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1 Introduction

1.1 Background

The Swedish Armed Forces use a variety of sensors for purposes of surveillance
and reconnaissance. Most of the time, a certain sensor will only give informa-
tion regarding a particular parameter (e.g., IR-sensors detect heat radiation)
and fail in finding other parameters (e.g., ordinary broadband IR-sensors can-
not return any spectral information).

Using a hyperspectral camera in cooperation with a scanning 3-D laser
to detect anomalies is a new concept. The idea behind this is to make use
of the many spectral bands the hyperspectral camera posess. Since it has
so many bands (about 240), it has the capability to detect objects that, in its
spectral signature, deviate from the enviroment. After finding the region where
a possible anomaly is, we use the scanning 3-D laser to shoot at the object to
find out what kind of object it is, by constructing a point cloud.

The detection algorithm is designed by our supervisor Jorgen Ahlberg and
is implemented by my partner, Christina Freyhult. My part of this project
is to implement a system that will allow usage of data from both sensors. In
order to do so, we ahve to register the sensor data, i.e., both sensors mustbe
geometrically calibrated to each other.

1.2 Purpose

The purpose of this thesis is to develop and implement methods to estimate
the geometric relation between a hyperspectral camera and a scanning 3-D
laser radar looking at the same scene. The hyperspectral camera scans an area
and detects objects that in its spectral signature deviate from the neighbouring
enviroment, also called anomaly detection. The laser, on the other hand, is used
for detailed analysis of the detected objects. The anomaly detection and the
3-D visualisation is described in a parallell thesis [ref till Christinas rapport].
This is the first step in interaction of different kind of sensors for detection
purposes. In this thesis, we are going to show the strength and benefits of
using interacting sensors and also where the potential problems can occur.

1.3 Problems

While different sensors give different data about a given scene, the result of
their sum will be hard to interpret or use as long as the two data sets are not
registered. It is possible to do that manually, but it takes a lot of time and
effort. This is what the thesis will try to resolve by creating a program that
will automatically calibrate the information and then use the data to extract
further intelligence.

Also, the two sensors treated in this report measures in completely different
wavelengths. As mentioned earlier, the hyperspectral sensor has 240 spectral
bands, each band uses one dedicated wavelength, whereas the laser uses one
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wavelength only. The problem that could occur is that an object seen by a
sensor using a particular wavelength might not have the same apperance viewed
by the other sensor, since it is using a totally different wavelength/wavelengths.
Suppose that an object have the color transistion ’black/white/black’. One of
the sensors might register the transistion as it is, but the other one might
register it as 'white/black/white’.

A third problem is that the hyperspectral camera delivers a 2-D image
whereas the laser returns a 3-D point cloud. Performing matching of these
completely different data structures will, of course, be hard. What conse-
quences will these aspects bring to our results and how can these problems be
solved?
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2 Sensors and Data

2.1 Data acquisition

During a two-day period, a number of FOI staff-member conducted a field
study, collecting necessary data for both the hyperspectral sensor and the scan-
ning 3-D laser required to perform the analysis of the sensors. The collected
data would be a basis on which to test programs and different proposed meth-
ods.

2.1.1 Location

FOI has access to an area near Stréplahult called P4/Kvarn, which is a military
facility for training purposes. The data aquisition was conducted in coopera-
tion with the Army Combat School (MSS). The sensors were placed next to
each other, facing a small hill composed of some forest area and open terrain,
depicted in figure 2.1. The varying terrain will give our acquired data more
versatility and consistency.

Figure 2.1: Location where the data acquisition was conducted

2.1.2 Targets

For the purpose of the study several vehicles and mines were lent to FOI by the
MSS to be placed in different locations. The vehicles were Volvo C303, Pbv
401 (armored personnel carrier) and T72 (main battle tank) and the mines
were of type AT-47b, TMM-1, TMRP-6, and TMA-1. The data collection was
conducted such that different scenarios were recorded using both sensors with
variations in the placement of the targets, see [22]. These displacements of
different targets were registered for further reference. Apart from the targets
that were to be detected in our work, data was collected of some checkerboards
in the scene for sensor calibration purposes. Figure 2.2 depicts some of the
targets that were placed in different positions in the scene.
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Figure 2.2: Targets that were to be found during the survey

2.2 Sensors

The two sensors were placed as close to each other as possible, at approximately
the same height and facing the same direction so that the data would have a
maximum overlap. The sensors and the data they produce are described in
more detail in the following section. In figure 2.3, the left-hand side sensor is
the hyperspectral sensor and the right-hand side the scanning 3-D laser ILRIS-
3D.

Figure 2.3: Sensors used in this thesis

2.2.1 Hyperspectral sensor: ImSpec

ImSpec, from the Finnish company Specim, is a sensor that is used to register
hyperspectral images of the incoming light in the visual and near infrared
region. The name hyperspectral spawns from the fact it registers in hundreds of
narrow wavelength bands, spanning from 391 to 961 nm. This can be compared
to a consumer camera that registers only three bands of wavelengths that
correspond to red, green, and blue color.

The components of the ImSpec sensor can be decomposed into three parts.
At the back of the sensor a CCD-array is placed for the registration of the data.
In front of the CCD-array is the 'ITmspector’, a crystal that divides the incoming
light into different wavelengths. At the front is the scanning mirror which is
necessary for the registration of the entire image and not just a single line.
The CCD-array registers the incoming light over all the spectral components,
over one line, and the mirror scans the entire area to make an entire image.
The sensor has accompanying software allowing changes in its performance and
settings.
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2.2.2 Scanning 3-D laser: ILRIS-3D

To collect the 3-D space data the ILRIS-3D sensor from Optech was used. This
sensor is a scanning 3-D laser radar and is composed of a laser, a detector, and
controllable mirrors.

To compute the distance from the sensor to the target hit by the laser, the
time of flight is used together with the known speed of the laser pulse. The
scanner scans from the lower left corner and scans row-wise left to right followed
by moving up one one row and starting the scanning all over again. The field
of view of the sensor is about 40 x 40° and the divergence between the shots is
170 prad. With a minimum angle increment of 0.00015° the maximum number
of points is approximately 0.7 billion. The scanning speed is 2000 points per
second making the total scan time at most approximetely 100 hours. However,
most of the time it is sufficient to collect around a million points, making the
effictive scan time 8 — 10 minutes.

The raw accuracy is £10 mm for every 3-D space direction (X,Y, Z) based
on a target in 100m range. These values are within the range of one standard
deviation, +o, in a Gaussian distributed system corresponding to approxi-
mately 68% of the measured points. The maximum 3-D space resolution is
approximately 1.3 mm at a distance of 50 m and around 2.6 mm at a distance
of 100 m.

With precision control over the horizontal and vertical positions of the laser
shot, a 3-D point cloud is created. The coordinates are given as the 3-D space
coordinates (X, Y, Z) with an additional variable I that represents the intensity
of the reflected pulse.

Two general methods are used by the system, first and last echo. This
means that the position recorded in the sensor is that of first or the last thing
the laser hits, exceeding a certain amplitude limit. To be able to penetrate the
forest the equipment needed to use last echo. More information concerning the
laser can be found in [17].

2.3 Data

The data acquired from the ImSpec and ILRIS-3D sensors are briefly described
in this section.

2.3.1 Hyperspectral

The data collected from the ImSpec sensor contains information about the
spectral signature of the image.

The data collected is arranged in a 3-D matrix. Each ’layer’ is comprised
of 512 x 197 pixels and the dataset is 240 bands deep. FEach single band
contains the information for the wavelengths recorded for the corresponding
pixel. Because the frequency information ranges from 396 to 961 nm, each
band represents approximately 2.4 nm. The field of vision of the sensor is
about 20 x 20°, so a pixel registered with default settings represents 0.056°.

Additional information concerning the hyperspectral camera and its data
can be found in [25].

2.3.2 3-Dlaser

The data collected from the ILRIS sensor is called a point cloud and contains
the positions and intensities of the points hit by the laser. The positions are
arranged in a 3-D coordinate system, given by either the 3-D space coordinates
[XY Z] or the polar coordinates [Azimuth, Elevation, Range]. The intensity

7
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Figure 2.4: Image of scene ’car’ taken with the hyperspectral sensor with its different
bands

value is given as a scalar from 0 — 255, independent of the coordinate system
used. These four parameters are stored in four columns for later analysis.

