alt (m)

RICHARD HALL

Path Planning and Autonomous
Navigation for use in Computer
Generated Forces

10000 -
8000
6000 -
4000 1 | — |
0 100 200 300 400 500 600 700 900 1000
time (s)
1-
o
0 1 1 1 J
0 1 2 3 4 5 6 7 9 10
time (s) X 10°

FOI-R-- 2310 --SE
ISSN 1650-1942

Scientific report
June 2007

Combat Simulation, FLSC

Richard Hall

Path Planning and Autonomous Navigation for use in Computer
Generated Forces

FOI-R--2310--SE Scientific report Combat Simulation, FLSC
ISSN 1650-1942 June 2007

Issuing organization Report number, ISRN | Report type

FOI — Swedish Defence Research Agency FOI-R--2310--SE Scientific report

Combat Simulation, FLSC Research area code

SE-164 90 Stockholm 2. Operational Research, Modelling and Simulation
Month year Project no.
June 2007 E52303

Sub area code

24 Air Combat Simulation Centre
Sub area code 2

Author/s (editor/s) Project manager
Richard Hall Karina Waldemark

Approved by
Anders Borgvall

Sponsoring agency

Scientifically and technically responsible
Orjan Ekeberg

Report title
Path Planning and Autonomous Navigation for use in Computer Generated Forces

Abstract

In this Master's thesis project, the use of Unmanned Combat Aerial Vehicle, UCAV, in the fighter role was studied.
The mission of the agent was to guard and supervise a No-Fly Zone (NFZ) and to, upon violation, intercept a single
intruder while minimizing the risk of being shot down. Methods for on-line path planning on a discretized version of
the search space were evaluated and, in order to further enhance paths, post processing using virtual forces was
applied.

Simulations showed that threat-constrained path planning, based on a tradeoff between path length and risk
estimate, can be performed in satisfyingly short time, suitable for on-line use. Further considerations have yet to be
made in order to meet the demands of an uncertain environment with dynamic threats and targets maneuvering in
order to achieve diversion.

As part of the project, a prototype of the agent was implemented as an add-on to a fighter aircraft entity running
in the Mission Training simulator at the Swedish Air Force Combat Simulation Centre (FLSC).

It is finally suggested that path planning procedures, like the ones studied in the project, should be an integrated
part in future tools for Computer Generated Forces (CGF) as they could cover some of the shortcomings in pure
rule-based systems.

Keywords
Path Planning, UAV, UCAV, Threat optimization, SAM, Graph search, Virtual forces, flight simulation

Further bibliographic information Language English

ISSN 1650-1942 Pages 73 p.

Price acc. to pricelist

Utgivare Rapportnummer, ISRN [Klassificering

FOI - Totalforsvarets forskningsinstitut FOI-R--2310--SE Vetenskaplig rapport
Avdelningen for stridssimulering, FLSC Forskningsomrade
164 90 Stockholm 2. Operationsanalys, modellering och simulering
Manad, ar Projektnummer
Juni 2007 E52303
Delomrade

24 Luftstridssimuleringscenter

Delomréade 2

Forfattare/redaktor Projektledare
Richard Hall Karina Waldemark
Godkand av

Anders Borgvall

Uppdragsgivare/kundbeteckning

Tekniskt och/eller vetenskapligt ansvarig
Orjan Ekeberg

Rapportens titel
Vagplanering och autonom navigering for datorgenererade stridskrafter

Sammanfattning

Detta examensarbete har studerat UCAV (Unmanned Combat Aerial Vehicle) i jaktrollen. Agentens uppdrag var att
dvervaka en No-Fly Zone (NFZ) genom att méta en inkréktare innan denna nétt gransen och samtidigt minimera
risken att bli nedskjuten. Metoder for vagplanering och diskretisering av sokrymden har utvarderats och, som ett
efterbehandlingssteg aven, virtuella kraftfalt.

Simuleringar visade att vagoptimering baserad pa en avvagning mellan vaglangd och riskskattning kan goras
tillrackligt snabbt for att Iampa sig for planering under fard. Det aterstar fortfarande att utforska situationer med
mangvrerande mal och dynamiska hot.

Som en del i projektet implementerades en prototyp av en UCAV som pabyggnad till en fiygmodell i
Flygvapnets Luftstridssimuleringscentrums (FLSC) simulatoranlaggning.

| slutsatsen rekommenderas metodiken for vagplanering som ingaende modul i verktyg for datorgenererade
stridskrafter (CGF), for att tacka in omraden som inte modelleras tillrackligt bra av befintliga, regelbaserade system.

Nyckelord
vagplanering, UAV, UCAV, hot, optimering, luftvarn, grafsokning, virtuella kraftfélt, flygsimulering

Ovriga bibliografiska uppgifter Sprak Engelska

ISSN 1650-1942 Antal sidor: 73 s.

Distribution enligt missiv Pris: Enligt prislista

Contents

1 Introduction

1.1 Background
1.2 Purpose and Goals
1.3 Scope and Limitations 0oL
1.4 Outline of Thesis
1.5 Previous Work

2 Task Break Down
2.1 Execution Phase . .

3 Combat Simulation

3.1 Peace Support Operations
3.2 Flight Simulation oo
3.3 Computer Generated Forces
34 UAV and UCAV
3.5 Simulating Fixed-wing Aircraft
3.5.1 Dynamic Model oL
3.5.2 Interoceptive Sensors L
3.5.3 Exteroceptive Sensors

4 Target Intercept

4.1 Chasing a Dynamic Target
4.1.1 Estimated Rendezvous
4.2 Finding the Shortest Path
4.2.1 Threats in the Environment
4.3 Discretization e e e e
4.3.1 Voronoi Tessellation
4.4 Graph Search
441 A*search
442 Cost Function.
4.5 Post-processing Lo

4.5.1 Virtual Forces

5 Implementation

W W N = -

ot Ot

o 0o

10
10
11
12
12
13

15
15
15
16
17
17
17
18
20
20
23
23

27

5.1 Plant Description oo oL
51.1 Hardware
5.1.2 HLA Framework
5.1.3 T3SIM and Tools
51.4 UCAV Model
5.2 Matlab Simulations L
5.3 Simulator Integration
5.3.1 Programming Environment
5.3.2 Planner Module

Simulations
6.1 Test Scenario
6.2 Test Results

Discussion

7.1 Performance Evaluation
7.1.1 Radar Warner
7.1.2 Virtual Forces.
7.1.3 Trajectory Following

7.2 Conclusions and Further Work

7.3 Goal Fulfillment
7.3.1 Proposed Enhancements

Bibliography
Appendices

A Simulation Diagrams

A.1 Reference Simulations,
A.2 Simulation Serie 1
A.3 Simulation Serie 2o
A.4 Simulation Serie 3
A.5 Simulation Serie 4
A.6 Simulation Serie 5

Background Study
B.1 Cognitive Modeling o
B.1.1 Automated Intelligent Pilots for Combat Flight Simulation
B.1.2 Participation of TacAir-Soar in Road Runner and Coyote Ex-
ercises at Air Force Research Lab, Mesa, AZ
B.1.3 Intelligent Agents for Aircraft Combat Simulation
B.1.4 Computer Generated Intelligent Companions for Distributed
Virtual Environments
B.2 Imtelligent Control
B.2.1 Towards A Neural Control Artificial Pilot

35
35
36

41
41
42
42
45
45
45
46

49

51

53
o4
95
o7
o8
61
63

65
66
66

B.3

B.2.2 Autonomous UCAV Strike Missions using Behavior Control
Lyapunov Functions 69
B.2.3 Hybrid control for aggressive maneuvering of autonomous aerial
vehicles 70
B.2.4 Autonomous formation flying of multiple UCAVs under com-
munication failure L 70
B.2.5 Anvéndning av artificiella neurala nét vid simulering av pi-
loters taktiska beslut under luftstrid 70
Path Planning L oo 71
B.3.1 Coordinated target assignment and intercept for unmanned
air vehicles L Lo 71
B.3.2 Combining Path Planning and Target Assignment to Mini-
mize Risk in SEAD Mission 71
B.3.3 Probabilistic Trajectory Planning for UAVs in Dynamic En-
vironmentso Lo oL 72
B.3.4 The Delayed D* Algorithm for Efficient Path Replanning . . 72
B.3.5 Solving robot motion planning problem using Hopfield neural
network in a fuzzified environment 72
B.3.6 Path Planning for UAVs 72

List of Figures

2.1

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3
5.4
5.5
5.6
5.7

6.1
6.2

7.1
7.2
7.3

Al
A2
A3
A4
A5
A6
AT

GANTT Chart s 6
simulator hardware 9
nEUROn e 11
flight dynamics 12
RWR triangulation 14
SAMmap o oo 18
Voronoi tessellation 19
Delaunay triangulation o0 oo 19
SAM fire probability 22
Virtual Forces 24
Plant Chart e 28
SCVIS . . e 29
Stage . .. 30
UCAV Flowchart 30
UCAV GUI e 31
UCAV UML diagram i 33
Planner Flowchart 34
Scenario Map 36
Scenario Picture 37
RWR example 43
Virtual Forces, bad examples 44
nEUROn e 48
Reference 1 54
Reference 2 54
Scenario 1A 55
Scenario 1B 55
Scenario 1C s 56
Scenario 2A 57

Scenario 3A 58

A.8 Scenario 3B 59

A9 Scenario 3C 59
A.10 Scenario 3D L 60
A1l Scenario 3E 60
A.12 Scenario 4A 61
A.13 Scenario 4B 61
A.14 Scenario 4C 62
A.15 Scenario 4D L 62
A.16 Scenario BA L 63
A.17 Scenario 5B L 63

List of Tables

6.1 Referenceruns e e 38
6.2 Scenario 1 e e 38
6.3 Scenario 2 L. L e e e 38
6.4 Scenario 3 e e e e e e e e e e 38
6.5 Scenario 4 e e e 39

6.6 Scenario 5 e e e e e 39

Acronyms

C4STAR

CAP
CGF
CONOPS
ELINT
FLSC

FOI
GCI
HARM
HLA
M&S
MALE
NBG
NFZ
OTW
PSO
ROE
RTI
RWR
SAM
SBA
SEAD
SNNS
STOW
T3SIM

TACSI
UAV
UCAV
VID
WVR

Anti-Aircraft Warfare

Air Coordination Order

Air Force Research Laboratory

Area Of Responsibility

Air Tasking Order

Airborne Warning And Control System

Beyond Visual Range

Command & Control systems (e.g. AWACS)
Command, Control & Communication

Command, Control, Communication & Computers + Intel-
ligence, Surveillance, Target Acquisition & Reconnaissance
Combat Air Patrol

Computer Generated Forces

Concept of Operations

Electronic Signals Intelligence

Swedish Air Force Combat Simulation Centre (Swedish
acronym)

Swedish Defence Research Agency (Swedish acronym)
Ground Controlled Intercept

High speed Anti Radiation Missile

High Level Architecture

Modeling and Simulation

Medium Altitude, Long Endurance

Nordic Battle Group

No-Fly Zone

Out of The Window

Peace Support Operations

Rules Of Engagement

Run-Time Implementation

Radar Warning Receiver

Surface to Air Missile

Simulator Based Acquisition

Suppression of Enemy Air Defense

Stuttgart Neural Network Simulator

Synthetic Theater Of War

Training and Tactical/Technical Development Simulation
System)

TACtical Simulation

Unmanned Aerial Vehicle

Unmanned Combat Aerial Vehicle

Visual Identification

Within Visual Range

Preface

This report is the written record of a master’s thesis project at the School of Com-
puter Science and Communication at the Royal Institute of Technology (KTH).
The project was carried out at the division of combat simulation, Swedish Air Force
Combat Simulation Centre (FLSC), at the Swedish Defence Research Agency during
the winter semester of 2006,/2007.

I would like to express my sincerest thanks to my supervisors Dr. Karina Walde-
mark at FOI, FLSC and Dr. Orjan Ekeberg at CSC, KTH for guidance and support.

I thank all the coworkers at FLSC for support and for making my time there so
memorable.

Thanks also to Martin Castor, Petter Ogren and all others who have helped me
in my research.

Stockholm, May 2007
Richard Hall

Chapter 1

Introduction

Following the rapid evolution of computers, the abilities within computerized simu-
lation has skyrocketed in the last decades, much thanks to the game industry which
constantly raises demands on graphical hardware and software. Computerized sim-
ulations can be applied in a variety of disciplines, but in this report we will refer
to the domain of combat flight simulation, where the purpose is mission training
for military pilots. In this field, Computer Generated Forces (CGF’s) have become
an important factor in simulating the complex and scattered battlefields we see in
current conflict zones.

CGF’s can be described as entities in a simulation that are controlled by com-
puter software. They take actions based on knowledge gathered from the simulated
environment, often by mimicking human behavior, and their purpose is to create a
higher resemblance of reality in the outcome of the simulation.

1.1 Background

During 2006 the Swedish Air Force performed a concept study regarding the fu-
ture use of unmanned combat aircraft. The purpose was not primarily to evaluate
technologies but rather to identify tasks where removing the human operator would
result in a tactical advantage. Further, the command structure was emphasized and
especially regarding the human operator that would be in control of one or several
unmanned aircraft.

As part of the study, simulations were done during two weeks at the Swedish
Air Force Combat Simulation Centre (FLSC). The first week concentrated on Un-
manned Combat Aerial Vehicles (UCAV’s) performing ground attack missions, while
during the second week, a more protective role was considered where supervising
a restricted airspace was set into focus. The scenario took place in a fictive Peace
Support Operation (PSO) and the task to be solved was to perform Combat Air
Patrol (CAP) over a No-Fly Zone (NFZ). This is a task that might need to be
maintained over a long period of time, thereby becoming repetitive and fatiguing
for human operators. The level of conflict was assumed to be low making large scale

1

CHAPTER 1. INTRODUCTION

violations to the NFZ unlikely.

