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1 Introduction

1.1 Background

The need for computational fluid dynamics, CFD, arises from the need to
understand fluid flows and the effect they have on for example aircraft and
also to better understand the physics of the flow itself. Most fluid flows in
reality are turbulent making the understanding of turbulence very important
in order to understand general fluid flows. One feature of turbulent flows
that is very important in engineering applications is the turbulent transport
of passive scalars e.g. heat. This report shall mainly deal with the modelling
of this, specifically the use of a model developed by Wikström, Wallin and
Johansson [3] which was further simplified by Högström Wallin and Johansson
[15], [12]. In this study we will make further simplifications in order to avoid
the near-wall damping functions in the modelling. The aim is to have a model
that is robust and easily implemented into general CFD methods.

1.2 Characteristics of turbulence

Turbulence is not universally well understood and there are many definitions
of its characteristics, this will be the authors attempt. Turbulence is character-
ized by chaotic, threedimensional fluctuations about a mean. In addition to this
random behavior turbulence has a very large span in length-, and timescales.
The largest of these scales are of the same size as the characteristic width of
the flow making it dependent on flow boundary’s and thus non universal.

Richardsson, an early contributor to high Re turbulence research, paraphrased
J. Swift: ”Big whorls have little whorls that feed on their velocity, and little
whorls have lesser whorls and so on to viscosity- in a molecular sense” [1]. This
later birthed the energy cascade models where turbulent energy is introduced
at the largest scales and then transported by vortex stretching via the energy
cascade to the smallest scales where the energy is then transferred to internal
energy by dissipation.

Kolmogorov [2] introduced the idea that, for high Re, the energy producing
scales, L, and the viscous dissipation scales, η, were widely separated. Building
on this he then suggested that, in time-independent flow, the rate of produc-
tion of turbulent energy at the large scales must be balanced by the rate of
destruction at the small, viscous scales. These rates must also be equal to the
flux of energy between these scales, ε, measured at any scale R in the inertial
interval η ≪ R ≪ L. In the inertial interval, Kolmogorov suggested, ε is the
only relevant parameter, and thus the only relevant length is R, η and L being
irrelevant for the statistical characteristics of motion in the inertial range. This
leads to three groups of scales: the viscous range, characterized by ε and the
molecular viscosity ν, the inertial range and the energy containing range all
having their own specifics requiring analysis.

1
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In order to calculate the relevant properties of turbulent flows two approaches
can be made: simulation or modelling. In contrast to modelling where equa-
tions for some mean quantity are solved simulation consists of solving equations
for a time dependant velocity field describing one realization of the flow. Simu-
lation consist of two general approaches: DNS (direct numerical simulation)and
LES (large eddy simulation). In DNS the Navier-Stokes equations are solved
and thus all time- and lengthscales must be resolved making this very com-
putationally expensive and practically impossible for general, high Reynolds
number, flows. In large eddy simulation a filtered velocity field representing
the large scale turbulent motions is solved together with a model for the small
scale motions making this less computationally expensive compared to DNS.
Since modelling is needed for the small scales, LES can be considered as an
intermediate step between simulation and modelling.

The chaotic, fluctuating nature of turbulence makes it plausible to treat with
statistical methods and here the modelling approach to CFD comes in. If the
variables in an incompressible flow is decomposed as

ûi = Ui + ui, p̂ = P + p, θ̂ = Θ + θ (1.1)

where Ui, P and Θ are the mean values of the velocity, pressure and passive
scalar fields while ui, p, θ are their respective turbulent fluctuations such that

¯̂ui = Ui, ¯̂p = P,
¯̂
θ = Θ (1.2)

By definition the mean of the fluctuating part is equal to zero and this process
is called Reynolds decomposition. By ensamble averaging the Navier-Stokes
equation

∂ûi

∂t
+ ûj

∂ûi

∂xj
= −1

ρ

∂p̂

∂xi
+

∂

∂xj

(

ν
∂ûi

∂xj

)

(1.3)

and the transport equation for a passive scalar

∂θ̂

∂t
+ ûj

∂θ̂

∂xj
=

∂

∂xj

(

α
∂θ̂

∂xj

)

(1.4)

by using Reynolds decomposition the Reynolds averaged transport equation
for the velocity and scalar field are obtained.

∂Ui

∂t
+ Uj

∂Ui

∂xj
= −1

ρ

∂P

∂xi
+

∂

∂xj

[

ν

(

∂Ui

∂xj
+

∂Uj

∂xi

)

− uiuj

]

(1.5)

∂Θ

∂t
+ Uj

∂Θ

∂xj
=

∂

∂xj

(

α
∂Θ

∂xj
− ujθ

)

(1.6)

The last term in the respective expressions are from top to bottom the Reynolds
stress tensor and the Reynolds scalar flux vector which result from the non-
linearity in the advection term. These correlations need to be modeled in order
to solve (1.5) and (1.6).

There are many models for these two correlations but historically it all stared
with the turbulent viscosity hypothesis and the gradient diffusion hypothesis
for the stresses and the flux vector, respectively.

−uiuj = νT

(

∂Ui

∂xj
+

∂Uj

∂xi

)

− 2

3
Kδij (1.7)

−uiθ =
νT

PrT

∂Θ

∂xi
(1.8)

2
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2 The scalar flux models

2.1 Eddy-diffusivity model

In order to have a straightforward, relatively simple model to aid in implemen-
tation and as a reference the eddy-diffusivity model (EDM) was used to model
the passive scalar flux.

−uiθ = αT
∂Θ

∂xi
, αT =

νT

PrT
(2.1)

Above αT , νT and PrT are the eddy diffusivity, eddy viscosity and the turbulent
Prantl number respectively. The eddy viscosity can be modeled in several
ways, in this case with the help of a k − ω model so that it is dependent on
the balance between turbulent kinetic energy and the dissipation of turbulent
kinetic energy.