Figure 2.5: Corresponding point cloud to scene 'car’

Many areas will have 'information shadows’ where solid objects block the
view of objects laying behind them and so there will not be any information in
this area.

2.3.3 Software for acquired data

After collecting the data from both sensors, some post-processing must be done
in order to perform the analysis of it. For raw data, the software used was a
Matlab toolbox developed by Jorgen Ahlberg [1], and for 3-D point cloud, also
a Matlab toolbox developed by Tomas Chevalier [18] and Polyworks [24] is used
for viewing and inspection of the point cloud.

For every picture taken with the hyperspectral camera, we get a raw data
file, a header, and the corresponding log-file. The Matlab toolbox used for
this simply takes the raw data file as its input to output a picture with 190
spectral bands as default. This value can simply be changed in the camera
picture software used. This picture is used for further analysis.

With the laser, a xyz-file is returned. This file is input to the point cloud
toolbox, which has several features such as getting space coordinates of point
cloud, angles etc. The output of this toolbox is a 3-D point cloud for analysis
purpose. If only inspections of the point cloud is necessary, Polyworks can
generate the point cloud from the xyz-file for this purpose. However, no heavy
analysis can be done with Polyworks.



FOI-R--2101--SE

3 Theory

3.1 Camera projection and calibration

A corner stone of this thesis is to map 3-D points to pixels, and then go
back from pixels to 3-D points. Imagine that a picture is taken with the
hyperspectral camera and an anomaly is detected. The anomaly will only
appear as a region with different color in the picture. In order to see what it is,
the 3-D laser needs to scan the region of interest to form the 3-D point cloud.
Hence, every pixel will have its corresponding 3-D space coordinates stored, i.e.,
every pixel will generate a set of 3-D space coordinates. How big this set is for
every pixel depends on for example how far the object is to the camera, object
density etc. To store the 3-D space coordinates for every pixel may seem very
unnecessary and excessive waste of memory storage space. However, this is not
as redundant as it seems. Suppose that an object is detected somewhere in the
open terrain. The depth information about the object will be lost when the
picture is taken of the object. Hence, finding the object from the picture in the
3-D space will result in the scaling ambiguity phenomena. Scaling ambiguity
can be illustrated by holding a pen in front of a door. Placing the pen closer
to the eye will eventually make the pen bigger than the door. With this in
mind, it is essential to find a method to retrieve the depth information lost at
the moment when the picture was taken.

There is a number of different methods to reconstruct 3-D objects from
pictures. Most of these involve stereo vision. However, in our case we only
have one camera (hyperspectral) at our disposal, thus, this method is not of
any use. Instead, by calibrating the camera to find out how every 3-D point
will be mapped into the picture, we can do the reverse and find out which 3-D
points correspond to an arbitrary pixel on the picture, i.e., for every pixel a
tunnel with 3-D space coordinates in the real 3-D space will be returned.

A lot of work have been done in camera calibration. For example, [3] [4]
[14] [5] suggest a number of ways to perform a camera calibration.

3.1.1 Camera geometry

A camera can at its most simple form be modelled with a circular aperture
with a diameter D. A lens refracts all rays from a single point source to a
point in the image plane. If the lens is considerably thin, then the assumption
that the lens only refracts rays is valid. Gauss’ lens law states that:

1 1 1

a + b f
where a is the object’s distance to the lens, b is the distance between the image
plane and the lens, and f the focal length. For a point source very far away,
we do the assumption b &~ f. This is the principle of the pinhole camera. A
pinhole camera is basically a box with a small lens for light refraction and a
film to collect the refracted light.
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Figure 3.1: lllustration of Gauss’ lens law

3.1.2 Perspective projection

Before we examine camera calibration, we must understand how the mapping
between the real world and image is done. Consider figure 3.2. This type of
projection is better known as perspective projection, which conserves angles and
directions unlike affine projection, which let straight lines remain straight no
matter what the distance to the line is. Hence, perspective projection conserves
distance information by projecting distant object smaller. The key to this is
to let all projection lines intersect in the origin (0,0,0) of the 3-D coordinate
system and assume that the image plane intersects the Z-axis at the point
(0,0,1). Using triangles, it can be seen that the relationship between 3-D and
image coordinates is given by:

{oo0)

X

Figure 3.2: Perspective projection [3]

X;
;= 1
T i (3.1)
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These two equation can be combined into a vector equation in order to
simplify further analysis:

Z; X
1 Z;

where A = 1/Z; is a scale factor for this particular case. This vector equation
is called homogeneous coordinates and is a linear combination and it is only
valid when the image plane intersects the Z-axis of the 3-D coordinate system
at (0,0,1). If the intersection is at an arbitrary point along the Z-axis, (3.1)
becomes:

X;
P, o= = 3.3
Bo= 5 (3.3)
. Y;
Yi = if

where x = &/f, y = g/f, and f is the focal length, which defines the dis-
tance between the image plane to origin of the 3-D space system. Thus, (3.2)
becomes:

; Xi
g | =AY (3.4)
f Z;

where A = f/Z,.

As (3.4) indicates, this describes a very general projection. The 3-D space
coordinate will be projected on the image plane, not on the image itself when
f # 1. From now on, the image plane coordinates will be denoted with a hat,
i.e. (2,9)7 and the pixel coordinates with (z,y)T.

3.1.3 Camera rotation and translation

Suppose a picture is taken from a particular direction. Moving the looking
direction means that a rotation has been introduced to the system, i.e. the
camera orientation with respect to a given world frame is subject to a change.
In order to perform further analysis, compensation for this rotation must be
accounted for. Let [#' '] and [X'Y’ Z'] denote the image frame coordinates
and the 3-D space coordinates of the rotated system, respectively. Using the
same concept of perspective projection, the rotated image frame coordinates
are projected as:

2 = X!/Z! (3.5)

i = Yi/Z

which has an equivalent vector representation:

& X
g | =N | Y (3.6)
f Z;

where X' = f/Z! also is a scaling factor. Now, consider figure 3.3, where the
system is rotated about the Y-axis with an angle #. Using simple triangle

11
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expressions, it is possible to obtain a matrix describing the rotation about the
Y -axis, given by:

X! X;
Y/ | =Ry | V; (3.7)
Z! Z;
=
X/ cosf 0 sind X
Y/ | = 0 1 0 Y;
Z! —sinf 0 cosé Z;
Plugging this equation into (3.6) yields
z; cosf 0 sinf X;
g | =N 0 1 0 Y, (3.8)
f —sinf 0 cos# Z;
Y.y
—— ZJ

Figure 3.3: Camera rotation about the Y'-axis with angle 6 [3]

Doing the same analysis for the X and Z-axis, expressions for the rotation
matrices describing rotations about the X and Z-axis will be given by:

1 0 0
Rx = | 0 cosgp sing (3.9)
0 —sinp cosy |

cosy siny 0
Ry = | —siny cosyp 0O (3.10)
0 0 1

where (p,%) denotes rotation about X and Z-axis, respectively. By combin-
ing all three rotation matrices in a matrix multiplication, expression for any

rotation is given by
R = RxRyRy (3.11)

which also is a 3 x 3 matrix given by

cos 6 cos 1 + sin 8 sin p sin ¢ cosfsiny —sinfsinpcosy  sinfcosyp
— cos psiny cOS  cos P sin
—sinfcosy + cosfsinpsiny —sinf#siny — cosfsinpcosy cosbcosp

12



FOI-R--2101--SE

If the camera’s position is changed during the photo shoot, a translation of
the camera’s position has been performed. The translation of the position can
be seen as a position offset of the camera’s 3-D space coordinates, i.e. if the
translation is (Xo, Yo, Zo), then (3.2) becomes

i X, — X,
g | = A Yi—Yo (3.12)
f Z; — Zy

If rotation and translation are to be imposed on the camera, then the image
plane coordinate will be mapped as

:Ei Xz’ - XO
9 | = AR | Yi—-Yo (3.13)
f Z; — Zy

for any arbitrary rotation and translation.

