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1 Introduction 
The signal processing of three-dimensional laser data is a relatively new field of 
research, especially the high resolution applications. Laser based 3-D sensors give 
contrast where passive 2-D sensors in general have small or no contrast, as for 
instance in darkness. They give the possibility to: 

 See at night, since the system uses its own light source (the laser) 

 See far, as the light source can have high power 

 Still be invisible/unrevealed, by using a non-visual wavelength 

 Penetrate many sparse materials: vegetation, camouflage netting, Venetian 
blinds, dark windows, curtains etc. 

 Visualize the measured object in 3-D, to support an operator 

 Measure the shape and absolute size of an object, to support an automatic 
recognition method 

 Discover camouflaged objects since the shape is harder to hide than the 
color 

 

This report shows some of the studied methods to detect, segment, and recognize 
objects in 3-D laser data, and examples are given. Only sensor systems placed on 
ground or close to ground in a fairly low angle of incidence are considered. 

The work reported here has been conducted at FOI, the Swedish Defence Research 
Agency, and has been mainly sponsored by the Swedish Armed Forces. 

1.1 Purpose 
The project “Target recognition with high resolution 3-D imaging laser radar” aims 
towards assessment of 3-D imaging laser radars for military applications [1]. As a 
necessary part of the project, an extensive study and evaluation of different methods 
for signal processing is being performed. The aim of the signal processing has been to 
exploit the third dimension and cover most parts of the chain from data acquisition 
and detection, via segmentation and classification to recognition. With this approach 
the goal has been to test and evaluate methods and the demands on real-time 
execution is excluded.  

1.2 System aspects 
One can think of different operation modes, where one mode would be to use the laser 
as a robust night-capable surveillance equipment, searching for anomalies in low 
resolution mode and sending alarms to other investigative systems. This would 
motivate the research and testing of registration methods as well as detection methods. 
The registration is used to merge datasets acquired at different times or with different 
field-of-views (with a bit of overlap). The detection methods are used to find 
anomalies in the geometry e.g. flat surfaces in the vegetation or high obstacles on the 
ground. A good way of finding abnormal objects is change detection where you 
search for local differences between two (or more) data sets covering to same scene. 
In some applications object  segmentation are interesting, for instance to visualize the 
presence of different objects, or to extract the ground behind or below the trees. 
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Another mode of operation is to use the 3-D imaging laser radar with all of its high 
resolution capability, to investigate a local area if, for instance, a passive sensor 
generated an indication of something suspicious. In this mode, we have a small ROI 
(region-of-interest) and are more interested in segmentation, classification and 
recognition in this area, to either verify or deny the suspicion. Segmentation is used to 
identify data points originating from specific objects or materials, e.g. ground, trees, 
rocks, or vehicles. Segmentation is normally performed on a complete scene, and each 
data point belongs to a segment after the segmentation. Determining a type of class 
for only a sub group of data points is referred to as classification of those data points. 
The classes can be a tank, an APC, a rock etc. The next step would be to perform 
object  recognition on a sub group of data points, where the result would be a T-80b 
tank, an MT-LB etc. 

1.3 Summary 
This report shows some of the studied methods to detect, segment and recognize 
objects in 3-D laser data and gives some examples. The environments being studied 
during this work are mainly natural environments with vegetation and trees. Urban 
environment will be considered, but are much more challenging. The local features 
used to separate targets from background in natural environments, for instance flat 
surfaces and corners, are very frequent in urban terrain, and new features must be 
considered. In this report we are only considering sensor systems placed on ground or 
close to the ground in a fairly low angle of incidence. One laser scanner system is 
presented in Section 2. 

In Section 3 we show a method to register data (to align data sets geometrically), 
and iteratively improve the registration. In large scale this is important for mapping, 
when the goal is to create 3-D maps of an area, by merging several data sets. In small 
scale, the purpose would rather be to merge several data sets of a single object to 
improve the chance of accurate recognition, or to present a more obvious 
visualization. The iterative method shows to be computationally demanding, but 
rather precise and robust, at least with a good initial estimate. A promising method for 
initialization is also shown.  

The registration section is followed by Section 4, that investigates detection. If the 
registration is used to align two data sets, acquired at different times or from different 
positions, there are methods to detect changes between the acquisitions. One method 
is described and illustrated and the result shows clearly where changes have occurred.  

If only one data set is available, we instead have to use methods to detect 
abnormal objects in the terrain, i.e., anomalies, or features known to be frequent at the 
typical objects. One presented method, the spin-image representation, is used to detect 
features known to correspond to targets. We also investigate some methods to detect 
abnormal features in the terrain, such as flat surfaces, solid structures, and regions that 
both are higher than ground and has a deviant reflectance. Some of the methods show 
to work well in natural or clean environment. In cluttered environment, as urban 
terrain, further development is needed. 

Supportive signal processing methods are presented in Section 5, segmentation 
and classification. A method to estimate the ground level in a data set is presented, 
and found to produce quite accurate ground models. This can be used to estimate the 
potential drive route of a vehicle, and in many other ways as input to other methods 
described in this report. For instance we can analyze the shape of objects standing on 
the ground. Tall cylindrical objects are more likely natural objects than low square 
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objects. If the ground level and the zenith reference are known we can “gate” all data 
points between, for instance, 0.3 and 3 meters above the ground, and also remove the 
data points from trees. The rest of the hits are more easily examined. Finally a 
supportive method is used to classify spin-images in a more sophisticated way than 
ordinary classifiers. 

The last processing method section, 6, contains some work concerning recognition 
of an object when its extents are known and the corresponding data points are 
separated from the background, i.e. the segmentation results are available. The 
methods cover rectangle fitting for automated target measurement, and recognition of 
complex targets divided into for instance body, tower, and barrel. A method to 
compare an object to a CAD-model library is also presented, together with some 
mathematical extensions to enhance the performance. 

The methods in this report show a potential to fill the chain of needed signal 
processing operation from raw data to recognition. Since the goal has not been to 
develop a real-time system, effort has not been put on those aspects, but rather on 
performance issues. There are many parts in this work that need to be more 
thoroughly examined, for instance more objective performance estimations of some of 
the methods.  