νT =
k

ω
(2.2)

2.2 Explicit algebraic scalar flux model

A more accurate way to model the passive scalar flux is to use a model that
does not assume the scalar flux to be aligned with the mean scalar gradient.

uiθ = −(1 − cθ4)A
−1
ij ujuk

k

ε

∂Θ

∂xk
(2.3)

The equation (2.3) is one such model, a so called explicit algebraic scalar flux
model (EASFM) by Wikström et al. [3]. It utilizes an algebraic relation for
the passive scalar flux consisting of mean flow quantities by an equilibrium
condition in the transport equations for the normalized passive scalar flux. If
the velocity and scalar gradients are large, this is a reasonable assumption This
approach to scalar flux modelling is analogous to explicit algebraic Reynolds
stress modelling, briefly touched in the next chapter, for the Reynolds stress
anisotropies. In general, the assumption that the advection and diffusion of the
scalar flux is negligible gives an nonlinear, implicit set of algebraic equations.
The way around this problem used by Wikström et al. [3] was to use a nonlinear
term, the cθ5 term, in the model of the pressure scalar-gradient correlation and
molecular destruction. With the particular choice of cθ5 = 1/2 the nonlinearity
will be cancelled out.

Πθi − εθi = −
(

cθ1 + cθ5
k

εkθ
ukθ

∂Θ

xk

)

ε

k
uiθ + cθ2ujθ

∂Ui

∂xj

+ cθ3ujθ
∂Uj

∂xi
+ cθ4uiuj

∂Θ

∂xj
,

(2.4)

In equation (2.4) kθ is the half scalar variance, defined as

kθ ≡ θ
2

2
. (2.5)

3
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Now, with a clever choice of model constants and some algebra the model (2.3)
was obtained. Most of the terms in equation (2.3) are recognizable such as
ujuk (Reynolds stress), k (turbulent kinetic energy), ε (dissipation of turbulent
kinetic energy) and ∂Θ/∂xk (gradient of the mean passive scalar) but A and
cθ4 are not. The latter is a constant used for calibration of the model while A
is a second rate tensor A ≡ Aij :

Aij = Nθδij + cSSij + cΩΩij , (2.6)

where

Nθ = G +
1

r

Pθ

εθ

(

1

2
− cθ5

)

(2.7)

G =
1

2

(

2cθ1 − 1 − 1

r
+

PK

ε

)

(2.8)

and

Sij =
1

2

k

ε

(

∂Ui

∂xj
+

∂Uj

∂xi

)

, Ωij =
1

2

k

ε

(

∂Ui

∂xj
− ∂Uj

∂xi

)

(2.9)

In (2.7) the choice cθ5 = 1
2 makes Nθ equal to G leading to a less complex

model, in this report this choice of cθ5 will be used. In order to obtain the
inverse of A the so called Cayley-Hamilton theorem is used. This theorem
says that any square matrix satisfies its own characteristic equation. In the
case of A it reads:

A3 − tr{A}A2 +
1

2

(

tr{A}2 − tr{A2}
)

A − det(A)I = 0, (2.10)

Here I is the identity matrix, det(A) and tr{A} are the determinant and trace
of A respectively. To obtain A−1 both sides of (2.10) are multiplied by A−1

A−1 =
1
2

(

tr{A}2 − tr{A2}
)

I − tr{A}A + A2

det(A)
. (2.11)

Now (2.6) is inserted into (2.11) yielding:

A−1 =

(

G2 − 1
2Q1

)

I− G (cSS + cΩΩ) + (cSS + cΩΩ)
2

G3 − 1
2GQ1 + 1

2Q2

, (2.12)

where the invariants of the mean flow gradients are,

IIS ≡ tr{S2}, IIΩ ≡ tr{Ω2}, IIIS ≡ tr{S3}, IV ≡ tr{SΩ2}, (2.13)

Q1 ≡ c2
SIIS + c2

ΩIIΩ, Q2 ≡ 2

3
c3
SIIIS + 2cSc2

ΩIV. (2.14)

The term k/ε, describing a turbulent timescale, is replaced with a timescale
proposed by Durbin [5] which gives a more physically correct description near
and on the wall.

τ = max

(

k

ε
, Cτ

√

ν

ε

)

, Cτ = 6.0 (2.15)

The model constants are defined as follows:

cS = 1 − cθ2 − cθ3 (2.16)

cΩ = 1 − cθ2 + cθ3 (2.17)

cθ1 = c′θ1

r + 1

r
(2.18)

4
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where r is the scalar to dynamic time ratio defined as

r =
kθ/εθ

k/ε
(2.19)

where εθ is the destruction of kθ, the half scalar variance. Depending on the
value of these constants the model will of course behave differently. In this
work a set of constants used by Högström et al. [15] were used such as

cθ1 = 4.51 cθ2 = −0.47 cθ3 = 0.020

cθ4 = 0.08 cθ5 = 0.5

In order for the model to better predict the gradient in the center of the channel
an approximation of the diffusion term is added to (2.7). The constant CDθ

is set to 6.7 to get the best possible agreement with DNS data. This value is
slightly different to the one used by Högström et al. [15], CDθ = 8.0, because
of the approach used in this report.

Nθ =
1

2

(

2cθ1 − 1 − 1

r
+

PK

ε

)

+ CDθ max

(

1 − PK

ε
, 0

)

(2.20)

Now all the parts of (2.3) are defined in terms of the flow variables. The model
by Högström et al. [12] was used together with the Wallin & Johansson [4] ex-
plicit algebraic Reynolds stress model that is able to make reasonably correct
predictions of all Reynolds stress components and also their near-wall behav-
ior. In this study we will use the EARSM with simplified near-wall treatment,
without any near-wall damping functions or wall distance dependency, in or-
der to have a version that is more attractive in implementation and use in
industrial CFD solvers. The drawback is, thus, that the near-wall behavior for
the Reynolds stress tensor and heat flux vector cannot be expected to be very
accurate.

5
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3 The turbulence models

In this report two turbulence models have been used: the Wilcox k − ω model
and the Wallin and Johansson EARSM model together with the Hellsten k−ω
model. This chapter will give a brief description of them and their use.