Although simulations were successful, the UCAV model required much attention
from the operator while intercepting an object that was on its way to violate the
no-fly zone. One reasons for this was the way surface threats, e.g. Surface to Air
Missiles (SAM’s), were handled. The UCAV would simply turn away from threats
it discovered, even if it conflicted with its intercept mission or put it on another
potentially dangerous path. It was obvious that improvements could be done to
make the model act more autonomously on information it already possessed and
herein arose the problem that is dealt with in this master’s thesis. A scenario similar
to the one used in the second week of simulations together with the control software
and operator interface were used as base.

1.2 Purpose and Goals

The purpose of this thesis is to evaluate what kind of capabilities are needed in
Computer Generated Forces used for simulating unmanned aircraft. Focus is set
on autonomous path planning which is an important issue commonly addressed in
the domain of Unmanned Aerial Vehicles (UAV) and Unmanned Combat Aerial
Vehicles (UCAV). The problem addressed is how the vehicle is to move itself from
A to B, taking into consideration obstacles and threats. This type of problem is
also often addressed in the field of autonomous systems and mobile robotics.

The goal of this thesis is to suggest methods how to automatize the behavior
of a simulated unmanned aircraft on a mission where it is to guard and supervise
a no-fly zone (NFZ). A NFZ is a restricted geographical area where no movements,
except for allied forces, is allowed in the airspace. Should the zone be violated by
someone, the guard is to intercept the intruder at the border or as close to the
border as possible. The guard, however, should not expose itself to more threats
than necessary. Hence, there is a need to optimize its trajectory towards the target.
There should also be a higher level decision making that can determine whether a
proposed trajectory is feasible or if there is need for replanning. Threats consist, in
this scenario, of surface to air missiles (SAM) and hostile combat aircraft.

In the beginning of the project the following list of subgoals was created.

1. Identify what parameters to use for decision making and optimization
2. Evaluate how to best make use of planning algorithms
3. Develop a prototype running in FLSC

4. Make use of recent methods and research results

1.3 Scope and Limitations

This thesis project lies mainly within the scope of Autonomous agents and Computer
Generated Forces, concentrating on the planning needed in an Unmanned Combat

1.4. OUTLINE OF THESIS

Aerial Vehicle on a patrol mission.

Since CGF’s generally try to model human behavior, the simulated UCAV that
is referred to in this study, which is controlled by an operator, is not by definition a
CGF. However, UAV’s and CGF’s are both to some extent autonomous agents that
acts on inputs from the environment. The distinction between CGF and UAV is
not always unambiguous. For instance, a CGF could receive new commands during
an ongoing simulation, resulting in changed behavior as well as a UAV could be
charged to operate completely autonomously during a mission.

The task that is dealt with is well restricted within the scenario. One UCAV
is to set CAP over a NFZ and, when assigned an incoming target, plan and per-
form an interception, preferably before the target enters the NFZ. In this context
interception has the meaning of position the UCAV within a certain distance of the
intruder where further actions could be to visually identify and/or to deter.

One limitation that was made was to restrict the number of simultaneously in-
coming targets. This is because normally, to maintain a NFZ there is need for a
large combined force, covering a wide range of capabilities, where a CAP mission
would be conducted by a team of at least two combat aircrafts. To achieve coordi-
nated actions within the scope of UCAV, one would have to widen the perspective
and include areas as distributed target assignment and communication issues.

1.4 Outline of Thesis

In the next chapter, the task is presented and broken down. In chapter 3, a brief
background to combat simulation and the the main topics covered in this report
is presented. Chapter 4 explains the methods and techniques used for planning a
path in order to intercept a given target. In chapter 5 the implementation phase
of the UCAV prototype is described. In chapter 6, simulation results are discussed
and finally, chapter 7 provides a discussion and conclusions part.

In appendix A, diagrams from the simulations are displayed and in in appendix
B a background study provides the reader with references to related research and
previous work.

1.5 Previous Work

Before the goals of this thesis were fully defined, a literature study was conducted
in the fields of Combat Simulation, Computer Generated Forces, and Autonomous
airborne systems (A summary is available in appendix B). During this study, a
number of interesting publications were evaluated. Closely related to the thesis and
worth pointing out here, is an article written for the preceding Air Force UCAV
study (Ogren et al., 2006), a FOI article about path planning and target assign-
ment (Ogren and Winstrand, 2005), and an article proposing a virtual forces based
approach to path planning (Bortoff, 2000).

Chapter 2

Task Break Down

As the projects first phase, a search and study of literature and research was initi-
ated. The background study aimed at finding feasible methods and to reuse work
already done in the field.

The first approach to be evaluated was Neural Networks. The net was supposed
to output control commands given input on target and threats. Similar work had
been done, (Rosander and Walther, 1996; Ehlert et al., 2003), but very little research
was found that included planning. It was decided that the task should incorporate
planning and the neural network approach was then dropped since it was deemed
that it would not provide the traceability that was requested. Once trained, a NN
is too much of a black box in some of these respects.

Next, rule-based systems were studied. Much of the CGF research is done using
these systems, e.g. Soar and TACSI to which references can be found in appendix B,
which do produce a traceable behavior. However, no material was found on using
rule-based systems together with planning so, for that reason it was decided to look
closer into this area. The hypothesis being that it could possibly be integrated into
a CGF system.

When the task was this much defined it was time to look into the howto’s. Path
planning algorithms and threat representations had to be evaluated. Probabilistic
Path Planning and Randomly exploring Rapid Trees (RRT’s) were both considered
as planning algorithms but since much reference work on UAV path planning was
using Voronoi graphs, this method was chosen. Had there been time, a RRT planner
would also have been evaluated.

To complete the planner, a graph search algorithm had to be selected. Since
the A* heuristic search is somewhat of a standard in graph search, this method was
tried first. It worked out well and could also be proven optimal.

2.1 Execution Phase

After most of the background research was completed, a phase dedicated to tool
and method evaluation took place. The task was broken down in the following sub

CHAPTER 2. TASK BREAK DOWN

tasks so that some of them could be evaluated separately.

e Find a representation of the search space
o Find representation/estimation of threats
e Find the proper search algorithm

o Translate output into flyable trajectories

o Evaluate output

Following the method evaluation, implementation and testing of the entire sys-
tem was begun. The project was ended with evaluation and reporting.

The original project week plan is displayed in figure 2.1. The ordering was
roughly followed although more tasks were done in parallel than indicated in the
figure. The implementation and the testing phases turned out much more time
consuming than estimated from the beginning.

Studying litterature
Configure test environment
Tool evaluation

Implementing first phase
Implementing second phase
Testing

Evaluating

Reporting | |

Figure 2.1: Rough GANTT week chart

Chapter 3

Combat Simulation

“Once the command of the air is obtained by one of the contended
armies, the war must become a conflict between a seeing host and one
that is blind.”

H. G. Wells

Humans are valuable assets today and few military powers would deploy troops that
have not received adequate training. Performance in the field is strongly correlated
to the amount and quality of the training and since the development has resulted
in more and more advanced technical systems, more skills are needed in the oper-
ators and this means more training. Combat simulation ranges from live exercises
with humans playing all roles, to pure virtual reality where computer generated
forces control all participants. The purpose is multifold, e.g. training and validat-
ing forces, mission rehearsal, developing new tactics and methodology or performing
Simulation Based Acquisition (SBA).

Although Wells had no insight in network centric warfare and these days impor-
tance of electronic sensors, the quote above reflects the purpose of air power very
well. In military context, the term Dominant Battlefield Awareness (DBA) is used
to point out the need for information superiority which, due to the wast technolog-
ical development of military forces, has gotten the meaning of adequately filtered
information rather than complete information, which is more likely to be synonym
with information overflow (Owens and Offley, 2000). In the modern aerial arena
there is a great number of participants, allied from different nations, enemy and
non combatants, all moving at high speeds making the operational theater large
and complex. There is a great dependence on electronic sensor information gather-
ing and exchange which has led to the simultaneous development of electromagnetic
warfare and countermeasures. All in all, to be superior in the battlefield it is nec-
essary to have the right information but never the less to know how to act upon it.
This is why extensive training and high fidelity simulation is so important in lifting
the “fog of war” on the battlefield.

CHAPTER 3. COMBAT SIMULATION

3.1 Peace Support Operations

“On peace support operations, the use of military force is normally con-
trolled by restrictive rules of engagement. The purpose is to limit free-
dom of action on lower levels in order to achieve maximal control and
freedom of action on a political level. This is a point of view that is
particularly apparent in large scale international operations.”

(Forsvarsmakten, 2005)

Over the last decades we have seen an increased political will to use our military
forces in coalition with other nations on international peace support operations
proceeding UN resolutions. This is closely related to the new world order, resulting
from the fall of the east block, where threat assessments points at a lesser need
for the large national defense. The reorganization of our military forces have many
different meanings wherein flexibility seems to be a key concept.

In an international perspective, aerial forces are often a component in peace
keeping missions, contributing with a large range of action, high speed and ma-
neuverability. To protect ground and maritime forces, it is crucial to achieve air
superiority, which means that joint forces have obtained full control of the airspace.
However, in order to guarantee air superiority one needs to stay in the area and
supervise, a task that is typically solved by proclaiming a no-fly zone. A NFZ needs
to be maintained 24 hours a day, 7 days a week, possibly during long periods of
time!, performing repetitive and dull tasks. These kinds of missions, that have the
potential of wearing out a human operator, are put in focus in this thesis because
it is a field where automation have proven very successful, with respect to UAV
systems operative today, and where autonomous aircraft will probably play an even
bigger role in the near future.

3.2 Flight Simulation

For many years, flight simulators have been employed in the training of both com-
mercial and military pilots. In the beginning, pneumatical/mechanical models were
used, with very good results, providing the user with immersion to some extent
even without a graphical display. Because of its wide range of benefits, e.g. in im-
proving pilot skills and reducing costs, flight simulation is a research area which has
contributed and, to a large extent, driven the VR development. Today commercial
flight simulators involve features from most niches of Virtual Reality i.e. visual,
audio and haptics.

Immersion in flight simulation is achieved by providing the user with a mixture of
real hardware and virtual feedback. The pilot is in most cases constrained to a chair

!The NFZ that was proclaimed over Iraq after the gulf war of 1991 lasted for over a decade
(Wikipedia, 2007a)

3.2. FLIGHT SIMULATION

Figure 3.1: Simulator pilot station at FLSC

surrounded by real buttons and controls. In some simulators, as in FLSC, even parts
of the instrumentation can be virtual in the sense that it is shown on interactive
displays, which makes it easy to change their appearance and functionality. The
visual feedback is given to the pilot by projections of the environment outside the
aircraft but also by virtual and real instruments inside. Audio is used for simulating
radio traffic and warning signals e.g. missile alert or ground collision warning. In
some simulators the haptic feedback is provided through pneumatical actuators
changing the orientation of the simulator. It is thereby possible to simulate the
pitch and roll that the pilot would experience in a real maneuver. Acceleration
can be simulated by tilting the simulator backward and deceleration by leaning
it forward. Although this method can be sufficient in commercial aviation, heavy
acceleration and rapid maneuvers are more difficult to achieve and that is sometimes
needed in military simulations. Haptic feedback can also be given by force feedback
in the rudder controls. Since many aircrafts today make use of fly-by-wire systems,
force feedback is implemented similarly in the simulator as in a real aircraft.
Simulators are widely used in both military and civilian aviation but there are
some general differences that needs pointing out. Commercial aircraft simulators
are constructed mainly to train pilots in order to increase flight safety. Therefore
the simulator must be able to put the pilot in critical situations, that are either

CHAPTER 3. COMBAT SIMULATION

too dangerous or too hard to recreate in plain air. In military applications, there
is also a need for training coordination while flying in a formation. Therefore it
becomes much more important with network capacities and real-time performance.
Every pilot must have his view of the environment presented at the same time as
the others get theirs. This form of VR is called Distributed Virtual Reality. Besides
the real-time aspect military simulators also has to deal with weapon systems and
hostile entities which can be autonomous, then called Computer Generated Forces
(CGF) which will be explained next.

3.3 Computer Generated Forces

CGF’s have been of interest to military forces for quite some time due to a high
potential in e.g. training, development and acquisition. In brief they make use of
AT techniques to model and simulate military units ranging from large and complex
vehicle systems down to the individual soldier. In many applications even group
behavior and formations are considered.

Thanks to the computer evolution, simulation has gained a higher level of fidelity
and the capabilities of real-time computations has largely increased. Further, VR
applications makes it possible for humans to achieve a deeper level of immersion
and gives them a better interface to interact with the simulation. At the same time
complexity and scope of tasks is increasing, rendering a constantly growing set of
possibilities.

When CGF’s are discussed in this report there is a focus on aircraft agents and
surface-to-air missile platforms (SAM’s). In appendix B some existing software for
handling CGF’s are presented.

3.4 UAV and UCAV

“Today, there is a lack in the development of CONOPS (Concept of Op-
erations) regarding the possible use of UCAV, individually and in coop-
eration with existing systems. A more evolved development of CONOPS
would bring more evolved demands on technique, thus making the future
more predictable”

(Forsvarsmakten, 2006)

The concept of Unmanned Aerial Vehicles is in no way a novelty. Following
World War I, experiments with “aerial torpedoes” were conducted which was sort
of predecessor to the cruise missile. It is however within the last two decades that
we have seen a technological break-through which has resulted in the deployment
of a number of intelligent and reusable systems. An evident example of this is the
development of mini-UAV’s that are the result of electronic components getting
smaller, lighter and less expensive.

10

3.5. SIMULATING FIXED-WING AIRCRAFT

In recent years, interest has also grown regarding Unmanned Combat aerial Ve-
hicles to overtake tasks from human pilots. UCAV’s distinguish themselves from
UAV’s mainly by the capability of carrying arms. Today there are already such
systems in service, e.g. the MQ-1 Predator which carries two Air-to-ground Hellfire
missiles. The predator MALE system (Medium Altitude, Long Endurance) was
however primarily built for surveillance tasks and the UCAV-term is mostly associ-
ated with aircraft that are developed for performing similar to a manned jet fighter.
The main advantages with these kinds of systems is that they will be able to perform
missions that, for a human, could be considered dirty, dull and/or dangerous.

