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1 INTRODUCTION 
When assessing a system to be used for some purpose, it is important to define and understand in 
which context the system is used. Figure 1 illustrates what might be called the assessment 
pyramid, describing the hierarchical different levels in the assessment pyramid. A commander 
might want to know if he will win the next battle. In this case we are on the top level of the 
pyramid. A common way to find answers in this level is to do realistic field trials. The next level 
includes factors such as the availability of vehicles and soldiers. Also soft factors are present, like 
the willingness for soldiers to actually fight. They certainly have an opinion of the strength of the 
enemy. System performance is the next level in the pyramid. In this report we consider situations 
where the commander needs some decision support. We need to know if we are visible to the 
enemy in the current situation, which to a high degree involves the weather for instance. The 
models in this report try to find a measure of performance, which in some sense should summarize 
all the parameters in the lowest level. The focus will be on the system performance level.  
 

 
Figure 1. The assessment pyramid with its four levels. To the right some examples are given for 
each level. 
 
Below a few models are described and they are also available as computer programs. 
Bailey’s model is the oldest but still very relevant to the situation of visual observations with or 
without electro-optical sensors. The next model, NVTherm, is an US model with a detailed 
description of the optical sensor which has als been extensively validated. However background 
and environment are often highly variable, which make it difficult to obtain high precision. The 
last program, Terrtex, is not a recognition model, but is used to find relevant target and 
background properties from actual sensor images. Using some assumptions it is possible to obtain 
an approximate estimation of detection probability.  
 

Factors 
Mission accomplishment 

 
Blue/red casualties 
Causality rate 
Blue/red survivors 
Rate of advance 
 (MOE: measure of effectiveness) 
 
Mean detection range 
Time to detection 
Probability of detection 
Location error to range ratio 
(MOP: measure of performance) 
 
Camouflage technical characteristics 
Size, shape ground pattern, color, texture,  
gloss, temperature, spectral reflectance, 
radar cross section, emissivity 
(Data)  

Technical properties 

System Performance 

Theater  
Integration 

Top 
Level 
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2 BAILEY’S MODEL 

2.1 GENERAL REMARKS 

This model [1, 2] describes analytically the capabilities and limitations of a human observer in the 
task of looking for and finding known or expected fixed objects. The description enables the user 
to estimate recognition probabilities as a function of the many parameters required to describe a 
specific situation. The model is tailored to the case of an airborne observer looking at terrain with 
or without optical aids or electro-optical sensors, but with prior knowledge of the approximate 
appearance of an object. 
 
The model is structured according to three distinguishable psychophysical processes: 
 

• deliberate search over a fairly well-defined area 
• detection of contrasts (a subconscious retino-neural process) 
• recognition of shapes outlined by the contrast contours (a conscious decision based on 

comparison with memory) 
 
In addition, when the observer is viewing a displayed image of a scene, noise is sometimes present 
which degrades his performance of these three steps. The probability that the three steps a 
completely successfully, multiplied by a noise degradation factor, gives the probability of target 
recognition 

2.2 MODEL DESCRIPTION  

Imaging sensor performance may be estimated and/or evaluated by application of a target 
detection/recognition model such as that suggested by the Rand Corporation [1,2]; namely; 
 

η∗∗∗= 321 PPPPr     (1)        
 
where Pr is the probability that a target will be recognized on the display, P1  is the probability that 
the observer, searching an area that is known to contain a target, looks with his foveal vision for a 
specified glimpse time (1/3 s) in the direction of the target, P2 is the probability that if the 
displayed target image is viewed foveally for one glimpse period it will, in the absence of noise, 
have sufficient contrast and size to be detected, P3 is the probability that if a target is detected, 
there will be enough detail shown for it to be recognized (again during a single glimpse and in the 
absence of noise) and η is an overall factor arising from noise. 
 
The probability P1 is difficult to estimate because it is affected by the solid angle presented to the 
eye of the search field, by the time available to search it, by the number of confusing elements 
within the scene, and by the availability of any a priori information as to where to look on the 
display. The model employs the relation 
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where 
 at = area of target, 
 As = area to be searched, 

t = glimpse time (0.3 s) and 
G = congestion factor, usually between 1 and 10, for most real imagery of interest. 