3.1 Wilcox k − ω

The Wilcox or standard k − ω model is, together with the k − ε model, the
most widely used two equation models. Like the name implies it consists of
equations which are solved for the turbulent variables k and ω

Dk

Dt
=

∂

∂xj

((

ν +
νT

σk

)

∂k

∂xj

)

+ P − ε (3.1)

Dω

Dt
=

∂

∂xj

((

ν +
νT

σω

)

∂ω

∂xj

)

+ γ
Pω

k
− βω2 (3.2)

γ, β, σk and σω are model constants defined further down. Now with the
dissipation rate defined as

ε ≡ β∗ωk (3.3)

the turbulent viscosity

νT =
k

ω
(3.4)

and the production of turbulent kinetic energy

P ≡ −uiuj
∂Ui

∂xj
(3.5)

only the eddy viscosity hypothesis is now needed to make the k − ω model
complete. It is defined as

uiuj =
2

3
kδij − 2νT S∗

ij (3.6)

where

S∗

ij =
1

2

(

∂Ui

∂xj
+

∂Uj

∂xi

)

(3.7)

Finally the model constants are

Model constant Value
σk 2.0
σω 2.0
γ 5/9
β 3/40

7
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3.2 Wallin & Johansson EARSM with Hellsten k − ω

The Hellsten k−ω model [14] was created specifically to be used together with
the W & J EARSM model as a scale determining two equation model in high
lift aerodynamic CFD applications. As it differs on many points from Wilcox
k − ω it is presented in detail.

Dk

Dt
=

∂

∂xj

((

ν +
νT

σk

)

∂k

∂xj

)

+ P − ε (3.8)

Dω

Dt
=

∂

∂xj

((

ν +
νT

σω

)

∂ω

∂xj

)

+ γ
Pω

k
− βω2+

+
σd

ω
max

(

∂k

∂xj

∂ω

∂xj
; 0

)

(3.9)

Similarly to the k−ω models by Menter [13] this model uses a mixing function
to better deal with the differences in fluid behavior at different distances to the
walls. The mixing function varies the model constants in space as a function
of the wall distance. The model coefficients will vary in space according to













γ
β
σk

σω

σd













= fmix













γ1

β1

σk1

σω1

σd1













+ (1 − fmix)













γ2

β2

σk2

σω2

σd2













(3.10)

and have the following numeric values

Model constant set 1 set 2
γ 0.518 0.44
β 0.0747 0.0828
σk 0.91 0.91
σω 1.89 1.0
σd 1.0 0.4

while γ1, β1 and σω1 are related through the log-law relation

γ1 =
β1

β∗
− κ2σω1√

β∗
(3.11)

with β∗ = 0.09 and κ = 0.42. The mixing function is defined as

fmix = tanh(CmixΓ4), Γ = min(max(Γ1; Γ2); Γ3) (3.12)

with the arguments

Γ1 =

√
k

β∗ωd
(3.13)

Γ2 =
500ν

ωd2
(3.14)

Γ3 =
20k

max(d2(∇k · ∇ω)/ω; 200k∞)
(3.15)

where d is the distance to the wall and Cmix = 1.5. The Reynolds stresses are
modeled through the Reynolds stress anisotropy tensor defined as

aij =
uiuj

k
− 2

3
δij (3.16)

8
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but to make implementation of the model into CFD solvers more practical
the model is instead expressed using eddy viscosity formulation with an extra
anisotropy tensor.

uiuj =
2

3
kδij − 2νtS

∗

ij + ka
(ex)
ij . (3.17)

The effective eddy viscosity reads

νT = Cµkτ, Cµ = −1

2
(β1 + IIΩβ6) (3.18)

and the extra anisotropy

a
(ex)
ij = aij − (β1 + IIΩβ6)Sij

+ β3

(

ΩikΩkj −
1

3
IIΩδij

)

+ β4 (SikΩkj − ΩikSkj)

+ β6

(

SikΩklΩlj + ΩikΩklSlj − IIΩSij −
2

3
IV δij

)

+ β9 (ΩikSklΩlmΩmj − ΩikΩklSlmΩmj) (3.19)

In equation (3.19) S and Ω are the nondimensional strainrate and vorticity
tensors defined in equation (2.9) and used with the Durbin time scale, equation
(2.15). The mean flow invariants, IIΩ and IV are defined in equations (2.13).
The coefficients βx are functions of these invariants as

β1 = −N
(

2N2 − 7IIΩ

)

Q
, β3 = −12N−1IV

Q
,

β4 = −2
(

N2 − 2IIΩ

)

Q
, β6 = −6N

Q
, β9 =

6

Q
,

(3.20)

with the non-singular denominator

Q =
5

6

(

N2 − 2IIΩ

) (

2N2 − IIΩ

)

. (3.21)

For two-dimensional flows N is solved from a cubic equation.

N =
A

′

3

3
+







(

P1 +
√

P2

)1/3
+ sign

(

P1 −
√

P2

)

|P1 −
√

P2|1/3, P2 ≥ 0,

2
(

P 2
1 − P2

)1/6
cos

[

1
3arccos

(

P1√
P 2

1
−P2

)]

, P2 < 0,

(3.22)
In three dimensions the equation for N is of the sixth order and without an
explicit solution. The treatment of three dimensional cases will not be assessed
here as it is a much more complicated case, for more information see [3]. P1

and P2 are defined as follows

P1 =

(

A
′

3

2

27
+

9

20
IIS − 2

3
IIΩ

)

A
′

3,

P2 = P 2
1 −

(

A
′

3

2

9
+

9

10
IIS +

2

3
IIΩ

)3

,

(3.23)

and

A
′

3 =
9

5
+

9

5
CDiff max

(

1 + β
(eq)
1 IIS ; 0

)

, (3.24)

where the second term models the otherwise ignored diffusion in the anisotropy.

The parameter β
(eq)
1 is defined as

β
(eq)
1 = −6

5

N (eq)

(N (eq))2 − 2IIΩ
(3.25)

9



FOI-R--2079--SE

and with

N (eq) =
81

20
, CDiff = 2.2 (3.26)

10



FOI-R--2079--SE

4 General 1D-solver and channel
computations

To aid in testing of the models and to provide reference results a general 1D-
solver for partial differential equations was used. The solver uses a MAPLE
[6] worksheet to input equations, constants, boundary and initial conditions.
Because of this the input of complicated tensor expressions can be made in a
symbolic way which, in turn, greatly shortens debugging time and allows the
user to focus more on the physics of the problem. Special Maple routines then
produce Fortran code which can be compiled in order to solve the problem.

4.1 Implementation of the equations

The expression (1.6) shows the general (tensor) form of the Reynolds averaged
transport equation for a passive scalar which can be simplified for the fully
developed channel flow case that the program was made for. All derivatives
with respect to x as well as the mean velocity in the y-direction are equal to
zero and this leaves us with

∂Θ

∂t
=

∂

∂y

(

α
∂Θ

∂y
− vθ

)

(4.1)

where the term −vθ, the passive scalar flux, needs to be modelled. Actually,
as the flow is also stationary the derivative with respect to time is also zero,
but it will be left as it is for reasons explained later.