In the picture (figure 3.2), you see an illustration of Neuron, a joint European
project which aims at flying with a UCAV demonstrator in 2010.

Figure 3.2: nEUROn, © Dassault Aviation - A. Ernoult

3.5 Simulating Fixed-wing Aircraft

Fixed-wing aircraft are, as the rest of the world, restricted by the laws of motion. A
propulsion unit provides a forward force which in turn, through Bernoulli’s principle,
creates a lift that opposes the force of gravity. Once in the air, the aircraft can make
changes to a number of control surfaces which will change its current course.
When planning and executing a simulated mission it is important to know the
dynamics of the model. Unlike rotory-wing, airplanes need to be in motion in order
to maintain lift and this affects the minimum possible speed aswell as the angle of
attack. If we for instance request a long path to be travelled at a slow speed we will
force the aircraft to enter a high angle of attack, wasting a lot of fuel just to stay in

11

CHAPTER 3. COMBAT SIMULATION

the air. The economic alternative would then be to stay at high altitude, and hold
until the target can be reached at cruise speed.

3.5.1 Dynamic Model

The simplest model of an aircraft moves forward, and maneuvers within the three
rotational degrees of freedom, i.e. pitch, roll and yaw. These reflect the main effect
from changing the rudder, elevator and ailerons on a traditional aircraft and together
with thrust they constitutes the primary flight controls or actuators.

Figure 3.3: The three rotational degrees of freedom in an aircraft. This image is licensed
under the GNU Free Documentation License, http://en.wikipedia.org/wiki/Image:
Flight_dynamics. jpg

Even if this model is a sufficient, although coarse, for fixed-wing aircraft, all
high fidelity simulators make use of a model with six degrees of freedom that also
incorporates the three translational degrees of freedom. This way, it is possible to
model the attitude of the aircraft relative to its forward motion. In fact it is the
attitude that determines the lifting force generated by the wings but also the drag
component.

Based on the shape of the aircraft, the aerodynamic force contribution is calcu-
lated and added to the system of equations that make up the equations of motion
that apply to the vessel. The system is then solved and the state updated with a
certain frequency.

3.5.2 Interoceptive Sensors

When referring to sensors on an autonomous vehicle, there is a distinction between
interoceptive and exteroceptive. The interoceptive constitutes all sensors that in
some way measures the current state of the craft. There is a big number sensors
of this kind in a modern aircraft and they range all from velocity, altitude and
positional meters to rudder positions and engine status. Since regulation of the
aircraft, in the simulation is performed based on sensor data, these values has to be
derived from the state equations.

12

http://www.gnu.org/copyleft/fdl.html
http://en.wikipedia.org/wiki/Image:Flight_dynamics.jpg
http://en.wikipedia.org/wiki/Image:Flight_dynamics.jpg

3.5. SIMULATING FIXED-WING AIRCRAFT

3.56.3 Exteroceptive Sensors

Exteroceptive sensors are the ones that measures everything that has to do with the
environment outside the aircraft. For instance it gathers knowledge on vessels in
its surroundings by using a RADAR or finds the heat signature of another aircraft
with a Forward Looking Infra Red camera (FLIR).

On-Board RADAR

A RADAR onboard a modern combat aircraft has capability to position targets
in three dimensions. With a Doppler RADAR it is also possible to measure the
velocity of an object. By changing mode, the RADAR can use different search
patterns, i.e. to intensify search in a certain sector or update a specified target
more often. The RADAR is the primary sensor of a combat aircraft and loss of it
would result in blinding, which is why electronic warfare and jamming devices have
been developed hand in hand with the RADAR.

Data Link

Since most missions in the air arena are conducted by combined forces with differ-
ent functionality, there is a need to communicate within the group to control and
exchange information. Either the communication is vocal over radio, or it is data
packages sent over a radio link. For instance, an airborne RADAR, like the E-3
Sentry, can scout a very wide area, linking targets to fighters in the force which
then can shut down their own RADAR, thus not reveling themselves to foes.

Radar Warning Receiver

A radar warning receiver (RWR) is a passive device present in most fighters for
protective reasons. The main purpose is to detect active sensors in the environment
that could possibly constitute a threat. Many different data can be gathered from a
radar signal e.g. frequency, signal strength (amplitude), pulse repetition frequency
(PRF) and bearing. When the signal has been recorded it is matched against an
emitter library in order to determine the type of the source. RWR’s could for
instance warn for radar lock-on, radar guided missiles or approaching SAM sites.
Since the radar beam has to bounce off its target and return to the emitter, thus
traveling the double distance, it is often much easier to passively detect the emitter
than for the emitter to detect a target. The rule of thumb is therefore that the
emitter can be revealed on two times the detection range (Siggelin, 2006).

When receiving signals from other airborne platforms, it is often only possible
to position them with bearing, even if the signal strength gives us some boundaries
regarding the distance. However, when measuring stationary emitters, such as SAM
sites, we have the ability to use several measurements, separated by time and posi-
tion, to triangulate the position of the emitter. In figure 3.4 two triangulation cases
are displayed which pinpoints the role of uncertainty propagation when measuring

13

CHAPTER 3. COMBAT SIMULATION

from different angles. In reality, the positioning is done with far more than two
measurements in order to increase precision.

%A

Figure 3.4: In the first case the uncertainty region (yellow area) is larger due to the
relative angle of the observed source. The best estimation is made when measurements are
perpendicular. The uncertainty for each measurement is here illustrated by a 2°cone

14

Chapter 4

Target Intercept

A typical task for a combat aircraft on a PSO mission is to intercept any vessel inside
the Area of Responsibility (AOR) moving toward the No-Fly Zone. By intercept,
we mean to position ourselves at a position where we have the tactical advantage.
This is typically in a sector behind the target where we see him with our sensor and
close enough so that he is inside the effective range of our weapons (Lavén, 2006).
The intercept could have the purpose to identify the vessel (VID), to deter it from
advancing any further, and/or to, ultimately, engage it in combat. What can be
done is strictly specified in the rules of engagement (ROE) for the operation and
these are in this scenario left for an operator to interpret.

4.1 Chasing a Dynamic Target

In order to acknowledge a new target, we need to make a detection with at least
one of the available sensors, in our case the on-board radar or the airborne AWACS
radar. The detection, or radar plot, specifies a location in three dimensions with
some associated uncertainty. However, to make estimations on where the plot will
be after a certain amount of time we need to compare consecutive detections in a
process called tracking.

A tracker merges noisy measurements with estimates from previous updates so
that we constantly get an as accurate as possible state information on the objects we
are tracking. One of the most common tracking filters is the Kalman filter, (Becker
et al., 2007) which make use of a linear model of motion. More advanced trackers
use the extended Kalman filter (EKF') with nonlinear models or a particle filter.

4.1.1 Estimated Rendezvous

If we assume that we have obtained position data and a velocity vector on the
specified target, we can also estimate where and when it will enter our NFZ polygon.
We start by iterating the segments of the NFZ to find their intersection point, if
existing, with the target velocity vector.

15

CHAPTER 4. TARGET INTERCEPT

If an edge is given by a start point and a unit direction vector, €,,s and €y,
and the target is given by t_;m and t_;m, we can state the following equation:

gpos + kédir = Z?;pos + lt_;lzr (41)

where k and [are coeflicients corresponding to the length of the direction vectors.
Next we use the cross product with tair tO get rid of the [-term.

kédir X t_;lir = (t_;aos - gpos) X {dir + l{;lzr X ﬁlir (42)
which, in 2D, can be simplified to

Lk — (i;)os - gpos) X t_;lir _ (tpos - gpos)R—W/Qtdir (4'3)

gdir X Lir gdir R—ﬂ'/Qtdir

where R is the 2D rotation matrix,

cosf) —sinb
Ry = (sin 6 cos @)

If the divisor of equation (4.3) is zero, the lines are parallel and we will not find
any intersection. Further, for all NFZ segments, we must check whether k is within
the length of that segment. If it is, we can calculate | from (4.2) similarly and thus
find the closest segment that intersects with the target vector.

Since we do not want the target to reach the border of the NFZ, we add an
offset vector to the intersection point in the direction toward the target. In order
not to approach the target straight forward but from the side, we also add an offset
perpendicular to the target velocity vector.

Target data is updated with a certain frequency (depending on the sensor) and
since the above linear equations have negligible time complexity, O(nr NFZ edges),
the same update rate can be used for calculating the estimated point of intercept,
i.e. the position where we would like to position ourselves when the target is at a
predefined distance from the NFZ.

4.2 Finding the Shortest Path

When operating over a large surface it becomes important to maintain a high mo-
bility in order to respond to actions in the area. It can also be important to reach a
certain position within an exact time frame, which is fairly easy if we can determine
the exact path distance. Although aircraft have the opportunity of moving along
the straight line of sight, obstacles as mountains, bad weather or threats might force
them to take a detour. Pathfinding is thus done in order to find the shortest path
that best respects all constraints. There are hard constraints, like obstacles or the
earth surface, that we are forbidden to break but there are also soft constraints, like
threats that can be modeled as continuous functions. For these constraints, which
will be considered in this report, we will have to minimize the exposure.

16

4.3. DISCRETIZATION

4.2.1 Threats in the Environment

When operating in an uncertain environment, it seems reasonable to weigh the risk
of performing a task against the achievable effect. To do so, we need to gather
information on where the threats are located and how they can act in order to
prevent us from accomplish our task.

When it comes to surface threats, SAM sites (Surface-to-Air-Missiles), it is
known that many such systems use a radar to detect targets, although exceptions
do exist. The radar is an emitter of electromagnetic waves and therefore, anyone who
is scanning the right frequency can gather information from it. Systems capable of
doing this, often referred to as Electronic Signals Intelligence (ELINT), compares
the received signal against a signal library in order to determine the type of the
emitter. In joint aerial operations, ELINT is typically performed by dedicated
platforms, such as the EA-6B Prowler, but in the scope of this thesis, the signal
intelligence that is considered is performed with an on-board Radar Warner Receiver
(section 3.5.3).

4.3 Discretization

In order to search the complex environment of the aircraft efficiently for an optimal
path, the continuous reality must first be modeled as a discrete, finite set of points
or cells. In mobile robotics, a common method for discretizing is to use occupancy
grids wherein the environment is mapped onto an, often 2 dimensional, grid of
cells. The method is well suited for keeping track of a static environment in which
the robot is collecting data from exteroceptive sensors. A drawback with the grid-
based approach is the amount of storage and and processing capacity needed for a
grid with high resolution and this is especially a problem with UCAV, where the
operational range is very large, rendering a huge grid. References on occupancy
grids are found in (LaValle, 2006) and (Becker et al., 2007).

4.3.1 Voronoi Tessellation

A common approach to discretization within the field of UAV path planning is to
subdivide the search space into a Voronoi graph, references can be found in (Beard
et al., 2002; Ogren and Winstrand, 2005; Winstrand, 2004). The Voronoi graph is
built up by regions. These regions, or cells, are created around a set of points so
that each region contains only one point and all other points within that region are
closer to their generating point than any other point. Together, these regions create
a Voronoi tessellation and such a tessellation can be found for any discrete set of
points in n-space. The regions are convex but not necessarily bounded (closed). In
this context we will consider a Voronoi tessellation in the plane, where the regions
can be called polygons.

A walk along any border of a polygon is guaranteed to maintain an equal distance
to the two closest generating points. The nodes of the Voronoi graph are found at

17

CHAPTER 4. TARGET INTERCEPT

all positions that lies on the border of three adjacent polygons. The borders are
edges in the graph that connect the nodes. In figure 4.1 and 4.2 a Voronoi Diagram
is created, using points in R?. The points represent SAM sites, UCAV position and
target position.

The geometric dual to the Voronoi graph is the Delaunay triangulation. It con-
nects the generating points of a Voronoi Diagram whose polygons share a common
border. Alternatively the triangulation can be defined as a connection of all three
points whose circumcircle does not include any other point.

4.821

4.8
4.78 '
4.76
4741

4.7

4.68
4.66
5 5.5 6 6.5
x 10°

Figure 4.1: plot of UCAV (triangle), target (filled circle) and SAM sites (red dots with
circular ranges.)

4.4 Graph Search

There are many different methods of searching a graph and the efficiency is largely
dependent upon the size and shape of the graph. We can divide the different
methods into the two major sub categories breadth-first, which stride to explore all
edges of a node before descending, and depth-first, which strides to descend as far
as possible before exploring the breadth. Of these two algorithms, only breadth-
first is complete in the sense that it is guaranteed to find the shortest path to the
goal, if existent, since it explores all paths of a certain length in increasing order.
Depth-first on the other hand may be a lot faster but it suffers from the risk of
getting caught in circles. Assuming depth-first does not expand previously visited
nodes, the worst case time complexity for both methods is exponential, O(b"),
where b is the maximum branching factor (number of successors to a node) and n
the maximum path length.

18

4.4. GRAPH SEARCH

482

4.8

4.78

476

A7

4.68

4.66

Figure 4.2: Voronoi tessellation constrained by an outer, rectangular, bound. Most lines
that intersect with the bound would otherwise continue into infinity.

482

4.8

4.78

476

4.74 1

472

47

4.68

4.66

Figure 4.3: In this picture, the Delaunay triangulation is added to the graph.

There are many specializations of these methods, designed to achieve speedup
and to reduce the storage space. A very well known one is named by its inventor,
the Dutchman Edsger Dijkstra (Dijkstra, 1959). Dijkstra’s algorithm is based on
breadth-first but with the difference that it expands the most promising node first.