 7



 FOI-R--2150--SE  

2 Sensor data 
The sensor itself is not in focus in this report but sets the limits in some cases and has 
to be specified. Most data, except those used in Section 6.1, comes from the Optech 
ILRIS-3D laser scanner, described in Section 2.1. The other sensor has been a 
helicopter-mounted laser scanner, by TopEye AB [2], measuring vertically in a 
zigzag-pattern during flight. 

2.1 Optech ILRIS-3D 
The Optech ILRIS-3D is a 3-D imaging laser scanner acquiring absolute geometric 
coordinates as X-, Y-, and Z-coordinates as well as reflected intensity at the laser 
wavelength for each measurement point. The scanner pattern follows horizontally 
scanning lines filling the view from down and up. The coordinates exported from the 
acquisition system is locally defined with the Y-coordinate as range, the X-coordinate 
as  the horizontal coordinate, and the Z-coordinate as the vertical coordinate. This is 
manually converted into a global coordinate system where z is elevation (according to 
the zenith reference) and the x-y plane is parallel to the ground. The typical density of 
the points for the measurements used in this report is 20-50 mm between each point. 
A typical dataset consists of 0.1 to 2.5 million points. The scanner has been mounted 
on a tripod standing on the ground as well as mounted in a sky lift 5-50 m above the 
ground. More information concerning the Optech ILRIS-3D laser scanner can be 
found in Table 1 and in [3]. 

 
Table 1. System parameters for the laser scanner Optech ILRIS-3D. 

Maximum range 350 m (4 % reflectance) 
800 m (20 % reflectance) 

Measurement accuracy  Spatial values (X-Z) at 50 m ±7 mm 
Spatial values (X-Z) at 100 m ±10 mm 
Range values (Y) at 50 m ±10 mm 
Range values (Y) at 100 m ±10 mm 

Measurement resolution At 50 m: Spot size 15 mm, Spot distance <10 mm 
At 100 m: Spot size 20 mm, Spot distance <20 mm 

Pulse repetitions frequency 2000 points per second 
Laser wavelength 1.5 µm (NIR)  
Beam divergence 0,2 mrad  
Field of view 40° (±20°) 
Eye safety Laser Class  1, eyesafe  
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3 Registration 
The more samples available from the target, the more information can be extracted. 
For example, increasing the number of samples could allow for target identification, 
rather than only detection. Sample limits for detection and identification have been 
studied in [4] and [5]. Objects in natural environments (e.g. forests) are often subject 
to occlusion from various structures (e.g. tree stems, leaves, and bushes), which 
significantly reduce the amount of samples on the target compared to what would be 
the case if the same target was placed in open terrain. This brings us to the idea of 
merging data acquired from different positions, thereby increasing the number of 
samples from occluded objects. However, a fundamental problem of using data 
acquired from different positions is that each data set is generally associated with its 
own coordinate system, related to the specific sensor that was used for collecting the 
data. Thus, in order to be able to merge several data sets, we have to express every 
point in each data set in a global coordinate system. This is commonly known as the 
registration problem. It is typically done by selecting the coordinate system of one 
data set as reference and then determining the rigid transformation of the other data 
set that best aligns the two sets.  

In this section, tools for registration of laser point scatters are presented. It should 
be pointed out that in order to benefit from getting more samples, the registration 
process should not introduce large errors. However, a quantitative analysis of the 
registration performance is beyond the scope of this initial study.  

3.1 Coarse registration by top-view 2-D histogram 
Most, if not all, techniques for accurate registration rely on a good initial pose 
estimate which is then typically iteratively refined, until the best alignment has been 
found. However, if the initial estimate is not good enough, the refinement step may 
actually degrade the result. We will refer to the process of obtaining an initial pose 
estimate as coarse registration. Generally, the key to successful registration is to 
determine features that are likely to appear in both data sets and that can hence be use 
for matching and to estimate the most likely transformation. A general and completely 
scene- and sensor-independent feature extraction and matching technique would 
indeed be appreciated, but we still expect that the problem could be solved by making 
use of some realistic assumptions about the scene and a priori information about the 
data acquisition process: 

1. The aspect angle of the sensor is roughly known, e.g. obtained with an 
inclinometer.  
This makes it possible to pre-process the data by rotating the point sets so that 
the z axis points (approximately) upwards.  

2. There are enough hits from the ground to enable ground (bare earth) 
extraction.   
This assumption is not limiting the applicability of the system significantly – if 
the ground is not visible, the targets, assumingly placed on the ground, are 
probably not either.  
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3. There are approximately vertical structures placed on the ground.  
This is a realistic assumption, for two reasons. First, it is vertical structures 
(e.g. trees) that are likely to occlude the target, which is one of the main 
motivations for studying this problem in the first place. Second, registration of 
a ground surface without vertical structures would be extremely uncertain 
(imagine matching two regions containing only perfectly flat ground).  

For detecting vertical structures, a technique for detecting trees (Section 0) was 
used, with a slight modification – a predefined number objects were extracted, to 
avoid the problems associated with finding suitable thresholds.  

(a) 

 

(b)

 

(c) 

 

Figure 1. (a),(b) The histograms of two data sets with detected vertical structures. The histograms are 
displayed in a logarithmic scale, for visualization purposes. Note the abundance of features having no 
correspondence in the other data sets. (c) Result after point pattern matching, where the symbols 
corresponds to (a) and (b). Axes in meters. 
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Since object features are computed with data acquired from a certain position, they 
will vary from one point set to another. Thus, we cannot match the objects 
individually based on the features based on PCA (principal component analysis). 
Instead, we pursue a point pattern matching strategy, which determines the best 2-D 
transformation that best aligns the patterns [6]. We can generally tolerate a large 
number of patterns that do not have correspondences in the other dataset, e.g. from 
different fields of view or occlusion. A reason for this is that we use the actual 3-D 
coordinates and do not have to considerer scaling effects which could create a large 
number of possible poses.  