4.1.1 Eddy-diffusivity model

In this case one has only to combine (4.1) with (2.1) to get an expression ready
for the 1D-solver.

∂Θ

∂t
=

∂

∂y

(

(α + αT )
∂Θ

∂y

)

(4.2)

or, in a more general form

∂Θ

∂t
=

∂

∂y

(

(
ν

Pr
+

νT

PrT
)
∂Θ

∂y

)

(4.3)

where ν and Pr are the viscosity and the Prantl number respectively.

4.1.2 Explicit algebraic scalar flux model

As i in (2.3) is equal to 2 in this example the expression (2.3) is simplified to

vθ = −(1 − cθ4)A
−1
2j ujuk

k

ε

∂Θ

∂xk
(4.4)
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and, as all derivatives with respect to x are equal to zero (4.4) is expanded to

vθ = −(1 − cθ4)
k

ε

∂Θ

∂y

(

A−1
21 uv + A−1

22 v2
)

(4.5)

with

A−1
21 =

tr{A}A21 + A2
21

det(A)
(4.6)

A−1
22 =

1
2 (tr{A}2 − tr{A2}) − tr{A}A22 + A2

22

det(A)
(4.7)

where

A =





Nθ
k
2ε

∂U
∂y (cS + cΩ) 0

k
2ε

∂U
∂y (cS − cΩ) Nθ 0

0 0 Nθ



 (4.8)

so

tr{A} = 3Nθ (4.9)

det(A) = Nθ(N
2
θ −

(

k

2ε

∂U

∂y

)2

(c2
S − c2

Ω)) (4.10)

tr{A2} = 3N2
θ +

(

k

ε

∂U

∂y

)2

(c2
S − c2

Ω)) (4.11)

Now everything is identified and (4.1) changes to

∂Θ

∂t
=

∂

∂y

(

(α + αeff
T )

∂Θ

∂y

)

(4.12)

where the effective diffusivity, in this specific case of fully developed channel
flow, becomes.

αeff
T = (1 − cθ4)τ

(

A−1
21 uv + A−1

22 v2
)

(4.13)

4.2 Implementations of scalar flux models in the general
1D-solver

The 1D-solver inputs are algebraic equations in a MAPLE worksheet, the equa-
tions must be on the form

∂q

∂t
= f

(

q,
∂q

∂y
,
∂2q

∂y2
, . . .

)

(4.14)

where q is a vector of unknowns. Now the reason for keeping the derivative
with respect to time in (4.1) is obvious, it is the way in which the program
reads the input.

4.3 Grid

The grid consists of two mirrored halves with 100 grid points and a stretch
factor of 1.04 and thus have a total of 201 points. The thickness of the fist cell
in wall units is ∆y+ = 0.02.

4.4 Calculations

As the main reasons for the 1D computations were to obtain results for com-
parison and to familiarize with the model and the implementation of it this
section will not go into any details concerning the behavior of the models or
the solver. A more detailed analysis of the model and its behavior with the
1D-solver can be found in the report by Högström [12].
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4.4.1 Eddy-diffusivity model

The EDM model predicts the mean scalar profile for DNS data rather well, see
figure 4.1. The uθ component of the scalar flux, however, is not well predicted
as this model assumes that it is zero. This, of course, is because the EDM model
predicts the entire flux parallel to the mean scalar gradient which in this case
is perpendicular to the walls. It is clear that in this case such a simplification
of the scalar flux excludes important characteristics of the flow. The uθ is in
fact larger by some degree and can be expected to play a significant role in
the scalar transport of turbulent boundary layers in cases where the mean flow
variation in the streamwise direction is significant. The T + plot shows that the
DNS and EDM agree rather well up to y+ ∼= 10 when they start to deviate.
This however, is not because of the absence of uθ but of the the erroneous
prediction of vθ. As a conclusion the EDM model in this case can be said to
predict mean scalar profiles well, as well as the vθ component of the scalar flux.
The simplicity of the model however, sacrifices physical correctness. The most
obvious example is of course the complete absence of the uθ component of the
scalar flux something that will cause problems if the mean flow variation in the
streamwise direction is significant.

4.4.2 Explicit algebraic scalar flux model

In figure 4.2, results from the EASFM model show clearly that this model is
a lot more physically correct than the EDM. Here, just as with the EDM, the
mean scalar profile is well predicted but unlike the EDM the uθ component is
not predicted equal to zero. The model fails to accurately predict uθ close to
the wall. This is due to the simplified near-wall treatment used in this study
in both the k − ω model as well as in the EASFM and is, thus, related to the
underestimation of k by the EARSM as can be seen in the bottom of figure 4.3.
This can be corrected by using damping functions as in the report by Högström
[12]. Such functions are typically calibrated for channel flow which, if one then
wants to use it somewhere else, makes it necessary to make assumptions about
the calculated flow. To use the fact that turbulence is universal at a certain
scale, the inner layer, to motivate the use of the functions in general cases is
perhaps not the most far flung of ideas but non the less widely used. In this
report the EARSM and the k − w model, as well as the EASFM, are free of
damping functions making them more simple. Unfortunately in this case they
are not accurate enough to allow the correct prediction of uθ but since the
mean scalar profile is not directly influenced by uθ, only by vθ, this deficiency
might be considered acceptable. Altough the uθ component does not affect
the mean profile the EASFM model is still a better, more physically correct,
model than the EDM evident in the T + plot in which the EARSM data better
agrees with the DNS compared to the EDM. To conclude the EASFM model
is better than the EDM in every way except simplicity. An EASFM requires a
turbulence model that predicts the individual Reynolds stresses as correctly as
possible in order to fully utilize the potential of the model and this is in this
case obtained by the EARSM approach.
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Figure 4.1: Eddy-diffusivity model , Top: ◦, Θ and U from DNS; — , Θ and U from
EDM; Middle: ◦, vθ and uθ from DNS; — , vθ and uθ from EDM; Bottom: ◦, T+ from
DNS; — ,T+ from EDM
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Figure 4.2: HJJW EASFM with EARSM and DM, CDΘ = 6.7 , Top: ◦, Θ and U from
DNS; — , Θ and U from HJJWd + DM; Bottom: ◦, vθ and uθ from DNS; — , vθ and uθ
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5 EDGE calculations