19

CHAPTER 4. TARGET INTERCEPT

This approach requires that there exists an order of preference amongst the paths,
i.e. path length (a cost associated with each edge). A generalization of Dijkstra that
make use of a heuristic to enhance search is introduced next.

4.4.1 A¥* search

With A* a heuristic function is introduced which can estimate the cost from any
given node to the goal node. The heuristic cost, h(n), of a node, n, is added to
the actual cost of getting to that node, g(n), to form a priority function, f(n) =
g(n) + h(n).

Beginning at the start node, the priority function is explored for all of the
neighbors. The nodes are then stored in a priority queue by their f-values so that
the most promising node can be explored in each iteration. The A* algorithm is
presented in pseudo code below.

The main benefit with A* is that it is optimal given that the heuristic function
never overestimates the cost of reaching the goal.

h(n') < g(n') — g(n) + h(n) : n’ succeeds n (4.4)

Even if an optimal solution is feasible to find for a limited graph, we might face
the problem of exponential growth. The following criteria needs to be fulfilled in
order to guarantee polynomial growth:

[h(n) = h*(n)] < O(log(h"(n))) (4.5)

where h*(n) is the exact optimal heuristic from n to the goal. (Russell and Norvig,
2003)

4.4.2 Cost Function

An aircraft that is flying through uncertain territory is always facing the risk of being
shot down. Hostile units could be in possession of missiles or ballistic weapons fired
from ground based or aerial platforms. Detection is not possible for all of these
threats and there is also the risk of electronic warfare which can limit our awareness
or ultimately, cause loss of control by electromagnetic pulse weapon (EMP). Since
most of these threats are nondeterministic, man-in-the-loop systems, estimating
risks with little uncertainty is not easy, if even possible. Therefor, in this report,
estimations have been done roughly from a worst-case scenario based on our present
knowledge of missile sites.

A straight forward approach is to define the risk of flying along an edge from
point A to point B as the probability of being killed, pg, while doing it. The proba-
bility of survival, p, is then equal to 1 —pg. We can assume that the risk propagates,
so if the edge is divided into a number of waypoints, the conditional probability of
survival at one point is dependent on the previous survival probabilities (Ogren and
Winstrand, 2005).

20

4.4. GRAPH SEARCH

Algorithm 1 A* Search

1: priority queue @)

2: closed set C

3: Node s < startnode

4: Node t < targetnode

5: add s to

6: while @ not empty do

7. n < remove node with lowest f(n) from @

8 if n=1t¢ then

9: return success

10: end if

11: for n’ in successors(n) do

12: 1< g(n') 4+ h(n') = g(n) + cost(n,n’) + h(n’)
13: if n/ is unseen or in C or Q with f(n’) > f' then
14: place/promote n’ on PQ with f(n') < f’
15: end if

16: end for

17: add n to C
18: end while
19: return failure

Let S; denote the event that the UCAV survives at position ¢ along the edge.
Then p(S;) = p(Si|Si—1) = p(S;)p(Si—1) - - - p(S1). If we choose to look at N points
on the edge, the overall probability of survival is estimated by ps = p(Sy).

The instantaneous risk at any position along the edge is a weighted function
of several variables, i.e. altitude, velocity, nearby threats and distances to them.
To accurately estimate the risk, we would have to gather statistical data from as
many different situations as possible, but even this would be hard due to the high
dimensionality. However, for our mission it is sufficient if we could obtain a risk
estimate that roughly returns a higher value for a dangerous situation than for a
safe one even if it does not reflect the actual risk of failure.

Taking as an example a SAM site, the risk can be divided into two portions. First
there is the probability that a missile is fired which is likely to be dependent on the
distance to the SAM site, i.e. if we are flying within its effective range. Secondly,
there is the probability of hit given that a missile was fired. Since missiles are
not capable of maintaining maximum speed throughout their whole trajectory, this
probability is dependent on with what speed the target is moving from or toward
the launcher. Regarding the launch probability, we disregard the human decision
factor and assume that the SAM site will fire a missile with zero probability when
the UCAYV is just outside the range. The probability will then smoothly step up to
a 0.5 probability when we get inside the range, and continue increasing until it is
close to one at about half the range. Due to mechanical limitations in most launch
ramps the missile cannot be fired when the target is too close and therefore we have

21

CHAPTER 4. TARGET INTERCEPT

a smooth transition to zero when approaching the launch site. The probability
function, figure 4.4, is realized with three smooth functions, equation (4.6). In
reality there is also a fourth step function that sets the probability to zero when the
maximum altitude is passed, but this is not displayed in the picture.

_10d
Pfire = (1 - fstep(n d7 5/T))<1 - fstep(ry d') 1))(1 — €xXp 1DT) (4'6)
where d is the distance, r is the SAM range and fg.p is the sigmoid step function:

1
]_ _|_ 6_(x_xmean)o'

(4.7)

fstep(xmeana x, U) =

where o is a parameter that determines the steepness of the step.

The probability of hit, is based on whether we are approaching or escaping the
SAM site. Simply put, we assume there is a greater risk when we are decreasing the
distance than when we try to escape. A simple way to model this is by measuring
the angle, ¢, between the velocity vector of the UCAV and the vector pointing at
the SAM site. The risk is then expressed as a cosine function

a 1
Phit = 5 cos(p) + B} (4.8)

where a is a scaling factor between 0 and 1.
The risk at a specified position can now be expressed as pr, = prire - Dhit-

1
0o} _
0.8} |
07} _
06} _

gost R
04} _
03} |
0.2} B

0.1 b

0 ! ! ! !
0 0.5 1 15 2 25

distance (m) x 10°

Figure 4.4: Probability function for SAM fire, py;re, when target is at a certain distance.

22

4.5. POST-PROCESSING

4.5 Post-processing

A path, or a set of waypoints, generated from a discrete Voronoi graph might be
pretty coarse and possibly make unnecessary long detours around threats. Angles
between path segments may also be steep and difficult to follow since the UCAV is
restricted by its maximum g-force restricted turning radius. It is therefore desired
to optimize the path by making shortcuts where possible and by smoothing steep
turns in the path.

4.5.1 Virtual Forces

One method of smoothing a coarse path is provided by Virtual Forces, references can
be found in (Bortoff, 2000). In this approach, waypoints are considered to be masses
in a mechanical system connected to each other with springs and dampers. Since
most edges in the original path are long, it is preferable to first place additional
waypoints evenly along the path so that no two neighboring waypoints exceed a
predefined distance. The start and target positions are fix and hence the springs
exert a contracting force that pulls the masses toward each other. Each mass, except
for the start and the target, is affected by two springs whose forces are proportional
to their lengths. Hence the spring force on a mass is equal to:

Fspring = /f(wj—l - ZL‘j) + H(l‘j—l—l - 53]') (49)

where k is a spring coefficient and j is the number of the current mass. The dampers
are there to prevent the system from ending up in self induced oscillations. A simple
damper can be created by adding a derivative force,

Fdamp = bi (410)

where b is a damping coefficient. Without further forces involved this system would
have a steady-state solution that places the masses on a straight line between start
and target.

In the second step, threats are inserted into the system. They are simulated as
virtual force fields, each exerting a repelling force on the masses. The forces are
made inversely proportional to 1/d*, where d is the distance to the threat. It is
important to note that these force fields are non-directional with infinite force at
the center. The force from one field acting on a mass is:

s
Fieia = 7 (4.11)
where d is the distance from the source and 7 is a normal vector pointing from the
source to the mass. Using the distance to the fourth power is inspired by the radar
equation (Wikipedia, 2007b) which in practice means that we are locally minimizing
exposure to received radar energy. It is possible, although it requires some manual

work, to create non-homogeneous force fields that better represent the risk function

23

CHAPTER 4. TARGET INTERCEPT

of the threats. However this function still needs to be smooth so that convergence
is not disturbed when the system is simulated.

When all forces are defined, we can describe the mechanical system, which in
fact is a Lagrangian system, with a well known equation, namely Newton’s second
Law of motion: F' = ma. Roughly this means that the movement of a mass is
determined by the combination of forces that is exerted on it. In figure 4.5 a simple
spring and damper system is simulated.

10000 T T T T 10000

9000[-] 9000[-
8000[-] 8000[-
7000 , 70001
6000] 6000
s0f T T——————] s00f
4000(-] 4000[-
3000 , 3000
2000(-] 2000[-

1000 - 1 1000+

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
(a) (b)

10000

9000

8000

7000 - *

6000 [~

5000 /\/

4000

3000 -
¥

2000 -

1000 -

[2000 4000 6000 8000 10000

(c)

Figure 4.5: In figure (a) an initial course path is given. In (b) the waypoints are evenly
distributed between start and target using springs and dampers. In (c) two force fields are
added which forces the path to bend around the sources.

If the system of virtual forces is simulated in three dimensions, the state vector,
Z, of a mass can be written as:

i=|y (4.12)

From Newtons law, we can derive the differential equation that describes the

24

4.5. POST-PROCESSING

mechanical system.
Mjij = Fopringj + Fiamp,j + Fricia,j (4.13)

where my; is the j-th mass, Fpring is the the force of the springs acting on that
mass, Fyqmp is the damping force and Fly;eq is the force exerted by the virtual force
fields. Expanding this function yields:

N
. . Qr .
m;T; = K,(:L‘jfl — :Ej) + /i(ZL‘jJrl — {L‘j) — b{L‘j + E dinjk (4.14)
k=1 Jk

where @i is a scaling factor that determines the magnitude of each force field and
71 is a normal unit vector pointing from force field k to mass j.

To obtain the final solution, the system of ordinary differential equations (ODE)
is evolved with a numerical solver, e.g. RK4, until the residual gets small enough
and the system has reached steady-state.

25

Chapter 5

Implementation

From the beginning of this project it was a goal to implement an UCAV model and
get it airborne in the relatively complex simulator facility at FLSC. Even though
the simulator has a modular structure and contains generic aircraft models, it is
a rather extensive task to construct a control system from scratch. Luckily, I was
able to extend a system developed for the 2006 UCAV study (Foérsvarsmakten, 2006,
appendix 5), which is based on the JAS 39 Gripen aircraft model.

A great advantage with having a model fly in the simulator is the high level
of fidelity that is obtained, and that is hard to match by other means than by live
tests. On the other side, each test run takes time to set up and cannot be performed
any faster than real-time. Therefore, in order to test algorithms and techniques that
were to be implemented, some simulations was set up in Matlab at first. This, of
course, resulted in some extra work when it was time to port the system to C++
on IRIX which runs on the simulator servers.

5.1 Plant Description

The facilities available at FLSC were originally built with the primary purpose of
training pilots in Beyond Visual Range (BVR) combat. Over the years, the tasks
have increased to also include e.g. PSO scenarios with elements of Within Visual
Range (WVR) combat, but also assessment and acquisition studies. To achieve the
flexibility required when performing this variety of tasks, FLSC has been built as
a modular system where each module in itself is a simulator, which communicates
with other modules through message passing. This way it is possible to add or
remove parts of the simulation without interfering to much with the rest of the
system.

The main software of the simulator is called T3SIM. In figure 5.1, a schematic
chart over the facility is shown. From a pilot centric point of view, the flight
simulation module is the vital part, running separately on a machine dedicated to
a pilot station. In parallel, on the same machine, a number of additional simulation
processes, such as radar, weapons and visualization simulations, are run. At the

27

CHAPTER 5. IMPLEMENTATION

moment, FLSC has four 6-channel dome stations and four 3-channel stations. The
domes provides a 180° horizontal field of view and a vertical field of view about 90°.

5.1.1 Hardware

8 pilot stations

%LE ‘ SimOp ‘ ‘ ScVis ‘ ‘ Radio Simulation ‘

—4 Ext F—» Gb Ethernet

DIS HLA
Stage

4 GClconsoles | [Tacsi | | GTSim | | LvMap | | GRF | [ACES | | xm | | TPSim |

Figure 5.1: Chart over FLSC simulator

In the next section, the framework used for standardization in distributed sim-
ulation is briefly explained.

5.1.2 HLA Framework
The High Level Architecture (HLA), is an IEEE standard (IEEE, 2003) for Modeling

and Simulation (M&S) systems. Its main purpose is to define a design that makes
it possible for simulations, running on different platforms to interact. As implied
by the name, HLA is a standard on a level above the actual implementation. For
lower levels, there exists several Runtime Infrastructures (RTI) which implements
communication between different simulations, referred to as federations in the HLA
standard.

Through the HLA interface, a number of additional simulations, such as the
CGF tool TACSI or Xrb for simulating cruise missiles, can be included in the FLSC
simulation (see figure 5.1).

5.1.3 T3SIM and Tools

To initiate a simulation in FLSC, an operator interface, SimOp, is used to coordinate
all participating T3SIM modules. SimOp runs on a separate server from where it
connects and starts processes on dedicated computers.

An important tool for visualizing the simulations is SCVIS or, its predecessor,
HawkEye. These graphical 3D “Gods eye view” representations plots the positions
of all participating entities during real-time simulation or thereafter as a playback

28

5.1. PLANT DESCRIPTION

feature. Figure 5.2 shows a BVR simulation where missiles are fired and their
trajectories visualized.

Figure 5.2: SCVIS simulation visualizer. Allows scenarios to be recorded and played back
later on.

The CGF tool that was used in this thesis is called Stage, by Engenuity tech-
nologies inc. Stage was chosen because it is already integrated in T3SIM and was
sufficient for the purpose. It provides a relatively simple interface for including air-
borne, but also some ground and sea entities. It is possible to build scripted CGF’s
within Stage but in the scenarios studied in this thesis, entities were either station-
ary or set into motion, following a predefined trajectory. In figure 5.3, a screenshot
from on of the test scenarios is shown in Stage. All entities besides the blue UCAV
to the left are generated by Stage.

5.1.4 UCAV Model

As stated before, a UCAV model was built on top of a JAS 39 Gripen flight model
for an Air Force study in 2006. The flowchart in figure 5.4 shows the modules
concerning the UCAV and how they communicate.

