression
is strictly speaking wrong because the directivity is only a property of the EUT, and it
remains unaffected by that the EUT is placed inside the RC. Anyhow the expression
is a simple way to state that if an RST is performed with two EUT’s whose directivity

1



2 FOI-R--2007--SE

patterns differ, but all other antenna parameters equal, the outcome of the RST is the
same for the two EUT’s. Though very seldom pointed out, the receiving polarisation
of the EUT does also not affect the result of an RST in the RC, so a similar simple
expression could be that the ”the RC washes out the directivity and the receiving
polarisation”.

A theoretical description of why the directivity does not affect the outcome of an
RST in the RC, is again given by Hill [2], [3]. Hill derives an expression for the power
received by an antenna.1 He shows that the ensemble average of the power received
by the antenna taken over many independent stirrer positions is independent of the
directivity of the EUT. But Hill does not stop there, he goes further, he derives a
probability density function for the power received by an antenna in the RC. That
is good, because it gives us an opportunity to address the important question, what
is the maximum stress we impose onto the critical component in the EUT when
performing an RST in the RC? We are actually often not so interested in the average
stress (taken over many independent stirrer positions) which we impose onto the EUT,
but more interested in the maximum stress imposed onto the EUT.

We assumed that the directivity of the EUT would be a parameter affecting the
maximum stress we put onto the critical component in the EUT. One might assume
that for an EUT with a large maximum directivity, the electromagnetic field inside
the RC and the most susceptible direction of the EUT would for one of the stirrer
positions ”co-operate” so that the electromagnetic energy couples more efficiently
to the most critical component in the EUT, than it would for an EUT with a small
maximum directivity. If that is true, an EUT with a larger maximum directivity would
be more susceptible, just as a corresponding accurate RST at an OATS or in an AC
shows. However, by examining and manipulating the expressions by Hill [2], [3], we
find the opposite: The directivity of the EUT does not affect the outcome of an RST
in the RC, and that despite that we are interested in the maximum electromagnetic
energy which couples to the critical component in the EUT, where the maximum is
taken over many independent stirrer positions.

The purpose of this report is to put some light onto that contradictory issue. We
will also show experimental results, and give some practical advice on how to use the
Reverberation Chamber for Radiated Susceptibility Testing.

1The reader should think that ”received by antenna” equals ”received by the most critical com-
ponent in the EUT”.



Chapter 2

Theory

In this chapter we will derive distribution functions for the received power in the
Equipment Under Test (EUT). In doing so we will to a large extent benefit from the
plane wave model proposed by Hill [2], [3]. However, we will by generalising some of
assumptions proposed by Hill show that no other distribution functions may describe
the electromagnetic field in the Reverberation Chamber (RC) as well as the power
received by the EUT. We assume, or rather state, that an EUT is nothing but a set
of lossy impedance-mismatched antennas. Power will be absorbed in many parts of
the EUT, but we are only interested in the power delivered to the very most critical
component in the EUT. The rest of the power being absorbed in the EUT is most
often the bulk of the power being absorbed in the EUT, and a part of it constitutes
the losses in our antenna model.

We will derive statistical expressions for the current delivered to the critical com-
ponent in the EUT. Knowing the resistance of the critical component it is easy to
calculate the power absorbed in it. Outgoing from these expression for the power
absorbed in the critical component of the EUT, we will see that the maximum value
statistics for the RC given in [8] and [9] is applicable here as well.

We will assume time harmonic fields and use a phasor notation for the fields. E.g.
the phasor notation for the electric field is E(r, ω), and the real electric field is,

E(r, t) = Re
{
E(r, ω)e−iωt

}
. (2.1)

We will most often not explicitly include the frequency dependence in our notations.

2.1 Electromagnetic Field in the Reverberation

Chamber

We start by describing the electromagnetic environment of the Reverberation Cham-
ber. The field distribution inside the chamber is complex, but the electric field (E)
inside a spherical source-free region can always be described as a sum of plane waves
over all real solid angles (Ω) [10], [11],

3
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E(r) =

∫∫

4π

F (k̂)eikk̂·rdΩ , (2.2)

where F is the solid angle spectrum of the electric field, k is the wave number and k̂
is the unit vector of the wave vector (k = kk̂) of the plane wave within the infinites-
imal solid angle dΩ. The direction of k̂ is completely defined by the two spherical
coordinates α and β,1

k̂(α, β) = (sin α cos βx̂ + sin α sin βŷ + cos αẑ) . (2.3)

Equation (2.2) is valid within a source free region, and introducing an EUT into
that region makes the condition no longer fulfilled for the total field in that region.
However, and this is important, we are not interested in the total field in the Rever-
beration Chamber (RC), but the field incident on the EUT. It is only the incident
field on the EUT which stresses the component inside the EUT. The EUT is not
directly affected by the, from the EUT, scattered field.2 For the incident field we
can superpose away the EUT and do a continuation of the field through the whole
spherical region. Hence, (2.2) is valid for the interesting incident field. Often one
introduce a subindex i to denote that the field is the incident field. We will avoid
doing that, because we think we can increase the readability of this article by limiting
the number of indices. However, it is to be remembered that the fields we treat, are
the fields incident on the EUT, and not the total fields.

Just like Hill [2], [3], we decompose the solid angle spectrum into two orthogonal
components in the α and β directions,

F (k̂) =
[
Fαr(k̂) + iFαi(k̂)

]
α̂ +

[
Fβr(k̂) + iFβi(k̂)

]
β̂ , (2.4)

where we explicitly have written the components in terms of their real and imaginary
parts. The four real components in (2.4) (Fαr, Fαi, Fβr, Fβi) does (for every direction

k̂) completely describe the solid angle spectrum F (k̂).

We now start a statistical approach to describe the complex electromagnetic
field in the Reverberation Chamber. We assume that all four real components
(Fαr, Fαi, Fβr, Fβi) are random variables, that they have the same distributions func-
tions, that they are completely uncorrelated among themselves and that there is no

1It is the well-established practice to let the letters θ and φ denote the spherical coordinates.
However, we will here us the practice to let the letters θ and φ denote the spherical coordinates of
the radius vector and let α and β denote the spherical coordinates of the wave vector [10, p. 361-362].