 
The probability of detection P2 at the threshold contrast Ct is by definition 50%. A useful 
approximation for P2 at other contrasts C available at the eye is given by 
 

( )[ ]2
2 12.4exp1

2
1

2
1

−−−⋅±= tCCP   (3) 

 
where the minus sign is used when C<Ct. 
 
Defining the number of resolution cells as   
 

R
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where  
Lmin = minimum projected target dimension, 
α = angular resolution of the sensor and 
R is the target range. 

 
The factor P3 is given by  
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The noise factor is 
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where SNR is the displayed signal-to-noise ratio.                                                                                                      
 
The accuracy obtained with this model will be no better than 20 to 30 percent. 
 

(4) 
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3 NVTHERM 
The model described here has been developed using ideas from John Johnson at former Night 
Vision Laboratory, now Army Night Vision and Electronic Sensors Directorate (NVESD). The 
first version of the model was written by Ratches et al [3]. The model has later been continuously 
developed and is a standard model for the US defense. The history of the model is described in   
[4, 5]. A newer version, named NVThermIP, has been developed but is not available without 
permission. 
 
NVTherm is a model estimating the detection probability when using an electro-optical sensor. It 
was mainly developed for use in the infrared area but is also used at other wavelengths. 

3.1 MINIMUM RESOLVABLE TEMPERATURE DIFFERENCE 

The common way to characterize an optical sensor is the minimum resolvable temperature 
difference as a function of spatial frequency, the MRT-function. The main part of it is the 
properties of the optics, electronics and detector. For the system performance the target, 
background, atmosphere and the operator have a large influence. It is common to use a two-
dimensional MRT. 
 

 
 
Figure 2.  The two-dimensional MRT-function, MRT(ρ2D). 
 
A two-dimensional MRT is determined with the vertical and horizontal MRT-functions as shown 
in Figure 2. 
 
The spatial frequencies of the horizontal and vertical spatial frequencies give the two-dimensional 
MRT spatial frequency through the geometrical mean 
 

( )ηξρ ⋅=D2 . 
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The matching MRT is then plotted as a function of the two-dimensional spatial frequency. This 
new function is the two-dimensional MRT. Note that the conversion is a spatial frequency 
conversion and no manipulation is performed on the two-differential temperatures.  

3.2 PROBABILITY AS A FUNCTION OF RANGE  

The procedure for producing a probability of detection, recognition or identification curve is quite 
simple. Consider the procedure flow as given in Figure 3. Four parameters are needed to generate 
a static probability of discrimination curve as a function of range: the target contrast, the 
characteristic dimension, an atmospheric transmission estimate within the band of interest for a 
number of ranges around the ranges of interest, and the sensor two-dimensional MRT.  
 
The atmospheric transmission is determined (by using an appropriate model) and an equivalent 
blackbody apparent temperature is calculated based on the atmospheric signal reduction. Once an 
apparent differential temperature is obtained, the highest corresponding spatial frequency that can 
be resolved by the sensor is determined. This is accomplished by finding the spatial frequency (on 
the MRT curve) that matches the target apparent differential temperature. The target load line is 
the target contrast modified by the atmospheric transmission. The number of cycles across the 
critical target dimension that can actually be resolved by the sensor at a particular range then 
determines the probability of discriminating (detecting. recognizing or identifying) the target at 
that range. The number of cycles are given by 
 

R
d

N c⋅= ρ
     

 
where ρ is the maximum resolvable spatial frequency in cycles per milliradian, dc is the 
characteristic target dimension in meters, and R is the range from the sensor to the target in 
kilometers.  

 
The probability of discrimination is determined by using the Target Transfer Probability Function 
(TTPF) given by 
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where N50 is the value for 50% probability and E = 3.76. This function is a fit to experimental 
data and is shown in the lower right graph in Figure 3. It is discussed in [5].  
 
The computation needed to compute probability given the MRT-function is done by the routine 
Acquire, which is part of NVTherm.  
 

(7) 

(8) 
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Figure 3. Illustration of the range calculation. 