Associated with the UCAV model, is an operator interface (5.5). This GUI lets
the operator choose between six different modes, of which the follow mode was the
one that was expanded with the new planning prototype.

29

CHAPTER 5. IMPLEMENTATION

Figure 5.3: Stage, a scenario and CGF tool.

Guidance &

planner modules | ¢ » UCAV Controller

Interoceptive
sensor data
Aircraft &
subsystem models
Exteroceptive
sensor data
h 4

3 Data link C2 (AWACS) ‘
4

Operator

Y

Figure 5.4: Flowchart for the UCAV control system

5.2 Matlab Simulations

Before work began with developing a prototype for running in T3SIM, the suggested
methods were implemented and tested in Matlab. This was done since Matlab is a
useful tool for obtaining fast results, especially when working with data on matrix
form. Although powerful, Matlab was not suitable for all parts of the process. An
example of this was graph search, where recursion and linked graph structures would

30

5.2. MATLAB SIMULATIONS

HIGT, A DGIMA, 841 08, F 10]

Meas Weagon

| | | S 550

Fire

—

[peser |

o o

o | -

SVLILCAE TARGET |' |

Oedored | Curent |
| Bdenction fng] 160 155
| ——— !
| Dsxtance rnr& 11} aTan
Drechion jdeg] Déstance |nmf
AL, aatte,
34 : / :
.-;‘rlll"\ r;, i
180 £.00

Figure 5.5: UCAV GUI/Operator interface for a UCAV in the fighter role.

have been tricky to implement. The solution to this was to implement those parts
in C/C++ and make use of Matlabs mex-library to call them from inside Matlab.
This was also an advantage since most of the code were later to be converted into
C++ for integration with the UCAV model. To summarize, the following was tested
in Matlab:

e Voronoi graph creation

o cost/threat function calculations

o A* search (through mex c++ functions)
e Virtual Forces simulation

e interpretation and visualization of data recorded in the real-time simulations

31

CHAPTER 5. IMPLEMENTATION

5.3 Simulator Integration

After deciding what functionalities to include in the prototype, the implementation
phase started, even if some parts of the code were developed for evaluation (Matlab)
and deployment (T3SIM) in parallel. In figure 5.6, a simplified UML diagram for the
UCAV module is put on display. The executable class, which communicates with the
aircraft model by sockets, is simply called ucav. The main class has a control class,
UcavControl, which is stepped by the frequency of the simulation!. The logic for
guiding the UCAV in one of the six available modes, navigation, combat air patrol,
follow, visual identification, air-to-air refueling and manual guidance, is located in
the Guidance class. This class was modified with functionality in the follow mode
and equipped with a new PathPlanner class.

5.3.1 Programming Environment

Most parts of T3SIM and its associated components are composed in C++ running
on Silicon Graphics machines with IRIX®6.5, except for the virtual environment
visualization which runs on Windows®XP workstations.

Development was in fact not performed directly on the real FLSC simulator but
in a secluded development environment. This made it possible to run and perform
test without affecting ongoing live simulations. This environment was also sufficient
for the testing described in the next chapter. The limitation is that it is not possible
to visualize the environment as seen from the cockpit OTW (Out of The Window),
but since it was unmanned aircraft that was studied, this did not affect the result at
all. Another difference between the development and live environments is that the
live simulator has more computational power, but that did not become a limitation
during this study.

5.3.2 Planner Module

The PathFinder class was built to encapsulate the planner module. A flowchart
explaining its functionality is shown in figure 5.7. Data from the aircraft model and
subsystems are updated in each simulation cycle and kept in the planner. When
a target is selected by the operator, its position and velocity are also reported
together with data from the radar warner. The operator will then request a search
for an optimal path by putting the UCAYV in follow mode. This process is run in a
separate process which returns a waypoint path when done. If conditions changes
over a certain threshold, e.g. a new SAM sites is discovered or an old one moves
more than 500 meters, a new path search is requested automatically. The pathfinder
is then run in parallel and its result polled by the guidance module once produced.
This process is continued until a) the goal position is reached, b) the target comes
too close to the NFZ or c) the follow mode is deselected by the operator.

!The simulator time management server steps all participating entities with a certain frequency,
e.g. 60 Hz, which requires that all updates are performed within the given time slot

32

5.3. SIMULATOR INTEGRATION

Guidance 11 |UcavControl [11 ucav
+GetDesHeadSpeedAlt() +step() +main()
1 7
1
PathFinder Aircraft Model, R;_ADAR,
- - RWR, Comm. Link...
-WPlist : uMatrix
+findPath()
+getNextWPGuidance() 1
1 1 1
1 1 1 1
uMatrix Astar VirtualForces VoronoiGraph
+findPath() +runVF() +initEnv()
/I\ . +builsVoronoiGraph()
11 1 . 41’
1 Node
@

Graph

Figure 5.6: UML diagram showing relations between implemented modules

33

CHAPTER 5. IMPLEMENTATION

> Operator

Intercept order

Fighter

UCAV model i

No, decline mission

> Planner < SAM threat

Feasible Path?
Yes

!

Execution <

Yes, replan

Conditions
changed?

Figure 5.7: Flowchart for the UCAV planner

34

Chapter 6

Simulations

In an effort to verify the prototype and control its performance, a couple of test
runs were done with alternating complexity. During the development phase, tests
were also done in parallel but in the final testing, data on participating entities
was logged for the purpose of evaluation. The test series were run in the mission
training facility’s development environment. This time, focus was not on the man-
in-the-loop as it had been in the Air Force study, and therefore there was no need to
man a cockpit with real operators. Instead, the author controlled all participating
modules listed below:

1. Aircraft entity running the UCAV software
2. Airborne C2 station (AWACS)

3. CGF target (Stage object)

4. CGF SAM sites (Stage objects)

5. Visualization and recording (SCVIS)

6.1 Test Scenario

A general introduction to the chosen test scenario was given i section 3.1, Peace Sup-
port Operations. It involves a no-fly zone and a wider area of responsibility (AOR).
The airspace that is controlled with the NFZ lies over the west part of country B
that has been struck by internal conflicts. A warlord in the east of the country
performed a coup d’état and proclaimed himself president. The international in-
tervention commenced as a response to actions taken by the new government in
order to scare away an ethnic minority which mostly inhabits the western part of
the country.

To the north of B lies country A and to the south country C, both still neutral
to the conflict although the presidents paramilitary forces are known to use the
territory of A when they are performing operations in the west of B. The military

35

CHAPTER 6. SIMULATIONS

Figure 6.1: General map of the scenario and NFZ.

of B has been badly maintained for a large number of years but, as a result of
the coup d’état, the new president gained access to a large quantity weapons and
ammunitions. An old Air Force base was also acquired and reconnaissance have
reported that two MiG 21 “Fishbed” and a number of smaller propeller driven
aircraft are operational. A number of surface to air missile systems, mainly SA6
“Gainful” and SA8 “Gecko” are threatening the coalitions aerial forces. The main
purpose of the NFZ is to prevent hostile aircraft to threaten the international ground
forces that are operating in the western part of B. In figure 6.1 a simple map is
provided.

In all test runs the UCAV was started in midair, inside the NFZ. It would then
go to a predefined CAP point in order to scout along the east border of the NFZ.
AWACS resources are operating from outside the eastern border of the country
providing a good coverage of the airspace, at altitudes over 1000 meters. The NFZ,
white polygon in figure 6.2, holds an area of approximately 16,000 km?, the distance
from the eastern to the western border is approximately 150 km and the AOR, red
polygons, stretch about 50 km outside the NFZ.

6.2 Test Results

In the following tables, data from the test runs are presented. In total, five scenar-
ios were executed with varying number of executions. The level of difficulty was
raised incrementally between scenarios, mostly by altering number and placement
of SAM’s, but within some scenarios there were also some minor alterations of pre-
conditions between executions. It is important to note that the scenario was not

36

6.2. TEST RESULTS

Figure 6.2: Gods eye view as seen with Hawkeye

primarily altered to reflect a realistic conflict buildup, but rather to challenge the
system. After all, it exists yet no doctrine telling right from wrong regarding this
kind of unmanned missions.

Since the simulations are nondeterministic, especially with regards to sensor
models, the same preconditions would not guarantee the same result. Also, since
there is a human operator involved, the UCAV would not get the intercept order at
the exact same instant in time.

The first table (table 6.1) shows two reference executions, put here for compar-
ison, performed with the old UCAV model, used in the Air Force study. In this
model, the behavior is implemented without planning and the UCAV steers right
towards the target on a tractrix trajectory, placing itself at a predefined distance
behind the target. The reference runs were performed with the same preconditions
as in scenario 2 and 5 respectively. In appendix A, trajectory diagrams with threat
curves are displayed for all simulations.

In the tables below SA6 and SAS8 signifies the participating number of respective
SAM system, dgaps is the closest distance on which a SAM site was passed in the
scenario, vig is the velocity of the target, which was constant during all missions,
and azy is the altitude of the target. The target was coming from North East in
all executions. The maximal risk, see section 4.4.2, is given as well as an integral
mean value. Since the UCAV was completely outside the range of the threats in
some scenarios, a second risk value, ro, where ranges were multiplied with 1.5, was
recorded for comparison.

Table 6.2 shows results from the first scenario. In the first two missions, the
intercept order is given from start, which is why the UCAV goes straight to the

37

CHAPTER 6. SIMULATIONS

scenario | SA6 SA8 dsan (km) vy (m/s) aye (m) r (max/mean) 7o (max/mean)

2 2 1 29.1 250 7000 0/0 0.37/0.35
5 3 3 124 250 4000 0.64/0.29 0.81/0.42

Table 6.1: Reference runs

mission | SA6 SA8 dsanm (km) vige (m/s) ayg (m) 7 (max/mean) ry (max/mean)

A |2 0 242 250 7000 0/0 0.40/0.25
B 2 0 304 250 7000 0/0 0.09/0.09
C 2 0 224 250 7000 0/0 0.62/0.50

Table 6.2: Scenario 1

mission | SA6 SA8 dgan (km) vige (m/s) age (m) 7 (max/mean) ry (max/mean)

A 2 1 37.3 290 7000 0/0 0/0
Table 6.3: Scenario 2

mission | SA6 SA8 dgam (km) vy (m/s) aie (m) r (max/mean) ry (max/mean)
A |2 2 244 250 7000 0/0 0.62/0.26
B |2 2 244 250 7000 0/0 0.62/0.26
C 2 2 21.1 250 7000 0/0 0/0
D 2 2 20.6 250 7000 0/0 0.29/0.22
E |2 2 140 250 7000 0/0 0/0

Table 6.4: Scenario 3

intercept point. The threats are never close enough to make an impact on the path.
In mission C, the target enters the scene later which is why the UCAV have time
to enter CAP mode. The UCAV stays outside of SAM range in all missions.

In scenario 2, only one test run was made. In this scenario the target moved at
a higher velocity which led to an intercept inside of the NFZ.

Table 6.4 presents the third test scenario in which the SAM threat has been
with two SAS8 (one inside the NFZ). The UCAV stays outside of SAM ranges in all
missions. Note that mission B was aborted due to a bug in the software.

Table 6.5 displays data from scenario 4, which was similar to scenario 3 but with
both SA8’s inside the NFZ. In mission C, the target was mistakenly flown at a very
high altitude, at which the SAM’s were out of range. In mission D, the target was

38

6.2. TEST RESULTS

mission | SA6 SA8 dgan (km) vy (m/s) aye (m) 7 (max/mean) 7o (max/mean)
A 2 2 124 250 7000 0/0 0/0
B 2 2 11.8 250 7000 0/0 0/0
C 2 2 9.6 250 15000 0.0/0.0 0.03/0.0
D 2 2 10.6 250 3000 0/0 0.30/0.22

Table 6.5: Scenario 4

mission | SA6 SA8 dganm (km) v (m/s) ay (m) 7 (max/mean) ry (max/mean)

A 3 2 13.9 250 4000 0.57/0.39 0.78/0.34
B 3 2 5.5 250 4000 0.83/0.46 0.84/0.46

Table 6.6: Scenario 5

lowered to 3000 meters which increased the threat factor.

The last test scenario, shown in table 6.6, was created in order to overload
the system. An additional SA6 was put right outside the NFZ, leaving only small
openings to get through. In mission A, the UCAV managed to get through although
it went inside a SA6 zone after reaching the intercept point. In mission B, one of
the SA8’s was moved in order to close one of the gaps and this time performance
degraded, which resulted in a higher risk taking behavior.

39

Chapter 7

Discussion

In the previous chapter, results from real-time simulations were presented, for the
purpose of evaluating the overall performance of the prototype. At first, the idea
was to measure performance with pure binary values saying whether the mission
succeeded and if the UCAV survived. However, if the CGF SAM sites were to get
permission to fire, there would be a need for accurate missile models, and since no
such non-restricted SAM models were available, it was decided to instead use the
momentaneous risk function. This performance indicator could be calculated in the
same manner as seen in section 4.4.2.

A drawback with testing in the mission training simulator was the fact that
it is time consuming for several reasons. Firstly, the simulations must be run in
real-time. Even if the scenarios were created to cut as much “idle” time as possible,
it takes time to fly a desired path. The mean length of all test missions was 8.9
minutes, but to this we have to add quite some time for setting up the scenario
and to extract and save the data afterward. It was also necessary to supervise
the simulations and to play the role of UCAV operator and Ground Controlled
Intercept, (GCI), operator. The structure of the simulator makes it hard to make
scripted test runs, which could help in generating a more statistically significant
amount of data. Instead, it was decided to make a qualitative analysis, based on a
number of interesting situations.

7.1 Performance Evaluation

In most of the simulations, the prototype can be said to have accomplished the
mission, which is to reach the intruder in time without exposing itself to a high
risk. Exceptions were scenario 2A, where the UCAV did not manage to intercept
the target outside the NFZ, 4D, where the UCAV was accidentally shot down since
the wrong SAM model was used and scenario 5B, where extensive replanning took
the aircraft on a path through a SAM region.