2Indirectly the EUT is affected by the scattered field because the field is rescattered at walls,
stirrers, antennas and other possible objects placed in the RC. However we assume that all this
rescattered field will not make the assumptions, which we will make for the field incident on the EUT,
less valid. Actually in opposite, we think that the EUT itself is essential in providing the complex
field environment which we assume for the RC. That assumption is to be further investigated.
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preferable phase. We also assume that the same component for two different direc-
tions are uncorrelated. Those assumptions imply the following expected values for
the four real components,

E
{

FAB(k̂)
}

= 0 (2.5)

and
E

{
FA1B1(k̂1)FA2B2(k̂2)

}
= C2δA1A2δB1B2δ(k̂1 − k̂2) , (2.6)

where the variables k̂1 and k̂2 are two samples from the set of all directions of the
wave vector ({k̂}),

k̂1, k̂2 ∈ {k̂} , (2.7)

the index A is one of the two spherical coordinates α and β,

A ∈ {α, β} , (2.8)

and the index B denotes the real (r) or imaginary (i) part,

B ∈ {r, i} . (2.9)

The subindices 1 and 2 in (2.6) are introduced to allow for the possibility of different
indices of the two quantities in (2.6). On the right hand side of (2.6), C is a constant,3

the two first deltas are Kronecker deltas,4 and the last delta is the Dirac delta pulse.5

The equations in (2.5) and (2.6) are not new. They are actually nothing but
equations (5)-(7) in [2], or (31)-(33) in [3], written in a compact form.6 Now we will
go a step further by generalising the assumptions in (2.5) and (2.6). Equation (2.5)
and (2.6) are the first and second order moments [13, p. 31] of the random variable
FAB(k̂). We do the following rather natural assumptions for the third and forth order
moments,

3The square of the constant is proportional to the energy density in the RC. We will not calculate
the constant here, see [2] and [3] for a further description.

4The Kronecker delta:

δAmAn =

{
1, Am = An

0, Am 6= An

(2.10)

5The Dirac delta pulse (f(k̂) is a general vector field):
∫∫

4π

f(k̂1)δ(k̂1 − k̂2)dΩ1 = f(k̂2) (2.11)

6To be correct there is a difference; In [2] and [3] the notation <> represents the ensemble average
over many independent stirrer positions, but here the notation E{} represents the expected value.
When performing a measurement in the RC of the expected value, we do measure the ensemble
average over many independent stirrer positions. The approximation we thereby introduce is not
negligible, as can be seen in [12].



6 FOI-R--2007--SE

E
{

FA1B1(k̂1)FA2B2(k̂2)FA3B3(k̂3)
}

= 0 , (2.12)

and

E
{

FA1B1(k̂1)FA2B2(k̂2)FA3B3(k̂3)FA4B4(k̂4)
}

= C4δA1A2δB1B2δ(k̂1 − k̂2)δA3A4δB3B4δ(k̂3 − k̂4)

+C4δA1A3δB1B3δ(k̂1 − k̂3)δA2A4δB2B4δ(k̂2 − k̂4)

+C4δA1A4δB1B4δ(k̂1 − k̂4)δA2A3δB2B3δ(k̂2 − k̂3)

= C4 ∆
l,m≤4

δAlAmδBlBmδ(k̂l − k̂m) , (2.13)

where we in the last step have introduced a shorthand notation by introducing the
∆-operator. The ∆-operator includes both multiplications and additions and can be
understood by looking on (2.13). First we take the product of 2 Kronecker deltas
times 2 Kronecker deltas times 2 Dirac delta pulses. The indices are placed two and
two on the Kronecker deltas and are increased consecutively from A1 to A4 on the first
2 Kronecker deltas and from B1 to B4 on the last 2 Kronecker deltas. The indices also
comes two and two in the delta pulses and are also increased consecutively from 1 to 4.
That’s the first product (and first row after the equal sign) in (2.13). The ∆-operator
does also include adding to the first product, all products which are permutations of
the integers in the first product and do not equal the first product.7 In total there
are (4− 1)!! = 3 · 1 = 3 products to be summed.8

The good thing with introducing the ∆-operator is that we now can write an
expression for a natural assumption for the n:th moment of the random variable
FAB(k̂),

E

{
n∏

j=1

FAjBj
(k̂j)

}
=

{
Cn ∆

l,m≤n
δAlAmδBlBmδ(k̂l − k̂m), n even

0, n odd
(2.15)

where the n:th order ∆-operation is to be understood as follows: First take the
product of n/2 Kronecker deltas times n/2 Kronecker deltas times n/2 Dirac delta
pulses. The indices are placed two and two on the Kronecker deltas and are increased
consecutively from A1 to An on the first n/2 Kronecker deltas and from B1 to Bn on
the last n/2 Kronecker deltas. The indices also comes two and two in the delta pulses

7Hence, the permutations of the indices within the Kronecker deltas and the delta pulses are not
to be included because δAlAm ≡ δAmAl

and
δ(k̂l − k̂m) ≡ δ(k̂m − k̂l).

8Semi-factorial for the positive integer n is defined as:

n!! =

{
n · n− 2 · ... · 4 · 2, n even
n · n− 2 · ... · 3 · 1, n odd

(2.14)
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and are also increased consecutively from 1 to n. That’s the first product. Calculate
all products which are permutations of the integers in the first product and do not
equal the first product. The final results is found by summing up all these (n − 1)!!
products.

Equation (2.15) may look very complicated, but might be understood as simply
a generalisation of (2.5),(2.6),(2.12) and (2.13). The good thing is that (2.15) is the
only assumption we have to do about the field in the RC.

2.2 Received Power in the Critical Component of

the Equipment Under Test

We will now try to find an expression for the distribution function of the power
absorbed in the critical component of the EUT. To do that we will start with an
expression of the current which flows through the critical component of the EUT.
From the Critical component, the EUT is seen as an antenna, and for every direction
(r̂), the antenna has the complex receiving function,

Y (r̂) = [Yθr(r̂) + iYθi(r̂)] θ̂ + [Yϕr(r̂) + iYϕi(r̂)] ϕ̂ , (2.16)

defined in such a way that the total current which flows through the critical component
of the EUT is,

I =

∫∫

4π

∫∫

4π

Y (r̂) · F (k̂)δ(r̂ + k̂)dΩr̂dΩk̂

=

∫∫

4π

Y (r̂) · F (−r̂)dΩ . (2.17)

By plugging (2.4) and (2.16) into (2.17) we get,

I = Ir + iIi , (2.18)

where the quadrature components of the current are,9

Ir =

∫∫

4π

[Yθr(r̂)Fαr(−r̂)− Yθi(r̂)Fαi(−r̂)

− Yϕr(r̂)Fβr(−r̂) + Yϕi(r̂)Fβi(−r̂)] dΩ , (2.19)

and

9Note that α̂(−r̂) = θ̂(r̂), but β̂(−r̂) = −ϕ̂(r̂).
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Ii =

∫∫

4π

[Yθr(r̂)Fαi(−r̂) + Yθi(r̂)Fαr(−r̂)

− Yϕr(r̂)Fβi(−r̂)− Yϕi(r̂)Fβr(−r̂)] dΩ . (2.20)

With help of (2.5) we find that,

E {Ir} = E {Ii} = 0 , (2.21)

and with help of (2.6) we find that,

E
{
I2
r

}
=

∫∫

4π

∫∫

4π

E
{

[Yθr(r̂1)Fαr(−r̂1) + Yθi(r̂1)Fαi(−r̂1)

− Yϕr(r̂1)Fβr(−r̂1)− Yϕi(r̂1)Fβi(−r̂1)]

× [Yθr(r̂2)Fαr(−r̂2) + Yθi(r̂2)Fαi(−r̂2)

− Yϕr(r̂2)Fβr(−r̂2)− Yϕi(r̂2)Fβi(−r̂2)]
}

dΩ1dΩ2

= C2

∫∫

4π

[
Y 2

θr(r̂) + Y 2
θi(r̂) + Y 2

ϕr(r̂) + Y 2
ϕi(r̂)

]
dΩ

= C2

∫∫

4π

[|Yθ(r̂)|2 + |Yϕ(r̂)|2] dΩ . (2.22)

We can already here see one interesting property, the integral in (2.22) is only a
function of the properties of the EUT, and hence the influence on the result from the
RC is only through the constant C.

