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Delområde
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1 Introduction and Definition of Scope

In this chapter we will define the problem of interest and thereby the scope
of the survey. We start by describing three motivating example scenarios and
then formally define a problem class.

1.1 Scenario 1: Security Guard

Suddenly, the alarm goes off in a factory area that has been closed down for
the night. A few minutes later a security officer arrives at the scene. The guard
notices a broken window and concludes that this time the alarm was not false.
Requesting backup, he activates the three UGVs at the back of his SUV and
commands them to jointly survey all sides of the building complex except for
the front, which is already in view from his vehicle. In less than a minute, all
sides of the building complex is covered and an escaping intruder is bound to
be noticed by the motion detection algorithms analyzing the image sequences
from the UGVs.

1.2 Scenario 2: International Peace-Keeping and Detection of
Hostile Snipers

During an international peace-keeping operation, a group of refugees must
travel by foot through a part of town controlled by hostile warlords. The risk
of snipers trying to take a shot at the refugees is assessed to be high. The
group is escorted by international peace-keepers traveling in HMMWVs, but
in order to deter any sniper attempt, the risk of detection and elimination must
be substantial. The peace-keepers are equipped with surveillance UGVs that
can monitor areas and buildings and alert operators in case of movements. By
positioning the UGVs in key spots, right before the group passes, movements
and or nozzle flares in buildings can be detected and acted upon. The geometry
of both buildings and terrain must be taken into account to make sure the
image sequences are useful. If good and sparse enough surveillance spots can
be efficiently computed, and the UGVs are able to move faster than the group,
a leap frogging movement of the UGVs can be used to keep the area around
the moving refugees constantly monitored.

1.3 Scenario 3: Squad Under Fire

A recon squad is suddenly under fire, and is forced to take cover. In order to
improve their situational awareness and reclaim the initiative, they command
their two surveillance UGVs to find positions that cover as much as possible of
the immediate surroundings in the direction of the threats.

1
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1.4 Definition: The Camera Coverage Problem

The scope of this survey is defined and limited by the following problem state-
ment:

The Camera Coverage Problem (CCP): Given a map or an
environment model and a user defined area of interest, composed of
ground and/or buildings, the problem is to find a number of camera
locations in such a way that the area of interest is covered in an
optimal way.

We are interested in a wide class of variations of this problem in terms of
camera model, environment model, and choice of objective function in the
optimization. Having stated the problem we now list a number of possible
variations.

1. Objective function: Optimal in what sense?

a) To cover as large area as possible.

b) To cover a given area with as few cameras as possible.

c) To cover a given set of walls with as few cameras as possible.

d) Other objective functions, such as a weighted sum. Such objective
functions can be used to capture problems where some areas are
more important than others, and some are good to have multiple
views of.

2. Camera model: Field of view, range and image quality constraints

a) Omnidirectional

b) Range limitations

c) Field of view limitations

d) Other constraints, such as zoom, image quality or angle of incidence.

3. Environment model and types of occluding objects

a) 2 dimensional environments

b) 3 dimensional environments

The following chapter describes results found in the literature relevant to
the above problem in different variations. After that, a set of reviews of the
individual papers can be found in Chapter 3. Finally, conclusions are drawn
in Chapter 4.

2
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2 Survey of Literature Relevant to the Camera
Coverage Problem

The base line problem studied in this survey is the Camera Coverage Problem
(CCP), described in section 1.4 above.

To get a good overview of the work relevant to the CCP, the survey covers
papers in many different research disciplines. Reviews of the individual papers
can be found in Chapter 3, while this Chapter attempts to give a more unified
view of the results found.

We divide this chapter into three sections dealing with different aspects of
the CCP. First we describe the environment models used, then the different
camera models, and finally we give a more detailed account for the different
objective functions and the algorithms used to find good solutions.

2.1 Search Environments

In many papers, the area to be guarded has been considered to be either
indoor, or outdoor in an urban environment. Common obstacles that restrict
visibility in these environments are walls, pillars and other stationary objects
with vertical extension. Hence, a natural simplification is to consider a two
dimensional problem. However, as will be seen, there are also papers addressing
the full 3 dimensional case. In this section we describe the different environment
models used in more detail.

2.1.1 Polygons

One of the most straightforward search environment models used is the poly-
gon. A polygon consist of a number of points (vertices) in a certain order
together with line segments (edges) joining consecutive points. A simple poly-
gon is a polygon that is not self-intersecting, see Figure 2.1. Thus, the inside
and outside of a simple polygon is well defined. Since rooms and buildings

Figure 2.1: A simple and a complex polygon.

are modeled well by simple polygons, they are used in many of the surveyed
papers.

3
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2.1.2 Simple Polygons with Holes

Objects inside a polygon that limit the field of view, so-called holes, are also
generally modeled as polygonal regions, [23, 18]. Polygons with holes are said
to be multiply connected in contrast to polygons without holes that are simply
connected, see Figure 2.2.

Figure 2.2: A polygon with holes, i.e. a multiply connected polygon.

Guarding problems on simple polygon environments with or without holes
are studied in [7, 34, 23, 2, 18, 21, 37, 31, 11, 22, 25, 26]. More details on the
problem statements and proposed algorithms can be found below.

2.1.3 Orthogonal Polygons with Holes

Most indoor and outdoor environments have an orthogonal structure with walls,
pillars, display cases, and other obstacles, which motivates research on guarding
orthogonal polygons with holes. An example can be seen in Figure 2.3.

Figure 2.3: An orthogonal polygon with holes.

Guarding problems on orthogonal polygons are studied in [34, 24, 37, 31,
39].

2.1.4 Three Dimensional Terrain

A natural generalization from the 2 dimensional polygonal environment models
is 3 dimensional terrain models, where a function f : R×R → R represents the
terrain surface σ = {(x, y, f(x, y)), (x, y) ∈ Ω} over some area of interest Ω,
[8]. The standard way of storing data for these models is to use digital elevation
maps (DEM), i.e. a stored set of sample points (x, y, z) on the terrain surface.
If the sample points are regularly spaced and “dense enough” it is common to
either represent f as piecewise constant function, or use bilinear interpolation.
If on the other hand, the sample points are scattered, a triangulation of the
points are often used in combination with a linear interpolation inside each
triangle. Such models are called Triangulated Irregular Networks (TINs). The

4
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most commonly used triangulation is Delaunay triangulation, which is opti-
mal in the following sense: it minimizes the maximal containing circle of any
triangle, i.e. the created triangles are as close to equilateral as possible.

In cases where the environment can not be modeled by a level surface σ,
triangulation is still used to capture the general 3D structure. In these cases
however, line of sight calculations takes more time, [9].

Of the reviewed papers, guarding problems on 3 dimensional terrain are
studied in [11, 37, 13, 14, 9, 8, 20, 19, 30].

2.2 Sensor Constraints

The guards in art gallery research have in many cases been considered ideal
and without constraints. In this section we will discuss some natural constraint
that make the camera model more realistic.

It should be noted however, that for some real world cases the unconstrained
guard model works quite well, for instance for a human guard in a well illu-
minated gallery of moderate size. If the gallery is empty and quiet, the guard
will use both vision and hearing and will perform more or less omnidirectional.
Furthermore, some literature refer to illumination problems which are equiva-
lent to guarding problems. In these, the guards guarding an area are replaced
by light sources illuminating the area. Clearly, omnidirectional light sources
are not hard to find.

2.2.1 Range Constraints

An important constraint is that of sensor range. Range constraint, both min-
imum and maximum, is typically used to achieve a certain quality of the ac-
quired data, see [23]. The long range bound for a camera could be given by
resolution constraints, while the close range bound could be set due to focusing
limitations.

These ranges can furthermore vary to some extent for different environ-
ments. For example, the useful range of a standard camera would probably
increase if the environment is well lit, while the performance of other sensors,
such as an IR-camera, would be degraded by the excess of light.

Papers dealing with range constraints are: [23, 5, 20, 19].

2.2.2 Field of View

As opposed to range constraints, the field of view (FOV) of the sensor is gen-
erally well defined. Few sensors though, if any, are omnidirectional, but most
papers ignore this limitation. Some exceptions are [36] were the searchlight
problem was introduced. Here stationary flashlights with infinitesimal view
angle (1-searchers), are used to search by rotating on the spot. Another exam-
ple where view angle limitations were treated is [22], in which moving guards
with φ radians view angle (φ-searchers) were used to clear an area. Further
more, so-called Floodlight illumination problems were presented in [37]. A
floodlight is a light source with limited angle of illumination and is equiva-
lent to a φ-searcher in [22]. To summarize, FOV constraints are treated in:
[23, 5, 37, 22, 35].