3.3 RANGE PREDICTIONS  

The probability of discrimination is determined using the Target Transfer Probability Function 
(TTPF) given in Section 3.2. The level of discrimination (detection, recognition or identification) is 
selected and the corresponding fifty percent cycle criterion, N50, is taken. The probability of 
detection, recognition or identification is then determined with the TTPF for the number of cycles 
given by Equation 7. The probability of discrimination task is then assigned to the particular range. 
A typical probability of discrimination curve will have the probability plotted as a function of range. 
Therefore, the above procedure would be repeated for a number of different ranges.  

While the following may be obvious it may nevertheless be good to mention some characteristics 
that improve probability of detection, recognition, and identification in infrared systems. 
Improvements are seen with larger targets, larger target-to-background contrast, larger target 
emissivities, larger atmospheric transmission, smaller MRT values (as a function of spatial 
frequency), and usually smaller field-of-views (if the target does not have an extremely small 
differential temperature).  

4 TERRTEX 
Terrtex is a program that was developed by FOI many years ago with the purpose to obtain a 
general tool for camouflage assessment and modified several times [6-11]. Terrtex was developed 
to assess the effectiveness of camouflage on vehicles in mainly forest backgrounds. Recent 
additions to Terrtex include the calculation of detection probabilities and models for visual search.  
 



 FOI-R--2290--SE 

13 

The approach proposed in Terrtex is to apply texture descriptors to quantify the similarity between 
different parts of an image. In addition, other descriptors are used to distinguish man-made object 
characteristics.  

4.1 INTRODUCTION 

Developments in the area of signature suppression make it progressively more difficult to 
recognize targets. In order to obtain a sufficiently low degree of false alarms it is necessary to take 
into account all available information, such as spatial, spectral, polarimetric and temporal 
properties. First thing to be further explored is the spatial content since the information is already 
in the sensor data. Accordingly, there is a genuine need to use spatial properties when analyzing 
the difference between a target area and a background area. This is more relevant today since 
modern signature suppression techniques have focused on the reduction of distinct features, such 
as hot spots in the infrared band. The approach is to apply texture descriptors to characterize the 
background and more or less camouflaged targets. In addition, other descriptors are used to 
characterize man made objects. Appropriately selected features should make it easier to locate 
areas containing vehicles or other man made objects. If time is not critical, an approach using 
geometrical models is preferable. Given limited time and resolution, one has to rely on measuring 
selected features. The assumption is that an area with observable targets has different statistical 
properties than other areas. Statistical properties together with detected specific target features 
such as straight lines, edges, corners or perhaps reflections from a window have to be combined 
with methods used in data fusion. 
 
Using texture information together with other kinds of information such as spectral and temporal 
features makes it possible to address tasks like the assessment of efficiency of signature reduction 
methods and obscuring countermeasures, as well as supporting the analysis of optical sensors 
performance used in missions as reconnaissance systems, weapon sights and target seekers. 
 
In the literature several attempts are described to assess the performance of signature suppression 
techniques [12-16]. However, there is still a need to improve the methods. Often assumptions are 
made which are difficult to verify. A complication to be addressed is that low contrast objects are 
often not fully distinguished from the natural background. 
 
Several ways to analyze images make it possible to assess different methods for signature 
reduction. One method is to visualize the properties of an image region. This can be done in 
several ways. Examples: 
 
• Display the Wiener spectrum (another name for a two-dimensional power spectrum) for a 

region of interest. Specific features may show up in such an image. 
 
• Display some relevant image transformations, such as edges or line images. 
 
• Displaying the Wiener spectrum for a small region around every pixel in the image. In this 

case it is easier to examine local events in the image. 
 
• Compute parameters that describe different features of the Wiener spectrum, like shape and 

distribution as examples of descriptors.  
 
• Use one or several feature measures to define some kind of similarity measure or the opposite 

distance measures. 
 
• Compute some measures that combine (non-camouflaged or camouflaged) target and 

background information. 
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Visualization of feature images is important because it is sometimes impossible to condense all the 
information into to a single number. Just as in image quality, color or texture analysis, several 
dimensions are needed to characterize a situation accurately. However, to validate these measures, 
there is a big demand for simple figures like detection time or signal-to-noise ratio. 
 
An often-used method for visualizing the similarity of a given set of features is by trying to isolate 
target from the background. In this case, the image is segmented into target areas and background 
areas. This is a task, as mentioned earlier, that is not always possible to accomplish. 
 