Currently, the point pattern matching is performed by searching the space of 
possible translations and rotations. This space is reduced to a manageable size by 
always forcing two objects to be exactly overlaid. In order to express the degree to 
which two points  and  are close to each other, we use the “fuzzy” similarity, or 
proximity, function  

ir jr

)0,
||

1max(),(
d
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ji T

rr
rrs

−
−= , 

where  is the limit beyond which two points are considered to be false matches. The 
total degree of fit for a particular pose is defined as the sum of similarities between all 
points in the data set to be transformed and their respective closest neighbor in the 
reference point set. Note that this matching criterion is asymmetric, i.e. may produce 
different solutions depending on which point set one chooses as the reference set. 
However, since this criterion was adequate in our experiments, the task of finding a 
better matching criterion is left as a future issue. One method, evaluated for iteratively 
aligning of 3-D data to 2-D data from a hyperspectral camera, is based on entropy 
minimization and reported in [7].  

dT

After the alignment procedure described above, we still have to estimate the 
translation along the z-axis. This is estimated by computing the median of the 
differences between the two ground surfaces in the region where the point sets 
overlap.  
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Figure 2. The figure illustrates that the 2-D coarse registration technique is capable of registration of data 
sets acquired from quite different positions. 

3.2 Iterative Closest Point with keypoint detection  
The Iterative Closest Point (ICP) algorithm, proposed in [8], has been widely used for 
fine 3-D data registration. Since then a number of improvements and variants of the 
original ICP algorithm have been suggested, see e.g. [9]. Common for most ICP-
related work presented in the literature is that the algorithms are applied on close 
range data from static scenes containing rigid objects. It is thus interesting to study 
whether this technique can be used for natural scenes. 

The first step is to pair each point in a point set P with its closest point in another 
set Q. Let P’ and Q’ be two sets of corresponding points, such that  are the point in 
Q closest to . The assumption is then that that the sought-after transformation [R,T] 
is the one that minimizes the least square error function 

iq'
ip'

22 ||''||∑ −−=Σ
i

ii TRpq ,     (1) 

where R is the rotation matrix and T is the translational vector. The estimated 
transformation [ ] determined in the motion estimation step, i.e. by minimizing 
(1), is then applied to P. Another search for closest points is performed, after which a 
refined motion is estimated using the new points correspondences, and so on. This 
iterative procedure continues until the solution converges or until some other criterion 
is met. 

TR ˆ,ˆ

The ICP algorithm is associated with some typical limitations. First, it has to be 
supplied with an initial pose estimate in order not to end up in a local minimum far 
from the correct solution. Still, there is no guarantee that the global minimum is 
reached. In fact, the presence of many points with no correspondence in the other 
point set may lead to very poor pose estimates.  
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3.2.1 Keypoint detection 
In natural, dynamic environments, e.g. scenes containing trees moving in the wind, we 
expect a great number of false correspondances if the entire point sets are used. 
Hence, it would be desirable to exclude points that are likely to have less 
correspondence in the other point set prior to the pose estimation. We assume that the 
selected points are those who lie on surfaces. In addition to increase the chances that 
the algorithm eventually converges to a good solution, the computational cost is 
dramatically reduced, when these surface points have been identified. Different 
keypoint extraction techniques, e.g. based on range variance filtering, filtering based 
on the normal direction and a connected component analysis technique, have been 
proposed and investigated [10]. See Figure 3 and Figure 4 for illustrations. 

 

(a) (b) 

Figure 3. (a) Laser intensity image of a forest scene. (b) Detected keypoints. 

(a) (b) 

Figure 4. An illustration of the typical effect of using keypoints in natural environments. Close-up 
of a tree trunk in the forest scene (Fig. 1) after ICP matching. (a) Without keypoints. (b) With 
keypoints. Note the better correspondence between the two data sets, due to the extraction of 
more reliable point sets through surface extraction. 
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4 Detection 
This section describes methods to detect abnormal features in natural scenes as well as 
detecting features that are known to belong to certain objects, from e.g. a model 
library or data from real targets acquired in advance. 

4.1 Local flatness estimation 
In a natural forest environment, vehicle targets will typically represent the largest 
structured objects in laser radar data. Moreover, a structured object can be recognized 
by having surfaces that can be considered flat in local neighborhoods of sufficient 
size. We exploit this property for detecting targets, using PCA of data partitions. 

Each data point set is partitioned into a number of non-overlapping cube shaped 
subvolumes (hereafter referred to as cells) of a suitable size chosen to match the size 
of approximately planar surface segments expected to be found on the target (e.g. 
0.5 x 0.5 x 0.5 m3). Each cell is then checked for flatness by measuring the degree to 
which data is distributed along a plane of arbitrary orientation. 

The partitioning algorithm outputs a data structure where each element contains 
indices pointing to the affiliated data points of that cell, and also reference indices 
pointing to its neighboring cells, specifying the connectivity of partitions. A separate 
list of labels referencing the affiliation of each data point is also provided. The result 
is used for more efficient handling of large data sets in for example surface normal 
estimation and spin-image generation (see Section 4.3 for further explanation of these 
concepts). Here, it is instead used as a direct component of the surface estimation 
algorithm. 

For a given cell , we study two features: the point density feature, , and the 
degree to which the points within the cell form a planar surface, . These measures 
are defined as follows: 

kC kd
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2
kkk RNd ⋅= , 

33,
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where k  is the number of samples in k , k  is the distance from the origin of the 
sensor to , 
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kC ik ,λ  is eigenvalue i given by PCA of the point coordinates in 
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kk 3,λ , to take the statistics of the 
given data set into account. 

In order to prevent cells with a low point count from obtaining a high degree of 
“surfaceness” by chance, the point density feature  in  adds weight to cells where 
a high point count is present to support a high surface score. A compensation factor 

 corrects for the decline in expected point density that comes with increasing 
distance from the sensor. For the same reasons we also limit the analysis to be valid 
only in partitions containing more than five points. 
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The surface measure is calculated in an algorithm context containing ground 
estimation by watershed segmentation (see Section 5.1), and all data points below a 
ground threshold level are ruled out as targets, receiving a surface score of zero. In 
this way ground points that otherwise might receive a high surface score and 
constitute a source of false alarms are excluded from the analysis. 

The algorithm was initially tested on ten data sets collected with the ILRIS-3D 
scanner; see Table 2 for a brief overview. 