3.1.4 Camera parameters

As probably most know, different cameras behave differently regarding the
resulting photo. The reason is that the cameras have different camera param-
eters. These parameters are usually divided into two groups: internal and
external parameters. The external parameters describe the displacement and
the rotation of the camera with respect to a reference camera. This reference
camera could be the camera with which the first picture was taken. The in-
ternal parameters describe the ’inner mechanics’ of the camera. At its simpler
form, it can be expressed by the following matrix:

oz f 0 Zo
¢ = 0 oyf Yo (3.14)
0 0 1

The internal camera parameters include the effective focal length, f, which
is the distance between the image plane and the projection center, scale factors
(0z,0y), and the image center (zo,yo) also known as the principal point. The
general properties of these parameters are listed below.

o The scale factors (04, 0, ) must be accounted for in order to relate distance
of the 3-D coordinate system to image coordinate system

— Objects farther away will yield smaller pixel size

e The origin of an image is usually in the upper left corner of the image
array. Since the principal point does not necessarily coincide with the
origin of the image coordinate system, (zg,yo) are usually denoted as the
image center.

e The zooming of a camera is controlled by varying the focal length, f.

e If the image coordinate system is not orthogonal, i.e. the pixels are not
square, then we must introduce a skew factor, v, to account for this.

Using this matrix, a new mapping can be formed as

T; X;
g | = ax| v (3.15)
f Z;

13
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Worth noting is that this mapping is only valid if the camera is placed at the
same place, looking in the same direction. A valid mapping with an arbitrary
rotation and translation can be obtained by imposing rotation and translation
constraints introduced in section 3.1.3, yielding the following mapping:

Z; Xi — Xo
i | = PRA| YY) (3.16)
f Zi — Zg

However, it is most inconvenient to have the translation in the same vector
as the 3-D space coordinates. Seperating them from each other will simplify
the analysis tremendously. It can be seen by inspection that the expression

T 1 00 —Xp if
% | =®RA| 0 1 0 -Y 7 (3.17)
f 00 1 —Z !

is equivalent with (3.16). Using the following simplified notation, (3.17) can
be rewritten to

i X
g | = ®RAN-Xo] |

Z;
f 1

where I and —X are the identity matrix and translation vector, respectively.
Further analysis yields

. X;

Ui = ®ARI|-RX !

\ﬁ,-j Z;

f T 1

. X;
Ui = ®AR|T] ! (3.18)
x| X;

HEE 519
where T is the vector containing a rotated translation, %; = [#; ;&i]T is the
vector containing image plane coordinates, X; = [X; Y; Zi]T is the vector

with the 3-D space coordinates, and P is the projection matriz, which we will
discuss more in next section. This result is a cornerstone in camera calibration:
knowing P means that we are able to find an outstanding mapping between
the 3-D space to the image.

3.1.5 Calibration: Linear Method

Camera calibration is actually an image post processing tool which allows the
picture to be adjusted more correctly to the object it is looking at. The main
idea behind camera calibration is to find a mapping between the 3-D space
and the image without any distortions or other artefacts. A typical example
of this is to remove lens distortion!. Lens distortion will add ‘round edges’ on
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Figure 3.4: Example of lens distortion in the hyperspectral sensor

the picture, making straight lines curvy and thereby letting more information
being visulized then what the camera is supposed to.
As seen on the figure 3.4, the image edge on the left side is seriously curved
out to compensate for the distortion with respect to the checkerboard.
Calibration of a camera is equivalent to finding the 3-D to 2-D mapping,
% fIT = P[X; 1]7, given by:

A X
€T P11 P12 P13 P4 v
Ui | = | P21 P22 P23 Do 7 (3.20)
f P31 P32 P33 P34 12
Hence, each image frame coordinate is given by:
&; = Xip11 + Yip12 + Zip1s + p1a
Ui = Xip21 + Yipaz + Zipaz + p2a (3.21)
f=Xips1 + Yips2 + Zipss + psa
Recall from (3.3), the image pixel coordinates are given by:
Z
T = (3.22)
f
Yi = &
f

1Removing lens distortion cannot be done without knowing the mapping between the
3-D space system and the image coordinate system. To remove the distortion, non-linear
optimization techniques need to be called for. The objective function to optimize is an odd
power polynomial of infinite length.
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From (3.22) and (3.21), it is easy to verify that the pixel coordinate can be

written as
Xip11 + Yipi2 + Zip13 + p1a

Xip31 + Yipsa + Z;p33 + paa

Ty =

(3.23)

Xip21 + Yipao + Z;pa3 + paa
Xip31 + Yipsa + Zip3z + D34

Yi =
This implies that
0 = Xip11 +Yipia + Zip13 + p1a — 2 Xip31 — 2Yip32 — X Z4;p33 — TiP34

0 = Xipo1 + Yipao + Zipas + paa — yiXips1 — YiYips2 — YiZiP33 — YiP3a
Now, consider the vector
T
p = [ P11 P12 P13 P14 P21 P22 P23 P24 P31 P32 P33 P34 ]

By measuring n 3-D points with corresponding pixel coordinates, form the
following matrix equation:

D-p=20 (3.24)
=4

I X1 Y1 Z1 1 0 0 0 0 —$1X1 —(E1Y1 —113'1Z1 —I1 i
60 0 0 0 X1 Y1 Z1 1 —-yXh -yw1 -n1Z1 —-wun
Xg YQ Zg 1 0 0 0 0 —xQXQ —QL‘QYQ —.Z‘QZQ —X92
0 0 0 0 Xo Yo Zy 1 —yXo —yYs —y2Zs —uo
X, Y., Z, 1 0 0 0 0 —z,X, —-=x.Y, —z.24, —x,
L 0 0 0 0 Xn Yn Zn 1 _yan _ann _ynZn —Yn |

[ pi1 ] [0 ]

P12 0

D13 0

P14 = 0

P21 :

: 0

| P34 | | 0 ]

where 0 is a 2n-vector with zeros. Hence, the objective is to find the non-trivial
solution, since the trivial solution p = 0 is physically insignificant. To obtain
the non-trivial solution, constrained optimization technique must be called for.
The objective function to minimize is given by:

min || Dp|[? subject to [|p||* =1 (3.25)
P

Let A > 0 be the Lagrange multiplier. The Lagrangian function to be
minimized is
L(p,A) = [[Dp|*=X(llp |- 1) (3.26)
L(p,)) = (Dp)"(Dp)-A(p'P—1)

Performing the differentiation on L with respect to p and setting to 0 gives

D'Dp = M\p (3.27)
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Differentiating L with respect to A and setting to 0 yields

p’p =1 (3.28)
Pre-multipliying both sides of (3.27) by p” gives

p'D'Dp = Ap'p

=
(Dp)"(Dp) = A-1
IDql]* = A (3.29)

This equation states that minimizing || Dq||? is equivalent with minimizing
A. Now equation (3.27) tells us that p should be an eigenvector of the matrix
D?”D with A being the corresponding eigenvalue. Equation (3.29), on the other
hand, says that we should minimize A as much as possible. These two pieces
of information together simply state that p should be the eigenvector that
corresponds to the smallest eigenvalue of DTD. Hence, to solve for p we can
simply make use of the eigen-decomposition of DTD.

The eigen-decomposition D7D will lead to a closed form solution. However,
what is of more interest is the question of the rank of the matrix D, since it
reinforces the understanding of how the reference points should be chosen.
Let’s reconsider (3.24). Suppose that we have found the non-trivial null vector
p of the matrix D. From standard linear algbra, given a n x m matrix D then

rank (D) +null (D) = m

where null(D ) represents the dimension of the null space of D. In our case
n > m = 12 and there are three cases to consider:

e rank(D ) = 12. The null space has dimension 0, and there is only one
solution to the system, namely p = 0, which is not very meaningful.

e rank(D) = 11. The null space has dimension 1 and there is a unique
solution (up to a scale factor).

e rank(D) < 11. The null space has dimension 2 or more. The null vector
p we are seeking for can be any vector in this 2-dimensional space, which
means that there is an infinite number of solutions to (3.27). One way
in which this can happen is if all the 3-D space reference points are in a
plane.

Note that the rank of D is often 12 rather than 11 in calibration of real
data - noise inflates the rank of the matrix. When noise is present in our data
points, the end result is that the smallest eigenvalue of D7D is not zero but a
small positive number, since D”D is positive definite and symmetric. We can
often pinpoint how much noise there is in our data (i.e., the world and image
coordinates of the reference points) by inspecting the ratio between the smallest
and the largest eigenvalues of the data matrix DTD. If the rank of D is less
than 11 means that there are two of more null vectors that are approximately
equally good and the best solution in least square sense is being used.

The quality of P is determined by two parameters:

e how good the point correspondences are matched
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— the deviation between 3-D space coordinate and pixel coordinate
should be as small as possible

e how well the point correspondences are distributed

The first point is straightforward. The other point, however, might require
a bit of explaination. What actually is done here is a straight line fitting to a
number of points, i.e. the 3-D space coordinates are optimized with respect to
the distance in meter, which is depicted in figure 3.5 where the objective is to
minimize all e;, ¢ = 1...n.