The integral in (2.22) can be rewritten in more common antenna quantities. The
power received in an antenna from a plane wave, with the electric field vector E = Eê,
incident on the antenna is [14, pp. 86], [15, pp. 64],

P = qηp(r̂, ê)D(r̂)
λ2

4π

E2

2Z0

, (2.23)

where q is the impedance mismatch factor, η the radiation efficiency and D the direc-
tivity of the antenna. The factor p is the polarisation efficiency between the antenna
and the incident field, λ and E0 are the wavelength and electric field vector, respec-
tively, of the incident electromagnetic field and Z0(≈ 377Ω) is the wave impedance
of free space. Looking upon how the complex receiving function (Y (r̂)) and the solid
angle spectrum of the electric field (F (k̂)) is defined through (2.2), (2.16) and (2.17),
the power (P ) does also equal,

P =
R |I|2

2
=

R |Y (r̂) ·E|2
2

= Rp(r̂, ê)
[|Yθ(r̂)|2 + |Yϕ(r̂)|2] E2

2
, (2.24)
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where R is the resistance of the load to the antenna, or in our case, the resistance of
the most critical component in the EUT. The last step in (2.24) follows directly from
the definition of the polarisation efficiency [14, p. 70], [15, p. 66]. With help of (2.23)
and (2.24), and that it follows directly from the definition of the directivity [16] that
the average directivity,

1

4π

∫∫

4π

D(r̂)dΩ = 1 , (2.25)

we can conclude that,

∫∫

4π

[|Yθ(r̂)|2 + |Yϕ(r̂)|2] dΩ =
ηqλ2

RZ0

, (2.26)

and with (2.26) plugged into (2.22),

E
{
I2
r

}
= C2ηqλ2

RZ0

. (2.27)

In complete similarity it can be shown that the variance of the imaginary part of
the current (E {I2

i }) has the same value,

E
{
I2
i

}
= E

{
I2
r

}
= C2ηqλ2

RZ0

, (2.28)

and it is therefore natural to introduce the notation,10

σ ,
√
E {I2

i } =
√
E {I2

r } = C

√
ηq

RZ0

λ , (2.29)

for the standard deviation of the two quadrature components of the current in the
critical component of the EUT.

We have in (2.21) and (2.28) expressions for the first and second order moments
of the two quadrature components of the current. We will now turn to higher order
moments. With help of (2.4), (2.12), (2.16), (2.17) and (2.18), we find that,

E
{
I3
r

}
=

∫∫

4π

∫∫

4π

∫∫

4π

E
{

Re {Y (r̂1) · F (−r̂1)}

× Re {Y (r̂2) · F (−r̂2)} × Re {Y (r̂3) · F (−r̂3)}
}

dΩ1dΩ2dΩ3

= 0 , (2.30)

and with (2.4), (2.13), (2.16), (2.17), (2.18), (2.26), (2.29) and by studying the prin-
ciples in (2.22) we find after some arithmetics that,

10The sign , denote defined as.
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E
{
I4
r

}
=

∫∫

4π

∫∫

4π

∫∫

4π

E
{

Re {Y (r̂1) · F (−r̂1)} × Re {Y (r̂2) · F (−r̂2)}

× Re {Y (r̂3) · F (−r̂3)} × Re {Y (r̂4) · F (−r̂4)}
}

dΩ1dΩ2dΩ3dΩ4

= σ4(4− 1)!! = 3σ4 . (2.31)

It can also be shown that,

E
{
I3
i

}
= E

{
I3
r

}
= 0 , (2.32)

and

E
{
I4
i

}
= E

{
I4
r

}
= 3σ4 . (2.33)

The general n:th moment of the quadrature components of the current in the
critical component of the EUT is with the assumptions in (2.15) found to be,

E {In
i } = E {In

r } =
(1 + (−1)n)

2
(n− 1)!! σn . (2.34)

Hence, outgoing only from the assumptions in (2.15) about the field in the Re-
verberation Chamber, we have managed to calculate all moments for the distribution
of the quadrature components of the current. We can also calculate the moment
generating function [13, p. 100],

M(s) =
∞∑

n=0

E {In
r }

n!
sn =

∞∑
n=0

(2n− 1)!!

(2n)!
σ2ns2n =

∞∑
n=0

(2n− 1)!!2n

(2n)!

(σs

2

)2n

=

{
(r − 1)!! =

r!

2
r
2 (r/2)!

}
=

∞∑
n=0

1

n!

(
σ2s2

2

)n

= e
σ2s2

2 . (2.35)

The theory of analytic continuation of functions justifies to do the substitution
s = it 11 [13, p. 104], and we get the characteristic function [13, p. 100],

φ(t) = M(it) = e−
σ2t2

2 . (2.36)

Knowing the characteristic function of a distribution function is very good, be-
cause the probability density function is nothing but the Fourier transform of the
characteristic function [13, p. 106], and hence the probability density functions for
the quadrature components of the current are found to be,12

11 i =
√−1

12The element ir (ii) is an element in the domain of the probability density function of the random
variable Ir (Ii).
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fIr(ir) =
1

2π

∞∫

−∞

e−iirtφ(t)dt =
1

2π
F {φ(t)} =

1

2π
F

{
e−

σ2t2

2

}
=

1

2π

√
2π

σ
e−

i2r
2σ2

=
1√
2πσ

e−
i2r

2σ2 , (2.37)

and,

fIi
(ii) =

1√
2πσ

e−
i2i

2σ2 , (2.38)

which is the probability density function of the normal (Gaussian) distribution. We
conclude that the quadrature components of the current in the critical component of
the EUT are normally distributed with expected value 0 and standard deviation σ,

Ii, Ir ∈ N [0, σ] . (2.39)

We have already assumed that the resistance of the critical component in the EUT
is R, so the critical component absorbs the power,

P =
R |I|2

2
=

R(I2
r + I2

i )

2
, (2.40)

and outgoing from the underlying distribution functions (2.37) and (2.38) it can be
shown [17, p. 227] that the power absorbed in the critical component is exponentially
distributed,

fP (p) =
1

Rσ2
e−

p

Rσ2 ≡ 1

E {P}e−
p

E{P} , (2.41)

where we in the last step have introduced that the expected value (as well as the
standard deviation) of the exponential distribution in (2.41) is,