 
Table 2. Overview of analyzed data sets 

ID Scene Targets Description Sensor # points 
1 Targets in forest Ground 869258 
2 Targets in tree 

line 
Ground 845698 

3 

Grass field and forest 
Tree line facing 
sensor 175-200 m 
away 

MT-LB/pbv401 (2) 
T-72 (1) 
Volvo V70 (1) 

Targets on field Ground 2578576 
4 Forest with road M60 (2) 

T-72 (1) 
 

Targets on road 
(1) and in forest 
(2) 

Tower 1533136 

5 Spring season 1135561 
6 Spring season 1136509 
7 Spring season 1136980 
8 Spring season 1136094 
9 Spring season 1135983 
10 

Forest 
 
 
(Reference panel on 
tripod was removed 
manually from data) 

Camouflage painted 
container 
 

Summer season 

Hilltop 

976149 
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Figure 5. ROC curves for data sets 1-4 showing the detection rate plotted against the false alarm 
rate in linear scale (left) and logarithmic scale (right). The solid lines are interpolated between 
real data, while dashed lines are extrapolated between the last value and the unavoidable (1,1) -
coordinate. 
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The partition size is set to 0.5 m, corresponding to the expected size of approximately 
flat surfaces on the targets. The ground threshold is set to 0.5 m. This will exclude 
most of the actual ground points while not falsely rejecting significant numbers of 
target parts. The amount of actual target points rejected by the ground estimator 
averaged approximately 16 % for data sets 1-4 and 9 % for data sets 5-10. In these 
early results in Figure 5, we present ROC curves based on individual point scores. We 
see that a fair amount of target points are still detected at surface measure levels 
where the false alarm rate is only a few percent, indicating some degree of partial 
separation between the two classes. Figure 6 shows ROC curves for data sets 5-10. 
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Figure 6. ROC curves for data sets 5-10 showing the detection rate plotted against the false alarm 
rate in linear scale (left) and logarithmic scale (right). 

Selection of an appropriate threshold for target segmentation is made based on the 
expected distribution of target and environment surface scores. Figure 7 shows the 
distribution of surface scores for an entire scene, as well as for the target points 
separately. A threshold level equaling the sample mean plus one or two sample 
standard deviations is a reasonable compromise. 
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Figure 7. Normalized surface feature histograms showing the distribution of scores for data set 2 
above. Left: Target and environment data points. Right: Target data points only. The dashed 
lines represent the sample mean and the mean plus one standard deviation in the combined data. 
Data points that receive a surface score of zero have been omitted. 
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Segmentation performance is improved using a two step hysteresis threshold. Initially 
data points are selected based on a high threshold, T1, and neighboring data points are 
kept if their score exceeds a new, lower, threshold T2. The algorithm chooses T1 and 
T2 based on statistics of the analyzed data point set, according to the pattern below: 

SS nT σμ σ ⋅+=1  

ST μ=2 , 

where µS is the sample mean and σS is the sample standard deviation of the calculated 
surface scores of the scene. The parameter nσ sets the span between the high and low 
thresholds, in terms of the sample standard deviation, and values in the range 1 < nσ < 
3 have been tested. Results using nσ = 2 are summarized in Table 3.  Some of the high 
false alarm rates (> 10 %) seen for data sets 5-10 are due to an environment surface 
feature present in the scene at very close range, thus containing a significant portion 
of the total number of data points. 

The effects of using different T1 levels are studied and some results are presented 
in Figure 8. In Figure 9 we see how segmentation performance can be improved by 
using a hysteresis threshold compared with using a single threshold. One example, 
presented in Figure 10, shows detection of vehicle targets using local flatness 
estimation and a two-step hysteresis threshold with T1 = µS + 2σ. 
Table 3. Detection and false alarms using a hysteresis threshold with T1 = µS + 2σS and T2 = µS. 

 Detections False alarms 
Data set ID # Rate # Rate 
1 4695 0.3882 8100 0.0094 
2 8152      0.2899          1733   0.0021 
3 16828      0.5744          25040   0.0098 
4 13940 0.5628 80878 0.0536 
5 6428      0.7712          81142    0.0720 
6 6877      0.7231          127661     0.1133 
7 6744      0.7200        40798    0.0362 
8 1799      0.3353         152571     0.1349 
9 4334       0.7119         128777     0.1140 
10 2764      0.7438         83592    0.0860 
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Figure 8. The detection rate and false alarm rate change as the high hysteresis threshold T1 is 
raised, when analyzing data sets 1-10. 

 17



 FOI-R--2150--SE  

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

False alarm rate

D
et

ec
tio

n 
ra

te

 

 

T
1
 = T

2
 = μ + σ

T
1
 = μ + 2σ

T
2
 = μ

 
Figure 9. Comparison of detection performance using a two step hysteresis threshold vs. a single 
threshold., The figure shows how, for the majority of the analyzed data sets, the detection rate 
can be improved when comparisons are made at a similar false alarm rate. 

 

 
Figure 10. Detection of vehicle targets using local flatness estimation and a two-step hysteresis 
threshold with T1 = µS + 2σ. Top left: The complete data set 2 with vehicles in the tree line. Top 
right: Detected points after hysteresis threshold. Three military vehicles can be seen in the tree 
line, which has been removed by the algorithm, as well as points on the Volvo V70 in the field. 
Bottom left: Enlargement of detected points on the T-72. Bottom right: Enlargement of detected 
points on one MT-LB/pbv401. Axes in meters. 
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4.2 Change detection 
If we have several data sets from a particular scene but acquired at different times, we 
can compare the datasets and determine whether any changes have occurred. This 
provides a tool for pin-pointing suspicious regions that could correspond to moving 
targets, even though the targets itself may be difficult to detect.  

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

Figure 11. Change detection results. (a),(b). Reference point clouds. (b) New point cloud with changes 
marked. (c) Density change detection results. (d) Surfaceness change detection results. (e) Intersection of the 
change detection results in (c) and (d).  
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Assume that we have two registered data sets from a particular scene, P1 and P2 (P2 
acquired last), and want to detect targets that have moved within, entered or left the 
scene. First, the data sets are partitioned into a number of cells (Section 4.1). Let  
denote the value of a certain feature associated with cell k in data set P

kif ,

i, i=1,2. For 
each cell, the difference between the features in P2 and P1 are computed. 