3-D space
coordinate

Figure 3.5: Optimum solution for the given 3-D space coordinates

If the 3-D space coordinates are distributed all along the field of vision
then the resulting line ought to be good but most importantly, the 3-D space
coordinates cannot have any rotation error. For example, suppose that a 3-
D space coordinate is nominally pointing at a direction given by (a,b,c). If
the nominal direction is perturbed to (a + Aa,b+ Ab, ¢+ Ac) for some small
A, points lying far away from the laser will result in a rather large error in
meter. Hence, we must make sure that the 3-D space coordinates are rotation
invariant at all distances to minimize the potential error that could occur with
this rotation in mind.

This approach of camera calibration is the foundation of many camera cal-
ibration methods available as of today. As mentioned in [4], all it takes to
perform a good calibration is a 3-D space object whose geometry is known
with very good precision, and from there finding point correspondences in 3-D
space to image pixels. Usually, this is done by using a checkerboard as a cali-
bration object. A number of pictures of the checkerboard from different angles
are taken. The calibrator is then asked to mark all the corners on the checker-
board images, and also state the distance between the corners. By knowing this
3-D space distance and the corresponding distance on the image, a mapping is
generated.

After finding the camera calibration matrix, or the projection matrix, P, we
can remove distortions and other unwanted effects caused by the uncalibrated
camera. What P actually does is acting as a bridge between 3-D-coordinates
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and pixel coordinates. The projection matrix contains every camera parameter,
which describe the camera’s world-pixel mapping, where it is standing and
looking at with respect to a certain reference camera. It is clear that if we
know P, we must be able to obtain a new perfect mapping between the world
and pixel coordinate system.

For more information regarding camera calibration, please refer to [3], [5],
[14].

3.1.6 Re-projection error

The re-projection error is defined as the error between the projected 3-D space
coordinates to pixel coordinates and the actual pixel coordinates, and it is given
by:

n 2

min e = E
p

i=1

pIX; + pas
pIX; + pas

— i (3.30)

2
PiXi+pa
p3 X + pas

where p; = [pj1 pj2 pjg]T. It is clear that this is the error that should be
as small as possible since it defines how well the 3-D space to image space
mapping is: the lower error e, the better result as (3.30) indicates. Depicted
below is an illustration of the re-projection error.

Legend
True pixel
oordinate
Reprojected
pixel coordinate
3-D space -
coordinate
Fov
Image frame
Image d4
frame g 1. Z::? .4
. A dL 4
L]
=l

Z

2 ®
8 3 B\ o 3
Laser \\_k. e
X Scanner d2

Figure 3.6: lllustration of re-projection error

¥

where d;, ¢ = 1...4 are the pixel errors subject to minimizations. This
objective function will be optimized using optimization techniques described
in the next sections.

3.2 Imaging problems

When pictures are taken of an object, it is most desirable that the shape and
the enviroment it is in remain the same as seen by the eye. Looking at the image
taken and comparing it with what the eye can see, no major differences may
be found even with careful observations. However, there are some differences,
although they are hard to spot. Consider figure 3.7.
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Figure 3.7: Picture taken with a normal digital camera [15]

This is a typical picture taken with a modest digital camera (although the
guy might be a bit strange). Most of the cameras for private use deliver picture
like this one. However, this picture is actually not delivering the information
it should. The correct image should look more like figure 3.8.

Figure 3.8: Correct image [15]
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A question that may arise is how figure 3.8 is more correct than figure 3.7.
Careful examination of figure 3.7 will reveal some flaws in the image. Consider
the left-hand side of the checkerboard edge on figure 3.7 As one can see, the
checkerboard is a bit bulged in the centre, which actually is the truth. The
camera visualizes a straight line as a curvature, and to compansate for that,
the edges of the image must be bent towards the opposite direction of the
curvation. This is only possible if the camera has been calibrated.

Although knowing that these kind of problems are present, we do not do
anything about it in this thesis. The reason is that the lens distortion caused
by the hyperspectral camera is not as severe as in figure 3.8 and taking care of
them will require another three months worth of work, which we do not have.
Consider this section as something worth knowing when camera calibration is
to be performed.

3.2.1 Camera model deviation

In the previous section we have modelled our camera as a pinhole camera. This
approach has several flaws. Real cameras deviate from the pinhole camera in
several aspects. These are listed below:

1. Lens distortion
2. Imaged rays do not necessarily intersect at one point

We will investigate these points more in detail.

1. Ray intersection deviation

A insidious deviation from the pinhole camera model is that the imaged rays
do not necessarily intersect at a single point. As a result, there need not be
a mathematically precise principal point, or nodal point for a real lens. The
consequence of this is that it is impossible to say with complete accuracy that a
particular image was taken from a particular location in space; each pixel must
be treated as its own separate ray. Although this effect is most noticeable
in extreme wide-angle lenses, the locus of convergence is almost always small
enough to be treated as a point, especially when the objects being imaged are
large with respect to the locus of convergence.

2. Lens distortion

Optical lens systems used in imaging equipment suffer from distortion artefacts,
which detract from the quality of the images produced, as we can see in figure
3.7. In applications such as computer vision, the determination of and com-
pensation for distortion is required to enable accurate location, measurement
and registration of features in images.

Lens distortion model

To fully model non-linear lens distortion, infinite series are needed. However,
in practice it is normally sufficient to model only the dominant radial (a.k.a.
barrel or pincushion distortion) using a single parameter, (. Assuming that
the value of ¢ is known, the radial lens distortion can be modelled as

ry = ra(1+(r3) (3.31)

where r, is the correct, undistorted radial distance to a point from the
optical centre of the image, and ry is the distorted radius. As mentioned
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Figure 3.9: Lens distortion models [10]

earlier, we are here only considering the dominant parameters to the distortion.
Actually, this radial distortion is an odd power polynomial of infinite length:

ru = Ta+ Qry+ Grh + Gy (3.32)

But due to the small values of the polynomial coefficients (,,, n > 2, they can
be discarded without adding any major errors in the calculation.
Given r,, computation of ryq requires the solution of this cubic equation.

Using the substitution r4 = w — 3%” yields the quadratic form
32 Tu oz 1 _
(w?) R w 5703 0 (3.33)
with its solution
2 1
w = | Tuyp (3.34)

2¢ 4¢2 T 27¢3

The value of r4 is found by substituting either of these roots for w.
Now that the distortion is found, we wish to perform a distortion correction.
[13] proposed two methods:

1. Individual pixel resampling

2. Local affine transformation with texture mapping
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For more detailed information regarding these two schemes, please refer to [13]
and [10], [26] for more general information concerning lens distortion.

3.3 Automatic calibration tools

As mentioned earlier, this thesis covers how to make use of the data aquired
from the hyperspectral camera and the scanning 3-D laser to detect anomalies.
In order to detect anything at all, both sensors need to be incorporated by one
another in the sense that what is seen by one sensor must also be seen by the
other one. Suppose we have a camera setup where the sensors are standing
next to each other, pointing in the same direction. An illustration of both
sensors’ vision fields is depicted in figure 3.10.

\

phinid _afjv'!s:m

| Hyperspectral § | Scanning 3D-
Camera Laser

Figure 3.10: Vision field for both sensors

As shown in figure 3.10, the only thing we are interested in is the small
section where the yellow part is overlapped by the blue part. The hyperspectral
camera returns a hyperspectral image in the size of 192 x 512 pixels, whereas
the laser returns images much bigger in dimensions. Hence, the image aquired
by the hyperspectral camera must be contained in the image from the laser.
Figure 3.11 illustrates an example of this.

The idea behind this automatic calibration is that the sensors will be placed
in arbitrary positions, in which the vision field intersection discussed earlier will
be obtained and by looking at an object, it is desirable to have the the sensors
calibrated, i.e. P will be generated.

However, there is a number of problems with this scheme:

e As seen in the lower image of figure 3.11, the intersection area of the
vision fields is rather small, at least for the eye. Is it possible to find
sufficiently many good point correspondences within this area?
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Figure 3.11: Example of vision field intersection

e The hyperspectral camera might not give the indications of feature points
due to its low resolution

e Is it possible to find any feature points at all in complex enviroments such
as highly dense woods?