2.2.3 Image Quality, Angle of Incidence and Zoom-Cameras

In order for the images to be useful, for either a human operator or an auto-
mated detection and classification algorithm, the image quality must be good
enough. One reasonable measure of this is the number of image pixels per

5
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meter of surveillance object (for 2D case). Such a constraint would imply both
a maximal distance and a bound on the angle of incidence to the object, [5].
Similar constraints are used in [23], where angle of incidence bounds, together
with range constraints is motivated by the use of a 3D image acquisition de-
vice. The importance of such a bound for the CCP is clear when for instance
observing the wall of a building to look for possible hostile snipers. To be able
to see in through the windows, a certain angle of incidence is required.

One interesting camera model, which to our knowledge is unstudied in this
context, is the zoom camera. A zoom-camera can increase its range to the cost
of reduced view angle. Without the image quality constraints, a zoom camera
would always be used in the wide angle mode, to maximize the field of view,
but with the constraint the zoom functionality becomes important.

Imagine a zoom camera of fixed position and orientation. Then due to the
range/field of view tradeoff, any object facing the camera within the corridor
in Figure 2.4 can be viewed with good enough image quality.

Figure 2.4: Zoom-Camera.

The exposed area in the Figure is perpendicular to the camera direction,
and we say that the angle of incidence is zero. For non-zero angles the image
quality will be reduced since the exposed length per camera pixel decreases
with increased angle of incidence. These and similar constraints are treated in
[5].

2.3 Problem Objectives

In this section we review the literature from the standpoint of what problem
objective is optimized. The section is divided into four parts. After some back-
ground, the first two parts are concerned with finding the minimum number
of guards needed to guard an area. In the first part, general upper bounds are
presented for different problem types and sizes, and in the second part, algo-
rithms to actually find the guard positions for a specific instance are studied.
The third part concerns the reverse problem. How to cover as much area as
possible with a fixed number of guards. Finally, the fourth part discusses other
optimization objectives.

Area Partitionings and Guard Types

Before going into details of the different parts, we briefly discuss different par-
titionings of the area to be guarded, as illustrated in Figure 2.5. Polygon
triangulation is a key tool in the art gallery theorem, [7] (see below) and an
O(n) triangulation algorithm is presented in [4] and improved in [1]. One cor-
responding natural decomposition for orthogonal polygons is quadrilateraliza-
tion [27] where the polygon is decomposed into convex 4-gons. Decomposition
into star shaped regions is very useful and utilized in [24, 21]. We can see in

6
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Figure 2.5: Triangulation, quadrilateralization and star decomposition (kernels in dark
blue).

Figure 2.5 that none of these decompositions are unique. More on polygon
decompositions can be found in [28].

Finally, we note that the literature contains a set of different guard types,
namely vertex guards (guards that may only be positioned at vertices), edge
guards (guards that may patrol along a single edge of the polygon) and point
guards (guards that may be placed anywhere in the polygon), see Figure 2.6.

Vertex
guard?

Point
guard?

Edge
guard

6

Figure 2.6: A polygon with a vertex guard, an edge guard and a point guard.

2.3.1 Finding an Upper Bound on the Number of Guards

The problems discussed in this section are all versions of the following problem.

Problem 2.1 (The General Art Gallery Problem) What is the smallest
number of guards needed to cover any polygon with n vertices and h holes.

The classical art gallery problem was stated by V. Klee in 1973, and it con-
cerned polygons without holes, h = 0. In 1975 Chvátal [7] presented a bound of
bn/3c on the number of vertex guards that is always sufficient and sometimes
necessary. Chvátal’s theorem was later called the art gallery theorem. This art
gallery theorem formed a foundation for further research, see e.g. [31, 34, 37].

For polygons containing h holes, [31] proved that b(n+2h)/3c vertex guards
suffice. This bound was however not considered tight, and a common conjecture
was that b(n + h)/3c vertex guards are sufficient. The latter bound was later
proved for point guards in [3, 25], and Hoffmann et al. furthermore showed
that the bound also holds for vertex guards for certain types of polygons.

In [24] the guarding problem for orthogonal polygons with holes are treated.
It is proved that bn/4c point guards suffice for these polygons. The example
in Figure 2.3 with n = 14 walls is taken from [24] and require 4 vertex guards
but 3 (b14/4c) point guards to be completely covered. This polygon was used

7
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to disprove the old conjecture in [31], stating that b3n/11c vertex guards does
always suffice, and propose a new conjecture of b2n/7c.

2.3.2 Minimizing the Number of Guards

Even though many of the proofs above are constructive, and can be used to
place guards in specific problem instances, other algorithms tailored to solving
such instances have been proposed. They will be described in this section.
First however, we follow Eidenbenz, [13], to formally define the problem

Problem 2.2 (Minimum point guard) Let A be an area. The problem
minimum point guard is the problem of finding a minimum set S of points
on A such that every point on A is visible from a point in S. The points in S
are called guard points.

The area A can be either a polygon of some sort, or a 3 dimensional terrain.
It has been shown that the minimum guard problem is NP-hard [29] for

vertex guards, edge guards and point guards. It is further proved that finding
a set of guards whose cardinality is at most 1 + ε times the optimum is also
NP-hard, [12].

A straight forward way to find a near optimal solution to the minimum
guard problem is to use a greedy approximation algorithm [2]. From a guard
candidate set a guard is chosen, one at a time, so that the covered area incre-
ment is as large as possible.

This solution approach is very common in the literature, and can be viewed
as a transcription of the minimum point guard problem to the minimum set
cover problem defined below

Problem 2.3 (Minimum set cover) Let E = {e1, . . . , en} be a finite set of
elements, and let S = {s1, . . . , sm} be a collection of subsets of E, i.e. sj ⊆ E.
The problem minimum set cover is the problem of finding a minimum subset
S′ ⊆ S such that every elements ei ∈ E belongs to at least one subset in S′.
We say that E is covered by S′.

If the subsets s1, . . . , sm all represent a candidate guard positions and the
elements in sj are the areas visible from guard j, then clearly, a solution to
Problem 2.3 is also a solution to Problem 2.2.

Problem 2.3 is NP-hard, but a standard greedy solution is known to achieve
an approximation ratio of O(log(n + 1)). The algorithm simply adds the set
containing the maximum number of yet uncovered elements. Furthermore,
these approximations are optimal up to a constant factor, due to theoretical
results on the complexity of the guarding problems, [13].

One important issue is how to find the set of “good” guard positions to chose
from, i.e. how do we choose S. In [15] the minimum convex cover problem was
studied. A minimum convex cover of a set is obviously a reasonable set of
tentative guard positions, S.

The approach described above is also applicable to the case when A in
Problem 2.2 is a 3D terrain. Some approaches, such as [19], start out with a
digital elevation map (DEM) of the terrain, while others use a triangulation.
In [30], a set of triangulations with different resolutions in different places were
computed.

In order to find ”good” guard positions to chose from, [30] use an initial
vertex coloring to find a smaller subset of the vertices of the triangulation.
Finally a visibility computation is done to find the sets sj ⊆ E visible from
each possible guard location.

In [19], an approximate visibility index, i.e. the fraction of the area within
range that can actually be seen, is first computed for each point. Then the set

8
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of tentative observers are found by choosing points with high visibility index.
Some extra measure is used to prevent the spots from clustering (the neighbor
of a good spot is probably also good, but sees roughly the same area). The
viewshed, i.e. sj ⊆ E is computed for each point and a version of problem 2.3
is solved with the standard greedy algorithm.

In [13], the tentative observers are found by partitioning the whole 3D-space
using a huge set of planes, where each plane is found by intersecting an edge
of the triangulation with an additional vertex of the triangulation. The point
of this partitioning is that in each cell, all point see the same set of triangles.
This approach is similar to the one used in [22] to find areas within which the
number of visible vertices do not change.

In [10], problem 2.3 is solved by a randomized search instead of the greedy
approach. In this way the set of tentative guards can be very large, and the
sets sj ⊆ E are only calculated when needed. It would be interesting to see
how these two methods compare in terms of performance.

In [20], some different ways to calculate sj ⊆ E, i.e. the area visible to
observer j, are discussed. Tools for calculating sj in a general triangulated 3D
environment can also be found in the well written surveys [9, 8].