5.1 Introduction

EDGE is a parallelized CFD flow solver system developed by FOI [8], [9]. It
is capable of 2D/3D viscous/inviscid, compressible flow problems on unstruc-
tured grids with arbitrary elements. The flow solver employs an edge-based
formulation which uses a node-centered finite-volume technique to solve the
governing equations. The control volumes are non-overlapping and are formed
by a dual grid, which is computed from the control surfaces for each edge of the
primary input mesh. In the flow solver, the governing equations are integrated
explicitly towards steady state by Rung - Kutta time integration. Convergence
is accelerated using agglomeration multigrid and implicit residual smoothing.
The implementation of the EASFM model into EDGE adds a new function-
ality to the code. For the edge-calculations gridgeneration was handled by an
FFA-developed gridgenerator, FFANET [7]. The program produces structured
2D/3D multiblock grids by transfinite interpolation and elliptic smoothing.

5.2 Fully developed turbulent channel flow

Because of availability of both DNS and 1D-solver data fully developed channel
flow was chosen as a first testcase for the EASFM in EDGE

5.2.1 Grid and boundary conditions

In order to achieve a solution where the turbulence and heat flux are fully
developed the length of the channel must be of the order 100h, where h is the
channel half-width. In order to correctly resolve the boundary layer turbulence
the first cell must be sufficiently small. To calculate this size the friction velocity
was taken from the DNS data, the freestream velocity set to 34m/s and the
static viscosity, µ, set to 10−5. Then the density was calculated

ρ =
P

RT
(5.1)

where P = 105Pa, R = 287J/kgK and T = 300K. With the density calculated
the dynamic viscosity is obtained through ν = µ/ρ. The smallest cell size, ∆,
can then be calculated by

y+
∆ =

uτ∆

ν
=⇒ ∆ =

y+
∆ν

uτ
(5.2)

The y+ value closest to the wall, y+
∆, is 0.5 for the turbulence model used. The

boundary conditions for the channel were set to the following. Inlet: velocity,
temperature and pressure specified. Outlet: pressure specified. Both walls were
set to isothermal no-slip with a difference in temperature of 30 K (315-285 K).
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5.2.2 Calculations

The calculations were executed with a second degree accurate central scheme
and low Mach number preconditioning. The results proved to be quite strange
however, as seen i figure 5.1. This combination of discretization and boundary
condition seemed to overestimate the friction coefficient, equation 5.3, making
the balance between centerline and near wall speeds wrong. To investigate the
differences in prediction of the friction coefficient between central and upwind
schemes a second order accurate upwind scheme was also tested using the same
grid and boundary conditions. The upwind scheme is not compatible with low
Mach number preconditioning.

cf = 2

(

uτ

Um

)2

(5.3)

In equation (5.3) Um is the bulk mean velocity. The results of this investigation
were that cf was equal to 0.0096 and 0.0106 for the upwind and the central
scheme, respectively. When using the upwind scheme with the same boundary
and initial conditions as in the central case the Reynolds number increased by
22%. More on the reasons for this will follow.

5.2.3 Numerical accuracy in EDGE

During investigation of the dependence of discretization scheme upon cf pre-
diction it became obvious that EDGE is not very accurate at these low Mach
numbers, and the combination of isothermal walls and a central discretization
scheme makes EDGE predict cf in an unphysical way. As seen in figure A.1 the
friction coefficient never settles down in this case but decreases rather steadily
along the length of the channel and makes a kink at the outlet. The kink at the
outlet is probably the boundary condition trying to balance the pressure and
velocity here. The pressure distribution close to the wall, as seen in figure A.3,
may be the root of evil in this case as it is clear that some kind of instability
is present with the combination of central scheme and isothermal walls. The
oscillations in P extend to y+ ∼= 5 putting the problem mainly in the viscous
sublayer, y+ < 5. In this region the Reynolds stresses are negligible compared
to viscous stresses making the prediction of viscous stress a promising candi-
date for investigation. Pressure is related to the density by equation (5.1) but
no oscillations are visible either in figure A.5 or in figure 5.1. Since the pressure
is almost constant with respect to y, the amplitude of the pressure oscillations
is small.

Prediction of turbulent kinetic energy differs between the cases as seen in figure
A.4. For the central-isothermal case the level of k in overall is smaller because
of a lower Reynolds number but other than that no significant difference is
obvious.

cf predictions were found to be unexpectedly inaccurate for the upwind scheme.
A deviation of more than 10% from DNS values is simply not good enough.
For this reason a revised wallflux routine for the upwind scheme with a modi-
fied boundary condition was tested. The entropy fix, which is a parameter in
the upwind scheme that controls the amount of artificial viscosity in low-speed
regions, was decreased with a factor of ten from its standard value. As can
be seen in figure A.6 the new routine is actually worse than the old one and
the tweaked settings does not affect the prediction of cf at all for this case.
The modification of the boundary condition implies how the artificial flux at
the wall is controlled, and it is clear from this study that this is an important
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Figure 5.1: EDGE results with EDM and Wallin & Johansson EARSM + Hellsten k −ω

using central scheme, preconditioning and isothermal walls. Top: ◦, U+ from DNS; —
, U+ from EDGE; - - -, U+ from 1D-solver using EDM. Bottom: ◦, Θ+ from DNS; — ,
Θ+ from EDGE; - - -, Θ+ from 1D-solver using EDM

aspect that needs to be further investigated.

Investigation of the grid resolutions impact on these problems was made by
generating a grid with 201 grid points in the direction normal to the walls as
opposed to the original grid, that has 101. The grid was generated in such a
way that the fist walldistance, y+, was set to half that of the 101 point case
and then the same stretch function was used. The results of the calculations
with the finer grid was that cf decreased by only 3% at x = 0.06 compared to
the coarse grid when using a central discretization scheme with the isothermal
wall boundary condition. When grid resolution goes toward infinity the cen-
tral and upwind schemes should yield the same results as they, when infinity is
reached, are the same. As the 101 point grid is not exactly a coarse grid and
the 201 is even less so the results are not very satisfying, one should be able to
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see more differences between the two cases and a clearer likeness between the
upwind and central scheme. In figure A.3 the oscillations for the fine grid case
seem more compressed and confined to a smaller distance, in y+, from the wall
compared to the coarser grid. As a general comment it can be said that the
central scheme uses low Mach number preconditioning in this case, an option
the the upwind scheme does not have. As the Mach number is quite low this
can be expected to be a significant advantage for the central scheme.