E {P} = Rσ2 = C2ηqλ2

Z0

. (2.42)

To derive and propose (2.41) as the distribution function for the power absorbed in
the critical component of the EUT was the objective of this section and actually (2.41)
is the same equation as the forth equation in [1] and (66) in [2] or (90) in [3]. However,
as very well pointed out by Hill in [2, p. 215] and [3, p. 21], the derivation here as well
as in [2] and [3] is more general because it is a derivation of the power being absorbed
in the critical component of the EUT. The proposed forth equation in [1] is actually
only a distribution function for the square of the absolute value of the electric field
in one arbitrary direction. Further on, the theory presented here is more definitive
than the theory in [2] and [3], because the derivation in [2] and [3], which is based
on maximising the entropy, leaves open for that some additional information would
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change the distribution function [3, p. 18]. Here, (2.15) is a sufficient assumption
about the field in the RC to be able to describe the power received by the critical
component in the EUT. Any additional assumption about the field in the RC, will

1. Already be included in (2.15), or

2. Contradict (2.15).

2.3 The Maximum Received Power in the Critical

Component of the Equipment Under Test

2.3.1 Z-distribution

In performing a Radiated Susceptibility Test (RST) in the Reverberation Chamber
(RC), the Equipment Under Test (EUT) is stressed for N different stirrer positions.13

The number of N may typically be in the range from a few tens to a few hundred.
By presupposing that the power absorbed by the critical component for every stirrer
position is independent of all the other N − 1 stirrer positions [9], [18], we get N
random samples from the distribution function in (2.41). In performing an RST, the
interesting parameter is the maximum value taken over all N stirrer positions. Also
the maximum value is a random variable, and it can easily be calculated from (2.41).
Before doing so we will however first introduce the quantity normalised power,

X , P

E {P} , (2.43)

as the power received in the critical component divided by the expected value of
that power. It follows from (2.41) that the normalised power has the probability
distribution function,

fX(x) = e−x , (2.44)

and the cumulative distribution function is,

FX(x) = 1− e−x . (2.45)

We then introduce the quantity, the maximum value of the normalised power,

Z(N) , max{Xn}N
n=1 . (2.46)

where {Xn}N
n=1 is the set of X received from measurements performed at N indepen-

dent stirrer positions. Every Xn is in itself a random variable with the distribution
functions of (2.44) and (2.45). The cumulative distribution function of Z is,

13It does also exist a form of Radiated Susceptibility Test (RST) where the stirrer(s) is (are)
moved continuously. That type of RST, often called mode stirring, is not explicitly addressed in this
article.
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Figure 2.1: The probability density function and the cumulative density function,
respectively, of the random variable the maximum value of the normalised power (Z),
see (2.46). The functions are plotted for 12, 35 and 100 numbers of independent
samples.

FZ(z) = P(Z ≤ z) = P(All Xn ≤ z) = (1− e−z)N , (2.47)

and the probability distribution function,

fZ(z) ≡ dFZ(z)

dz
= N(1− e−z)N−1e−z . (2.48)

Equation (2.48) is a very fascinating result, the distribution of the maximum power
received in our EUT compared to the expected value of the (average) received power is
only dependent on the number of (independent) stirrer positions (N) in use. It does
not depend on the EUT, and it does not further depend on the RC as long as (2.15)
is fulfilled. The expected value of the (average) received power in the EUT is given
in (2.42). It depends on the energy density in the RC through the constant C, the
radiation efficiency (η) and the impedance mismatch factor (q) seen by the critical
component in the EUT. That is all!

The distribution functions in (2.47) and (2.48) are plotted in Fig. 2.1 for 12, 35
and 100, respectively, numbers of independent stirrer positions.14 For later purposes,
we calculate the expectation value of the maximum value of the normalised power,

14At a first glance it might look strange that there is a, though small, probability that the maximum
value is smaller than the expected value. However, it is not at all strange, it is only a good example
showing the difference between expected value and average value. For a set of independent samples
of a random variable, the average value will converge to the expected value when the number of
elements in the set becomes very large. However, for a small number of elements in the set there is a
finite probability that all values, including the maximum value, is smaller than the expected value.
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E {Z} =

∞∫

0

zfZ(z)dz =

∞∫

0

zN(1− e−z)N−1e−zdz =
{
y = e−z

}

= N

1∫

0

ln

(
1

y

)
(1− y)N−1 dy . (2.49)

The integral in (2.49) can be rewritten as a sum,

E {Z} = −N

N−1∑
n=0

(
N − 1

n

) 1∫

0

ln y(−y)ndy = N

N−1∑
n=0

(
N − 1

n

)
(−1)n

(n + 1)2
. (2.50)

The expression in (2.50) is a finite form for the expectation value, but unfortunately
the sum is not well behaved for large N , and it is then more beneficial to use the
integral in (2.49).

2.3.2 T -distribution

The maximum value statistics of the normalised power, (2.47) and (2.48), are im-
portant. However, it is hard to test it experimentally when only a few independent
stirrer positions are used. The reason being that we do not know the exact value of
the expected value of the power (the denominator in (2.43)). We have to approximate
it with the average value, and the average value is also a random variable. To analyse
this, we start by defining the average normalised power,

Q(N) , 1

N

N∑
m=1

Xm , (2.51)

where Xm is the normalised power received for stirrer position m. All Xm are all sam-
ples of the same random variable X, (2.43), and do hence follow the same distribution,
(2.44) and (2.45). The probability distribution function of Q is [17, p. 87 and 93],

fQ(q) =
NN

(N − 1)!
qN−1e−Nq . (2.52)

For large N , (2.52) can be approximated with help of Stirling’s formula15 as,

fQ(q) ≈
√

N

2π
qN−1e−N(q−1), N > 10 . (2.53)

15Stirling’s formula says that for large N (N > 10),
N ! ∼

√
2πNNNe−N [19, 16.16].
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We now introduce the maximum to average random variable,

T (N) , Z(N)

Q(N)
, (2.54)

which we, compared to the random variable Z, more easily can do a statistical analysis
of.16 Before calculating the distribution functions of T , we prescribe that the two
random variables Z and Q are independent. The cumulative distribution function of
T can be calculated as [17, p. 96],

FT (t) =

∞∫

0

FZ(qt)fQ(q)dq =

∞∫

0

(1− e−qt)N NN

(N − 1)!
qN−1e−Nqdq =

{
y = e−Nq

}

=
1

(N − 1)!

1∫

0

[
ln

(
1

y

)]N−1 [
1− y

t
N

]N

dy . (2.55)

The integral in (2.55) can be rewritten as a finite sum,

FT (t) =
1

(N − 1)!