When comparing the results from the planner with the reference runs, it seems
that the planner usually selects a path that takes smother detours around dangerous

41

CHAPTER 7. DISCUSSION

areas. The logic in the reference model struggles with contradictory aims; Escape
SAM and chase target and that yields a trajectory that “hesitates” close to the
SAM range (see figure A.2). It could also get stuck in a local minimum between
two sites, and that cannot happen to the planner version.

A fact that becomes evident when reviewing the results of the simulations is
that, if replanning occurs very frequently, the resulting path would typically be
less optimal than when the plan was allowed to be executed for a longer period of
time. An example of this can be observed in appendix A.17 where the path takes
alternating left and right turns resulting in more time spent inside a potentially
dangerous zone. In this simulation, replanning was performed in average each fourth
second, which in this scenario must be considered way to often. One explanation
for this behavior is uncertainty in sensor data which will be discussed in the next
section.

7.1.1 Radar Warner

A key factor in generating the safest path is to have a clear and complete picture on
where threats and own forces are located. In the simulations that were made, the
only source used to localize SAM positions was the on-board Radar Warner (RWR).
Although it is a useful and efficient system, its main purpose is to classify and warn
the pilot of nearby radar emitters such as other fighter radars, active missiles and
SAM radars, and for this purpose smooth tracking is not requested. As seen in
chapter 3.5.3, the triangulated position of for example a SAM site is associated
with less uncertainty if the different measurements are taken at a large relative
angle. Due to the placement of antennas on the fuselage, the RWR has different
effective ranges at different azimuth’s, affected by both roll and pitch. Uncertainty
is also dependent on the distance to the threat.

In figure 7.1, We see a SAM detection that is pretty far away from its actual
position although it is on a correct bearing from the UCAV (triangle mark). When
the UCAV closes in and receives additional measurements, the positioning will be
more accurate.

A consequence of poorly tracked threats becomes obvious when comparing fig-
ures 7.2b-c. In (b), the original path (light colored dots) takes a course south of the
center SAM site, whereas it in (¢) takes on a northerly path. These two plans are
made closely after each other in time, resulting in completely contradictory steering
orders. Figure 7.2 also shows many examples of SAM sites represented by double
detections and sites being detected far away from their actual positions.

7.1.2 Virtual Forces

The post processing step was necessary to create a feasible trajectory within the safe
proximity of the coarsely planned path. The method infers a number of adjustable
parameters, see section 4.5.1, amongst which the virtual force constant,), was
the one that weighted path length against how far away from threats the UCAV

42

7.1. PERFORMANCE EVALUATION

4.82
4.8r-
4.78

476

474F
4721
a7f

4.68 ~

4.66 -

462 Il Il Il Il Il Il Il

9000 «10°

8000 - e ————

alt (m)

7000

6000 1 1 1 1 1 1 1 1 1 |
0 50 100 150 200 250 300 350 400 450 500

time (s)

Figure 7.1: Snapshot of plan during target intercept mission. The left (red) asterisk marks
the only SAM site currently detected by the RWR. As seen, the detection is on the right
bearing although it is far away from the actual position (right asterisk). Note also how the
very coarse planned path is smoothed with virtual forces.

was to be pushed. During testing, different values of () were tested until results
looked reasonable for the chosen scenario. The effect of this parameter is however
highly dependent on the number of waypoints and their start positions and therefore
a global optimal value for it does not exist. A numerical optimization of Q by
minimizing the threat function would enhance output but this would have to be
payed for in extra time consumption since each calculation of virtual forces is done
by solving a system of ODE’s. A cheaper solution would be to test a small number
different @) values in the proximity of the last one used and choose the best of them.

Although Virtual Forces has proven a very useful tool, a few problems was
observed, most of them related to the value chosen for the virtual forces weight, Q.
Figure 7.2 shows examples of some virtual forces problems. In all of the examples,
some or several of the waypoints are even placed within the SAM sites. The @ value
has also been given a too large weight for threats, which results in that the path is
pushed too far away. In 7.2b, the path has been pushed away in another direction

43

CHAPTER 7. DISCUSSION

than its original A* planned path. In 7.2¢, virtual forces has exceeded its maximum
allowed number of iterations to reach an equilibrium state, resulting in something
that does not resemble a path. The reason for this is that when waypoints starts too
close to a threat, the repulsing force acting on it pushes it away far enough to induce
oscillations that are not damped within the given time. In 7.2d, we see a path that,
though it leads right, also is repelled further away than necessary. Remember that
the path does not end at the target, marked with the big circle, but at a calculated
meet-up position outside the NFZ.

(c) (d)

Figure 7.2: Figures showing the effect of unsuccessful Virtual Forces computations. The
plans originates from simulation 5B which was somewhat of an overload test. Note that
the detected location of SAM sites (asterisks) alters between plans and that, in some cases,
multiple SAM’s are detected where there should be only one. Again, the circles depict the
actual SAM location

44

7.2. CONCLUSIONS AND FURTHER WORK

7.1.3 Trajectory Following

Paths that are generated by the planner are returned as lists of waypoints. This
format is a convenient representation deriving from the discretization needed in
the planning algorithms but it is not necessarily the most efficient representation
to use for guidance of the aircraft. The regulation that was used to control the
prototype was a built-in auto pilot that could set either speed and altitude or speed
and heading. For evaluating the planner, this was considered enough but should
the system be used for a higher fidelity simulation, a controller that follows a path
rather than sets a direction would enhance the model. In that case, the UCAV could
follow an interpolated path, thus giving it a more natural and efficient behavior.

7.2 Conclusions and Further Work

Throughout this thesis, the problem of navigation by path planning for aerial ve-
hicles in dangerous environments has been studied. A number of methods were
evaluated of which one approach was implemented as a prototype in a simulated
environment.

An important lesson from developing the prototype was that creating an agent
for modeling combat aircraft is an extensive task, even with a very limited field of
operation, that requires contributions from many different disciplines ranging from
automation to cognitive science.

Even if focus has been set on planning and optimization, the computer generated
forces aspect has been kept in mind in order to highlight the often fuzzy responsi-
bility zone between human operator and computer. It has become clear that even
if the system were to make more of the decisions it has to account for them visually
in order for a human to comprehend and for the sake of traceability.

As seen earlier, planning by graph search can potentially be associated with an
exponential time complexity. However, with discretization by Voronoi regions the
search space could be limited and by heuristic search an optimal path was found in
nlogn time. During testing, path finding was executed in its own thread, since the
time slot given by the simulation frequency, 60 Hz, was not sufficient. The delay in
the planner was on the other hand never big enough to influence the performance
and thereby we have shown that the methods are suitable for on-line use. Many
considerations regarding parameters and weights has still to be done by the human
operator, but since we have not yet reached the limit of computational capacity,
some additional optimizations could probably be done to relieve the man-in-the-
loop.

7.3 Goal Fulfillment

In the beginning of the project, a set of sub goals were stated and this is my opinion
on how they were met.

45

CHAPTER 7. DISCUSSION

1. Identify what parameters to use for decision making and optimization
This question might be one of the more challenging when approaching these
kinds of optimization problem. It was chosen to consider only the SAM threat
in this study. A threat function was constructed, based on distance and angle
towards the SAM sites. All measured parameters used derived from simulated
sensor data.

2. Fvaluate how to best make use of planning algorithms
Different methods were studied during the first phase of the project. Two ap-
proaches of building search spaces were tested, of which the Voronoi approach
was considered best suited. The graph search worked out well and could be
proven optimal, although enhancements can be done to the search space and
the post processing steps.

3. Dewvelop a prototype running in FLSC
This phase took up a much greater part of the total project time than what was
estimated, much because it felt like an important step that enriched the author
in knowledge regarding real-time simulation. The prototype performed its task
correctly in most test cases and can hopefully be used in future CGF/UCAV
development at FLSC.

4. Make use of recent methods and research results
During the background study, several recent projects with similar aims were
compared. Since the concept of Unmanned Combat Aerial Vehicles is rather
new in itself, most research is up to date even if it makes use of older well
tested algorithms.

7.3.1 Proposed Enhancements

It very likely that Computer Generated Forces and simulation will play a bigger role
in military aviation in the near future, and this development is already observable
for example at FLSC. I believe that it is necessary not only to build advanced agents
but even more to gain knowledge on how to use them and how to interpret their
behavior. For this reason, and since agents are to act independently, traceability
becomes a very important issue in proving an adequate behavior. Only by extensive
use, testing and a deeper understanding can trust be built and advantages be fully
achieved.

In order to achieve this comprehension for CGF behavior, an agent should be
rule-based, providing a simple and intuitive presentation of current state and what
decision it makes. Although this is in itself a big design problem, I find it likely that
such a system would gain from having the possibility of choosing from operations
that optimizes behavior during a predefined interval of time or during a specific
maneuver. An example of this could be the path planning operation that is dealt
with in this report.

46

7.3. GOAL FULFILLMENT

Focusing only on the UCAV model, a list of enhancement is proposed for future
use below.

UCAYV model

o persistent tracking of SAM sites with Kalman filter (less toggling)
o incorporate threats from mission planning (Military Intelligence)
 consider maneuvering threats (other fighters)

e alternative path evaluation

- variable threat weight
- variable virtual forces strength

- different altitude patterns

e evasive actions when receiving radar warning

It would also be wise to upgrade the operator interface in order to study more
realistic human to UCAV communication. The following enhancements are pro-
posed.

Operator Interface

o Include a tactical display (map indicator) to present:

threats

- friendly forces
- current path

- alternative paths
o risk level presentation
o risk management (choose acceptable level)
e path selection

o path speed selection

47

CHAPTER 7. DISCUSSION

Figure 7.3: nEUROn, © Dassault Aviation - A. Ernoult

48

Bibliography

Randal W. Beard, Timothy W. McLain, Michael Goodrich, and Erik P. Anderson.
2002. Coordinated target assignment and intercept for unmanned air vehicles.
IEEE Transactions on Robotics and Automation, 18(6):911-922. URL citeseer.
ist.psu.edu/beard02coordinated.html.

Marcelo Becker, Richard Hall, Bjorn Jensen, Sascha Kolski, Kristijan Macek, and
Roland Siegwart. 2007. The use of Obstacle Motion Tracking for Car-like Mobile
Robots Collision Avoidance in Dynamic Urban Environments. In P. S. Varoto and
M. A.Trindade, editors, The XII International Symposium on Dynamic Problems
of Mechanics (DINAME 2007), Ilhabela, SP, Brazil, February 2007.

Scott A. Bortoff. 2000. Path planning for UAVs. In American Control Conference,
Chicago, IL, USA, June 2000.

Silvia Coradeschi, Lars Karlsson, and Anders Toérne. 1996. Intelligent Agents for
Aircraft Combat Simulation. In Proceedings of the 6th Computer Generated Forces
and Behavioral Representation Conference, Orlando, Florida.

E. W. Dijkstra. 1959. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269-271.

Mark Edwards, Fugene Santos Jr., Sheila B. Banks, and Martin R. Stytz. 1996.
Computer Generated Intelligent Companions for Distributed Virtual Environ-
ments. In Eighth IEEFE International Conference on Tools with Artificial Intelli-
gence. IEEE. ISBN 0-8186-7686-7. URL citeseer.ist.psu.edu/10244 .html.

Patrick A.M. Ehlert, Quint M. Mouthaan, and Leon J.M. Rothkrantz. 2003. A
Rule-Based And A Probabilistic System For Situation Recognition In A Flight
Simulator. URL citeseer.ist.psu.edu/728139.html.

David Eppstein. 1998. Finding the k shortest paths. SIAM J. Computing, 28(2):
652-673. URL http://dx.doi.org/10.1137/S0097539795290477.

Dave Ferguson and Anthony Stentz. 2005. The Delayed D* Algorithm for Efficient
Path Replanning. In FEuropean Control Conference, CDC-ECC, Seville, Spain,
April 2005. TEEE.

49

citeseer.ist.psu.edu/beard02coordinated.html
citeseer.ist.psu.edu/beard02coordinated.html
citeseer.ist.psu.edu/10244.html
citeseer.ist.psu.edu/728139.html
http://dx.doi.org/10.1137/S0097539795290477

BIBLIOGRAPHY

Forsvarsmakten. 2005. Doktrin for luftoperationer. Swedish Armed Forces publica-
tion 09833:60610. URL http://www.mil.se/article.php?id=10833.

Forsvarsmakten. 2006. SLUTRAPPORT UCAV och UAV. Final report in the
UAV/UCAV concept study conducted by the swedish Air Force. (Unpublished).

IEEE. 2003. IEEE Std. 1516.3. ISBN 0-7381-3584-4. URL http://ieeexplore.

ieee.org/servlet/opac?punumber=8526.

Randolph M. Jones, John E. Laird, Paul E. Nielsen, Karen J. Coulter, Patrick G.
Kenny, and Frank V. Koss. 1999. Automated Intelligent Pilots for Combat
Flight Simulation. AI Magazine, 20(1):27-41. URL citeseer.ist.psu.edu/
jones99automated.html.

Sascha Kolski, Dave Ferguson, Mario Bellino, and Roland Siegwart. 2006. Au-
tonomous Driving in Structured and Unstructured Environments. In IFEE In-
telligent Vehicles Symposium.

Steven M. LaValle. 2006. Planning Algorithms. Cambridge University Press, Avail-
able at: http://planning.cs.uiuc.edu/, Cambridge, U.K.

Patric Lavén. 2006. Fighter pilot and mission trainer at FLSC. interview.

Qiuxia Liang, Patrick Ehlert, and Leon Rothkrantz. 2004. Towards A Neural Con-
trol Artificial Pilot. URL citeseer.ist.psu.edu/729380.html.