The ultimate validation is of course to test a method in a real target detection experiment. Using 
images of the scenes, the process can be simulated with a computer. Having a large enough set of 
images it is possible to assess probability for detection and false alarm rates etc. 
 
A major problem when assessing camouflage is the lack of a good theory for handling target 
detection in a cluttered environment. Theoretical work is often limited to the use of normal 
distributions for the background description. In a low observable situation, this is completely 
unsatisfactory. 

4.2 FEATURES 

In order to characterize targets in a background we need to find the differences that are important 
when it comes to detection, classification and identification. Here we will mostly deal with 
detection of vehicles. In this case detection means to find an object, some military vehicle, in the 
terrain. 

4.2.1 FEATURE DESCRIPTIONS 
 
A great number of texture measures are described in the literature. It is important to find features 
that are useful when trying to quantify the difference between targets and background. A good set 
of features could be designed by means of Gabor functions [17]. These are limited in space and 
frequency domains. However, computing many Gabor filter responses is computationally quite 
expensive. 
 
Tamura [18] has studied the relationship between textural features and visual perception. The six 
features he used were coarseness, contrast, directionality, line likeness, regularity and roughness. 
He found good correspondence in a ranking test with an implementation of 16 typical digitally 
computed texture measures. Woodruff [19] has estimated that three features should be enough to 
characterize normal textures. Texture measures based on the Fourier transform are presented in 
[20].  
 
In order to characterize the vehicle, several features are computed from the image. A set of Gabor 
coefficients are used to sample the fourier transform of the input image and they are computed at 
each pixel. From the local responses invariant features are calculated. The features available are: 
 

• Mean value 
• Local deviation 
• Edge concentration 
• Blob strength 
• Low frequency energy 
• Medium frequency energy 
• High frequency energy 
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• Fractal dimension 
• The fractal error 
• Orientation similarity 
• Mean curvature. 

 
The features are computed directly in the image domain, many come from Gabor filter banks and 
the remaining from combinations of first and second order derivatives. The Gabor filters all 
originate from a basic filter, illustrated in Figure 4. 
 
To find the importance of each feature, linear discrimination analysis is used [21]. We know the 
position of the object (target and background) features in the feature space. Then it is easy to see 
how each feature axis is oriented with respect to the discriminant line (linear case). The angle 
between the axes and this line is an indication of the importance of a feature. 
 

 
 
Figure 4. Gabor filters in the spatial domain and in the frequency domain. 
 
4.2.2 FEATURE EXAMPLES 
 
The different background features relate to properties of the Gabor filter. A few examples of 
feature images are given in Figure 5. 
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                (a)                                (b)                               (c) 

           
             (d)                                 (e)                               (f) 
 
Figure 5. An image (a), local deviation (b), edge concentration (c), laplace blob (d), gabor energy, 
(e), mean curvature (f). 

4.3 MEASURE OF PERFORMANCE  

The measure of performance most easily obtained is target detection probability as function of 
range. Time to detection demands some modeling of the search process and will be dealt with 
later. 
 

4.3.1 DETECTION PROBABILITY 
 
The distance measure applied to the two object distributions is the Bhattacharrya measure defined 
as [16, 21] 
 

( ) ( )[ ] 







−= ∫ dxxpxpD BT

2
1

ln
   

 
where T and B represent the target and the background respectively. 
 
The connection of this measure with detection theory in this area of application is given in [16]. A 
more general treatment is given in [21]. Figure 6 shows the distributions for target and 
background.  

(9) 
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Figure 6. The target and background distributions. 
 
The probability of detection is by definition given by 
 
 

TBDet PP Γ−=1
    (10) 

 
where PB is the a priori probability of a random sample being background, TΓ  represents the error 
of missing a target with r0 as the detection threshold. 
 