N∑
n=0

(
N

n

)
(−1)n

1∫

0

[
ln

(
1

y

)]N−1

y
tn
N dy

=
N∑

n=0

(
N

n

)
(−1)n

(
1

1 + n
N

t

)N

. (2.56)

The expression in (2.56) is a finite form for the cumulative distribution function,
but the sum is not well behaved and is difficult to numerically calculate for large
N and small t. Unfortunately, the integral in (2.55) is not well behaved either.
Luckily enough, the sum (2.56) is only badly behaved at so small values of t where
the distribution function is so close to 0, that we simply can approximate as being
exactly 0.

The probability density function is easily calculated outgoing from (2.55) and
(2.56),

fT (t) ≡ dFT (t)

dt
=

1

(N − 1)!

1∫

0

[
ln

(
1

y

)]N [
1− y

t
N

]N−1

y
t
N dy

=
N∑

n=1

(
N

n

)
(−1)n+1n

(
1

1 + n
N

t

)N+1

. (2.57)

16For large values of N , Q will have a narrow distribution around 1, and T will converge toward
Z.
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The comments done to the calculation of (2.56) are equally applicable to the calcula-
tion of (2.57).

There is one important note to be emphasised; to be able to derive the distribu-
tion functions FT (t) and fT (t) as we did above, the two random variables Z and Q
have to be independent [17, p. 96]. However, as we will see in section 4.2, that is
fulfilled for the interesting case when we perform a Radiated Susceptibility Test in
the Reverberation Chamber.

2.3.3 A-distribution

In some situations, typically a measurement situation with the purpose of charac-
terising the RC, the two random variables Z and Q are calculated from the same
ensemble. For that situation we define the random variable,17

A(N) , Z(N)

Q(N)

∣∣∣∣
same
ensemble

. (2.58)

The two random variables, T and A, are almost identical, but the difference is to
be stressed once again. For, T the maximum and mean values are calculated from
two independent ensembles. For A, the maximum and mean values are calculated
from the same ensemble, and consequently the numerator and denominator in (2.58)
are dependent on each other. It is much harder to find the distribution functions for
A than for T . A literature study shows that almost all theory assume independent
random variables. However, we will here derive the distribution functions for A. We
start by rewriting (2.58),

A(N) =
Z(N)

1
N

N∑
n=1

Xn

=
N

1 +
N−1∑
n=1

Xn

Z(N)

=
N

1 +
N−1∑
n=1

Cn(N)

=
N

1 + B(N)
, (2.59)

where we without loss off generality rearrange the normalised power values so that
the N :th one is the largest,

Z(N) ≡ XN , (2.60)

In (2.59) we also introduce the two random variables,18

C(N) , X

Z(N)
, (2.61)

B(N) ,
N−1∑
n=1

Cn(N) , (2.62)

17The random variable A is not to be confused with the index A introduced in section 2.1.
18The random variable B is not to be confused with the index B introduced in section 2.1.
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Figure 2.2: The blue dashed curve shows the probability density function for X,
and the green dashed curve shows the probability density function for X given that
is maximum value is not larger than z. When we include the condition that the
maximum value of X is not larger than z, the value of the probability density function
has to be increased for 0 < x < z so that the total probability remains 1.

The N−1 random variables Cn are dependent on each other through the common
denominator Z, but let us, just for a while, assume that Z has a fixed value z. Then
the Cn are among themselves independent because we do already from the beginning
assume that the N − 1 random variables Xn are independent. The pdf for C given
that Z = z, is [17, p. 87],

fC|Z=z(c) = zfC|Z=z(zc) =





0, c < 0
ze−zc

1−e−z , 0 < c < 1

0, c > 1

, (2.63)

where we in the last step have renormalized the pdf in (2.44) to our case where X ≤ z.
How this renormalizing is done can be seen in Fig. 2.2. The total probability is always
exactly 1, which in Fig. 2.2 is manifested by that the area under the probability
density function is 1. When we include the condition that X ≤ z, the probability of
the remaining possible values of X are increased so that the total probability remains
one. The relative probability among the remaining possible values of X is not to be
changed. In (2.63) we have also explicitly included that C|Z = z equals 0 outside the
interval [0, 1] . Thereby we have defined C|Z = z on the whole real axis.

The pdf for B given that Z = z, is [17, p. 92],

fB|Z=z(b) = fC1|Z=z(c) ∗ fC2|Z=z(c) ∗ ... ∗ fCN−1|Z=z(c)

= F−1
{
F

{
fB|Z=z

}}
= F−1

{(
F

{
fC|Z=z

})N−1
}

. (2.64)
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The use of the inverse Fourier transform (F−1) and the Fourier transform (F) in (2.64)
is a classical technique to analytically calculate convolutions. The Fourier transform
of (2.63) is after some analysis found to be,

F
{
fC|Z=z

}
(ω) =

z

1− e−z

1− e−(z+iω)

z + iω
, (2.65)

and by use of the binominal formula [19, p. 3],

(
F

{
fC|Z=z

})N−1
(ω) =

(
z

1− e−z

)N−1 N−1∑
n=0

(
N − 1

n

)
(−1)n e−nze−inω

(z + iω)N−1
, (2.66)

By performing the inverse Fourier transform in (2.64) we get,

fB|Z=z(b) =

(
z

1− e−z

)N−1

e−zb

N−1∑
n=0

(
N − 1

n

)
(−1)n (b− n)N−2

(N − 2)!
H(b− n) , (2.67)

where we have introduced the Heaviside step function,

H(y) =

{
0, y < 0

1, y > 0
. (2.68)

By using the law of total probability [17, p. 34], we can calculate the joint pdf
with help of (2.48) and (2.67),

fB,Z(b, z) = fB|Z=z(b)fZ(z)

= N

N−1∑
n=0

(
N − 1

n

)
(−1)n (b− n)N−2

(N − 2)!
H(b− n)zN−1e−z(b+1) . (2.69)

We thereby have released the condition that Z = z, and we can calculate the pdf of
B as the marginal pdf of (2.64),

fB(b) =

∞∫

0

fB,Z(b, z)dz

= N

N−1∑
n=0

(
N − 1

n

)
(−1)n (b− n)N−2

(N − 2)!
H(b− n)

∞∫

0

zN−1e−z(b+1)dz

=
N(N − 1)

(b + 1)N

N−1∑
n=0

(
N − 1

n

)
(−1)n(b− n)N−2H(b− n) . (2.70)
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We are now close to the goal of calculating the pdf and the cdf of A. The cdf of A
can with help of (2.59) be written as,

FA(a) ≡ P(A ≤ a) = P
(

N

1 + B
≤ a

)
= P(B ≥ N

a
− 1) = 1−FB

(
N

a
− 1

)
, (2.71)

and the pdf of A is with help of (2.70) found to be,

fA(a) ≡ dFA(a)

da
=

N

a2
fB

(
N

a
− 1

)

=
(N − 1)aN−2

NN−2

N−1∑
n=0

(
N − 1

n

)
(−1)n

(
N

a
− 1− n

)N−2

H

(
N

a
− 1− n

)

= (N − 1)
N−1∑
n=0

(
N − 1

n

)
(−1)n

(
1− n + 1

N
a

)N−2 [
1−H

(
a− N

n + 1

)]