2.3.3 Maximizing the Coverage

A closely related problem to the minimum guard problem is to maximize the
guarded polygon area or boundary using a fixed number of guards. This prob-
lem also falls within the CCP, and is perhaps even more relevant to the moti-
vating UGV application than the previous one. However, this formulation has
not received as much attention.

In [6] the near optimal position of one guard is computed based on ran-
dom sampling and ε-approximation. The similarities to shape matching are
discussed. [18] look for guard locations that maximize the value of items on
the boundary of a polygon with holes, and then optimize the positions of both
the guards and the valued items in a multiple knapsack fashion. A natural
extension is found in [16] where the visible interior area of a polygon is to be
maximized given a limited number of guards. In both these examples the posi-
tions of the guards are computed one at a time so that each guard increase the
still unguarded area or boundary as much as possible. A number of heuristics
for locating guards are presented in [2]. The approach is aimed at covering
entire polygons, but the greedy algorithms presented can be applied to the
maximum cover problem as well. The construction of candidate guard sets is
clever and it would be interesting to test a randomized candidate guard set as
presented in [23] on the algorithms.

2.3.4 Other Objective Functions

In this section we will describe two approaches that incorporate more than just
coverage into the objective function.

The motivation of the CCP is to provide information to an operator from
a set of surveillance cameras. In a paper by Vazquez et al., [38], inspired by
the connection between inforamtion and entropy, a measure called viewpoint
entropy is defined and an algorithm to maximize it is proposed. Viewpoint
entropy is defined as

I(S, p) = −Σn
i=0

Ai

At
log

Ai

At
,

where Ai/At is the fraction of the camera image covered by surface i. Thus a
maximization of I(S, p) gives a viewpoint such that the image contains many
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different surfaces covering roughly equal sized parts of the image. As an exam-
ple, the maximum entropy viewpoint of a cube would be on the diagonal line
connecting two opposite corners. In the paper, the optimization is carried out
using exhaustive search on a set of equally spaced candidate points.

Another approach is presented in [5], where an algorithm is proposed to
compute viewpoints for robot arm mounted stereo cameras, performing in-
spection and production tasks. The authors propose an objective function
incorporating the number of viewpoints, the size of the projected objects in
the image, and the satisfaction of up to nine different constraints, including
field of view, view angle, range and occlusion. A heuristic genetic algorithm is
used to perform the optimization.

After having categorized and presented the research litterature in terms of
environment model, camera model and finally objective function, we now turn
to give more detailed accounts of the different papers.

10
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3 Short Reviews of Individual Papers

This sections contains individual reviews of most of the papers surveyed. A list
of the papers, with references and corresponding review section can be found
in Table 3.2. The table also contains information on what problem areas the
papers address. The problem area tags correspond to the list in Chapter 1,
and are summarized in Table 3.1 below.

Table 3.1: The different paper categories.

Objective function: Optimal in what sense?
1a To cover as large area as possible.
1b To cover a given area with as few cameras as possible.
1c To cover a given set of walls with as few cameras as possible.
1d Other objective functions.
Camera model: Field of view, range and image quality constraints
2a Omnidirectional
2b Range limitations
2c Field of view limitations
2d Other constraints.
Environment model and types of occluding objects
3a 2 dimensional environments
3b 3 dimensional environments

Table 3.2: List and classification of papers

Paper Title and Reference Problem Areas

-Guarding Galleries and Terrains, [10], see Sec-
tion 3.13

(3a,3b)

-Approximation Algorithms for Terrain Guard-
ing, [13], see Section 3.11

(3b)

-Higher isn’t Necessarily Better: Visibility
Algorithms and Experiments, [20], see Sec-
tion 3.10

(3b,2b)

-System to Place Observers on a Polyhedral
Terrain in Polynomial Time, [30], see Sec-
tion 3.7

(3b)

-Siting Observers on Terrain, [19], see Sec-
tion 3.8

(2b,3b)

Continued on Next Page. . .
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Table 3.2 – Continued

Paper Title and Reference Problem Areas

-A Randomized Art-Gallery Algorithm for Sen-
sor Placement, [23], see Section 3.23

(1c,2b,2c,2d,3a)

-Locating Guards for Visibility Coverage of
Polygons, [2], see Section 3.21

(1b,2a,3a)

-Maximizing the Guarded Interior of an Art
Gallery, [16], see Section 3.20

(1a,1d,2a,3a)

-On Finding a Guard That Sees Most and a
Shop That Sells Most, [6], see Section 3.22

(1b,2a,3a)

-Approximation Algorithms for Two Optimal
Location Problems in Sensor Networks, [11],
see Section 3.26

(1b,1d,2a,3a)

-Distributed Deployment of Asynchronous
Guards in Art Galleries, [21], see Section 3.4

(3a)

-An Approximation Algorithm for Minimum
Convex Cover with Logarithmic Performance
Guarantee, [15], see Section 3.12

(1b,1a)

-Visibility-based Pursuit-evasion with Limited
Field of View, [22], see Section 3.5

(2c,3a)

-Distributed Surveillance and Reconnaissance
Using Multiple Autonomous ATVs: Cyber-
Scout, [32], see Section 3.6

(2c)

-Probabilistic Strategies for Pursuit in Clut-
tered Environments with Multiple Robots,
[26], see Section 3.3

(2a,3a),

-Viewpoint selection using viewpoint entropy,
[38], see Section 3.1

(1d, 2c,3b)

-Automatic sensor placement for model-based
robot vision, [5], see Section 3.2

(1d,2c,2d,2b,3b)

-Inapproximability Results for Guarding Poly-
gons without Holes, [12], see Section 3.25

(1c,2a)

-How to Place Efficiently Guards and Paintings
in an Art Gallery, [18], see Section 3.19

(1c,1d,2a,3a)

-A Combinatorial Theorem in Plane Geometry,
[7], see section 3.17

(1b,2a,3a)

-The Art Gallery Problem for Rectilinear Poly-
gons With Holes, [24], see Section 3.24

(1b,2a,3a)

-Computational Complexity of Art Gallery
Problems, [29], see Section 3.28

(1b,1c,2a)

-Orthogonal Art Galleries With Holes: A Col-
oring Proof of Aggarwal’s Theorem, [39], see
Section 3.29

(1b,3a)

-The Art Gallery Theorem for Polygons With
Holes, [25], see Section 3.15

(3a)

-Allocating Vertex p-Guards in Simple Poly-
gons via Pseudo-Triangulations, [35], see Sec-
tion 3.16

(1b, 2c, 3a)

-Art Gallery Theorems and Algorithms, [31],
see Section 3.30

(1b,2a,3a,3a)

Continued on Next Page. . .
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Table 3.2 – Continued

Paper Title and Reference Problem Areas

-Art Gallery and Illumination Problems, [37],
see Section 3.27

(1b,1c,2a,2c,3a,3b)

-Recent Results in Art Galleries, [34], see Sec-
tion 3.18

(1b,1c,2a,3a)

-A Multidisciplinary Survey of Visibility, [9], see
Section 3.14

(3b)

-Applications of Computational Geometry to
Geographic Information Systems, [8], see Sec-
tion 3.9

(3b)

3.1 Viewpoint Selection using Viewpoint Entropy, by Vazquez,
Feixas, Sbert and Heidrich

This paper can be found in reference [38].

3.1.1 Problem Formulation

The problem studied is the one of automatically selecting the best viewpoint,
given a geometric scene description. Furthermore, the problem of finding N
different viewpoints that jointly cover a scene is studied.

3.1.2 Relation to the Camera Coverage Problem

Selecting viewpoints is the main theme of the CCP.

3.1.3 Proposed Solution Method and Mathematical Tools Used

The authors notes that in many cases, the best viewpoint of a scene is the one
that gives the most information. They then go on to define viewpoint entropy, a
measure of how much information is available at a given viewpoint, and finally
choose a viewpoint that maximizes that measure.

The measure of a scene S and a viewpoint p is proposed as

I(S, p) = −Σn
i=0

Ai

At
log

Ai

At
,

where Ai is the projected image area of a surface and At is the total area of
the projection sphere.

The name viewpoint entropy stems from the similarity to Shannon entropy,
which is defined as follows.

The Shannon entropy of a discrete random variable X with values in a set
{a1, . . . , an} is H(X) = −Σn

i=1pi log pi, where pi = Pr(X = ai). H(X) thus
represents the uncertainty of a random variable.