The answers to these key points will determine the quality of the automatic
calibration.
3.3.1 Gradient filtering

As mentioned earlier, one of our biggest concerns is the fact that the hyper-
spectral camera has a very low resolution. Using the camera looking at objects
far away will not give good results. Consider figure 3.12 where only few of the
hyperspectral camera’s spectral bands are used.
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Figure 3.12: Hyperspectral image where a few spectral bands are used

On this image, there are three rather big checkerboards placed in different
positions indicated by the arrows. Looking at the smallest on the left-hand
side, it is impossible to determine the corners due to the low resolution in the
hyperspectral camera. The same goes for the one on the right-hand side. By
using gradient filters®, we can detect strong lines although the resolution is
fairly low, since the pixel transition is still there even though the resolution is
low. Introduce the gradient filters:

-1 0 1 -1 -1 -1
Vy=|-1 01 and V, = 0 0 0 (3.35)
-1 0 1 1 1 1

Convolving the image, f(z,y), with both filters and summing the result will

yield the filtered image, f(x,y):

where * denotes the convolution operator. An example of the result using this
scheme is given in figure 3.13 below. Worth noting is that only a few bands of
the hyperspectral image is being filtered.

Figure 3.13: Gradient filtered hyperspectral image

This is a high-pass process in which the high-frequency components in the
image, i.e. corners and edges are preserved. This image will be further pro-
cessed to extract image features.

2This is also known as the Prewitt filter
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3.3.2 Information theory

To provide with an adequate measure on the improvement using this automatic
calibration scheme, concepts in information theory must be called for. The
main concepts used here are

e entropy

e mutual information

and will be discussed more in detail.

1. Entropy

Entropy is defined as the average information per message of a source. Consider
a memoryless source S, emitting messages mq, mo, ..., m, with the probabilities
>, P(m;) = 1. The information content, Z; of message m; is given by:

1
Ii = 10g2m bits

The average information per message of a source S is called its entropy, given
by
n
H(m) = Y P(mi)Z; bits
i=1

n

1

H(m) = Zp(mi) 1og2m = —ZP(mi) log, P(m;) bits  (3.37)

An intuitive understanding of information entropy relates to the amount
of uncertainty about an event associated with a given probability distribution.
Consider a box containing many colored balls. If the balls are all of different
colors and no color predominates, then the uncertainty about the color of a
randomly drawn ball is maximal. On the other hand, if the box contains more
red bals than any other color, then there is slightly less uncertainty about the
result that a red ball is drawn.

2. Joint entropy

Given a random variable X, the entropy for this variable is H(X) as discussed
in section 3.3.2.1. Consider another random variable Y, containing events y;
occurring with probabilities 27:1 P(y;) = 1. The variable Y has an entropy
given by H(Y). If X and Y describe related events, the total entropy of
the system may not be H(X) + H(Y). For example, imagine choosing an
integer between 1 to 8 with equal probability for each integer. Let X represent
whether the integer is even, and Y represent whether the integer is prime. One-
half of the integers between 1 and 8 are even, and one-half are prime, hence,
H(X)= H(Y) = 1. However, if we know that the integer is even, there is only
a 1 to 4 chance that it is also a prime; the distributions are related. Instead of
looking at the entropy as a linear combination of two random processes, it must
rather be seen as the entropy of a joint random process. Given two random
processes, X and Y, find the joint probability, P(X,Y"), which is defined as the
pair of event outcome that satisfy

32

PLY) = 5xay

P(X <z,Y <y) (3.38)
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When the joint probability is known, form the joint entropy defined by:

H(X,Y) = =Y > P(xi,y;)log, P(xi,y;) (3.39)

i=1 j=1
z, € XVi=1,2..n
Yy €YVi=12..,m

3. Conditional entropy

Consider a discrete memoryless channel. Let a source emit symbols 1, o, ..., ;.
The receiver receives symbols y1,y2, ..., ym. The set of symbols {y;} may or
may not be identical to the set {z}, depending on the nature of the receiver. If
the receiver used is not of the type ’optimum receiver’, the constraint that the
set {yg } is identical to the set {z}} may not be valid. If the channel is noiseless,
then the reception of some symbol y; uniquely determines the message trans-
mitted. However, due to the noise there is a certain amount of uncertainty
regarding the transmitted symbol when y; is received. If P(xz;|y;) represents
the conditional probabilites that x; was transmitted when y; is received, then
there is an uncertainty of log,[1/P(z;]y;)] about ; when y; is received. When
this uncertainty is averaged over all z; and y;, we obtain H(X|Y"), which is
the average uncertainty about a transmitted symbol when a symbol is received
(a.k.a conditional entropy). Thus

n m 1 )
H(X|Y) = Z Z P(x;,y;) log, Ploils) bits per symbol (3.40)
i=1 j=1

4. Mutual information

The mutual information, or transinformation, of two random variables is a
quantity that measures the mutual dependence of the two variables. Given the
random variables X and Y, the mutual information can formally be expressed
as

1(X:Y) = Y5 P(z,y)log, Pl(%j’y) (3.41)

rzeX yey ,T)P(y)

where p(z,y) is the joint probability distribution function of X and Y. It can
be seen by inspection that (3.41) can be written as:

I(X;Y) = HX)—- HX|Y) = HX)+ HY) - HX,Y) (3.42)

To illustrate all the quantities discussed here, consider figure 3.14

where the blue circle represents the entropy of the random variable X and
the red circle the entropy of the random variable Y. Depicted is also the
conditional entropy for each random variable, which can be found as the half-
moon of respective color. The white section in between the half-moons is the
mutual information of the two random variables.
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Figure 3.14: Information theoretical quantities
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4 Work procedure

In this section, a detailed presention of the work procedure will be given. It will
start off from the very beginning with data acquisition to the iterative solution
of the projection matrix. A brief list of discussed topics is given below.

e Obtain initial estimate of P
e Down project 3-D laser image

e Image enhancement

Common feature extraction using Harris corner detector

Calibration

Optimization: iterative minimization of re-projection error, e.

4.1 Initial estimate of P

As mentioned earlier, the projection matrix P can be seen as a bridge between
the 3-D space coordinate system and the pixel coordinate system. To get
a good initial guess of this matrix, point correspondences between these two
systems need to be obtained. This is simply done by using reference objects, e.g.
checkerboards, and pinpoint the same points in both systems. After obtaining
a number of point correspondences with fairly good precision, i.e. the point
obtained from the laser image should be a point on the object and not on
the noise/particles surrounding the reference object, using (3.24) described in
section 3.1.5, will yield a very good inital guess of P. As discussed in section
3.1.5, points uniformly distributed on the entire image is preferred. Also, using
correspondences in varying depth, i.e. Z on the 3-D space, will lock the least
square solution for points lying far away. Consider figure 4.1. The ideal scenario
will be when point correspondences are distributed uniformly on the image
frame and image frames placed close to each other to cover the 3-D space of
interest. If the frames are placed close enough and point correspondences on
the entire image frames are found, then the 3-D reconstruction of the scene is
done and the projection matrix will be excellent, since there is a f; for every
Z; then and we have all the information there is to have for point matching .
But due to the hyperspectral camera’s limitation this will not happen, since
there is no zoom function on the hyperspectral camera. Hence, there will only
be one image frame per image to cover for all the Z-values.

Finding point correspondences on the hyperspectral image has been very
hard to do due to the low resolution in the hyperspectral sensor. Consider the
two checkerboards on the left and right-hand side in figure 4.1. On the laser
image depicted in figure 4.2 the checkerboards are displayed clearly and finding
the crossings is an easy task. But on the hyperspectral image on the other hand,

IThese point correspondences on the image frames should resemble of a shoebox with
image frames coordinates

29



FOI-R--2101--SE

Figure 4.2: Corresponding laser image for the 3-D space coordinates

this is not possible. Hence, finding point correspondences far away will result
in noisy point, i.e. the pinpointed coordinate is subject to perturbance, and
the projection matrix will be perturbed as well.