= (N − 1)

bN
a
−1c∑

n=0

(
N − 1

n

)
(−1)n

(
1− n + 1

N
a

)N−2

, (2.72)

where the sign b c denotes the integer part. The cdf of A is,19

19The random variable A is enclosed to the interval [1, N ]. Hence the lower integration limit
should be 1. However, as we in 2.63 have defined the pdf on the whole real axis, all the derived pdf
are also valid on the whole real axis. Every value of a outside the interval [1, N ] plugged into 2.72
will automatically give 0 as result. That justifies the expansion of the integration interval down to 0.
The reason for doing such an expansion is that it substantially simplifies the calculations. The one
interested can put in 1 as the lower integration limit and go through some rather tedious calculations
and finally end up with the same answer as in 2.73.
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FA(a) ≡
a∫

1

fA(a)da =

a∫

0

fA(a)da

= (N − 1)
N−1∑
n=0

(
N − 1

n

)
(−1)n+1

min{a, N
n+1}∫

0

(
1− n + 1

N
x

)N−2

dx

=
N−1∑
n=0

(
N

n + 1

)
(−1)n+1

[(
1− n + 1

N
x

)N−1
]min{a, N

n+1}

0

=
N∑

m=0

(
N

m

)
(−1)m

[(
1− m

N
min

{
a,

N

m

})N−1

− 1

]

=

bN
a c∑

m=0

(
N

m

)
(−1)m

[(
1− m

N
a
)N−1

− 1

]
−

N∑

m=bN
a c+1

(
N

m

)
(−1)m

=

bN
a c∑

m=0

(
N

m

)
(−1)m

(
1− m

N
a
)N−1

. (2.73)

The last two rows of calculations does somewhat simplify the expression, but more
important, it gives an expression which is more well behaved for large N . For very
large20 N even the last expression is mathematically badly behaved, but only at the
small values of a where we without any significant error can approximate FA(a) as
being exactly 0.

The distribution functions for A are plotted in Fig. 2.3 for 12, 35 and 100, respec-
tively, numbers of independent stirrer positions.

20At which N problems with the accuracy in the summation occur depends on the software (and
the computer) in use. When using PC-MatLab, significant inaccuracies occurs when N > 100.
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Figure 2.3: The probability density function and the cumulative density function,
respectively, of the random variable A, see (2.58). The functions are plotted for 12,
35 and 100 numbers of independent samples.
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Chapter 3

Experiments

3.1 Antennas as Equipment Under Test

To test the validity of the theory developed in chapter 2, we have performed mea-
surements. The measurements were performed in our large Reverberation Chamber,
with dimensions: 5.10m × 2.46m × 2.93m. The Lowest Useable Frequency (LUF) of
the chamber depends on the exact definition of LUF and the type and numbers of
stirrer in use. Anyhow in our measurements it is completely appropriate to use it
above 1 GHz. All our measurements values are uncorrelated and we assume that it
implies that the values also are independent [9].

First we used four different antennas, see Fig. 3.1, as Equipment Under Test (EUT).
We transmitted electromagnetic power into our Reverberation Chamber (RC), and
in four consecutive experiments we measured the power received in our four different
antennas. In every experiment we measured the power for 200 different indepen-
dent stirrer positions. For every measurement we calculated a sample of the random
variable T . By also performing every measurements for 801 different frequencies
equidistantly placed in the interval 8.2− 12.4 GHz, we could do a statistical analysis
of the random variable T .1

The last paragraph in section 2.3.2 is again to be emphasised. In calculating the
samples of T , the numerator and the denominator has to be independent. That can
be done by measuring the maximum value and the average value with two different
antennas, or by calculating the maximum value and the average value for two different
frequencies. However, here we do it by simply calculating the maximum value using
one half of the measurement values from the 200 independent stirrer positions, and the
average value by using the other half. The reason is, that the radiation efficiency (η)
and the impedance mismatch factor (q) do generally vary from antenna to antenna,
and is also frequency dependent, and in the general case we have to compensate for
that, but if we use the same antenna and the same frequency, the two factors will be
identical in the numerator and the denominator in the calculations of the samples of

1To be able to perform a statistical analysis, it is important that the 801 samples are independent.
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Figure 3.1: To test our theory we performed four experiments with these four antennas
as Equipment Under Test.
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Figure 3.2: The cumulative distribution function for the random variable T is plotted
with dashed lines for 12, 35 and 100 numbers of independent samples. The results of
measurements on the four different antennas in Fig. 3.1 is plotted with solid lines. The
difference in result between the four different antennas is small, and the agreement
with theory is so good that the theoretical dashed lines are very difficult to observe.
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Figure 3.3: One example of how the received power by a pin antenna mounted inside
a well shielded test object, see Fig. 3.4, varies with irradiation direction. The test
object has been irradiated from 360 equidistant placed directions within one plane.
The incident polarisation has been kept constant, the frequency is 3.0 GHz, and the
received power has been normalised so that the average value is 1.

T , and will hence cancel each other. The price we have to pay is that we can only
calculate samples of T for half as many independent stirrer positions as we measured.

In Fig. 3.2, the measurements of the random variable T are shown for 12, 35
and 100 independent samples. Each set of curves includes four measurement curves
from the four different antennas, and somewhere in the middle the theoretical curve,
calculated with (2.56).

3.2 Real Test Objects as Equipment Under Test

We were surprised by the good accuracy between theory and measurements in Fig. 3.2.
The four antennas have different directivity patterns as well as different receiving
polarisation patterns, and, as we discussed in the introduction, should not that affect
the outcome of the experiments? We then argued that the directivity and receiving
polarisation of constructed antennas does after all vary rather slowly with direction,
and in chapter 2 we stated that the solid angle spectrum (of the electric field) in
two different directions are completely uncorrelated. Perhaps, when we change the
direction a little, the solid angle spectrum will go through all possible values, but
the directivity and receiving polarisation of our antennas remain almost constant.
Hence, every directivity and receiving polarisation of our antennas should see the
same solid angle spectrum, and as a consequence thereof, we can for every antenna
use the average directivity, which is 1 and the average polarisation efficiency, which
is 1

2
.
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Figure 3.4: The power received by a pin antenna mounted inside the test object
represents the typical power received by a wire inside the test object.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

t [dB]

F
T
(t

)

N=12

N=35

N=100

Figure 3.5: The cumulative distribution function for the random variable T is plotted
with dashed lines for 12, 35 and 100 numbers of independent samples. The results of
measurements on the four different real test objects are plotted with solid lines. Like
in Fig. 3.2, the difference in result between the four different objects is small, and the
agreement with theory is so good that the theoretical dashed lines are very difficult
to observe.
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However, every model has its limitation in validity. Well shielded test objects, has
a directivity and receiving polarisation pattern which varies rapidly with irradiation
direction, see Fig. 3.3. We therefore decided to use four different types of well shielded
objects as Equipment Under Test, one explicitly constructed to be well shielded. The
objects are all real objects filled with different forms of electronics. They have different
forms and sizes, but the volumes are in the order of a tenth of cubic decimetre to tens
of a cubic decimetre. We mounted a pin antenna inside the test object to be able to
receive electromagnetic power, see Fig. 3.4. The pin antenna represents a typical short
wire inside the test object. We thought that by testing these objects with rapidly
varying directivity and receiving polarisation patterns, we would overstep the validity
of (2.15) which is the foundation for the development of all theory in this article.