The formulas are identical if we interpret pi as the probability that a ran-
dom pixel in the image belongs to surface i, i.e. pi = Ai

At
. Furthermore, the

summation from i = 0 is to account for the background.
The authors propose to use open GL graphics hardware to compute I(S, p)

by simply rendering each scene, with a color coding of each surface, and then

13



FOI-R--2268--SE

counting the pixels of each color in the image. With this approach, a speed of
17-18fps is achieved.

Given the above objective function, the authors use exhaustive search to
find the best viewpoint from a number of equally spaced candidates.

The problem of finding a set of N viewpoints is then studied. Using the
same objective function, all candidate points are first analyzed in terms of
viewpoint entropy as well as which faces they cover. An algorithm is proposed
where viewpoints are added in the order of entropy, until a threshold, of say
90 %, of the faces are covered.

3.1.4 Personal Comments, Pros and Cons, assessment of paper
quality

It’s a well written paper presenting a novel approach to the viewpoint selection
problem.

3.2 Automatic sensor placement for model-based robot vision,
by Chen and Li

This paper can be found in reference [5].

3.2.1 Problem Formulation

The paper describes a sensor placement algorithm for automated assembly or
product inspection. A set of sensor positions are computed and a shortest path
through these is proposed.

3.2.2 Relation to the Camera Coverage Problem

Although the application area is automated production, the problem statement
is very similar to the CCP.

3.2.3 Proposed Solution Method and Mathematical Tools Used

The proposed solution uses a two step method. First a set of viewpoints is
computed, then a shortest path between then is found.

The objective function for the viewpoints is

f(G) = −aN − b

Σωj

lj

− Σδiφi,

where a, b, δi ∈ R are weights, N is the number of viewpoints, ωj/lj is the
projected length divided by the real length of an object and φi ∈ {0, 1} is a
binary variable indicating which constraints are satisfied.

The constraints accounted for are visibility, viewing angle, field of view, res-
olution constraint, viewing distance, overlap, occlusion, image contrast, kine-
matic reachability of sensor pose. Here, overlap concerns desired image overlap
for computer vision applications and image contrast concerns focal length, pupil
diameter etc.

The objective function above is minimized using a genetic algorithm, and
shortest path through these points is found with an approximation algorithm
developed by Christofides.
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3.2.4 Personal Comments, Pros and Cons, assessment of paper
quality

It’s a well written paper that is easy to read.
An impressive number of constraints are treated, including some interesting

camera model details.

3.3 Probabilistic Strategies for Pursuit in Cluttered
Environments with Multiple Robots, by Hollinger, Kehagias
and Singh

This paper can be found in reference [26].

3.3.1 Problem Formulation

The paper addresses pursuit-evasion problems in large indoor environments
with multiple pursuers. The aim is not to guarantee capture, but to minimize
the expected time to capture.

3.3.2 Relation to the Camera Coverage Problem

Although this paper focuses on moving guards, the modeling of the pursuers
movements can be interesting.

3.3.3 Proposed Solution Method and Mathematical Tools Used

The search area is first manually discretized into disjoint convex regions, con-
verting the problem to a graph search. The motion of the evader is then
modeled using a Markov chain type of model, where the evader state p(t) is
a set of probabilities for being in each node (including a node for “already
captured”). The time evolution is modeled as follows:

p(t + 1) = p(t)PΠiCXP
i (t),

where p(t) = {p0, p1, . . . , pn} is the probability of the evader being in the
different cells, P is the dispersion matrix reflecting the probability of moving
from cell i to j (e.g. a normalized adjacency matrix), and CXP

i (t) is the capture
matrix, “moving” probability from the cell of a pursuer to the captured state.
The motion of the pursuer is proposed to be greedy over a short (1-5 timesteps)
time horizon. A series of candidate cost functions for the planning are proposed,
starting with

C(x, p(t)) = 1 − px(t),

i.e. the cost of moving to cell x is the negative of the probability of the evader
being there. Another option is

C(x, p(t)) =
D(x,XP

i (t))
px(t)

the distance to a cell D(x,XP
i (t)) divided by the probability of the evader

being there. This is the cost heuristics applied in [33]. The authors then go on
to propose a Entropy type cost function

Cx(p(t)) = −Σnpn(t) log pn(t),

where x denotes the implicit dependence of p on the pursuer positions x. The
motivation for this choice is that in a low entropy situation you have a good
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idea of where the evader is. In order to enable planning for a number of steps,
they let the cost of a planned path be

C(path) = ΣxCx(p(t)).

Given this path cost, they search all, say 5, step paths, using a search tree
and breath first search over the different choices, and implement the best one.
This planning is then reiterated each time step, in a receding horizon control
fashion.

Both coupled (centralized) and decoupled planning is simulated and eval-
uated. The decoupled planning is done by assuming the all other pursuers
remain stationary while the centralized plans for all pursuers. The simulations
show that the entropy cost function performed best, in terms of average capture
time, and that there was a small advantage of centralized one-step planning
over decentralized one-step. However decentralized 5 step planning was better
than both of the above.

3.3.4 Personal Comments, Pros and Cons, assessment of paper
quality

The paper is clearly written and the ideas are easily accessible, the paper
further more contains a lot of interesting references.

3.4 Distributed deployment of asynchronous guards in art
galleries, by Ganguli, Cortes and Bullo

This paper can be found in reference [21].

3.4.1 Problem Formulation

The problem addressed is the one of distributing the guards in an a priori un-
known nonconvex polygon. The guards vision and communication capabilities
are formalized and thoroughly treated.

3.4.2 Relation to the Camera Coverage Problem

Being a variation of the Art Gallery problem it is relevant. Perhaps not so
much for the feedback exploration part, but more for the construction of a par-
titioning of the search area, and the corresponding data structure (the vertex
induced tree).

3.4.3 Proposed Solution Method and Mathematical Tools Used

The authors propose a way to partition the polygon into a set of star shaped
polygons PQ(s)i and corresponding points NQ(s) such that for any pi ∈ NQ(s),
we have that PQ(s)i ⊂ S(pi), the region visible from pi, i.e. pi is in the kernel
of PQ(s)i.

These nodes are then connected in a so-called vertex induced tree. Local
algorithms are then proposed to move the guards between nodes of this tree,
without knowing the whole search area, and thus not the whole tree. Thus the
problem is transformed into a graph exploration problem.

A lot of care is taken to model the asynchronous communication part of
the problem, an area that is not the focus of this survey.

16



FOI-R--2268--SE

3.4.4 Personal Comments, Pros and Cons, assessment of paper
quality

It is a well written paper with formally proved results. The partitioning PQ(s)i

is perhaps not ideal for most other guarding applications.

3.5 Visibility-based pursuit-evasion with limited field of view, by
Gerkey, Thrun and Gordon

This paper can be found in reference [22].

3.5.1 Problem Formulation

The problem addressed is pursuit-evasion with capture guarantee, using so-
called φ-searchers, guards that have a field of view (FOV) limited by an angle
φ.

3.5.2 Relation to the Camera Coverage Problem

Although the paper treats moving guards, as opposed to static ones, some of
the concepts are relevant.

3.5.3 Proposed Solution Method and Mathematical Tools Used

The proposed approach builds on the following lemma:

Lemma 3.1 Given a single φ-searcher in a polygonal free space F , there can
be a change in the topology of the contaminated space in F only if there is a
change in the set of vertices of F that lie in V.

Above, V is the visible set at each time instant. Given the lemma, the trick is to
create a cell-decomposition of the searchers configurations space (R2 × S) such
that the topology of the contaminated space only changes on the boundaries.
Using the lemma above they proceed in three steps to find a decomposition, first
checking visibility, then checking φ-visibility (see below) and finally including
the orientation in the decomposition.

Definiton 3.1 (φ-visible) A pair of points p, q is φ-visible from some point s
if and only if there exists a rotation θ such that both p and q lie within Vφ(s, θ)

Definiton 3.2 (Visibility Curve) Given two points v1 and v2 in the plane
and a sensor field φ, consider the set of points p such that the pair (v1, v2) is
φ-visible from p. This set includes its boundary, witch consists of circular arcs
that connect v1 and v2 and is called the φ-visibility curve of v1 and v2, denoted
Cφ(v1, v2).

In this fashion, an information graph GI , is created with O(n2) nodes.
Later, a graph search is performed on GI to find the path of the φ-searcher.

3.5.4 Personal Comments, Pros and Cons, assessment of paper
quality

It is a well written paper with interesting ideas.