Due to non-ideal conditions, e.g. trees moving in the wind, registration errors and 
occlusion effects, we expect the differences to be non-zero, albeit small, for most 
cells. What we are looking for is changes that cannot be ascribed to natural 
variations. Hence, we expect cells that have undergone significant change to manifest 
themselves as outliers in the distribution of feature differences. Let fΔ and fσ  denote 
the mean and standard deviation of the feature differences, respectively. A change is 
detected if 

ffkk nff σσ ⋅+Δ>− ,1,2 ,          (4) 

where the choice of  corresponds to the significance of the changes. So far, we 
have chosen , where  and  are defined in Section 

σn

},{ kkk sdf ∈ kd ks 4.1. Some change 
detection results are shown in Figure 11.  

 

 

4.3 Spin-images 
A spin-image, introduced by Johnson [11], is a local surface descriptor that forms a 
rotationally invariant two-dimensional projection of data points in a local surface 
environment. The basis for spin-image generation is the oriented point – a data point 
on the surface of an object and its surface normal vector. 

The spin-image generation scheme used within this project largely follows that of 
[11]. While [11] and [12] use a mesh surface representation, we construct spin-images 
from the 3-D laser radar point cloud directly. This requires a pre-processing stage in 
which the surface normal vector is estimated, and PCA is used for this purpose, as 
suggested by [13]. This is a critical step for correct spin-image generation, and 
improper estimation parameter values or excessive noise in the data can be expected 
to degrade the performance of spin-image based methods, as indicated by [14]. 
Promisingly robust target recognition using spin-images and data from an airborne 
laser radar system has been reported by [15], indicating that sufficient data quality for 
spin-image generation can be assumed in an operational system. 

Once generated, spin-images are used in model-based recognition [11, 12, 15]. 
The local and rotationally invariant basis of spin-images makes them robust to 
variations in the target aspect angle and location. By contrast, other model-based 
template matching techniques can require initial alignment and pose estimation, as 
well as the generation and use of many model templates [16] to handle these 
variations that will always be an intrinsic part of the detection and recognition 
problem in a natural scene. 
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A set of model spin-images is constructed from data points of known objects, and 
compared with spin-images generated from points in an unfamiliar scene. In order to 
reduce the required amount of image comparisons, the model spin-images are 
clustered into forming a much smaller number of spin-image prototypes that are 
representative of the different surfaces that make up the object. We accomplish this 
through k-means clustering of spin-images generated from all data points on the 
model object, as suggested in [17]. 

As an example, a T-72 tank positioned in an open field is scanned by laser from a 
range of 185 m, and spin-images are computed for all 9745 data points on the object.  
In Figure 12, the ten resulting spin-image prototypes and their corresponding surface 
point clusters are shown. The spin-image generation parameters are summarized in 
Table 4. 
Table 4. Spin-image generation parameters. 

Parameter Value 
Surface normal estimation neighborhood size 0.25 m
Spin-image bin size 0.1 m 
Spin-image support distance 1.0 m 

 

The model spin-images are matched against two different scenes, each containing a 
T-72 tank in a similar aspect angle. In the first scene the target is placed in a line of 
trees at a range of 195 m and in the second scene it was backed up further into the 
forest to a range of 210 m. These data sets are presented as number 1 and 2 in Table 2 
in Section 4.1. The numbers of data points on the T-72 target are 7685 and 4041, 
respectively. All available data points are included in the generation of spin-images, 
which are calculated for all points pertaining to vehicles in the scene, plus an equal 
number of randomly sampled environment points for comparison. The total number of 
spin-images then becomes 56238 and 24190, respectively. 

Each scene point is classified as belonging to the cluster whose prototype spin-
image yields the smallest distance measure to the spin-image of that scene point. The 
distance metric used is simply the Euclidian distance (sum of squared differences), 
although it is suggested e.g. by [11] to use a more elaborate method. Results can be 
studied in Figure 13, where the identified affiliation of target points is shown. In both 
examples, it is clearly seen that several target parts are correctly classified. This result 
is a promising step supporting the continued analysis e. g. using geometric 
consistency grouping [11] for verification of recognition. 
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Figure 12. Ten prototype spin-images (left)  created by clustering all spin-images from the T-72 
tank (right). The different colors represent the associated prototype spin-image of every point on 
the vehicle. 

 

 
Figure 13. Spin-image matching results of a T-72 tank in a line of trees (left) and in the forest 
(right). Compare the cluster classification with that of the model object in Figure 12.  
Correspondences are easily seen e.g. on the front tracks (yellow), fender and under the front 
(blue), side (orange) and on the front armor (light green) as well as the area where the front 
armor connects to the fender (red). 

4.4 Local image variance 
As mentioned above, the 3-D data can also be treated as one intensity and one range 
image, as can be seen in Figure 14. We use conventional statistical image analysis 
methods like the 2-D variance to segment data. An initial test to use the local variance 
directly on the range image to segment the image is shown in the lowest part of Figure 
3 [1]. The local variance in vertical regions (68x1 pixels) are thresholded, and the 
objects standing up from ground appears clearly. This method works well if the scene 
is not too cluttered and the aspect angle is rather flat. Segmentation was in [1] also 
tested on combinations of variance of available data, i.e. intensity and range. In [7], a 
method to align 2-D images from other sensors to 3-D data is studied. With this 
method we can align for instance RGB images as the one presented in Figure 14. 
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Figure 14. The information from a 3-D sensor. RGB photo of the scene (upper), intensity in laser 
wavelength (upper middle) and range (lower middle). The lowest image shows the thresholded 
local variance in vertical regions (68x1 pixels).  The vehicles and some tree stems are deteced. 

4.5 Fusion of height and reflectance 
Early work on vehicle detection, based on 3-D data, is presented in [18, 19]. The 
approach can only handle vehicles that are placed on a relatively flat surface in open 
terrain with clear separation from the background. The rectangle fitting method can be 
used for object/background segmentation, which is applied as preprocessing in 
Papers A-B in [20].  