4.2 Laser image down projection

After acquiring the 3-D laser data it must be down projected to a 2D-image in
order to find point correspondences. The down projected laser image should
look like a picture taken with the hyperspectral sensor at the laser sensor’s
position. Hence, the resulting image should look like the hyperspectral image
with a certain translation. The method used for this down projection is based
on the projection matrix found earlier. After applying the manually picked
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point correspondences, a projection matrix is obtained. What is known from
previous discussion is that the size of the hyperspectral image is 192 x 512
pixels. Hence, the size of the down projected laser image must be within these
bounds. What has been used here is the fact that the 3-D-2-D mapping is

given by:
bR EE I A
/ I Yi i/ f

Using this equation, a number of pixels will have the same coordinates
due to the fact that there will be laser hits on the same 3-D space coordinate
(X,Y) with varying depth Z. The down projection can be obtained by finding
the corresponding 3-D space coordinates for each pixel. After finding all the
3-D space coordinates, putting the corresponding intensity value on the pixel
coordinate will yield the down projected image. As mentioned earlier, there
will be pixels with more than one 3-D space coordinate, resulting in depth
ambiguity, i.e. it is impossible to determine which 3-D space coordinate to use
for a particular pixel coordinate. The solution to this is to only use the 3-D
space coordinates that are closest to the sensor, i.e. lowest Z-value. The reason
is that the hyperspectral sensor should not be able to see anything behind a
solid object. Hence, using the 3-D space coordinates that are closest to the
hyperspectral camera for every pixel will result in a correct down projection of
the laser data.

100 200 300 400 500 600

Figure 4.3: Down projected laser image

4.3 Enhancement of projection matrix P

4.3.1 Image enhancement

After obtaining the down projected laser image, image enhancement must be
performed in order to find any feature points on both images. The list below
states, in descending order, how this enhancement is done:

1. Intensity value normalization

2. Histogram equalization

3. Edge detection
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Intensity value normalization

Intensity value normalization is achieved simply by finding the maximum pixel
value in both images and dividing each pixel value with this particular value.
This is done in order to get pixel values that are somewhat correlated, i.e. both
images should have corresponding pixel values that are close to each other.

Histogram equalization

Histogram equalization is a common technique for enhancing the appearance
of images. Given a predominantly dark image, its histogram will be skewed
towards the lower end of the grey scale and all the image detail is compressed
into the dark end of the histogram. Histogram equalization is a technique
that ’stretches’ the grey levels at the dark end to produce a more uniformly
distributed histogram, which will result in a much clearer image. Depicted in
figure 4.4 below illustrates this technique.

Angry kid, not equalized Histogram, not equalized
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Figure 4.4: Histogram equalization

Edge detection

The earlier introduced gradient filter is used for detecting strong lines and
edges on both images. However, there are several filter kernel proposed for
this purpose such as Sobel detector, Canny detector etc. After the evaluation
of these edge detectors, the gradient filter was the filter kernel giving the best
result (at least for the eye). Although Canny’s edge detector is the standard
in edge detection, for the low resolved hyperspectral images, it won’t give any
satisfactory results.
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Canny edge cetector

Figure 4.5: Canny edge detector (upper) vs. Gradient filter (lower)

4.3.2 Common feature extraction

After the image processing, features on both images shall be found. Used here
is Harris corner detector given in appendix A. The detector is applied on the
hyperspectral images, where the image has been partioned into smaller regions
comprised of 24 x 32 pixels. In each of these regions, the strongest Harris corner
response is stored for further analysis. Given an image of 192 x 512 pixels and
the patch size of 24 x 32 pixels, there will be 128 corners detected per image.
Now, consider the down projected laser image. This image must be contained
in the hyperspectral image, resulting in a laser image which is much smaller
than the original. After cutting out the laser image, the image should look like
figure 4.7. Now, to get a good match between corners on both images, corners
in the laser image will be obtained based on where the corners are found in
the hyperspectral image. Taking the corners’ coordinates in the hyperspectral
image to form a patch, which is centered around the corners’ coordinates and
2 pixels wide in every direction (i.e. horizontal and vertical) and using this
patch to evaluate the strongest corner within this region will result in corners
that are very well matched. A matching of this kind is depicted in figure 4.7
below, where the red crosses indicates corners in the particular area.

Since the corners in the laser image are obtained by evaluating the hy-
perspectral corner patch on the laser image, it can be assumed that detected
corners are almost perfectly matched. Worth noting is that if the coordinate
of the corner in the hyperspectral image happens to be empty space in the
down projected laser image, then this matching is void, i.e. it does not return
anything and that corner is omitted.
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Jr

Figure 4.6: Corner extracted in hyperspectral image using Harris corner detector
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Figure 4.7: Corner extracted in laser image using Harris corner detector

4.3.3 Retrieval of 3-D space coordinates

After obtaining the matched corners in both images, the 3-D space coordinates
on the down projected laser image must be retrieved. When the mapping
between the 3-D space and the image space is performed it simply returns two
tables: one with all the 3-D space coordinates from the point cloud and one with
the corresponding pixel coordinates for each 3-D space coordinate. To retrieve
the 3-D space coordinates from the pixel coordinates of the corners, we just
need to find out which 3-D space coordinates these pixels were transformed
from. Simply put, given the corner coordinates [TeornersYcorner], find these
coordinates in the matrix Xcorner and return Xpoint cloud

&corner _ Xpoint cloud
el et

Xcorner — Xcorner/.f

which is a straightforward procedure. However, as mentioned earlier, each pixel
coordinate will generate a tunnel with 3-D points resulting in a depth ambigu-
ity, i.e. it is impossible to determine which 3-D space coordinates correspond
to the pixel of interest. For example, it is possible that a pixel is transformed
from 3-D space coordinates Xgpat such as

1.1 1.1 1.2 1.3
)A(l _ Xspat _ 0]. 0]. 02 03
{ }_P[ ] Xepat = | 10 11 50 99
1 1 1 1
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where the third row in Xgpa¢ represents the Z-values in meters. So the question
is which 3-D space coordinate should be used when this depth ambiguity is
present? The answer to that is to not use any of them. Since it is impossible to
determine which one is correct, it is better to only use the 3-D space coordinates
which lie within a certain boundary. A constraint used is to only select the 3-D
space coordinates that satisfy the following criterion:

Zmax — Zmin < threshold (4.1)

where Z is a vector containing all the Z-values for a certain pixel and threshold
is a scalar. This scalar determines how much the laser hits can deviate in
depth and should be adjusted according to the current conditions during the
data acquisition. If the data is noisy then the threshold should be set larger
to compensate for the noise and so on. The value used in this thesis is 0.2,
which means that the laser shots can at most be 20 cm apart from each other
in Z-direction. After using this constraint, there will still be a number of 3-D
space coordinates to choose from. To avoid any unnecessary problems, the
chosen 3-D space coordinate used is simply the mean value of the coordinates
that satisfy (4.1).

4.3.4 Calibration and Optimization

After obtaining the 3-D space coordinates from the matched corners the camera
calibration can begin. Using (3.24) will yield the projection matrix. Recall from
previous discussion that these equations are basically optimization processes
that optimizes with respect to the metric distances. The next step is to optimize
the solution further by minimizing the re-projection error discussed in section
3.1.6 using Sequential Quadratic Programming (SQP), which can be found in
littertures and reports such as [12] and [23].SQP minimizes the re-projection
error and does not care if the metric distances will increase doing so. Since the
metric distances for the 3-D space coordinates already are optimized, it can
be assumed that using SQP won’t increase the metric error drastically. Hence,
these two optimization steps can be summerized by:

1. The least square solution optimizes a straight line to the 3-D space co-
ordinates by finding a line that minimizes all the points’ distances to the
line

2. SQP optimizes the reprojected pixel coordinates by minimizing the re-
projection error and does not care if the metric distances in the least
square solution increase

In Matlab, this algorithm has been implemented in a number of functions.
The function we used is fmincon which can be found in the optimization tool-
box. fmincon is a constrained optimization techinque in Matlab that finds a
minimum of a constrained nonlinear multivariable function using Sequential
Quadratic Programming

min f(x) subject to
X

-x<b
<x<

S

_
ub

where x is the solution vector, A a matrix containing the vector coefficients,

— —
b is a upper bound for the function value, and Ib and ub the lower and upper
bound vectors for the solution vector, x, respectively.