3.6 Distributed surveillance and reconnaissance using multiple
autonomous ATVs:CyberScout, by Saptharishi et al.

This paper can be found in reference [32].
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3.6.1 Problem Formulation

The problem addressed is a general one on building a set of collaborating
surveillance and reconnaissance UGVs. The paper focuses on both vision as-
pects, and path planning. In particular the problem of avoiding collisions with
moving obstacles.

3.6.2 Relation to the Camera Coverage Problem

The relation is mainly in terms of hardware, and in the references to other
similar projects, such as the SARGE, the MDARS-E, and the ARSKA, see
references in [32].

3.6.3 Proposed Solution Method and Mathematical Tools Used

The main idea of the path planning is to identify possible conflict areas, and
then prioritize the different moving entities within them to avoid collisions.

3.6.4 Personal Comments, Pros and Cons, assessment of paper
quality

The paper presents a very high level system description, with a lot of focus on
the vision part of the problem.

3.7 A system to place observers on a polyhedral terrain in
polynomial time, by Marengoni, Draper, Hanson and
Sitaraman

This paper can be found in reference [30].

3.7.1 Problem Formulation

The problem addressed is the 3d-version of the Art Gallery Problem, i.e. given
a 3 dimensional terrain, how many guards are needed to cover all of the terrain
and where should they be placed.

3.7.2 Relation to the Camera Coverage Problem

The problem is very relevant to the guarding problem in 3 dimensions.

3.7.3 Proposed Solution Method and Mathematical Tools Used

The proposed solution uses three steps: First create a hierarchy of triangu-
lations of the environment. Then use graph coloring to reduce the number
of potential positions. Finally compute a visibility map and use greedy set
coverage to find the best guarding positions.

The solution is an approximation, since the set covering algorithm is ap-
proximate, and it only guarantees coverage in the triangulation approximation
of the environment, not the original digital elevation map (DEM).

The time complexity is O(n3) in the number n of vertices of the triangula-
tion.
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3.7.4 Personal Comments, Pros and Cons, assessment of paper
quality

The paper is easy to read and presents the proposed approach in a clear way.
It might be very useful.

3.8 Siting observers on terrain, by Franklin

This paper can be found in reference [19].

3.8.1 Problem Formulation

The problem treated is the 3d-version of the Art Gallery Problem, but on a
digital elevation map (DEM), and not a triangulation, as in [30].

3.8.2 Relation to the Camera Coverage Problem

The problem is very much related to the guarding problem in 3d.

3.8.3 Proposed Solution Method and Mathematical Tools Used

The proposed solution is composed of four steps

1. Calculate an approximate visibility index of each point in the terrain, i.e.
how large percentage of the area inside a circle of given radius R that is
visible from the spot.

2. Select a number of tentative observers from the spots with high approxi-
mate visibility index. Some care must be taken to avoid having clustered
point on e.g. a flat terrain segment.

3. Calculate the viewshed of each selected point, i.e. the area that is visible
inside the R radius.

4. Given a list of viewsheds, find a quasi-minimal set that covers the whole
area. This is done by greedily choosing the observer whose viewshed will
increase the cumulative viewshed by the largest amount.

The result of the algorithm are as follows, first the area grows linearly with
the number of observers, since R is smaller than the total region. then a total
cover is slowly approached, in an example, 90 observers covered 98% and 180
observers covered 99.9% of the area.

The main focus of the paper was speed, not theoretical depth.

3.8.4 Personal Comments, Pros and Cons, assessment of paper
quality

The proposed solution is very straightforward in concept, but perhaps more
elaborate in the detail implementation of the different steps. The paper is well
written.

3.9 Applications of Computational Geometry to Geographic
Information Systems, by De Floriani, Magillo and Puppo

This paper can be found in reference [8].
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3.9.1 Problem Formulation

The paper is a general survey of algorithms and problems related to Geographic
Information Systems (GIS). As such, there is a chapter on Terrain Analysis,
and a section on Visibility.

3.9.2 Relation to the Camera Coverage Problem

Computation of Visibility is important to the Guarding Problem.

3.9.3 Proposed Solution Method and Mathematical Tools Used

The basic tools of terrain representation and visibility computations are re-
viewed and/or referenced.

3.9.4 Personal Comments, Pros and Cons, assessment of paper
quality

It’s a well written survey.

3.10 Higher isn’t Necessarily Better: Visibility Algorithms and
Experiments, by Franklin and Ray

This paper can be found in reference [20].

3.10.1 Problem Formulation

The problem addressed is that of computing viewsheds from a Digital Elevation
Model (DEM).

3.10.2 Relation to the Camera Coverage Problem

This is very relevant to the 3D-terrain guarding problem.

3.10.3 Proposed Solution Method and Mathematical Tools Used

A number of different viewshed computation algorithms are presented.

• Xdraw grows a line of sight (LOS)-ring from the observer outward while
calculating what points are visible. It is approximate, but easy to im-
plement and runs in O(r2), where r is the radius of the circle being
investigated.

• R3 is the classical algorithm, computing LOSs to each point of interest
and checking if it is intersected by the terrain.

• R2 is an improved version of R3. The full LOS computation is done for
the perimeter of the given range r. Then a computation is done along
each LOS, as in the one-dimensional version of Xdraw above. R2 runs in
O(r2), but with a larger constant than Xdraw.

All three options are different tradeoffs on the accuracy/speed scale. It was
noted that Xdraw is fast but rough, while R3 is exact. R2 is reported to be
almost as good as R3, but much faster.

Another important point of the paper is that when a visibility index is to be
calculated, i.e. how large percentage of the area within range that is actually
visible. For a single position, a very good approximation can be found by
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sampling only a few rays. It was noted that 32 rays were almost as good as
128 in this respect. This is due to the law of large numbers.

3.10.4 Personal Comments, Pros and Cons, assessment of paper
quality

It’s a nice paper, with a compact description of some LOS algorithms for terrain
occlusion.

3.11 Approximation algorithms for terrain guarding, by
Eidenbenz

This paper can be found in reference [13].

3.11.1 Problem Formulation

The problem addressed is the three dimensional terrain guarding problem,
formally defined as

Problem 3.1 (Minimum point guard on terrain) Let T be a terrain. The
problem minimum point guard on terrain is the problem of finding a minimum
set of points S, on T , such that every point on T is visible from a point in S.
The points in S are called guard points.

The author goes on to define a triangle restriction to denote the case when
triangles that are only partly visible from an observer are considered not visible
by that observer.

3.11.2 Relation to the Camera Coverage Problem

This is one of the problems in the focus of the survey.

3.11.3 Proposed Solution Method and Mathematical Tools Used

The authors propose approximate solutions that first transform the guarding
problems to the following problem.

Problem 3.2 (Minimum set cover) Let E = {e1, . . . , en} be a finite set of
elements, and let S = {s1, . . . , sm} be a collection of subsets of E, i.e. sj ⊆ E.
The problem minimum set cover is the problem of finding a minimum subset
S′ ⊆ S such that every elements ei ∈ E belongs to at least one subset in S′.

It is then noted that a standard greedy solution to this problem is known to
achieve approximation ratio of O(log(n + 1)). The algorithm simply adds the
set containing the maximum number of yet uncovered elements.

Furthermore, these approximations are optimal up to a constant factor, due
to theoretical results on the complexity of the guarding problems.

In detail, a partition of 3d-space is found from all planes intersecting an
edge (vi, vj) and some other vertex vk from the triangulation. A minimum set
cover problem is then created by letting the elements in E be the triangles,
and the sets in S the visible triangles from each cell of the partition.

3.11.4 Personal Comments, Pros and Cons, assessment of paper
quality

The paper is very well written and presents powerful and clear results.

21



FOI-R--2268--SE

3.12 An approximation algorithm for minimum convex cover
with logarithmic performance guarantee, by Eidenbenz
and Widmayer

This paper can be found in reference [15].

3.12.1 Problem Formulation

The problem studied is the Minimum convex cover problem, where a polygon
with or without holes is to be covered by a collection of convex sets. This
collection is furthermore to be as small, in cardinality, as possible.

3.12.2 Relation to the Camera Coverage Problem

The Minimum convex cover problem is very relevant to the guarding prob-
lem since once a convex cover is found, stationing a guard in each convex set
guarantees that the whole polygon is guarded.

3.12.3 Proposed Solution Method and Mathematical Tools Used

The proposed solution uses something called a quasi-grid. By that is meant a
set constructed by intersecting lines through all pairs of vertices of the polygon.
The authors then study the restricted minimum convex cover problem, where
all relevant points are restricted to lie on the quasi-grid.