5.3 Plane impinging jet

To evaluate the prediction of heatflux by EDGE and the EASFM a DNS study
of a plane impinging jet by Hattori et al. [11] was used for comparison. The
Reynolds number based on inlet mean velocity and the hydraulic diameter
(equal to the width) of the inlet channel was 9120 for the DNS.

Rem =
2VmD

ν
(5.4)

5.3.1 Grid and boundary conditions

To make an educated guess of the size of the smallest cell the inlet channel
was computed using the 1D-solver tuned to the Reynolds number of the DNS
and uτ was evaluated. Then the Reynolds number based on the mean velocity
and the Reynolds number based on the friction velocity was used to predict
the friction velocity in the inlet channel of the impinging jet.

Re1D

Reτ1D
=

U1DL
ν

uτ1DL
ν

=
U1D

uτ1D
(5.5)

This universal relation was used to calculate the friction velocity. Subscript 1D
denotes values from the 1D-solver and im denotes impinging jet inlet channel
values.

U1D

uτ1D
=

Vim

uτim
=⇒ uτim = Vim

uτ1D

U1D
(5.6)

The mean velocity in the inlet channel was set to 30m/s and the hydraulic
diameter to 1. This together with the definition of the Reynolds number (5.4)
gives the dynamic viscosity. The appropriate y+ for a well resolved computa-
tion was chosen to 0.5 and this together with the definition of y+ gives the size
of the first cell with the help of equation (5.2). The grid used for the impinging
jet calculations has a smallest cellsize of 0.0017 and a total of 58650 grid points.
The boundary conditions were set to the following. Inlet: velocity and tem-
perature specified. Outlet: pressure specified. All the walls except the lower
one were set to adiabatic no-slip. As EDGE does not have a constant heatflux
boundary condition as that used in the DNS an isotermal no-slip condition was
used on the lower wall.

5.3.2 Calculations

The shear layer on the border of the jet creates vortices who are transported
downstream by the mean flow. It was found that the central scheme captured
this unsteady phenomena and, thus failed to converge to a steady state solu-
tion. A second order upwind scheme was tested and proved to stabilize this
phenomena and a steady state solution could be obtained. The dampening
effect that the upwind scheme gives could also have been obtained by mak-
ing the grid coarser in the shear layer and running a central scheme. This
approach would aim at not resolving the creation of the vortices but was not
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Figure 5.2: Computational domain for the impinging jet (not to scale). D=1, H=2D. Inlet
channel has 60*140 gridpoints, outlet 201*250 gridpoints

tested because of the good results from the upwind scheme. Time accurate
calculations, though maybe the most intuitively promising approach, leads to
additional problems. First and foremost is that this approach aims at resolving
the instantaneous turbulent field something that, as turbulence per definition
is three-dimensional and the computational field is two-dimensional, is quite
doubtful. Moreover, a RANS approach is in principal not valid for time ac-
curate calculations when the resolved time scale is of the same order as the
turbulence. As the instantaneous field is not of interest in this case anyway
timeaccurate calculations were abandoned.

5.3.3 Comparison of some turbulence models

During the setup of the impinging jet calculations the Wilcox k-ω turbulence
model was used as it is less sensitive than the EARSM type models. In figure
5.3 two of the differences between EARSM and k-ω models are illustrated. The
k-ω model predicts higher turbulent kinetic energy at the point where the jet
strikes the wall which might expect to affect heat transfer in this area. The
reason for this is that the production of turbulent kinetic energy in a standard
eddy-viscosity model such as the k − ω model is proportional to the square
of the strain rate tensor, S∗

ij in equation (3.7), whereas in the EARSM it is
directly proportional. The shear layer at the edge of the jet also varies between
the two models with EARSM predicting slightly more turbulent kinetic energy
in this area. This can be because of the higher turbulent kinetic energy at the
impinging point and thus it may not be an independent phenomenon.

Other differences are that the recirculating zone is larger in the EARSM cal-
culation, making the reattachment of the flow occur further away from the jet
as seen in figure 5.4. Another effect is that the velocity magnitude close to the
lower wall stays high further down for the EARSM due to the squeezing effect
by the larger recirculation. The effect all this has on the heat transfer can be
displayed by plotting the Nusselt number,

Nu =
2qwD

λ∆Θ
(5.7)

where qw is the wall heat flux, D the width of the inlet channel, λ the thermal
conductivity and ∆Θ the temperature difference between the inlet and the
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Figure 5.3: Comparison of Wilcox k-ω (left) and Wallin & Johansson EARSM + Hellsten
k-ω(right), prediction of turbulent kinetic energy

Figure 5.4: Comparison of Wallin & Johansson EARSM + Hellsten k-ω(top) and Wilcox
k-ω, visualization of differences in recirculating flow size and reattachment point loca-
tion. Greyscale is turbulent kinetic energy

impinging wall. As can be seen in figure 5.5, the Nusselt number for the k-
ω model is higher where it predicted a higher turbulent kinetic energy than
the EARSM. Also the Nusselt number is lower compared to the EARSM from
x/D ≈ 5 due to that the lower velocity close to the wall in this area generates
less turbulence.

5.4 Issues on the implementation of EASFM in EDGE

After the channel case had been set up in EDGE the idea was to imple-
ment the EASFM model into EDGE. This, however, proved to be rather more
complicated than expected. Implementation was first attempted using code-
generating software related to the 1D-solver mentioned earlier. This software
is capable of translating algebraic equations into fortran code compatible with
the EDGE routines. Testing revealed convergence problems as the solutions
blew up within a few iterations leading to suspicions of numerical stability
problems. In order to investigate this a numerical stability analysis was made.

5.4.1 Numerical stability analysis

Consider the diffusive term of the governing equation for temperature.

∂T

∂t
=

∂

∂xj

(

αij
∂T

∂xj

)

(5.8)

Now let T instead denote a small perturbation around a valid solution, the
equations for the perturbation and the solution are the same as the equation
for the solution is linear. To investigate the behavior of the perturbation, or
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Figure 5.5: Comparison of k − ω, Wallin & Johansson EARSM + Hellsten k-ω and
DNS. Top: Nusselt number from impinging jet case. Bottom: Friction coefficient from
impinging jet case. —, Wallin & Johansson EARSM + Hellsten k-ω; ..., Wilcox k-ω; o,
DNS

error, in time the energy norm of equation (5.8) is considered. First equation
(5.8) is multiplied with T and integrated over the computational domain.