Assuming k independent samples over the target we obtain 
 

k
TBDet PP Γ−=1

    (11) 
 
Using PB ≈ 1 and TΓ  ≈ Г gives 
 

{ }( )Γ−= lnexp1 kPDet   (12) 
which can be reduced to 
 

( )kDPDet −−= exp1    (13) 
Using  
 

22)(
θR
ARk =      (14) 

where A is the target area, R = is the range and θ = is the resolution. 
We obtain the probability of detection as a function of range 
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If the distributions are identical, we obtain the integral over a probability distribution function, 
which by definition is 1. After applying the logarithm, the distance will be 0. If the distributions 
are totally disjoint, we obtain the logarithm of 0 which symbolically can be defined as minus 
infinity. Even if the distribution is parameter free, it is difficult to estimate a continuous 
distribution from a sampled image.  
 
For simplicity and usefulness let us assume that we have a Gaussian multivariate distribution. In 
this case the Bhattacharrya distance measure is given by   

(15) 
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where µi  and Σi are mean values and covariance matrices for the distributions PT and PB. 
 
Since the covariance matrix is used, many features can be used. A nice feature is the inherent 
normalization which, for example, allows measurements in different wavelength bands to be 
combined in a simple way. If the features are independent the distance can be further simplified. 
We obtain 
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where only mean values and standard deviations are used. For each feature we get a distance. The 
total distance is simply the sum of the individual Bhattacharrya distances for each feature. This 
makes it much easier to estimate the distributions.  
 
Since D is a generalized signal-to-noise ratio (SNR), the name GSNR is proposed which simply is 
defined as GSNR = 4*D.  The constant 4 makes GSNR more or less equal to the common SNR 
definition.  
 

4.3.2 DETECTION TIME 
 
Estimating detection time is not straight forward. There are two cases to consider and they are 
considered in Bailey’s model when trying to model the detection probability. As given above (eq. 
1 and 2) the probability of detection is given by 
 

η∗∗∗= 321 PPPPr      
where P1 is a factor related to visual search and is given by  









⋅







⋅





−−= t

A
a

G
P

s

t700exp11

   
where, 
 at = area of target, 
 As = area to be searched, 

t = glimpse time (0.3 s) and 
G = congestion factor, usually between 1 and 10 for most real imagery of interest. 
 

If the target is in the foveal area of the eye, then the time to detect a target is given by the fixation 
time. This is about 0.3 seconds in general. The time to detection in normal cases is given as the 
time before we have the target in the foveal field of view. This depends on the size of the image 
and also on the amount of false alarms present. In Bailey’s model the false alarms are contained in 
the congestion factor.  
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The Night Vision Lab model NVTherm do not consider visual search and only deals with the 
small time in foveal vision. 
 
In Terrtex some preliminary steps have been taken to estimate the time needed for visual search. 
Ideas from Laurent Itti [22] have been implemented to a small degree. The first thing is to look for 
possible false alarms in an image. As in most assessment situations we know where the target is 
situated. The strength of each potential target is estimated using the features present in the 
program. Like Itti we combine the features used to a saliency map, which is an image depicting the 
probability that a target is present at that point. The saliency map is built from the feature images 
through a fusion process. All the possible alarms are sorted in strength. The somewhat 
oversimplified model used in the current version of Terrtex assumes that the strongest alarm draws 
our attention first. We fixate for a small time, about 0.3 s, before the attention is moved to next 
alarm in the list. This eye movement takes some time. The process stops when we hit the real 
target. Some steps are shown in Figure 7. This very simple model gives the time to detection as 
 
 

vDisttNT alarmDet ∗+∗=   (18) 
 
where  

Nalarm = the number of alarms visited before the real target is hit, 
t = fixation time for each alarm (about 0.3 s), 
Dist = sum of all eye movement distances before the real target is hit, 
v  =   eye movement speed. 



 FOI-R--2290--SE 

20 

 

      
   (a)       (b) 

 
     (c) 

Figure 7. Illustration the process of estimating detection time: (a) saliency map made from the 
feature images, (b) blob detection applied to the saliency image, (c) Output image where the 
positions with a high saliency are marked by circles. 

4.4 CALIBRATION  

The current version of Terrtex is more or less selfcalibrating, although there are some 
approximations and assumptions involved. Calibration can be done with a data set received from 
Toet at TNO [23]. The data set includes 44 images from different forest scenes and complete data 
from a perception experiment where the probability of detection and the time to detection were 
measured. A few examples from the data set are shown in Figure 8. Calibration has been applied 
to an earlier version of Terrtex [9] and the correlation reached between model and experiment was 
88 percent. An open question is if the used background is useful in other situations. It might be 
better to use synthetic images. 
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Figure 8. Two examples from the image database [23]. 