A scheme using dynamic programming is then used to solve the restricted
minimum convex cover, which is shown to differ by less than a factor 3 from
the original minimum convex cover problem.

3.12.4 Personal Comments, Pros and Cons, assessment of paper
quality

It’s a well written paper.

3.13 Guarding galleries and terrains, by Efrat and Har-Peled

This paper can be found in reference [10].

3.13.1 Problem Formulation

The paper studies approximation algorithms for the guarding problem of poly-
gons with or without holes, as well as for terrains. The guards are restricted
to lie on the vertices of an arbitrarily dense grid, i.e. an approximation to no
restriction at all.

3.13.2 Relation to the Camera Coverage Problem

It’s very relevant.

3.13.3 Proposed Solution Method and Mathematical Tools Used

Instead of explicitly solving a minimum set cover problem, the following algo-
rithm is proposed to decide if a cover of k log k guards exists. The algorithm
is then called iteratively to find the minimum number of guards.

• Assign weight 1 to each element in V , the set of vertices of P
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• For i := 1 to O(k log(n/k)) do:

– Randomly pick as set S of O(k log k) vertices, according to the
weights.

– Check if S solves the problem, if so return S and terminate.

– Else, find q ∈ P not visible from S and compute V is(q)

– If the sum of weights in V is(q)∩V times 2k is smaller that the sum
of all all weights in P , then double the weights in V is(q) ∩ V .

• Failure, no set of guards were found.

It is proposed to compute V is(q) using a standard line-sweeping procedure.

3.13.4 Personal Comments, Pros and Cons, assessment of paper
quality

The paper is very thorough, and all results are formally argued for. However,
some terms, such as arrangement and segment, are not defined.

3.14 A multidisciplinary survey of visibility, by Durand

This paper can be found in reference [9].

3.14.1 Problem Formulation

The paper is a 146 page survey on visibility, taken from a PhD-thesis. Thus a
wide range of problems are treated.

3.14.2 Relation to the Camera Coverage Problem

Since visibility is a central part of the guarding problem, the survey is impor-
tant, in particular algorithms used to calculate visibility, such as the sub-routine
hidden part removal, are of interest.

3.14.3 Proposed Solution Method and Mathematical Tools Used

Many methods and tools are presented.

3.14.4 Personal Comments, Pros and Cons, assessment of paper
quality

The survey is a delight to read with many illustrative high quality figures.

3.15 The art gallery theorem for polygons with holes, by
Hoffmann, Kaufmann and Kriegel

This paper can be found in reference [25].

3.15.1 Problem Formulation

The problem addressed and solved is that of placing point guards in a polygon
with holes. The authors prove that any polygon, possibly with holes, can be
guarded by at most bn+h

3 c point guards.
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3.15.2 Relation to the Camera Coverage Problem

It’s very relevant for urban or indoor areas.

3.15.3 Proposed Solution Method and Mathematical Tools Used

The proposed solution is inspired by earlier work on rectilinear polygons, where
a set of rooms are identified and guards stationed in the doorways (intersec-
tions) of the rooms.

In this paper, a visibility structure is created by edge prolongation, similarly
to [13], instead of a triangulation.

The authors note that there is in principal only 3 types of local configura-
tions. This observation leads to a way to transform any polygon with holes into
standard form, for which a guarding can be found. The standard form polygons
are unions of standard form convex regions, so-called “rooms”. These rooms
are then connected to other rooms in a way captured by a hypergraph, a graph
where the edges can connect more than two vertices.

3.15.4 Personal Comments, Pros and Cons, assessment of paper
quality

It is a very interesting idea that seem somewhat cumbersome to implement.

3.16 Allocating vertex π-guards in Simple polygons via
pseudo-triangulation, by Speckmann and Csaba

This paper can be found in reference [35].

3.16.1 Problem Formulation

The problem addressed is the one of finding a set of vertex guards for a polygon,
but with the added constraint that the field of view is only 180 degrees (or π
rad.).

3.16.2 Relation to the Camera Coverage Problem

It is very relevant. The π-constraint is unusual and interesting.

3.16.3 Proposed Solution Method and Mathematical Tools Used

The proposed solution first computes a minimum so-called pseudo triangulation
of the polygon. A pseudo triangle is a polygon with exactly three convex
vertices. Given the pseudo triangulation the guards are then allocated using
the dual graph of this triangulation.

The main result is the following: any simple polygon with n vertices can
be monitored by at most bn/2c general vertex π-guards. This bound is tight
up to an additive constant of 1.

3.16.4 Personal Comments, Pros and Cons, assessment of paper
quality

It’s a well written paper.
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3.17 A Combinatorial Theorem in Plane Geometry, by V.
Chvátal

This paper can be found in reference [7].

3.17.1 Problem Formulation

The problem is to find the smallest number of guards in a polygon with n edges
such that every point of the polygon is visible from at least one guard. The
problem was stated by Victor Klee in 1973 and has later been called The Art
Gallery Problem.

3.17.2 Relation to the Camera Coverage Problem

The problem is extremely relevant and Chvátal’s solution and proof is a corner
stone in the research area and is called the Art Gallery Theorem or Watchman
Theorem.

3.17.3 Proposed Solution Method and Mathematical Tools Used

The polygon is first partitioned into triangles. A fan is defined as a specific
triangulation where one vertex meets all of its inner edges. The proof is based
on induction from the trivial cases with n = 3, 4, 5, for which all triangulations
are fans. One major key to Chvátal’s proof was the insight that for all triangu-
lations of a polygon, there always exist a diagonal that cuts off 4,5 or 6 edges
of the polygon.

3.17.4 Personal Comments, Pros and Cons, assessment of paper
quality

The solution is limited to placing guards on the vertices of a polygon. The
actual locations of the guards is not generally unique and not specified by the
theorem, only a bound on the number of guards which is always sufficient and
sometimes necessary. Later, Steve Fisk came up with a simpler proof using
a 3-color argument [17]. Although Fisk’s proof is easier to grasp, Chvátal’s
proof can be generalized in greater extent, see [31] who also give a thorough
explanation on Chvátal’s proof.

3.18 Recent Results in Art Galleries, by T.C. Shermer

This paper can be found in reference [34].

3.18.1 Problem Formulation

The paper attempts to collect results up to 1992. No particular problem is
formulated and solved, but interesting problems (unsolved at that time) are
presented briefly. Specific topics looked into concern different types of guards,
covering the inside (art gallery problem), the outside (fortress problem) and
both inside and outside (prison yard problem) of polygons, visibility graphs
and problems closely related to the art gallery problem.

3.18.2 Relation to the Camera Coverage Problem

The paper is relevant to our problem, although much has happened in the
research area over the past 15 years since the paper was written.
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3.18.3 Proposed Solution Method and Mathematical Tools Used

The solutions to the various problems are generally not presented at all.

3.18.4 Personal Comments, Pros and Cons, assessment of paper
quality

The paper gives a good introduction to the art gallery problem by presenting
necessary definitions and explaining terms, but does not dig very deep into the
different subtopics. Various results are presented but not proved and selected
problems, solutions and exceptions are illustrated.

3.19 How to Place Efficiently Guards and Paintings in an Art
Gallery, by c. Fragoudakis, E. Markou and S. Zachos

This paper can be found in reference [18]. Further work by partly the same
authors are found in [16].

3.19.1 Problem Formulation

The problem addressed is how to place a given number of guards and paintings
(each with a length and a value) in an art gallery so that the total value of
the guarded paintings is as large as possible. The problem is investigated for
vertex and edge guards, for polygons with or without holes and for cases when
the paintings must be overseen (every point of the paintings are seen) or just
watched (at least one point of the painting is seen). All cases are proven to be
NP-hard

3.19.2 Relation to the Camera Coverage Problem

The problem is very relevant to the CCP, both due to the limited number of
guards and for watching valued items. The valued items can in our case be
potentially dangerous spots in outdoor urban environment, such as windows
and door ways where snipers might appear.

3.19.3 Proposed Solution Method and Mathematical Tools Used

A boundary partition that the authors call Finest Visibility Segmentation
(FVS) is introduced. It is a discretization based on visibility of the bound-
ary from vertex or edge guards.

An algorithm is proposed where the FVS points are computed. These are
points on the boundary edges where two visibility segments join, which include
the polygon vertices. One guard at a FVS point is determined at a time in a
greedy fashion based on the multiple knapsack problem. The algorithm runs
in polynomial time.