M. W. McConley, M. D. Piedmonte, B. D. Appleby, E. Frazzoli, E. Feron, and M. A.
Dahleh. 2000. Hybrid control for aggressive maneuvering of autonomous aerial

vehicles. In Proceedings of the 19th Digital Avionics Systems Conference, vol 1,
pages 1E4/1 — 1E4/8. DASC.

R.K. Mehra, J.D Boskovic, and Sai-Ming Li. 2000. Autonomous formation fly-
ing of multiple UCAVs under communication failure. In Position Location and
Navigation Symposium, pages 371-378. IEEE.

Paul Nielsen, Don Smoot, and JD Dennison. 2000. Participation of TacAir-Soar in
Road Runner and Coyote Exercises at Air Force Research Lab, Mesa, AZ. In 9th
Annual Conference on Computer Generated Forces and Behavioral Representation

(CGFBR-00).

Petter Ogren, Adam Backlund, Tobias Harryson, Lars Kristensson, and Patrik
Stensson. 2006. Autonomous UCAV Strike Missions using Behavior Control Lya-
punov Functions. In Guidance, Navigation and Control Conference. AIAA.

Petter Ogren and Maja Winstrand. 2005. Combining Path Planning and Target
Assignment to Minimize Risk in SEAD Mission. In Guidance, Navigation and
Control Conference. ATAA.

50

http://www.mil.se/article.php?id=10833
http://ieeexplore.ieee.org/servlet/opac?punumber=8526
http://ieeexplore.ieee.org/servlet/opac?punumber=8526
citeseer.ist.psu.edu/jones99automated.html
citeseer.ist.psu.edu/jones99automated.html
http://planning.cs.uiuc.edu/
citeseer.ist.psu.edu/729380.html

Per-Magnus Olsson. 2002. Intelligent Agents For Aircraft Handling. Master’s thesis,
Link6ping University.

William A. Owens and Ed Offley. 2000. Lifting the Fog of War. Farrar, Straus &
Giroux, Incorporated. ISBN 0374186278.

Roland Philippsen. 2006. A Light Formulation of the E* Interpolated Path Replan-
ner. Technical report, Autonomous Systems Lab, Ecole Polytechnique Federale
de Lausanne.

Yao-Hong Qu, Quan Pan, and Jian-Guo Yan. 2005. Flight path planning of UAV
based on heuristically search and genetic algorithms. In Industrial Electronics
Society, IECON 2005. IEEE.

Helen Rosander and Jonas Walther. 1996. Anvéindning av artificiella neurala nét
vid simulering av piloters taktiska beslut under luftstrid. Master’s thesis, Umea
universitet, Institutionen for datavetenskap.

Stuart Russell and Peter Norvig. 2003. Artificial Intelligence: A Modern Approach,
2nd edition edition. Prentice-Hall, Englewood Cliffs, NJ. ISBN 0-13-080302-2.

N. Sadati and J. Taheri. 2002. Solving robot motion planning problem using Hopfield
neural network in a fuzzified environment. In International Conference on Fuzzy
Systems, pages 1144 — 1149. IEEE.

Lars-Ake Siggelin. 2006. Electronic warfare operator, Swedish Air Force. interview.

Wikipedia. 2007a. Iraqi no-fly zones. URL http://en.wikipedia.org/wiki/
Iraqi_no-fly_zones.

Wikipedia. 2007b. Radar. URL http://en.wikipedia.org/wiki/Radar.

Maja Winstrand. 2004. Mission planning and control of multiple UAVs. Master’s
thesis, Swedish Defence Research Agency, Stockholm.

U. Zengin and A. Dogan. 2004. Probabilistic Trajectory Planning for UAVs in Dy-
namic Environments. In ATAA 3rd "Unmanned Unlimited" Technical Conference,
Workshop and Ezxhibit, Chicago, Illinois, September 2004. ATAA.

51

http://en.wikipedia.org/wiki/Iraqi_no-fly_zones
http://en.wikipedia.org/wiki/Iraqi_no-fly_zones
http://en.wikipedia.org/wiki/Radar

Appendix A

Simulation Diagrams

In the following pages, scenario graphs for all recorded simulations are displayed.
For each simulation, the path of the UCAV is plotted within a scenario graph. The
inner and outer polygons are NFZ and AOR respectively. In all scenarios the UCAV
starts inside the west side of the NFZ. In some simulations it continues up to the
CAP point in the upper East of the NFZ but in others it goes straight on the
target. The target, which is not displayed in the graphs, is approaching the AOR
from North East in all simulations.

Beneath the scenario graph, an altitude diagram displays the altitude of the
UCAV during the simulation and beneath that, a risk diagram is shown. The dotted
line in the instantaneous risk diagram shows the risk, given a 50 % augmentation
of SAM ranges.

Due to errors in the sampling process, some parts of certain simulations were
not recorded. These parts are dotted in the scenario and altitude graphs. In figures
A5, A.14 and A.15, the altitude curve goes down to 200 meters. This occurred
when the UCAV was performing CAP and was nothing but an error in the mission
data file.

93

APPENDIX A. SIMULATION DIAGRAMS

A.1 Reference Simulations

L
O

9000 -
E 8000
‘S 7000(
6000 1 1 1 1 1 J
50 100 150 200 250 300
time (s)
1-
= 051
o
0 1 | 1 | | J
0 50 100 150 200 250 300
time (s)
Figure A.1: Reference 1 (scenario 2)
10000
£ 5000
G
0 | | | | | | | J
100 200 300 400 500 600 700 800
time (s)
1
zos J\WMMW
0 L L L L L Il U J
0 100 200 300 400 500 600 700 800
time (s)

Figure A.2: Reference 2 (scenario 5)

54

A.2. SIMULATION SERIE 1

A.2 Simulation Serie 1

@

O

10000
£ 8000
& 6000
4000 | | | | | | | | J
0 50 100 150 200 250 300 350 400 450
time (s)
1-
= o5
o
0 | | | | | | | | J
0 50 100 150 200 250 300 350 400 450
time (s)
Figure A.3: Test scenario 1A
9000
£ 8000
S 7000{-
6000 1 1 1 1 1 1 J
0 50 100 150 200 250 300 350
time (s)
1-
E 05 | -
o
0 | | | | | | J
0 50 100 150 200 250 300 350
time (s)

Figure A.4: Test scenario 1B

55

alt (m)

APPENDIX A. SIMULATION DIAGRAMS

10000 -
5000 U /
0 1 | 1 1 1 |
0 200 400 600 800 1000 1200
time (s)
1
= o5}
(=N
0 1 1 1 1 1 J
0 200 400 600 800 1000 1200
time (s)

Figure A.5: Test scenario 1C

56

A.3. SIMULATION SERIE 2

A.3 Simulation Serie 2

8000 -
% 6000
=
4000 1 1 1 1 1 1 1 J
0 50 100 150 200 250 300 350 400
time (s)
1
= 05
o
0 1 1 1 1 1 1 1 J
0 50 100 150 200 250 300 350 400
time (s)

Figure A.6: Test scenario 2A

o7

APPENDIX A. SIMULATION DIAGRAMS

A.4 Simulation Serie 3

8000 —_
g 7000 -
T 6000
5000 1 1 1 1 1 1 1 1 1 J
0 50 100 150 200 250 300 350 400 450 500
time (s)
1-
= o051
o
0 1 1 1 1 1 1 1 1 1 J
0 50 100 150 200 250 300 350 400 450 500
time (s)

Figure A.7: Test scenario 3A

58

A.4. SIMULATION SERIE 3

- O

8000
§ 7000
‘©
6000 1 1 1 1 1 J
0 50 100 150 200 250 300
time (s)
1~
= o5
Q
0 1 1 1 1 1 J
0 50 100 150 200 250 300
time (s)
Figure A.8: Test scenario 3B
O
/—’_—@
8500~
gR00O~ N
T 75001 /\m\
7000 1 1 1 1 1 1 1 1 1 J
0 50 100 150 200 250 300 350 400 450 500
time (s)
1~
E O 5 | -
o
0 1 1 1 1 1 1 1 1 1 J
0 50 100 150 200 250 300 350 400 450 500
time (s)

Figure A.9: Test scenario 3C

59

alt (m)

alt (m)

APPENDIX A. SIMULATION DIAGRAMS

O

o
O

8000
7000
6000 1 1 1 1 1 1 1 1 1 J
0 50 100 150 200 250 300 350 400 450 500
time (s)
1~
= o5
Q
0 1 1 1 1 1 1 1 1 1 J
0 50 100 150 200 250 300 350 400 450 500
time (s)
Figure A.10: Test scenario 3D
o7
B Q
8000 . - — M\
7000
6000 1 1 1 1 1 1 1 1 1 J
0 50 100 150 200 250 300 350 400 450 500
time (s)
1~
E 05 | -
o
0 1 1 1 1 1 1 1 1 1 J
0 50 100 150 200 250 300 350 400 450 500
time (s)

Figure A.11: Test scenario 3E

60

A.5. SIMULATION SERIE 4

A.5 Simulation Serie 4

9000
£ 8000 o _
‘S 7000(
6000 1 1 1 1 1 1 1 1 1 J
0 50 100 150 200 250 300 350 400 450 500
time (s)
1o
= 051
o
0 | | | | | | 1 1 | J
0 50 100 150 200 250 300 350 400 450 500
time (s)
Figure A.12: Test scenario 4A
/ — ’/%
10000
£ 8000 I S
® 6000
4000 | | | | | | | | | J
0 50 100 150 200 250 300 350 400 450 500
time (s)
1o
= o5F
o
0 L L L L L L L L L J
0 50 100 150 200 250 300 350 400 450 500
time (s)

Figure A.13: Test scenario 4B

61

APPENDIX A. SIMULATION DIAGRAMS

7

15000 -
E 10000k ﬁ
® 5000 , -
-
0 1 L Il L Il 1 |
0 200 400 600 800 1000 1200 1400
time (s)
1
= 05+
(=N
0 1 1 1 1 1 1 J
0 200 400 600 800 1000 1200 1400
time (s)
Figure A.14: Test scenario 4C
10000 -
§ 5000
©
0 1 1 1 1 J
0 100 200 300 400 500 600
time (s)
1
Z o5l
(=1
0 1 1 1 1 1 J
0 100 200 300 400 500 600
time (s)

Figure A.15: Test scenario 4D

62

A.6. SIMULATION SERIE 5

A.6 Simulation Serie 5

10000 -
E 8000
T 60001
4000 1 1 1 1 1 1 1 — J
0 100 200 300 400 500 600 700 800 900 1000
time (s)
1-
= osp W
(=1
0 | 1 | | 1 1 1 1 1]
0 100 200 300 400 500 600 700 800 900 1000
time (s)
Figure A.16: Test scenario 5A
10000 -
§ 5000
©
0 1 1 1 1 1 1 1 |
0 100 200 300 400 500 600 700 800
time (s)
1~
S os| M
Q . |
0 1 1 1 1 H 1 1 J
0 100 200 300 400 500 600 700 800
time (s)

Figure A.17: Test scenario 5B

63

Appendix B

Background Study

Many articles have been written on how to handle rules in CGFs. One of the earlier
attempts is the Soar architecture which originally was created by John Laird, Allen
Newell, and Paul Rosenbloom at Carnegie Mellon University. Soar is a cognitive
architecture for modeling human behavior and it is short for State, Operator And
Result. In the air combat domain, Soar has been used for large scale US Air Force
exercises (Jones et al., 1999). Rule based architectures for air combat has also been
studied by SAAB and Linképing University (Coradeschi et al., 1996), which has
resulted in a simulation tool called TACSI. In a thesis, (Olsson, 2002), TACSI is
used as platform for creating intelligent agents.

The first issue that has to be dealt with in path planning is how to model the
environment. In mobile robotics dealing with ground vehicles, many authors use
occupancy grids to keep track of surrounding obstacles, e.g. (Kolski et al., 2006;
Philippsen, 2006). Occupancy grids divides the environments into cells and assigns
a belief value to each cell that corresponds to the probability of that cell being
occupied. In the field of unmanned aerial vehicles the most constraining factor on
the path is rarely solid obstacles but more commonly threats from fix points on the
ground or from other aerial vehicles. This type of environment would render very
large and changing grids and therefore other methods have been applied. One such
method is the Voronoi tessellation (Beard et al., 2002; Ogren and Winstrand, 2005;
Qu et al., 2005). A Voronoi graph consists of polygons where each polygon contains
only one threat and where each point within the polygon is closer to that threat
than any other. Hence, traveling along the edges of the graph assures keeping a
maximum distance to the closest threats. Since real-time is an important issue in
UAV handling, path planning is often performed in two steps. An offline planner
that runs before mission start and an on-line replanner that guarantees real-time
behavior.

When a graph has been crated it can be searched, for instance by using a greedy
algorithm like A* or k shortest paths (Eppstein, 1998). Since the desired optimal
path minimizes length and threat exposure, the cost of traveling along an edge is
often a weighted sum of risk and length. Another way of dealing with this is to

65

APPENDIX B. BACKGROUND STUDY

apply a Weight Constrained Shortest Path optimization (WCSP). In (Ogren and
Winstrand, 2005) the path length act as constraint while the overall risk of the path
is minimized.

Also genetic algorithms can be used to find a globally optimal path (Qu et al.,
2005). In this case the Delaunay triangulation of the threats is used in the encoding.
Nodes are labeled 0 or 1 which constructs a genetic code for the set of threat points.
The entry and exit edges are predefined and each triangle that is traversed must be
entered and left by crossing a line with a 0 vertex to the left and a 1 to the right.
By evolving and evaluating the results, an optimal path can be constructed.

The path generated through a Voronoi graph is often quite rough with long
edges that forces the vehicle to take unnecessary long paths around threats. One
way to post-process the path is by applying virtual forces (Bortoff, 2000). Break-
points along the path is then treated as masses connected by springs. Threats are
considered as virtual force fields, pushing away the masses. Equilibrium is reached
by solving the ordinary differential equation describing the system and a trimmed
path is the result.