5 EXPERIMENT WITH A TARGET SEQUENCE 
The purpose of this experiment was to use a model and compare its output when applied to  
synthetic images with that obtained from registered images. Since we are using images the third 
model, Terrtex, is used. In order to obtain a reasonable range of detection probabilities it was 
necessary to reduce the resolution of the images. Another limitation is the difficulty to mark the 
target borderline if the target area is only a few pixels. Because all the measured QWIP images had 
target areas of several hundred pixels the images were reduced in size. Then to get a suitable 
resolution all images were reduced in resolution by a low pass filter of Gaussian shape with a 
sigma equal to 2. The synthetically images were treated in a similar way. This also had the desired 
effect that both series of images had the same sensor resolution. Due to difficulties to find a good 
sequence of QWIP images only a few sizes are available. 
 

5.1 SYNTHETIC IMAGE GENERATION 
As field trials and field campaigns can be both expensive and time consuming, there has been an 
increasing interest in generating synthetic optical imagery using computers [24] in defence 
applications. The UK developed computer code Camouflage Electro-Optic Simulation 
(Cameosim) [25] has been used and explored at FOI since early 2003 [26-29]. By feeding 
Cameosim with information on 3D-terrain and 3D-objects together with material classification and 
material parameters such as thermal and spectral reflectance properties as well as information 
about weather conditions, the electro-optic radiation transport equations (RTEs) that affect the 
scene are solved from first principle physics [24-26]. A sensor is then defined using pixel 
resolution, field-of-view (fov), spectral response etc, and after (Monte-Carlo based) rendering the 
scene, 32-bit synthetic output is delivered in form of hyperspectral imagery with wavelengths 
ranging from 0.3 to 14 µm.  
 
A 2 x 2 km2 part of the military combat school at Kvarn, North West of Linköping has been 
modelled starting with a 25 cm resolution laser scan of the area. A material classified polygonised 
3D-model has then been imported into Cameosim, where each material has been associated with a 
number of material properties such as spectral reflectance, heat transfer parameters etc. From the 
laser scans, extracted information on exact tree positions, tree height, tree width, and tree species 
(i.e. separating leaf from needle trees) have been used together with 3D-models to model trees in 
the scene. Spectral reflectance for the scene constituents (such as leafs, grass, gravel, tree bark etc) 
was measured during a large field campaign in the summer of 2003. The corresponding thermal 
properties were estimated from available tables and references.  By using the link to the 
internationally recognised atmospheric code MODTRAN [30] for atmospheric modelling (e.g. 
spectral transmission, path radiance, air temperature, aerosol profiles etc) a complete environment 
for optical signature simulation in a typical Swedish rural area exists. A military vehicle (T72) was 
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modelled using the commercial computer code RadThermIR [31]. For more information regarding 
terrain, vehicle and weather modelling refer to previous work [26-29]. 
 
In this work, an in-flight towards a stationary military vehicle (T72) from a range of 1500 m has 
been simulated in Cameosim. A simple model of the QWIP [32] sensor with a fov of 20°×15°, a 
Gaussian spectral response with a full width at half maximum (FWHM) of 1.0 µm around 8.5 µm, 
and 320 × 240 pixels was used. The rendering in Cameosim was carried out using a 15 s in-flight 
sequence at 10 Hz delivering 150 images. As the sensor model in Cameosim is limited, rendered 
imagery was further processed to simulate signal degradation due to optics and detector. This was 
done by estimating modular transfer functions (MTFs) corresponding to diffraction, mean optical 
aberration and pixel size and pixel pitch [33,34]. As the QWIP sensor normally is run in a mode 
delivering apparent temperatures, the calculated radiance values in each pixel was converted to 
apparent temperatures [34]. An Audio/Video Interleaved (AVI) file was then constructed from the 
image sequence. 
 

5.2 CONTRAST MEASUREMENTS 
 
The feature selected for this experiment was the edge concentration because it is in several cases 
the most significant feature. The measure was the generalized signal-to-noise ratio. Figure 9 shows 
how Terrtex is used to calculate the contrast. The part inside the red polygon is compared with the 
part that is between the two polygons. 
 