It is unclear from the paper if the FVS points, or just the polygon vertices
which are a subset of the FVS points, are guard candidates. But if only the
polygon vertices are guard candidates, much of the idea by the FVS seem to
be a waste.

A similar algorithm for edge guards is presented and it is shown that both
algorithms achieves an approximation of at most 1.58 times the optimal. The
same approximation result hold for polygons with holes.
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3.19.4 Personal Comments, Pros and Cons, assessment of paper
quality

This is a nice paper presenting an interesting problem and a neat solution. The
only unclear part is if the FVS points are guard candidates or not. It would be
interesting to compare the vertex guard algorithm with respect to computation
time and result quality using the FVS points and using the polygon vertices as
guard candidates.

3.20 Maximizing the Guarded Interior of an Art Gallery, by I.Z.
Emiris, C. Fragoudakis and E. Markou

This paper can be found in reference [16]. It is recommended to read [18] first.

3.20.1 Problem Formulation

The problem investigated is how to place a fixed number of guards on the
vertices or the edges of a simple polygon so that the total guarded area inside
the polygon is maximized. This optimization problem proves to be APX-hard.
The problem is also extended to the case where the guards need to see valued
items inside the polygon.

A few interesting open problems are presented in the end of the paper.
Two open problems are presented in the end of the paper which are natural

further work. The first step is to simultaneously determine the locations of
valued subpolygons inside the polygon as well as vertex or edge guards so that
a maximum value is guarded (see similarities to [18]). The next step would be
to place point guards in the interior of the polygon for the above problems.

3.20.2 Relation to the Camera Coverage Problem

The problem of having a limited number of guard is interesting and relevant.
In practice, there are usually a limited number of guards available.

3.20.3 Proposed Solution Method and Mathematical Tools Used

The authors introduce the Finest Visibility Subdivision (FVS) which is a de-
scritization with respect to visibility of the interior of a polygon. They show
that each region of the descritization can not be only partly visible from a
vertex or an edge. An approximation algorithm that run in polynomial time is
proposed and showed to have a constant approximation ratio. FVS regions are
computed and the guards are placed one at a time so that the area coverage
increase is maximized for each guard. The algorithm is applicable to polygons
with holes as well.

3.20.4 Personal Comments, Pros and Cons, assessment of paper
quality

The paper is rather short and concise, but well written and hence not to difficult
to grasp. It is recommended, though, to read [18] first where a similar problem
is studied by partly the same authors. Here both the guards and valued items
are to be placed on the boundary of the polygon. They introduce and use the
finest visibility segmentation, see Section 3.19. The finest visibility subdivision
is a straight forward extension of the finest visibility segmentation.
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3.21 Locating Guards for Visibility Coverage of Polygons, by Y.
Amit, J.S.B. Mitchell and E. Packer

This paper can be found in reference [2].

3.21.1 Problem Formulation

The authors investigates the art gallery problem from an experimental point
of view. A number of heuristics for visibility coverage is presented and eval-
uated experimentally. The results are compared to obtain the best heuristics
with respect to the resulting number of guards, computation time and memory
space.

3.21.2 Relation to the Camera Coverage Problem

The paper has much relevance and a few heuristics seem to be very useful in
practice. Different approaches, although some are quite similar, are compared
to each other. One of the most interesting parts is the construction of visibility
extensions and the resulting guard candidate points.

3.21.3 Proposed Solution Method and Mathematical Tools Used

Thirteen of the fourteen heuristics or algorithms choose guards from a candi-
date set built up by vertex guards and/or guards placed in the mass center of
the convex polygons obtained by constructing edge extensions or visibility ex-
tensions. A guard is chosen based on a score or randomly from the candidates
which can have different weights. In the fourteenth algorithm the polygon is
partitioned into star shaped pieces and the guards are placed in the kernel of
each piece. When the area is covered by any of the fourteen algorithms, any
redundant guards are removed.

A lower bound on the optimal number of guards is presented based on
visibility-independent witness points. Some investigations are performed for a
few algorithms were fewer guards are available than stated by the lower optimal
bound.

3.21.4 Personal Comments, Pros and Cons, assessment of paper
quality

The paper present some interesting heuristics for visibility coverage in a prac-
tical fashion. The construction of visibility extensions for creating a candidate
guard set is interesting. This construction could probably be useful in the al-
gorithm proposed in [23] where the candidate guard positions are obtained by
random.

The Figures presenting the number of guards and computational time seem
to be based on only one polygon for each value of vertices, and it is not clear
what shape the polygons has on which the algorithms are tested. Some of the
figures are hard to read and interpret, but besides that, the paper is fairly well
written.

The three algorithms chosen to yield best results for reasonable effort could
be interesting for further study and investigation from a more theoretical point
of view.
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3.22 On Finding a Guard that Sees Most and a Shop that Sells
Most, by O. Cheong, A. Efrat and S. Har-Peled

This paper can be found in reference [6].

3.22.1 Problem Formulation

Two problems are treated. The first is to find a point in a polygon where the
covered area is the largest (a guard that sees most). The other is to find a
point such that the Voronoi region of that point is as large as possible (a shop
that maximizes its costumer area).

3.22.2 Relation to the Camera Coverage Problem

Especially the first of the two problems is relevant, where a point in a polygon
is to be determined from where the visible area is maximized.

3.22.3 Proposed Solution Method and Mathematical Tools Used

The interior of the polygon is sampled uniformly and the area cover from a
point is estimated from how many sampled points are visible

The paper point out the similarity to the problem of matching two planar
shapes.

3.22.4 Personal Comments, Pros and Cons, assessment of paper
quality

The proposed approach is quite technical and not well suited for implementa-
tion.

3.23 A Randomized Art-Gallery Algorithm for Sensor
Placement, by H. González-Banos and J. Latombe

This paper can be found in reference [23].

3.23.1 Problem Formulation

The paper describes a placement strategy of guards where the visual sensing
will be most effective. Given a polygonal map, possibly with holes, the task
is to compute locations in the interior of the polygon where expensive 3D
image acquisition can be performed, these are preferably as few as possible.
The algorithm takes some limitations of physical sensors into account, like
constraints on range and incidence angle to walls. The authors call this an
extended art gallery problem considering the sensor constraints. Examples are
given on polygons which cannot be completely covered by the proposed solution
since some cases require an infinite number of guards.

3.23.2 Relation to the Camera Coverage Problem

The problem and proposed solution is very relevant, although only the edges of
polygons are considered to be guarded. The consideration of sensor constraints
is especially appealing.
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3.23.3 Proposed Solution Method and Mathematical Tools Used

The interior of the polygon is sampled at random to construct a candidate set.
For every candidate the portions of the edges visible are computed, and for all
candidates this results in a decomposition of the boundary and an additional set
family containing information about which sections of the boundary is visible
from each candidate guard. In this manner a set system is created. Is is showed
that a greedy algorithm does not fully exploit the structure of the set system.
Instead a dual set system is created and the smallest hitting set of the dual
system is equivalent of finding the optimal set cover for the original set. Since
an optimal solution generally is elastic, the probability is large that the optimal
solution is actually obtained if the sampling is dense enough.

3.23.4 Personal Comments, Pros and Cons, assessment of paper
quality

The paper give a very clear presentation of the problem and its proposed solu-
tion is both elegant and simple.

There are some resemblance to [2] where visibility extensions are con-
structed and a guard candidate is located in the mass center of each convex
polygon achieved. A combination of this candidate set and the algorithm pro-
posed by González-Banos and Latombe would be interesting to investigate.

3.24 The Art Gallery Theorem for Rectilinear Polygons with
Holes

This paper can be found in reference [24].

3.24.1 Problem Formulation

The necessary number of point guards and their locations in a rectilinear poly-
gon with holes are investigated. Both the boundaries and the interior of the
polygon should be visible.

3.24.2 Relation to the Camera Coverage Problem

Since most buildings and urban environments are more or less rectilinear, the
paper is very relevant.

3.24.3 Proposed Solution Method and Mathematical Tools Used

To determine the location of the point guards the polygon is partitioned into
rectilinear star shaped polygons. When a star shaped polygon is identified it is
removed. Hence the problem is reduced and the smaller polygon or polygons
are partitioned further. For each star shaped polygon removed, it is verified
that the number of edges for the remaining polygons is reduced appropriately.
If a polygon is reduced, but still not empty, it is shown that the polygon can
be represented as a corridor graph.

The proofs is based on investigation of the possible cases that can be ob-
tained.