As Figure 15 shows, the first data set used to evaluate the method were data from 
mine measurements. The slope of the ground surrounding the object is estimated by 
projections of 3-D data. The 3-D data are represented by (x,y,z), where (x,y) is 
position and z is range. First the slope is estimated in (x,z) projection and the data set 
is rotated so that the background is flat in that projection, we now have the 
coordinates (x,z’),. The slope estimation and rotation is then repeated for the (y,z’) 
projection. The result is a rotated coordinate system (x’,y’,z’’), where (x’,y’) is 
position on a flat surface and z’’ are height values. When the ground is flat, the object 
and ground can be separated by height. An example is shown in Figure 15. 
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Figure 15. Example of rotation of a scene (land mine on gravel road). Top, left: original range 
data in (x,y,z) coordinates, top, right: estimated rotation in (x,z) projection, bottom, right: 
estimated rotation in (y,z’) projection, bottom, right: final data set in (x’,y’,z’’) coordinates. Axes 
in meters. 

 
Figure 16. Photograph of two mines on a gravel road. 

 
Figure 17. Range data (left) and normalized intensity data (right) of the mine scene, axes in 
meters. 
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These types of detection and object/background segmentation methods apply for the 
simple case with relative flat ground surface and no occluding clutter or background. 
Furthermore, these methods do not take advantage of the intensity information in the 
data set. 

In Paper F in [20], a Bayesian approach for object/background segmentation is 
proposed. For separation of data into object and background samples, and estimation 
of the variances of the classes, Gaussian mixtures based on Expectation Maximization 
(EM) are used. A mixture of two Gaussian functions is fitted to data. These estimates 
are used as a priori information in a Bayesian classifier. Bayesian hypothesis testing 
for two classes is applied for classification of data into object and background data 
and clustering of object data. 

This approach was tested on a scene with two mines on a gravel road, see Figure 
16 for a photograph of the scene and Figure 17 for range and intensity data. The 
mixture of two Gaussian functions fitted to the combined range and intensity data is 
shown in the left part of Figure 18. In the right part of Figure 18, the segmentation and 
clustering of data are shown. Both objects are detected and clustered with few miss-
classifications. This is the first result and further studies are needed. For example, 
higher order Gaussian mixtures that include position, and more complicated scenes 
must be investigated. A detailed description is found in [20], Paper F. The dimensions 
of a clustered mine can then be determined by the rectangle estimation method further 
explained in Section 6.1, see Figure 19. 

 
Figure 18. Two-dimensional Gaussian mixture estimation (left) and the resulting classification 
and clustering (right). Axes in meters in the right part. 

 
Figure 19. An example of dimension and orientation estimation of the mine in Figure 15. Object 
data (black), background data (gray), and the estimated rectangles are shown. Axes in meters. 
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5 Segmentation and classification 
This section treats some methods that support the other methods with for instance 
ground estimation and tree removal. One classification method is also reported. 

5.1 Ground estimation by watershed 
The task in ground estimation is to identify data points that correspond to bare earth 
and then, based on this information, to intelligently “guess”, i.e. interpolate, the 
ground level at all other positions. The input to the ground estimation technique 
presented in this section is a point cloud, rotated so that the z-axis point upwards 
(Figure 20a). Then, a zmin-image is created by rasterizing the point cloud into a grid of 
bins and keeping only the lowest point in each bin (Figure 20b).  

 

(a) 

 

(b) 

(c) 

 

Figure 20. Ground estimation illustrations. The color corresponds to height above the ground 
(blue=low, red=high). (a) Original point cloud. (b) zmin image (see text for details). (c) Ground 
model. 

 

Since it is highly unlikely that in every cell there are points corresponding to ground 
hits, we cannot let the zmin image itself represent the ground. Thus, a set of possible 
ground points is extracted by performing a watershed-like segmentation of the zmin 
image similar to the one proposed in [21]. In this report the method is extended to 
cope with uninterpolated images, i.e. images that contain empty pixels (to which no 
elevation value has been assigned). The result from the segmentation is regions where 
the data “point downwards”, so called basins. The lowest point in each sufficiently 
large basin together form an initial set of possible ground pixels, seeds. Once a set of 
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seeds has been established, region growing starts from the bottom-most seed in the 
image, with a threshold governing to how steep elevation changes are accepted. When 
the region cannot grow anymore without violating the threshold constraint, the next 
seed is chosen from which the growing starts again.  

After the region growing process there are typically regions of unvisited pixels for 
which we wish to estimate the ground level. By applying bilinear interpolation, the 
final ground model is obtained (Figure 20c).  

5.2 Tree removal by local Principal Component Analysis 
When handing over information from a 3-D sensing system to an operator it is 
preferrable to clean up the data (remove the clutter) to simplify the operator task. 

After aligning the z-axis to vertical direction, the ground level is estimated with 
the technique presented in Section 5.1. Once the ground model has been created, all 
points that lie within a height interval (a few meters) from the ground are identified. 
From these points, a 2-D top-view histogram is created, in which each value 
represents the number of laser hits that have occurred in the corresponding area in the 
scene. We expect vertical structures as trees to appear as peaks in this histogram. The 
points corresponding to each local maximum are then selected to form a point subset, 
hereafter referred to as an object. At this point, however, all objects do not necessarily 
correspond to relevant structures in the scene, but may have arisen from laser hits in 
undergrowth, bushes and foliage. Therefore, we compute a number of features 
through PCA and exclude those who are not deemed relevant, i.e. have no evident 
principal direction, whose principal direction does not point approximately upwards, 
etc. 

If we for instance extract a rough model of the ground [21] we will be able to 
decide the height above the ground for each point. This makes it possible to, like a 
cheese slicer, disregard points lower than the ankles and higher than 3 m. One 
example is shown in Figure 21 and Figure 22, where Figure 22 is a projection from 
above where the vehicles appear even more clearly. 

 
Figure 21. A 3-D data set of a treeline with 3 vehicles; unprocessed (left) and the ”slice” between 
0.2 and 3 m above ground (right). 
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Figure 22. The same data sets as in Figure 21, but seen from above. The three military vehicles 
are marked with ellipses. 

5.3 Supervised classification by HNet 
In Section 4.3, it was shown how spin-images provided a sufficiently accurate surface 
description to classify various parts of a vehicle. In the above section, spin-images are 
compared using the Euclidian distance, although more complex methods are 
preferred. Initial tests using the HNet software by AND Corporation as a classifier 
were performed as an alternative. In Figure 23, results from initial testing are shown. 
The T-72 tank from data set 2 of Table 2 is analyzed, and the color-coded points 
indicate the target part class; compare this with Figure 13. These results show the 
potential of the HNet software to provide an aid in object classification based on spin-
images. The method has not yet been compared to other classification methods. 