 
 
Figure 9. Terrtex used for contrast measurements. The image shows a synthetic image with boxes 
outlining the target and the background.  
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Six synthetically generated images and the same number of QWIP images were used. However 
some of the QWIP images are of approximately the same size. Figure 10 shows the images used.  
 

 

   
 

   
 

   
 

   
 

   
 

 
Figure 10. Images used in the experiment. The left column shows the synthetic images while the 
QWIP images are shown in the right column. 
 
Table 1 and 2 show the results for the synthetic images and QWIP images respectively. 
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Table 1. Measured generalized signal-to-noise ratios for the synthetic imagery. 
 

Image name Footprints  
per target 

Edge GSNR kD (equation 13) Detection 
probability 

100 2.1 0.811 -0.034 0.35 
110 3.6 0.413 -0.319 0.31 
120 6.4 0.316 -0.504 0.40 
130 8.1 0.270 -0.553 0.42 
140 29.8 0.407 -3.03 0.95 
150 179.2 2.103 -94.3 1.00 

 
Table 2. Measured generalized signal-to-noise ratios for the QWIP imagery. 
 

Image name Footprints  
per target 

Edge GSNR kD (equation 13) Detection 
probability 

082045 12.0 0.483 -1.45 0.77 
082205 12.6 0.537 -1.69 0.82 
082326 9.1 1.060 -2.40 0.91 
082608 148 0.572 -21.2 1.00 
082821 48.4 0.230 -2.81 0.94 
082939 59.2 2.159 -26.8 1.00 

 
 

 
 
Figure 11. Plot showing the detection probability for synthetic (circle) and QWIP (square) images. 
The solid lines represents an empirical fitting of the equation 15 in Secion 4.3.1. 
 
As can be seen in Figure 11, the variation in aspect and elevation when registering the QWIP 
images is not ideal. The goes back to the fact that the QWIP sensor hang in a wire under a 
helicopter. If a probability function is fitted to data in Figure 11, for both the synthetic imagery 
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and the QWIP imagery, using equation 15 in Secion 4.3.1, we can see that most observations are 
quite close to this line. This is interpreted that the two cases, synthetic and registered imagery, 
both fit the same curve. This indicates, given the uncertainties, that there are no significant 
difference when comparing the two image sets. An earlier made comparison between synthetic and 
QWIP images is given in [35].   
 
It is clear that when it comes to signature comparisons great care has to be taken when acquiring 
test images. Ideally the exact imaging geometry, time of day and weather should be monitored and 
applied when generating the synthetic images. Similar consideration applies to the registration of 
the QWIP images.   

6 DISCUSSION 
By use of image analysis techniques, it is possible to obtain a measure of the similarity between 
camouflaged targets and the surrounding areas. It is also possible to compare targets having 
different degrees of camouflage with background areas. The difficult task is the selection of a 
suitable set of features.  
 
Future work might also include integration of spatial properties with spectral and temporal 
features. This is necessary if assessment of a given signature suppression measure is to be done. 
Furthermore, the distance measures have to be ”calibrated”, for example related to recognition 
distances. Fuzzy logic [36, 37] methods, perhaps implemented with a RBF (Radial basis network) 
network [38], may be utilized to introduce more knowledge from visual perception than is used in 
the current investigation. Steps in this direction are the experiments with the Search_2 image data 
set. The price to be paid for the use of many features is a heavy computation load, a disadvantage 
that will be less relevant in the future. 
 
Implementing a simple automatic target recognizer (ATR), and performing detection experiments, 
is one way to obtain a somewhat more objective measure. However, calibration has to be done also 
in this case. Experiments with the Search_2 image data set indicate that using one single feature 
will give reasonable results. In these experiments, the features edge concentration and shape seem 
to give some useful results. The tests indicate that the best result will be obtained using mean and 
variance based distances.  
 
From the experiment in Section 5, we can see that synthetic imagery may be used instead of 
registered images. Success demands careful modeling not only of the target and the background 
but also of the sensor and the atmospheric. This may make computer codes like Cameosim 
valuable in assessing different parts in an optical system. 
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