As a remark, a simple example is given that disproves Conjecture 5.3 in
[31], saying that b3n/11c vertex guards are sufficient to cover any orthogonal
polygon with any number of holes. Instead Hoffmann conjectures that b2n/7c
vertex guards is an optimal bound.
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3.24.4 Personal Comments, Pros and Cons, assessment of paper
quality

The paper is very clear and well presented. Much of the notation is unusually
well chosen which improves readability. A large part of the paper is devoted
to proving that various cases are reducible. The illustrations are very helpful.

3.25 Inapproximability Results for Guarding Polygons without
Holes, by S. Eidenbenz

This paper can be found in reference [12].

3.25.1 Problem Formulation

Given a polygon without holes, find a minimum set of guards (vertices, edges
or interior points) such that every point on the boundary of the polygon can be
seen from at least one guard. The paper investigates existence of polynomial
time algorithms.

3.25.2 Relation to the Camera Coverage Problem

The results of the paper is considered relevant.

3.25.3 Proposed Solution Method and Mathematical Tools Used

The results are proved by describing a reduction from 5-Occurrence-3-Sat, a
version of a standard problem in complexity theory.

The result of the paper is that vertex guards, edge guards and point guards
for polygons without holes are APX-hard. There exist a positive constant ε
such that no polynomial time algorithm can guarantee an approximation ratio
1 + ε, unless P = NP .

3.25.4 Personal Comments, Pros and Cons, assessment of paper
quality

The paper is somewhat technical and time consuming to read.

3.26 Approximation Algorithms for Two Optimal Location
Problems, by A. Efrat, S. Har-Peled and J.S.B Mitchell

This paper can be found in reference [11].

3.26.1 Problem Formulation

Two problems are treated in the paper. The first one addresses where to
locate a base station with respect to a number of sensors distributed in an
area. The sensors transmit information, either directly to the base station or
via other sensors. There are energy penalties for the sensors in transmitting
and receiving information dependent on the amount of information and the
distance. The objective is to find the optimal base station position and the
transmission scheme that yield the longest lifespan of the network considering
the available sensor battery energy.

The second problem deals with robust visibility coverage. Two definitions
of robust visibility is posed. A point p is said to be 2-guarded at an angle α by
sensors g1 and g2 if p is visible from g1 and g2 and the angle ∠g1pg2 is in the
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range [α, π − α]. A point p is said to be triangle guarded by g1, g2 and g3 if p
is contained in the triangle g1g2g3. The region Q is to be robustly covered by
sensors in P where Q ⊆ P .

3.26.2 Relation to the Camera Coverage Problem

The treated problems are very interesting although less relevant to the CCP.

3.26.3 Proposed Solution Method and Mathematical Tools Used

In the problem of positioning a base station, the sensors are restricted to trans-
mit with a small number of different energy levels. These different levels will
represent disks with different radii around the sensors. This in turn will yield
a limited number of intersections of the disk perimeters which define the pos-
sible base station positions. An alternative discretization is to place equally
spaced points on the perimeters, which is claimed to yield a faster algorithm.
The transmission scheme, and there by the lifespan, is computed using linear
programming for each position candidate.

For the 2-guarding problem a two-phase algorithm is proposed. First, a set
G1 ⊂ P is found that cover Q in the regular visibility sense. Then another set
G2 ⊂ P is found such that G1 ∪G2 2-guards Q. A lower bound on the distance
from the optimum is given.

The triangle guarding can be obtained from the 2-guards arrangement. The
algorithm is based on ray-shooting from each sensor through each vertex. The
intersection of the rays and the boundary ∂Q is computed and form a candidate
set for additional guards.

3.26.4 Personal Comments, Pros and Cons, assessment of paper
quality

The paper is fairly well written and the problems are interesting, but less
relevant to our area. The robust sensor arrangement is more relevant for ap-
plications where the location of a specific object are to be determined, or if
a large number of cheap sensors are used and the guarding task must still be
carried out in cases of sensor failure.

3.27 Art Gallery and Illumination Problems, by J. Urrutia

This paper can be found in reference [37].

3.27.1 Problem Formulation

This is a survey on art gallery problems. No specific problem is treated. Re-
search results on the topic up to 2000 are collected.

3.27.2 Relation to the Camera Coverage Problem

This survey is very relevant to the CCP. A vast amount of theorems, conjectures
and open problems for different topics are presented. Different kinds of guards,
or illuminators, are discussed. Floodlights, which are lights with limited angles
of illumination, are treated to some length. A floodlight is equivalent to a
camera of limited field of view, and these are of particular interest to us. Other
parts of special interest include guarding of treasures and avoidance of threats.
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The majority of the results presented are upper bounds on the number of
guards required for a certain case. Also frequently shown are the complexity
of solving different problems.

3.27.3 Proposed Solution Method and Mathematical Tools Used

Solutions of the surveyed results are only discussed occasionally and briefly.
For details one is directed to the various references.

3.27.4 Personal Comments, Pros and Cons, assessment of paper
quality

The survey is well written and concise and is very frequently referenced in
other papers. It works as a small encyclopedia for this research area. Apart
from the regular art gallery problem, results on other related problems, such
as the fortress, prison yard, watchman route, robbers route, safari route and
the zoo-keeper’s problem are presented.

3.28 Computational Complexity of Art Gallery Problems, by
D.T. Lee and A.K. Lin

This paper can be found in reference [29].

3.28.1 Problem Formulation

This paper investigates the computational complexity of the minimum vertex
guard, minimum edge guard and the minimum point guard problems for simple
polygons without holes.

3.28.2 Relation to the Camera Coverage Problem

The treated problems are very relevant to the CCP. It is essential to know the
computational complexity.

3.28.3 Proposed Solution Method and Mathematical Tools Used

The proof of the minimum vertex guard problem (which with small modifica-
tions also proves the minimum edge guard problem and the minimum point
guard problem) is based on a construction in polynomial time of a polygon.
It is shown that a boolean three satisfiability (3SAT) is transformable to the
vertex guard problem for simply connected polygons. The polygon is coverable
by a certain number of guards if and only if the instance of 3SAT is satisfiable.

As a consequence of the NP-hardness of the minimum point guard problem,
the problem of decomposing a simple polygon into a minimum number of star
shaped polygons such that their union constitutes the polygon is also NP-hard.

3.28.4 Personal Comments, Pros and Cons, assessment of paper
quality

The proofs are quite long and tedious. The results, though, are important and
the paper is frequently referenced.
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3.29 Orthogonal Art Galleries With Holes: A Coloring Proof of
Aggarwal’s Theorem, by P. Zyliński

This paper can be found in reference [39].

3.29.1 Problem Formulation

The paper proves the old conjecture that b(n+h)/4c vertex guards are sufficient
to guard the interior of a n-vertex orthogonal polygon with holes, provided that
there exist a quadrilateralization whose dual graph is a cactus.

3.29.2 Relation to the Camera Coverage Problem

The proof is relevant to our problem. The conjecture was stated in 1982 and
has now been proved for some different types of polygons.

3.29.3 Proposed Solution Method and Mathematical Tools Used

The proof is based on quadrilateralization, its dual graph and a 4-coloring
argument. The dual graph of the quadrilateralization is obtained by putting
a vertex in each 4-gon of the decomposition and connecting the vertices in
adjacent 4-gons. First it is shown that the bound is valid for an orthogonal

Figure 3.1: Quadrilateralization and dual graph.

polygon with one hole. For polygons with more holes than one, the polygon
must satisfy the property that any two of its cycles share at most one vertex.

3.29.4 Personal Comments, Pros and Cons, assessment of paper
quality

The paper is well written.

3.30 Art Gallery Theorems and Algorithms, by J. O’Rourke

This book can be found in reference [31].

3.30.1 Problem Formulation

Various problems, theorems and proofs are treated in this book.

3.30.2 Relation to the Camera Coverage Problem

This book is very relevant to our problem, although it is twenty years old. Just
about all research results up to that time is collected.
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3.30.3 Proposed Solution Method and Mathematical Tools Used

No specific solution is treated.

3.30.4 Personal Comments, Pros and Cons, assessment of paper
quality

This is one foundation stone for the research area. It is well written and some
complex results given in papers are sometimes presented more clearly, like [7]
and [29].

35





FOI-R--2268--SE

4 Conclusions

A survey on studies relevant to the Camera Coverage Problem was presented.
Even though there are many papers addressing the topic in computer science,
mathematics and control theory, a lot of work remains to be done to apply and
extend these results in the domain of UGV surveillance.
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