We performed the same measurements as in section 3.1, but now with our four
real test objects as Equipment Under Test instead of the four antennas. This time
we used 1334 different frequencies in the interval 1 − 18 GHz. The result can be
seen in Fig. 3.5. The agreement between theory and measurements is just as good
as in Fig. 3.2. We conclude that the theory which we have developed is valid for the
practical cases which we are interested in, and the doubts, which we have brought up,
we do not have to consider any longer.

3.3 Experiments on the A-distribution

We also want to experimentally verify the derivation of the A-distribution (sec-
tion 2.3.3). That we do by using the same measurement data as in section 3.1,
but with the important exception that we here calculate the maximum and average
values from the same set of measurement data. The result is shown in Fig. 3.6. The
measurements of the random variable A are plotted for 12, 35 and 100 numbers of
independent samples. Each bunch of curves includes the measurements results from
the four different antennas in Fig. 3.1 (4 solid lines) as well as the theoretical expres-
sion according to (2.73) plotted with a dashed line. Again, the agreement between
theory and experiments is very good.
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Figure 3.6: The cumulative distribution function for the random variable A is plotted
with dashed lines for 12, 35 and 100 numbers of independent samples. The results of
measurements on the four different antennas in Fig. 3.1 are plotted with solid lines.
Like in Fig. 3.2, the difference in result between the four different antennas is small,
and the agreement with theory is so good that the theoretical dashed lines are very
difficult to observe.



Chapter 4

Practical Advice on using the
Reverberation Chamber for
Radiated Susceptibility Testing

Fig. 4.1 shows an example of how a Radiated Susceptibility Test (RST) may be per-
formed. A transmitting antenna transmits electromagnetic energy into the chamber,
and part of that electromagnetic energy is absorbed by the critical component in the
Equipment Under Test (EUT) as well as by the reference antenna. The test proce-
dure is performed for N independent stirrer positions. The power absorbed in the
critical component, as well as the power absorbed in the reference antenna, differs
from stirrer position to stirrer position, but the expected value can (in theory) be
calculated with help of (2.42). The expected value of the power being absorbed in the
reference antenna is in practical cases much larger than the expected value for the
power being absorbed in the critical component. The reason being that the reference
antenna is a manufactured optimised antenna with impedance mismatch factor (q) as
well as radiation efficiency (η) close to 100%. The EUT, with the critical component
as load, is not an optimised antenna. In opposite it is often optimised to be an as bad
antenna as possible, and low values of the impedance mismatch factor and the radi-
ation efficiency does actually constitute that the critical component is well shielded
[20].

In performing an RST we do not focus on measuring the power being absorbed in
the critical component, but what is the stress we put onto our EUT. A good measure
of that stress, is the power which would have been absorbed in the critical component
of the EUT if the impedance mismatch factor and the radiation efficiency both had
been equal to 1. Exactly that power we measure in our reference antenna,1 if we
assume that the electromagnetic environment seen by the reference antenna is the
same as the one seen by the EUT. The measurement is preferably performed like in
Fig. 4.1 with both the EUT and the reference antenna in the RC at the same time,

1We assume that both the impedance mismatch factor and the radiation efficiency of the reference
antenna equal 1. If not, we can easily compensate for that.
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Figure 4.1: A typical Radiated Susceptibility Test (RST). One of the antennas trans-
mits electromagnetic energy into the Reverberation Chamber (RC). The other an-
tenna measures the stress we put onto the Equipment Under Test (EUT). (In this
figure the generic missile GENEC is the EUT. The author is to be taken out of the
chamber before the test is performed.)

because then the reference antenna as well as the EUT see the same lowering of the
Q-value caused by themselves.

4.1 Using Maximum Values

In the paragraph above we benefited from that the power stressed onto the EUT
was the same as the power ”stressed” onto (or differently stated, measured by) the
reference antenna. That is true for the expected value, see (2.42), and hence a good
approximation for the average over many independent stirrer positions. However, in
an RST we are most often not interested in the average power we stress onto the EUT,
but on the maximum power we stress onto the EUT. The maximum power is caused
for one of the stirrer positions, and the maximum power stressed onto the EUT will
differ from the maximum power ”stressed” onto the reference antenna. That issue is
in [21] and [22] addressed by assuming that, if we stress the EUT and the reference
antenna at many (200 in [21] and [22]) independent stirrer positions, the maximum
power stressed onto the EUT will be approximately the same as the maximum power
”stressed” onto the reference antenna, though the maximum power is not generally
reached for the same stirrer position. That assumption is however not completely
true and we will now further examine the issue.

Let us introduce two random variables U and V , where U is the maximum power
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stressed onto the EUT and V is the maximum power ”stressed” onto the reference
antenna. The maximum is taken over N independent stirrer positions. We then form
the quotient,

W (N) , U(N)

V (N)
=

U(N)

E {P}
V (N)

E {P}
. (4.1)

The new random variable W is very interesting because it tells us what the power
stressed onto our EUT is relative to the power measured in (or differently stated,
stressed onto) the reference antenna. After the last equal sign in (4.1) we have di-
vided both U and V with the expected value of the power stressed onto the EUT as
well as the reference antenna.2 Thereby we have two random variables, one in the
numerator ( U

E{P}) and one in the denominator( V
E{P}), which are mutual independent

and both have the same distribution functions as the random variable Z in (2.46).3

As a consequence thereof we can calculate the cumulative distribution function of the
random variable W as [17, p. 96],

FW (w) =

∞∫

0

FZ(zw)fZ(z)dz =

∞∫

0

(1− e−zw)NN(1− e−z)N−1e−zdz =
{
y = e−z

}

= N

1∫

0

(1− yw)N(1− y)N−1dy . (4.2)

The integral in (4.2) can be rewritten as a finite double sum,

FW (w) = N

1∫

0

N∑
m=0

(
N

m

)
(−1)mywm

N−1∑
n=0

(
N − 1

n

)
(−1)nyndy

= N

N∑
m=0

N−1∑
n=0

(
N

m

)(
N − 1

n

)
(−1)m+n

mw + n + 1
. (4.3)

The expression in (4.3) is a finite form for the cumulative distribution function, but
the sums are not well behaved and are difficult to numerically calculate for large

2As described above the expected value of the stressed power onto the EUT equals the expected
value for the power stressed onto the reference antenna, so we do not have to worry about which
one to use.