 
Figure 23: Identified spin-image cluster regions output by the HNet classifier during initial 
testing. 
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6 Recognition  
This section describes some work concerning recognition of an object when the 
extents of the target is known and the data points corresponding to an objects is 
separated from the background, i.e. the segmentation is done. The methods cover 
automatic object measurement by rectangle fitting, together with treatment of targets 
divided into e.g. body, tower and barrel. A method to compare an object with a CAD-
model library is also presented, together with some mathematical extensions to 
enhance the performance. 

6.1 Rectangle fitting 
The basis for the object recognition approach presented in the thesis [20] is rectangle 
fitting. The method has been described separately as Rotating Calipers [22-24]. A 
short description of the method is presented in this section, evaluation of its 
performance is found in [20] (Paper A, Paper F), and [4].  

A straight line in 2-D can be described as 021 =−+ cynxn , where the normal vector 
 defines the slope of the line, c is the distance to origin, and ( )  is matrix 

transpose. The object points 
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A rectangle that contains all samples φ inside or on the rectangle’s edge is found by 
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This rectangle will also contain the convex hull of the data set. An example is shown 
in Figure 24. In both [23] and [22] (similar) algorithms are given for calculation of the 
minimal area in linear time, i.e., O(Nv) where Nv is the number of vertices in the 
convex polygon. Further, the convex hull can be calculated in O(N log2 N) time, 
where N is the number of samples, if data are unsorted and in O(N) time if data are 
sorted. 

 

 
Figure 24. Illustration of the rectangle estimation. A set of samples (dots), the convex hull (dashed 
line), and the estimated rectangle (solid line) are shown. The samples belonging to the convex hull 
are encircled. The length (l), width (w), orientation (φ ), convex hull area (AC), and rectangle area 
(AR) are indicated. 

6.2 Recognition of articulated objects 
In [23, 24] it was shown that the rectangle fitting method could be used for dimension 
and orientation estimation of man-made objects. An example of rectangle fitting of a 
land mine in Figure 16 is shown in Figure 19. 

The rectangle fitting method has also been used in an approach for recognition of 
articulated objects, see [20], Paper A. In Paper B of [20], a penalty function for the 
number of functional parts, and an iterative least squares fitting method with outlier 
rejection are proposed. 
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Figure 25. Result of size and orientation estimation, segmentation, and node classification. Top 
left: Side view, short side segmentation. Data are divided into five segments, where one is 
identified as a barrel (marked with rhombus). Top right: Side view, long side segmentation. Data 
are divided into three segments, where one is identified as a turret (marked with circles). Bottom: 
The rectangles show the estimated size and orientation. Identified barrel samples are marked 
with ’o’ and turret samples with ’x’. Axes in meters. 

 
Figure 26. Matching results, tank (T-72) data collected with three different laser radar systems 
are matched with the T-72 model. 
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The method handles general, irregularly sampled, scattered, 3-D data. It takes 
advantage of the 3-D structure and that the dimensions are known in laser radar data. 
The estimation of initial position and segmentation into functional parts is based on 
the assumption that man-made objects, like vehicles and buildings, in certain 
projections are of rectangular shape. A man-made object of complex shape can be 
decomposed into a set of rectangles and in some views the rectangles will describe the 
functional parts of the object. In a general application we cannot assume that the 
object is placed in a certain orientation relative to the sensor or that the object is 
articulated in a specific way.  

The object recognition method consists of four steps: 

1. Estimate the object’s 3-D size and orientation using the rectangle estimation 
method described in Section 6.1.  

2. Segment the object into parts of approximately rectangular shape. The 
functional parts can be found in some of the rectangles. 

3. Identify the functional parts by simple geometric comparisons and estimate 
their dimensions and orientations. 

4. Match the entire object with a wire-frame model. The model’s functional parts 
are rotated to the estimated orientations. 

The goal with identification and fitting of functional parts for vehicles is to simplify 
the model matching. If the object’s parts are identified, matching with model can be 
performed regardless of the relative position of the functional parts. Different 
configurations of a vehicle can be handled in a structural way. If the functional parts 
of a tank (the barrel and turret) can be extracted, the hypothesis that the object is a 
tank is strengthened. When the object’s functional parts are identified, the recognition 
can be simplified as the number of degrees of freedom reduce. Further, for a tank the 
orientation of the barrel indicates the tank’s intention, which can be useful in security 
or military applications. 

An example of identification of functional parts for a tank is shown in Figure 25. 
The segmentation into rectangular parts is performed in top, side, and front/back view 
projections. For every projection the segmentation is performed along both the main 
and the secondary axis, where the axes are estimated with rectangle fitting. In total, 
the object is segmented in six different ways and all rectangles are compared with the 
library model’s main parts using geometric rules for dimensions and orientations. The 
matching with a facet model (CAD model) is shown in Figure 26. 

6.3 Matching of articulated objects with facet models 
The model matching in Section 6.2 is based on global matching of data and model. 
This approach can be developed to modular matching, where the articulated parts are 
matched in controlled way. Further, to control the number of articulated parts that are 
valid for the particular data set, a penalty function is proposed. This work is presented 
in [20], Paper B and [25]. In this section, Least Squares fitting with point 
correspondence between the data set and the model is described. After that, the case 
where point correspondence is not present is described. In the latter case it is common 
to use the ICP-algorithm described in Section 3.2. Finally, an extension of ICP that 
includes outlier rejection is proposed.  

 32



 FOI-R--2150--SE  

6.3.1 Least Squares fitting with point correspondence 
First, the global Least Squares fitting problem of two 3-D point scatters with point 
correspondences is presented [26]. The problem is then extended to modular Least 
Squares fitting where the object’s articulation is treated, as proposed in [25] and [20], 
Paper B. An illustration is shown in Figure 27. The vertices of a facet model are used 
as the point set representing the model and a rotated and translated copy of the model 
samples represents the object. The object samples are contaminated with Gaussian 
noise with zero mean and standard deviation of 0.1 m (on an object of size 
9.65×3.52×2.49 meter). In Figure 27, the results of global Least Squares fitting and 
the result of modular Least Squares fitting are shown. The Mean Square Error (MSE) 
is reduced approximately 500 times in this case. The model samples are represented 
by the facet model in the figure. 