35



FOI-R--2101--SE

What is done here using the function fmincon is using the estimated pro-
jection matrix to compute the optimal value of the matrix entries, with the
constraint that the sum of all entries should be greater than 0 and less than
10. The initial estimation of P is

0.6492 —0.0364 0.1850 —0.2209
Py = | —0.0347 -0.6925 0.0661 0.0952
—0.0001 —0.0002 0.0007 0.0000

After performing the optimization of Py, the optimized projection matrix is
given by
0.0373 —0.0149 0.0087 0.5251
P, = —0.0053 0.0510 0.0031 0.2054
—0.0001 —0.0001 0.0000 0.0057

Although the resulting matrices differ by a lot, that does not rule out the
quality of one another. Recall from the discussion in section 3.1.4 where the
projection matrix can be partioned as:

P = &R|T|

where R comprises of rotation about a certain axis and T is the column vector
containing information about the translation multiplicated by the rotation. If
the assumption that camera parameter matrix, ®, is constant throughout the
iterations then it is clear that the algorithm is only adjusting the external
camera parameters, i.e. it is trying to resolve the position where the sensors
should have been placed. Hence, major adjustment in the projection matrix
after iterations can be seen as position adjustment of the sensors. However,
it is not certain that ® is constant throughout the iterations. Perhaps the
guessed focal length is incorrect or the skewness not correctly estimated etc.
Hence, what the projection matrices state after each iteration do not really
give any good information on how well this algorithm is behaving. The main
theme to this discussion would be that it is necessary to use different measure to
determine the improvement or degeneration of the resulting projection matrices
after each iteration.

4.3.5 lteration procedure

Now we have all the tools necessary to obtain a new, optimized projection
matrix. However, if we want to use this new projection matrix to obtain
another further optimized projection matrix, we must perform an iteration of
the whole algorithm. The steps involved are described below:

1. Use the estimated projection matrix Py to obtain the down projected
laser image

2. Apply the image enhancement techniques described in section 4.3.1 on
the hyperspectral image and the laser image and find features on both
images

3. Retrieve 3-D space coordinates from the features found in the laser image

4. Use (3.24) to obtain a new projection matrix and optimize the new matrix
to obtain Ppey using LMA

5. Replace Py with P, and redo all steps until a satisfactory result is
obtained
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4.3.6 Image alignment and error estimation

Before getting deeper in the topic, we shall recall what we want to accomplish
here. What shall be done here is to align images from different sensors, find
feature points in both images and using these points to perform a calibration
on the sensors. What is given is an initial guess of the projection matrix
using a certain setup for the sensors. Using this initial guess, we want to
perform camera calibration for any arbitrary setups. One way to determine
if the iterated projection matrix is better or worse is to align both images
and measure the alignment. The alignment is measured by inspecting how
well the laser image is being mapped to the hyperspectral image, which is
the reason why information theoretical quantities have been called for. How
well both images map is the quantity better known as the mutual information.
To compute the mutual information discussed in section 3.3.2, the following
probability quantities must be retrieved:

1. Histogram of both images (P(X) and P(Y"))

2. 2-D histogram (P(X,Y))

1. Histogram, P(X) and P(Y)

To obtain the probability that a certain pixel has a certain pixel value, a
histogram can be used for this computation. This is done by computing the
histogram and dividing it by the total number of pixels in the picture. In
Matlab this can simply be done via the command

nx=hist(x(:),256);
ny=hist (y(:),256);
px=nx/numel (x) ;
py=ny/numel (y) ;

2. 2-D histogram, P(X,Y)

The 2-D histogram is basically a table with pixel value distribution on both
images. Suppose two images A and B are given with pixel values ranging from
0—4:
0 4 1 1 1 2
A= 12 4 3 B=1]2 3 4
01 0 0 1 1
then the resulting 2-D histogram will be where the pixel values in both images

Table 4.1: Resulting 2-D histogram

B
01 2 3 4
01 0 0 0 O
111 1 0 0 1
A 210 1 1 0 0
311 0 0 0 1
410 0 0 1 O

set the axes on the table. Taking each table entry and dividing by how many
pixels an image has (in this case 9) will yield the joint probability P(X,Y).
This is implemented in Matlab using following commands:
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pxy=zeros(256); I Number of gray scale levels
for i=1:size(x,2)
for j=1:size(x,1)
pxy(x(j,1),y(§,i))=pxy(x(j,1),y(j,1i))+1;
end
end
pxy=pxy/numel (pxy)

After obtaining the histograms the entropy calculations described in sec-
tion 3.3.2 can begin. Most importantly is to compute the mutual information
between the two images. We are given the hyperspectral image and the down
projected laser image. What we want to do is to adjust the laser image to
align as much as possible with the hyperspectral image, since the coverage of
the laser is much greater. To compute or measure how good alignment is,
we can use the mutual information between the two images. Consider figure
3.14. If the hyperspectral image is the random variable X and the laser image
is Y, then what we want to accomplish is to adjust Y, or H(Y) to increase
the mutual information I(X,Y"), which determines how aligned the images are,
since the mutual information measures how good the mapping is between these
two sets/systems. How good this mapping is determines how many common
features can be extracted from both systems and it is crucial from the sensor
calibration point of view.

To illustrate some examples, consider figure 4.8 and 4.9. The left image in
figure 4.8 represents a down projected laser image using Py where the align-
ment is pretty much as good as it gets, since the reference 3-D space and pixel
coordinates are selected with high precision. Also depicted in figure 4.8 and 4.9
is the mutual information between the hyperspectral image and laser image.
Note that the unit is bit/pixel, since log,(+) is being used. Now, let’s assume
that the projection matrix has been perturbed, resulting in the following pro-
jection matrix

0.6492 —0.0364 0.1850 —0.2209+ 0.5
Pocrturbed = —0.0347 —0.6925 0.0661 0.09524 0.5
—0.0001 —0.0002 0.0007 0.0000 4 0.5

utily parvsed sropmcton ety W KL Y) = ) N B

Figure 4.8: Using iteration to resolve perturbed projection matrix

i.e. only the external parameters are being perturbed. With this perturbation,
the resulting down projected laser image is depicted in the right image in figure
4.8. The left image in figure 4.9 depicts the resulting image after one iteration
and the right image in the same figure depicts the image after 6 iteration. The
mutual information, I(X;Y") for each images are given, from top left to lower
right images:

I(X;Y) = [0.3622, 0.2651, 0.4828, 0.3573] bits/pixel
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Figure 4.10: Corresponding hyperspectral image using one band

Hence, the more pixels the more information can be acquired from the images.
As figure 4.10 indicates, the more overlap we have in both pictures, the better
mutual information can be acquired.

We have developed an algorithm that can withstand projection matrix per-
turbation, i.e. we can use different external setups for the sensors using our
initially guessed projection matrix, and yet find a proper and robust solution
for the projection matrix using a few iteration steps.
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5 Results

A brief presentation of the results we obtained in this thesis will be given here.
To demonstrate the results we simulate the situation were the sensors have
been placed randomly during the data acquisition, which is simply done by
perturbing the last column in the projection matrix P. As the results show is
that the algorithm developed here is outstanding in finding its way back from
being perturbed to its nominal position. Provided is also a short movie which
shows the strength in combining the sensors given in this thesis for anomaly
detection.

5.1 Example 1

For this test the projection matrix used is

0.6492 —0.0364 0.1850 —0.2209 — 0.01
Poerturbed1 = | —0.0347 —0.6925 0.0661  0.0952 + 0.02
—0.0001 —0.0002 0.0007  0.0000 — 0.02

The originaly estimated laser image is depicted in figure 4.3 with the corre-
sponding hyperspectral image given in figure 4.6. Using the perturbed projec-
tion matrix the resulting image is given below:

Perturbed down projected laser image

100 200 300 400 500 600

Figure 5.1: Laser image using Pperturbed1

Using the iterative steps described earlier, the resulting images are depicted
below.
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Iteration 1
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Figure 5.2: lteration 1 for Pperturbed

Iteration 2
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Figure 5.3: Iteration 2 Pperturbed1

5.2 Example 2
The next test we used the projection matrix

0.6492 —0.0364 0.1850 —0.2209 4+ 0.01
Ppoerturbed2 = —0.0347 —-0.6925 0.0661 0.0952 — 0.01
—0.0001 —0.0002 0.0007  0.0000 4+ 0.01

yielding the following down projected laser image
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100 200 300 400 500 600

Figure 5.4: Laser image using Pperturbed2
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Figure 5.5: Iteration 1 for Pperturbed2
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Figure 5.6: Iteration 2 for Pperturbed2
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Figure 5.7: lteration 3 for Pperturbed2
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Figure 5.8: Iteration 4 for Pperturbed2
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Figure 5.9: lteration 5 for Pperturbed2
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Figure 5.10: Iteration 6 for Pperturbed2
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6 Conclusions and recommendations

During this thesis work, we implemented a demonstration tool on how these
two sensors can be fused for detection purposes. We have shown that this kind
of fusion is possible to realize and the potential tremendously high. Since fusing
the hyperspectral sensor with the laser was so successful, we believe that fusing
the laser with another sensor, e.g., an IR-sensor, is highly possible. Hence, we
can extract more intelligence from the scene and the chances to find targets in
the scene will increase.