3In section 2.3 we focus on the power received by an object, here we focus on the power being
stressed onto that object. The difference is all the time the product of the impedance mismatch
factor (q) and the radiation efficiency (η). However by defining random variables where we divide by
expectation values this product will cancel, and hence we will get the same distribution functions.
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Figure 4.2: The probability density function and the cumulative density function,
respectively, of the random variable W , see (4.1). The functions are plotted for 12,
35 and 100 numbers of independent samples.

N . It is actually more beneficial to numerically calculate the cumulative distribution
function with help of the integral in (4.2). The probability density function is easily
calculated outgoing from (4.2) and (4.3),

fW (w) ≡ dFW (w)

dw
= N2

1∫

0

ln

(
1

y

)
yw [(1− yw)(1− y)]N−1 dy

= N
N∑

m=0

N−1∑
n=0

(
N

m

)(
N − 1

n

)
(−1)m+n+1m

(mw + n + 1)2
. (4.4)

Again, the sums are not well behaved for large N , and it is more beneficial to use the
integral.4 In Fig. 4.2, the distribution functions in (4.3) and (4.4), respectively, are
plotted for 12, 35 and 100 numbers of independent samples.

We now know the distribution of W , and by solving the equation,

1− α = FW (wα) , (4.5)

for

wα = F−1
W (1− α) , (4.6)

4The function ln( 1
y ) has a pole at y = 0 and that may cause some numerical problems. However,

the product ln( 1
y )yw does not have a pole at y = 0, actually it has a zero at y = 0, and the product

can with help of the l’Hôpital’s rule be shown to equal yw

w at y = 0. By approximating ln( 1
y )yw with

yw

w at the lower end of the interval, the numerical difficulties disappear.
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Figure 4.3: By multiplying the maximum power value measured in our reference
antenna by the factor w5%, we get a power value which by 95% confidence is lower
than the power stressed onto our EUT.

we can conclude that by 1− α confidence, the power stressed onto the EUT is larger
than wα times the maximum power measured in our reference antenna. In Fig. 4.3
w5% is plotted as function of the number of independent stirrer positions. We can
(with a good eyesight) see in Fig. 4.3 that if we e.g. uses 12 independent stirrer
positions, we have to subtract a security margin of 3.9 dB from the power measured
in the reference antenna to get a power value which with 95 % confidence is smaller
than the one stressed onto the EUT.

4.2 Using Average Values

We may actually do slightly better than the maximum value method proposed in sec-
tion 4.1. By only using the maximum value from N independent stirrer positions, we
do not use much of the information from the other N−1 independent stirrer positions.
Let us instead use the average power measured in our reference antenna, where the
average is taken over N independent stirrer positions. The random variable T , de-
fined in (2.54), tells us how the maximum power stressed onto the EUT is distributed
compared to the average power measured in the reference antenna. The probability
density function (2.57) and the cumulative density function (2.55), respectively, are
in Fig. 4.4 plotted for 12, 35 and 100 numbers of independent samples. In complete
similarity to (4.5) we solve the equation,

1− α = FT (tα) , (4.7)

for
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Figure 4.4: The probability density function and the cumulative density function,
respectively, of the random variable T , see (2.54). The functions are plotted for 12,
35 and 100 numbers of independent samples.

tα = F−1
T (1− α) . (4.8)

Then we can state that by 1 − α confidence, the power stressed onto the EUT is
larger than tα times the power measured in our reference antenna. In Fig. 4.5, t5%

is plotted as function of the number of independent stirrer positions. We can (with
a good eyesight) see in Fig. 4.5 that if we e.g. uses 12 independent stirrer positions,
we can add 1.3 dB to the average power measured in the reference antenna to get
a power value which with 95 % confidence is smaller than the one stressed onto the
EUT.

4.3 Comparing the Average Value Method to the

Maximum Value Method

Independent of whether the maximum value method, proposed in section 4.1, or the
average value method, proposed in section 4.2, is used, the true stress onto the EUT is,
of course, the same. In both cases we also have to measure the power in the reference
antenna for every stirrer position. The two methods are in that respect identical.
However, they will not give the same answer to the question of to which power level
we have tested our EUT. The test level is for the maximum value method,

ZT = wαZ , (4.9)

and for the average value method,
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Figure 4.5: By multiplying the average power value measured in our reference antenna
by the factor t5%, we get a power value which by 95% confidence is lower than the
power stressed onto our EUT.

QT = tαQ . (4.10)

The two test power levels are them selves random variables, with probability density
functions [17, p. 87],

fZT
(zT ) =

1

wα

fZ(
zT

wα

) , (4.11)

and,

fQT
(qT ) =

1

tα
fQ(

qT

tα
) , (4.12)

respectively.
An easy way to compare the two test methods is to relate the expectation values

of the test power level for the average value method to the test power level for the
maximum value method,

G(N, α) , E {QT}
E {ZT} =

tαE {Q}
wαE {Z} =

tα(N)

wα(N)E {Z(N)} . (4.13)

In Fig. 4.6, G at the 95% confidence level (α = 5%) is plotted as function of the
number of independent stirrer positions. Obviously, there is a small advantage in
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Figure 4.6: The figure shows the expected test power level when the average value
method is used relative to the expected test power level when the maximum value
method is used.

using the average value method. Fig. 4.7 shows another advantage with the average
value method; we have there plotted the probability density functions, (4.11) and
(4.12), for 12 independent stirrer positions and 95% confidence level. The probability
density function for QT is less spread out than ZT , and hence we will by using the
average value method get less variation in the test power level from time to time.
Still another advantage of using average values is that the influence of other random
measurement errors will be substantially reduced. Consequently, we recommend using
the average value method.
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Chapter 5

Summary

In assuming that the electromagnetic environment in the Reverberation Chamber
(RC) is completely described by (2.15) we show that the power received in the Equip-
ment Under Test (EUT) is neither affected by the directivity pattern or the receiving
polarisation pattern of the EUT. Most physical descriptions are approximations, and
we assume that for an EUT with a directivity pattern and/or receiving polarisation
pattern which vary very rapidly as function of direction, it should be possible to
reach the limit for the validity of (2.15). However, we have by testing real EUT’s
with rapidly varying directivity and receiving polarisation patterns not managed to
reach the limit of the validity of (2.15). We therefore conclude that, when we perform
a Radiated Susceptibility Testing in the Reverberation Chamber, we are within the
validity of (2.15).

In performing a Radiated Susceptibility Test (RST), the power stressed onto the
EUT is measured by a reference antenna in the RC. The power stressed onto the
EUT does differ from the power measured by the antenna, but by taking the average
measured power in the reference antenna and multiplying the result with the factor
in (4.8), we get a test power level for the RST. The power stressed onto the EUT is
with a prescribed confidence (1− α) larger than the test power value.
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Appendix A

An Integral

In the calculations done in this article we have used the following integral [19, 15.90],

1∫

0

(ln y)nymdy =
(−1)nn!

(m + 1)n+1
,

m > −1
n = 0, 1, 2, ...

. (A.1)
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