∫

V

T
∂T

∂t
dV =

∫

V

T
∂

∂xi

(

αij
∂T

∂xj

)

dV (5.9)

which can be rewritten as

∫

V

∂

∂t

(

1

2
T 2

)

dV =

∫

V

[

− ∂T

∂xi
αij

∂T

∂xj
+

∂

∂xj

(

αij
∂

∂xj

(

1

2
T 2

))]

dV (5.10)

and

∂

∂t

∫

V

1

2
T 2dV = −

∫

V

∂T

∂xi
αij

∂T

∂xj
dV +

∫

δV

αij
∂

∂xj

(

1

2
T 2

)

nidδ (5.11)
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The energy norm of the perturbation says that the error will decrease in time
if the right hand side of equation (5.11) is negative. The last term must be
considered when setting boundary conditions but the focus here will be on the
volume term. The first term is strictly negative if

∂T

∂xi
αij

∂T

∂xj
(5.12)

is strictly positive and this is the case if αij is positive definite. Now, according
to equation (2.3) αij is

αij = (1 − cθ4)A
−1
ik ukuj

k

ε
(5.13)

and since Aij is positive definite A−1
ij is this as well. The Reynolds stress ten-

sor, uiuj , is also positive definite. However, an inner product of two positive
definite tensors is not necessarily positive definite and, thus, αij is not strictly
positive definite and a numerical instability may occur.

As a way to attempt to solve the stability problem an effective eddy-diffusivity
may be obtained by minimizing the error e = eiei, where

ei = αij
∂T

∂xj
− αeff ∂T

∂xi
(5.14)

by the least squares method by setting ∂e/∂αeff = 0.

e = eiei = (αeff )2
∂T

∂xi

∂T

∂xi
− 2αeff ∂T

∂xi
αij

∂T

∂xj
+ αij

∂T

∂xj
αik

∂T

∂xk
(5.15)

∂e

∂α
= 0 = 2αeff ∂T

∂xi

∂T

∂xi
− 2

∂T

∂xi
αij

∂T

∂xj
(5.16)

which gives

αeff =

∂T
∂xi

αij
∂T
∂xj

∂T
∂xk

∂T
∂xk

(5.17)

Now, αij can be written as

αij = αeff δij + (αij − αeff δij) (5.18)

and with equation (5.18) the relation (5.12) can be written as

∂T

∂xi
αij

∂T

∂xj
=

∂T

∂xl
αeff ∂T

∂xl
+

∂T

∂xi
(αij − αeff δij)

∂T

∂xj
(5.19)

Now, the first term on the right hand side together with equation (5.17) reads

∂T

∂xl
αeff ∂T

∂xl
=

∂T
∂xl

∂T
∂xi

αij
∂T
∂xj

∂T
∂xl

∂T
∂xk

∂T
∂xk

=
∂T

∂xi
αij

∂T

∂xj
(5.20)

this means that the last term in equation (5.19) must be equal to zero. This
implies that, as it disappears in the stability criteria, the second term in equa-
tion (5.18) will not contribute to the stability. Now a modified diffusion tensor
can be proposed as

α∗

ij = max(αeff , 0)δij + (αij − αeff δij) (5.21)

which will preserve stability also in the case that αij is not positive definite.
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6 Comparison of EDGE and Fluent

In parallell with the work on this thesis the author attended the course ”applied
computational fluid dynamics”, 5C1213, at KTH. The chosen project was to
use Fluent [10] to predict turbulence and heat transfer in an impinging jet. The
Fluent results in this report are based on lessons learned during this project.
A new mesh was used for the thesis and more time was invested in details
regarding the treatment of the boundary layer in Fluent.

6.1 Grid and boundary conditions

The idea behind this comparison at first was to compare Fluent and EDGE
with the same input, or as close as possible. However, due to that it proved
impossible to obtain a solution in Fluent with a similar grid to the EDGE case a
more simple grid was used together with Fluent. The problem was that Fluent
refused to produce a turbulent boundary layer in the inlet channel and thus the
inlet became a laminar channel flow making the two cases too different. The
only explanation to the problems seems to be that the grid was too fine and
somehow this made the solver predict a laminar solution in the inlet channel.
A more coarse grid with a ∆y+

1 = 1 was constructed and solved the problem.
Gridgeneration was handled with Gambit, a mesh/preprocessing software that
is bundled with Fluent. Boundary conditions were, with the exception of inlet
pressure, set to the same values as in the EDGE case. Inlet pressure was
adjusted to give the correct Reynolds number at the inlet channel.

6.2 Calculations

Fluent calculations were made with three turbulence models, the realizable
k − ε, standard k − ε and the k − ω model. The results are visible in figure
6.1 where the data is presented together with results from the EDGE k − ω
calculations as well as DNS data. The data seems to agree rather well with the
DNS, only the spike at x/D ≈ 0.5 slightly disturbs the agreement. The spike is
located at the interface between two boundaries and might be related to how
the boundary conditions are treated in Fluent. It may also be the result of
inadequate grid resolution and if so it may be fixed by further grid refinement.
As can be seen in figure 6.2 the prediction of turbulent kinetic energy is rather
different between the models. The shear layer on the jet is in the case of the
k− ε models predicted to be rather wide giving the jet in itself a more ”flared”
appearance than the k − ω. This may be connected to the difference in recir-
culation zone shape as the k − ε models give smaller, more concentrated and
less stretched in the x-direction, zones as opposed to the k−ω. The differences
between the two k−ε models are that the realizable seems to predict a smaller
amount of k at the impinging point and in general is half way between the
standard k − ε and the k − ω model. For the k − ω model Fluent and EDGE
results in figure 5.3 compare well.
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The Fluent calculations were, as mentioned, computed with a rather coarse
grid compared to the EDGE case. Moreover the built-in grid refinement tools
in Fluent were not utilized. All this suggests that the computational capabili-
ties of Fluent may not have been fully utilized in this study and that the results
could be improved in a more detailed study.
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Figure 6.1: Comparison of EDGE and Fluent. Top: Nusselt number, bottom: Friction
coefficient. —, EDGE k − ω; -.-., Fluent realizable k − ε; ..., Fluent standard k − ε; - -
-, Fluent k − ω: o, DNS
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Figure 6.2: Visualization of prediction of turbulent kinetic energy in Fluent calculations.
Top: realizable k − ε. Middle: standard k − ε. Bottom: k − ω
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7 Conclusions