 
Figure 27. Geometric fitting of two point scatters with point correspondence. The two point 
scatters (top, left), the model point scatter represented by the facet model (top, right). Fitting 
using global Least Squares (bottom, left) and modular Least Squares (bottom, right). The MSE 
of the fit is given. 

Input 
MSE 0,94 

Input 
MSE 0,94 

Global LS 
MSE 0,020 

Modular LS 
MSE 4,4·10-5 

6.3.2 Least Squares fitting of 3-D points and facet model 
In most cases, two point sets with point correspondence are not available. Instead 
there is a point scatter describing the object and the model is a facet model, denoted 
M. It is then possible to fit the object samples with their projections on the closest 
facets. Due to the projections, the fitting problem is a nonlinear problem which can be 
solved within the ICP framework. Define P as the point set describing the object and 
Q as the point set describing the model, where Q is the projection of the elements in P 
to the closest model facet, i.e., 

( )MP|Q Proj=  

If the orthogonal projection of an element in P is not on a facet, the projected sample 
is set to the closest facet edge. Again, we use ICP to iteratively enhance the 
registration of  two data sets, as for instance Q and P. In applications with noisy data 
an outlier rejection is needed; elements in Q that have too long distances to the 
corresponding samples in P will be rejected. The outlier distance depends on the 
uncertainty in data and the resolution in the facet model. An iterative algorithm for 
fitting a 3-D point set with a facet model, when the number of functional parts is fixed 
to J, is proposed in Algorithm 1. 
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Algorithm 1. Modular ICP with Outlier Rejection 

 Estimate the object’s orientation, including orientation of functional 
parts, and place the model in similar position. This gives the initial 
rotations  and translations  00

1 ,..., JRR .,..., 00
1 JTT

 For iteration k, calculate the closest points of  on the JjPk
j ,...,1, =

model M, ( ),Proj M|PQ k
j

k
j =  to get point correspondences. 

 Reject outlier elements in  and their corresponding elements in k
jQ

.,...,1, JjPk
j =  

 Estimate rotations  and translations  k
J

k RR ,...,1 .,...,1
k
J

k TT
 Calculate the MSE of the estimation error, Vk(M). 

 If ( ) ( ), 1 MM − > kk VVτ  terminate. Otherwise, continue to iteration k+1. 
The threshold τ is user-defined. 

 

If Algorithm 1 is compared with the original ICP-algorithm, the outlier rejection in 
step 3 is added and the termination criterion is relative instead of absolute. The impact 
of the outlier rejection is illustrated in Figure 28. The data set is simulated using the 
vertex points from a model (a T-72 chassis), the samples are rotated 10 degrees and 
translated 0.5 meters in 3-D. Gaussian noise with zero mean and standard deviation 
0.05 meters is added. To simulate outliers, Gaussian noise with zero mean and 
standard deviation 3 meters is added to seven samples. Algorithm 1 is applied to 100 
data sets of this type, both with an outlier rejection distance of 1 meter and without 
outlier rejection. Tests have shown that an outlier distance of 5σ or larger is sufficient, 
where σ is the standard deviation of the noise in input data. Statistics of the root mean 
square error for the last iteration, ( ),MkV  in each example are shown in Figure 28. 
The root mean square errors are more than 5 times higher when the outlier rejection is 
not applied. The final fit for the data set in the top of Figure 28 is shown in the bottom 
image of Figure 28, outlier rejection was applied. 

  
Figure 28. Example of ICP with outlier rejection. Left: Initial fit. Middle: Statistics of final root 
mean square error for 100 trials. Right: Final fit, outlier rejection of 1 meter was applied. Axes in 
meters. 
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7 Discussion 
The well spread effort reported here are distributed over registration of 3-D laser data,  
detection of abnormal objects or structures in terrain, and detection of known 
geometric signatures in natural environment. Also covered are supportive methods for 
segmentation as adaptive ground level estimation and automated tree removal, and 
recognition methods to use when data is segmented and a target has to be verified. 

The methods show potential to fill the chain of needed signal processing operation 
from raw data to recognition, but since the goal has not been to develop a real-time 
system, effort has not been put on those aspects, but rather on performance issues. 
There are many parts in this work that need to be more thoroughly examined, e.g. 
more objective performance estimations of some methods.  

An experience from this work is the problems with simulated data. While methods 
for recognition from 2-D data in many cases can rely on simulated training data to a 
large extent, 3-D data is so complex to reconstruct, that it is very difficult to get 
realistic data. One reason can be that 2-D simulations often are based on textures, 
while 3-D simulations need to be based on geometric shapes. Visually they can be 
similar, but when it comes to real calculations the differences are crucial.  

This work has also been useful to get a feeling for the performance of the laser 
scanner system described in Section 2.1. The range limits of this system have been 
tested and the uncertainties of laser systems have been estimated. These limits will of 
course also set the limits to the performance estimations of the recognition methods. 

For future military applications, focal plane arrays are expected to be more 
frequently used. This will affect the signal processing mainly by the amount of data 
delivered to the processor, since the mechanics often are the bottle-neck of the current 
systems. Another important future issue can be the range accuracy. Generally, focal 
plane arrays has worse range accuracy, due to priority issues in the electronics. This 
would indeed affect the signal processing possibilities negatively. 

7.1 Future work 
This report shows several separate methods to process 3-D data. A future task will be 
to connect these methods to complete a chain of operations from raw 3-D laser data 
until performed recognition. To do this we have to specify the application, since it 
will not be realistic to make a general program for all systems and applications.  

In most work with the methods described in this report we have had no 
information about the surroundings, the global position, and the zenith direction. In 
the future we expect to have systems delivering some of this information to support 
the processing. When the zenith direction is available a lot of assumptions can be 
made, and the methods can be more specified and optimized. If also the GPS position 
and the system orientation is known an initial guess for the registration would be just 
straight-forward geometry.  

Another issue is the system usage. In this report we have only considered general 
3-D laser data, without a system desire. A proper use would either be an unmanned 
surveillance system placed to watch for intrusions, or a multi-sensor platform, where 
another large-field-of-view sensor gives a position for the laser system to examine 
further. If this was the case, a more specific and better-performing signal processing 
chain could be developed. 
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