6.1 Recommendations for future work

This thesis is just a start in the fusion of different sensors. Since it is just
for demonstration purposes, there are plenty of possible improvements that
could be made. Stated below is a couple of suggestions and improvements that
we think are possible from our experience and that will improve the kinds of
fusion.

6.1.1 Data acquisition

When the data is to be acquired, there are some aspects that should be con-
sidered. For example, during this thesis I found out in the very end that the
hyperspectral sensor was focused for two meters range, though we had objects
lying as far as 100 meters away. Considering that, it is obvious that detecting
objects far away was hard. Also, the sensors were not placed close enough
to each other during the field-survey. This will result in the overlap region
won’t be as large as it could be, since the overlap region determines how many
point correspondences that could be used for calibration purposes. As men-
tioned in section 4.1, having point correspondences well distributed along the
image frame is crucial. But having them uniformly distributed along one image
frame is not sufficient. They must also be uniformly distributed in a number
of frames in order to make sure that our solution for the projection matrix
is depth invariant, i.e. we can allow 3-D space coordinates to be spread out
along the Z-axis. Hence, we must have reference points in varying depth and
also, preferably, uniformly distributed along the image frame. This can be
illustrated by considering figure 4.1. What we want is to have points spread
out on the whole image frame and frames that can cover as much on the 3-D
space Z-axis as we are measuring, i.e. if the most deep object is 90 meters
away from the sensor, then we should have frames covering that depth to lock
the projection matrix solution for that particular depth.

6.1.2 Data processing program

As mentioned in the beginning, the program we used for programming is Mat-
lab. Matlab is a very good program for basic programming, but it is not as fast
as we could hope for. When the program we designed performed the iteration
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for optimizing and calibration of sensor data, it took as much as 6 minutes
to do one loop. This processing time could be improved tremendously using
different programming language such as C++4, C, or Java, since all the opera-
tions used in our program are basically vector operations. The operation that
took most processing time was the one looking up 3-D space coordinates for
a certain pixel coordinate. For each coordinate, it has to run through all the
pixel coordinates and return the corresponding spatail coordinates.

6.1.3 Calibration

The initial camera calibration is actually the most crucial step in the whole
chain of events. Since the first camera calibration will yield the first guess of
the projection matrix, which returns the down projection of the point cloud
for corner point matching, it is extremely important that the point correspon-
dences and the calibration itself are reliable.

As [4] mentions, taking pictures of a checkerboard from a few different
orientiations will yield very good calibration results. However, in our case it
is not interesting to take calibration images from different camera positions.
In fact, it is not necessary at all. Taking images from one camera position
is sufficient. Before getting deeper on that, let’s answer the question why a
camera calibration system needs to have checkerboard pattern from so many
different orientations. Consider figure 6.1 below where a 3-D space coordinate
is being mapped to a pixel.

(X,Y,2)

/

Figure 6.1: Linear transformation between 3-D space to image space

Suppose that the Z-coordinate is Zy. If the Z-coordinate is moved closer
or farther away from the image frame, i.e. Z = Zy + AZ, it will still yield the
same pixel coordinate. By taking multiple view images of the same object, we
obtain the following situation
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Figure 6.2: Simple triangulation

Now, there is a unique Zj for a given pixel coordinate. This is the only
reason why mutliple view images are needed. For our sensors, however, it is
not necessary, since the depth information is stored in the laser data. If we
want to calibrate a sensor together with the laser, it has been shown here
that it should be sufficient to use the algorithm provided here. But if we in
the near future want to calibrate two other sensors that do not return any
depth information such as IR cameras, we do need this triangulation scheme
to obtain the depth information. Suppose we have a fixed setup between these
two sensors. Taking multiple view images will not yield this triangulation, since
the sensors mutual positions are the same. Instead, we need to have one of the
sensors as the fixed one, e.g. the one with the smallest vision field. Then rotate
the other sensor in different directions to obtain different views of the reference
object will result in this triangulation. After getting sufficiently many views
from the reference object, using calibration scheme proposed by [4] together
with the Matlab toolbox provided by [15] should give satisfactory results.

In most of the litteratures and reports concerning camera calibration such
as [14], [3], suggest that the projection matrix can be written as:

P11 P12 P13 DPi4
P=| pa1 pa2 p23 pu
P31 P32 P33z 1

which basically states that ps4 can be normalized to 1. This can have terrible
consequences. It can be seen by inspection using (3.18) that ps4 can be written
as

p3s = —sinfcosy — cosfsinysinp - Xg — sinf sin @
+sing cosf cosp - Yy — cospcos - Zy

Setting this element to 1 means that all these angles with the translation
must be equal to one, which is not realistic since we do not know where the
sensors are standing with respect to each other when the automatic calibration
is being performed. Hence, if a similar camera calibration is to be performed,
use instead the method described in section 3.1.5. To compute these long
matrix multiplications, Matlab symbolic toolbox might come in handy. Using
following commands, the above given equation can be generated:
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syms phi theta psi sigmaXf sigmaYf gamma xO yO X0 YO ZO

Rx = [1 0 0; O cos(phi) sin(phi);0 -sin(phi) cos(phi)];

Ry = [cos(theta) O sin(theta); 0 1 0; -sin(theta) O cos(theta)];
Rz=[cos(psi) sin(psi) 0; -sin(psi) cos(psi) 0; 0 0 1]

Phi = [sigmaXf gamma x0; O sigmaYf yO; 0 0 1];
T=1[100-X0;010 -Y0; 001 -20];

P = Phi*Rx*Ry*Rz*T;

p34 = P(3,4);

6.1.4 More improvement measures

During this thesis we have used the mutual information between the hyper-
spectral image and the down projected laser image as a measure to analyse
how good the mapping between these images is. But we feel that for further
research in this field, other measures should be cooperated with the mutual
information to get a more robust measure of the mapping.
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A Harris corner detector

A corner is defined as the intersection of two edges. An interest point is a point
in an image which has a well-defined position. This means that an interest
point can be a corner but also, for example, an isolated point of local intensity
maximum or minimum, line endings, or a point on a curve where the curvature
is locally maximum. As a consequence, if only corners are to be detected, it is
necessary to do a local analysis of detected interest points to determine which
of these are real corners.

Many proposed corner detectors are not usually very robust and often re-
quire large redundancies introduced to prevent the effect of individual errors
from dominating the recognition task. However, an approach proposed by Har-
ris and Stephens [7] has been proved to be very computationally efficient and
robust.

Let f(x,y) denote a grayscale 2-dimensional image. V f(x,y) is the local
gradient of the image and V f(z,y) n is the gradient along the direction n. At a
corner as we rotate n through all possible values, we should find two directions
where the gradient goes through a maximum:

o _ IVfz.y) nl
" n]
cz = WYV (A1)
where
vrvi = g = | B2 GDED

where @) is a smoothing operator.

As in edge detection, we require that noise to be eliminated from the images.
This can be achieved by convolution with a Gaussian kernel (filter) or any
appropriate alternative method. Using this expression on (A.1), we obtain

B nTQn

nTn

02

which is the Rayleigh quotient and therefore is subject to the following bounds:

T
n n
Q@ <

A <
1S —7 - <

A2 (A.2)

where A\; and Ay are the smallest and largest eigenvalues of the matrix (). This
means as n is varied through all possible values, C? is restricted within these
eigenvalue bounds. Based on the magnitudes of the eigenvalues, the following
inferences can be made on this argument:

1. If A\; = 0 and Ay ~ 0 then there are no features of interest at this pixel.

2. If Ay = 0 and X9 is some large positive value, then an edge is found.
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3. If Ay and Ag are both large, distinct positive values, then a corner is
found.

Implementation of this routine usually look for a threshold in the following
function:
M, = M)y — H()\l + )\2)2

M. = det(Q) — s trace?(Q)

Therefore, this implementation does not have to actually compute the eigen-
value decomposition of the matrix A, instead it is sufficient to evaluate the
determinant and trace of @ to find corners. It is also common practice to set
this tuneable parameter x to values in the range 0.04 — 0.15, which determines
how ’edge-phobic’ the algorithm is.
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