The EASFM proposed by Högström Wallin and Johansson [15] [12] was origi-
nally proposed together with the Wallin and Johansson EARSM [4] with near-
wall corrections for capturing also the near-wall behavior of the Reynolds stress
tensor and scalar (or heat) flux vector. Is this report a simplistic approach con-
taining no special near wall treatment is taken to scalar flux and turbulence
modelling, only a minor recalibration of the EASFM was needed. It was found
that, for turbulent channel flow, this approach produces reasonably accurate
results if one is not specifically considered in the details of the near-wall turbu-
lence statistics. The mean scalar profile is reasonaby well predicted with both
the EDM and the EASFM models where the latter produces the best results.

The comparisons made between turbulence models confirmed previous knowl-
edge regarding the differences in characteristics of the prediction of turbulent
kinetic energy. Also, the comparison showed surprisingly small differences in
prediction of cf and Nusselt number between the k−ω and EARSM turbulence
models in the impinging jet case calculated with EDGE.

The calculations made using EDGE show clearly the problem of producing
accurate numerical results depending on the numerical scheme and boundary
condition used. Results using a isothermal wall boundary condition together
with a central discretization scheme seems to produce numerical instabilities
in EDGE resulting in unphysical prediction of the pressure close to the walls.
Also, prediction of cf in the channel flow case show an overprediction of cf by
more than 10%. Despite using a rather coarse, non-refined, grid Fluent results
better agreed with the DNS reference data compared with EDGE results.

The original goal of this thesis, to implement a EASFM model into EDGE,
encountered problems related to numerical stability. A stability analysis iden-
tified likely reasons for the instabilities and a modified diffusion tensor is pro-
posed. Further work with, and testing of, this modified diffusion tensor could
provide a working implementation of the EASFM scalar flux model in EDGE.

A more detailed investigation of the numerical accuracy issues resulting in
the overprediction of cf when using isothermal boundary conditions and a cen-
tral discretization scheme is needed in order to better understand the reasons
behind this. Also, the unphysical prediction of the oscillation in the pressure
requires further investigation. Finally, the Fluent calculations may not fully
utilize the capabilities of the solver. Grid refinement and more time is needed
in order to produce calculations that can be said to represent this solvers ca-
pabilities.

Dr Hattori, Nagoya Institute of Technology, is gratefully acknowledged for
kindly providing us with data from the simulation [11].
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A Plots regarding numerical accuracy in
EDGE
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Figure A.1: Friction coefficient, cf . Top row left: central scheme with isothermal walls,
Re = 5064. Top row right: central scheme with isothermal walls, fine grid, Re = 5106.
Middle row left: central scheme with adiabatic walls, Re = 6424. Middle row right:
upwind scheme with isothermal walls, Re = 6402. Bottom row: upwind scheme with
adiabatic walls, Re = 6422. —, Lower wall; .-, Upper wall; ..., 1D-solver; - -, DNS
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Figure A.2: U+ versus log(y+) . Top row left: central scheme with isothermal walls,
Re = 5064. Top row right: central scheme with isothermal walls, fine grid, Re = 5106.
Middle row left: central scheme with adiabatic walls, Re = 6424. Middle row right:
upwind scheme with isothermal walls, Re = 6402. Bottom row: upwind scheme with
adiabatic walls, Re = 6422. — (thick line), Lower wall; .- (thick line), Upper wall; ...,
1D-solver; - -, DNS; —, U+ = y+
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Figure A.3: Pressure. Top row left: central scheme with isothermal walls, Re = 5064.
Top row right: central scheme with isothermal walls, fine grid, Re = 5106. Middle row
left: central scheme with adiabatic walls, Re = 6424. Middle row right: upwind scheme
with isothermal walls, Re = 6402. Bottom row: upwind scheme with adiabatic walls, Re
= 6422. —, Lower wall; .-, Upper wall; ..., 1D-solver; - -, DNS
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Figure A.4: K+ versus log(y+). Top row left: central scheme with isothermal walls,
Re = 5064. Top row right: central scheme with isothermal walls, fine grid, Re = 5106.
Middle row left: central scheme with adiabatic walls, Re = 6424. Middle row right:
upwind scheme with isothermal walls, Re = 6402. Bottom row: upwind scheme with
adiabatic walls, Re = 6422. —, Lower wall; .-, Upper wall; ..., 1D-solver; - -, DNS

34



FOI-R--2079--SE

0 5 10 15 20 25 30 35 40 45 50

1.12

1.14

1.16

1.18

1.2

1.22

y+

rh
o

0 5 10 15 20 25 30 35 40 45 50

1.12

1.14

1.16

1.18

1.2

1.22

y+

rh
o

0 5 10 15 20 25 30 35 40 45 50

1.16

1.1605

1.161

1.1615

1.162

1.1625

y+

rh
o

0 5 10 15 20 25 30 35 40 45 50

1.12

1.14

1.16

1.18

1.2

1.22

y+

rh
o

0 5 10 15 20 25 30 35 40 45 50

1.1555

1.156

1.1565

1.157

1.1575

1.158

y+

rh
o

Figure A.5: Density, ρ . Top row left: central scheme with isothermal walls, Re = 5064.
Top row right: central scheme with isothermal walls, fine grid, Re = 5106. Middle row
left: central scheme with adiabatic walls, Re = 6424. Middle row right: upwind scheme
with isothermal walls, Re = 6402. Bottom row: upwind scheme with adiabatic walls, Re
= 6422. —, Lower wall; .-, Upper wall; ..., 1D-solver; - -, DNS
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Figure A.6: Friction coefficient, cf . Comparison of different wallflux computational rou-
tines and entropy fix settings, upwind scheme with isothermal walls . Top left: New
routine, standard entropy fix. Top right: New routine, tweaked entropy fix. Bottom left:
Old routine, standard entropy fix. Bottom right: Old routine, tweaked entropy fix. —,
Lower wall; .-, Upper wall; ..., 1D-solver; - -, DNS
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