Apart from the above proposed methods there is also probabilistic planning
(Zengin and Dogan, 2004) that is well suited for an environment containing dynamic
threats. Probabilistic methods can be implemented to run on-line, following a
previously planned waypoint path while respecting constraints.

Rapidly Exploring Random Trees (RRT) is a technique that also has proven
successful in path planning (McConley et al., 2000). The method was originally
developed for systems with many degrees of freedom, e.g. robot arms, since the
high dimensionality makes grid spaces unreasonably large. Instead of discretizing
the search space before searching, nodes are placed randomly in a tree structure
emanating from the start position.

In the following sections a few related papers are more thoroughly described.

B.1 Cognitive Modeling

The papers under this section deals mainly with rule-based architectures for con-
trolling behavior in Computer Generated Forces.

B.1.1 Automated Intelligent Pilots for Combat Flight Simulation

In this article (Jones et al., 1999), lessons from using TacAir-Soar, a rule-based
system for simulating automated human-like behavior in military airborne missions,
are presented from a practical viewpoint. The authors participated with the system
in the large scale US military exercise “Synthetic Theater Of War 1997”, STOW-97,
where they had a good chance of evaluating the system. The STOW-97 48 hour’s
operational exercise was primarily conducted in order to show the possibilities in
using autonomous units in military training. The virtual arena for this exercise
was a 500 x 775 square kilometers large area where up to 3700 computer-generated

66

B.1. COGNITIVE MODELING

vehicles participated. The TacAir-Soar system flew all of the military fixed-wing
air missions, comprising 722 sorties.

The simulations were run over a distributed network with over 300 computers
at different sites in the US and England. Both manned simulators and computer
generated forces were plugged in and, in order to minimize load on the network, all
connected units stored their own copy of the environment and made use of dead
reckoning, which allowed them to send updates only when their state differed from
the prediction.

TacAir-Soar is built within the Soar architecture which is a tool for cognitive
rule-based simulation. The set of rules, approximately 5,200 during STOW-97,
is used to execute different operators. These operators can be either atomic or
abstract. Abstract operators, or “goals”, are dynamically decomposed by rules
to execute more primitive operators. For instance an abstract operator “Execute-
Mission”, containing goals and sub goals describing the task, would be required to
initiate a mission. Alongside with the task specific operators, there are so called
“opportunistic operators” that can be independently selected. These operators are
mostly affiliated with survival goals of the aircraft such as taking evasive actions
when in danger.

The behavioral requirements that were set for TacAir-Soar were the following:

1. Fly all types of missions using appropriate doctrine and tactics.
2. Fly many different types of aircraft.

3. Generate human-like behavior.

4. Coordinate behavior with other entities.

5. Behave with low computational expense.

All missions that were flown during STOW-97 were derived from Air Tasking
Orders (ATO) and Air Coordination Orders (ACO) given by the Air Operation
Center. The orders were broken down at the different Wing Operation Centers
(WOC) and given to the pilots. Due to the high number of missions and parameters
associated with each mission, an automated WOC was created that could do the
bulk of the work.

As STOW-97 was one of the first large scale simulated military exercise, it raised
lots of interest for CGFs and especially the Soar architecture. TacAir-Soar has since
then been extended and today it comprises a set of over 10,000 rules.

B.1.2 Participation of TacAir-Soar in Road Runner and Coyote
Exercises at Air Force Research Lab, Mesa, AZ

This article, (Nielsen et al., 2000), describes the participation of TacAir-Soar in the
exercises Roadrunner 98 and Coyote 98 at the US Air Force Research Laboratory
(AFRL). The system had been further developed since cooperation in STOW-97

67

APPENDIX B. BACKGROUND STUDY

and now focused more on collaboration and coordination within the strike package.
The TacAir-Soar CGF’s was to interface each other but also human pilots flying
simulators. A large amount of effort was put into communication interface between
aircrafts (synthetic and real) and between AWACS and aircrafts. The interface
between units was implemented as simulated radio speech and for that reason a
commercial speech recognition system was set up alongside a text to speech system.
The communication interpretation was simplified since the Air Force makes use of
standard brevity terms.

B.1.3 Intelligent Agents for Aircraft Combat Simulation

In relation to the TACSI system developed at SAAB, the authors participated
in a project aiming at creating a tool for the generation of intelligent agents for
the air combat domain. Unlike similar systems, e.g. TacAir-Soar, the group tried
developing a system where the rules, i.e. requested behavior of the agent, could be
specified by an expert in the air combat domain without aid from an expert in the
computational domain.

The architecture that was chosen was decision-trees and the user was supposed
to be able to create his own trees for each participating agent. Each branch in
the tree, conjunction of conditions, corresponds to a requested action. The main
difference from an ordinary decision-tree is that each branch is associated with a
dynamic changeable priority. These priorities are used to determine in what order
the actions are to be executed. Iterating down a certain branch of the tree, the
priorities are increased or decreased depending on the conditions.

Conditions are validated based on the state of the aircraft and according to the
article the state is divided into four types. The first one considers the characteristics
of the agent such as aircraft type and weapons loaded. The second type concerns
velocities and directions of other aircraft detected with on-board sensory. Thirdly,
there is the perception of the agent itself in the environment (velocity direction etc.)
and last there is the memory of the agent that includes important past events. The
actions are also divided into subclasses: primitive actions, concurrent actions and
sequential actions.

B.1.4 Computer Generated Intelligent Companions for Distributed
Virtual Environments

(Edwards et al., 1996) developed a system for controlling CGF aircraft with a rule-
based system guided by fuzzy logic. The idea was that, in order to imitate human
behavior, one needs to consider uncertainty, ambiguity and approximation. The
Fuzzy Wingman had a number of databases for different levels of control. In the
article, the basic level, flight control, was presented. Fifteen linguistic variables
were used in the decision process and in the tests the Fussy Wingman was ordered
to fly as wingman to a human pilot.

68

B.2. INTELLIGENT CONTROL

B.2 Intelligent Control

This section presents articles that mainly deals with aircraft control based on knowl-
edge about the environment. A few systems using Neural Network Controllers are
represented that are set up to imitate and augment human control.

B.2.1 Towards A Neural Control Artificial Pilot

(Liang et al., 2004) tried to create a neural controller for basic maneuvering of a
simulated aircraft. Their work is part of a project called “The Intelligent Cockpit
Environment” and the goal is to ultimately create a realistic, human-like, artificial
pilot. The system consisted of a planner module, a neural controller module and a
graphical user interface module. The planner was there to plan and execute orders
inputted by the user via the GUI.

In the experiments the controller was limited to control elevator and throttle,
disregarding rudder and aileron control used for turning. The plane is thereby lim-
ited to flying in a vertical plane and the outputs measured were pitch and airspeed,
leaving out heading and bank angle.

The controller chosen was the Forward Modeling and Inverse Control which
basically consists of two neural networks. The first net, the forward model, is a
pre-trained model of the plant (aircraft) and the second, the actual controller, is an
adaptive inverse model to the plant. The error signal is propagated back through
the forward model and into the inverse controller that uses it in the training. Due to
their simplicity and good properties in on-line training, a recurrent network, namely
the Jordan Network, was used. In implementation, the C++ program Stuttgart
Neural Network Simulator (SNNS) was used to create the neural networks.

B.2.2 Autonomous UCAV Strike Missions using Behavior Control
Lyapunov Functions

In 2006 the Swedish Air force conducted a tactical study regarding UCAV capabili-
ties. Simulations were made in FLSC with an operator supervising the autonomous
aircraft whose control structure is explained in (Ogren et al., 2006). The aircraft
had had five operational goals, rephrased as Lyapunov functions, that it struggled
to satisfy. These were: Arrive at the target within the given time window, return to
base without running out of fuel, stay on a given waypoint flight path, stay outside
of the range of SAM sites and stay away from enemy fighters.

The controller was based on user defined priority levels where each level had
different demands on the Lyapunov functions. The higher the level the harder the
constraints. At each level the system struggled to reach the next level by taking
actions to reach the goals. For instance the aircraft would steer away from SAMs
as long as sticking to the path or arriving on time did not have higher priority.

Although being able to react to pop-up threats and executing a mission with
desired result, the system requires a predefined and fix flight path. There is also a

69

APPENDIX B. BACKGROUND STUDY

high number of parameters, needed to define the behavior. In testing, the operator
was able to choose from three different sets of parameters that resulted in the vehicle
taking more or less risks.

B.2.3 Hybrid control for aggressive maneuvering of autonomous aerial
vehicles

In (McConley et al., 2000) an approach for hybrid control of autonomous aerial
vehicles is proposed. The hybrid control constitutes of trim trajectories and a set of
pilot inspired maneuvers. Trim trajectories can be seen as equilibrium points where
the system is at steady-state, i.e. level flight. A pre defined maneuver could for
instance be a roll, in which the aircraft starts and ends in a trim trajectory. With
this quantization of system dynamics, the controller chooses amongst predefined
maneuvers and trim trajectories, reducing the control problem to a mixed-integer-
programming problem.

Furthermore, Rapidly exploring Random Trees (RRT), are proposed for path
planning and obstacle avoidance.

B.2.4 Autonomous formation flying of multiple UCAVs under
communication failure

(Mehra et al., 2000) introduces a system for handling formation flying of multiple
UCAVs. The full system hierarchical control structure is presented but the article
concentrates on the lower levels, mission planning and control. The system is capa-
ble of deterministic leader reassignment, if the leader would leave the formation in
flight. Further, this article proposes ways of handling communication failure within
the formation. Another interesting aspect is the guidance law which calculates the
followers trajectories based on what the leader does (The leader is assumed to have
a preplanned trajectory to follow).

B.2.5 Anvandning av artificiella neurala nat vid simulering av piloters
taktiska beslut under luftstrid

In a master thesis performed at FFA (Rosander and Walther, 1996), Aeronautical
Research Institute of Sweden (later merged with FOI), a Neural Network controller
was implemented to play the role of a combat pilot engaged in dog fighting in a
simulator. The aircraft was controlled with multi layer feed-forward networks that
took the the dynamic state of the aircraft as input. Additionally relative angles and
a rough distance estimation to the target were inputted. The output was given as
centripetal and tangential accelerations together with delta roll angle. After poor
results with a single network the authors managed to get good results by using a
separate network for each output parameter. The networks were not trained with
humans due to shortage of time. Instead, an artificial pilot program, called heuristic
pilot, was used in the training process.

70

B.3. PATH PLANNING

B.3 Path Planning

This section present articles concerning path planning using different approaches.

B.3.1 Coordinated target assighment and intercept for unmanned air
vehicles

In (Beard et al., 2002) a heuristic method is used to coordinate target assignment
and intercept for multiple UAVs. The scenario consists of an area filled with targets
and threats where a number of UAVs are to select and simultaneously intercept
some of the targets while minimizing their risks. The problem is approached with
a Voronoi diagram which generates possible paths that are as far away from the
threats as possible. The path planner then takes into account the lengths and
threat exposure along each line segment and uses a k-shortest paths algorithm,
(Eppstein, 1998), to derive the best possible paths from a UAV to a target.

A target manager uses the evaluated paths to make a team assignment, com-
prising one target for each UAV, which is considering the two opposing constraints
of maximum force and maximum spread. Maximum force expresses the goal to have
as many UAVs as possible assigned to each target and maximum spread the goal of
intercepting as many targets as possible.

When the assignment is done the intercept manager chooses a “time on tar-
get” for the vehicles assigned to the same target. This includes choosing from the
available paths and speeds while minimizing the risks.

Finally a trajectory generator stakes out the proposed paths, smoothing the ve-
hicles behavior at the breakpoints. Should a “pop-up”-threat be detected during
flight, the entire procedure is updated, taking into account the additional informa-
tion.

B.3.2 Combining Path Planning and Target Assighment to Minimize
Risk in SEAD Mission

(Ogren and Winstrand, 2005) proposed a path planning method similar to the one
of (Beard et al., 2002) but concerning autonomous aircraft on SEAD mission (Sup-
pression of Enemy Air Defense). In this scenario the UCAV was capable of carrying
a small number of anti radiation missiles (HARM) suppressing some of the threats
along its path. As in other studies, the UCAV is to move from position a to b while
minimizing path length and risks. A Voronoi graph is used for discretizing and the
problem is formulated as how to maximize the possibility of survival while choosing
among possible paths. After reformulation, the problem can be projected onto a
WCSPP (Weight Constrained Shortest Path Problem) and solved with bisection
search and a shortest path algorithm.

The main advantage with this approach is the representation of the risk along
the paths. The vehicle then get to make the path decision based on length and total
risk of failure.

71

APPENDIX B. BACKGROUND STUDY

B.3.3 Probabilistic Trajectory Planning for UAVs in Dynamic
Environments

This article, (Zengin and Dogan, 2004), proposes a probabilistic approach for plan-
ning trajectories through an environment containing threats. By modeling the en-
vironment with a time-variant threat exposure map, the dynamic properties of the
threats can be taken into consideration. In each simulation step the vehicle is given
a number of possible trajectories by discretizing the turning and velocity spaces.
The reference trajectory, which the algorithm is trying to execute in each step, is
the one taking the vehicle as close as possible to the direction of the target.

B.3.4 The Delayed D* Algorithm for Efficient Path Replanning

In path planning it is often of interest to use fast algorithms that can render a result
on-line. Therefore replanning algorithms are of great interest since they give results
faster than if a plan from scratch was to be made. Especially in robotics, where a
map of the environment is often known before start but, due to a dynamic world,
changes with time. The Delayed D*, (Ferguson and Stentz, 2005), is an extension
to A* that uses dynamic programming to “repair” the original path.

B.3.5 Solving robot motion planning problem using Hopfield neural
network in a fuzzified environment

The problem of robot motion planning was approached with a Hopfield Neural Net-
work in (Sadati and Taheri, 2002). The environment is modeled with an occupancy
grid and fuzzified so that an occupied cell is surrounded by cells with decreasing oc-
cupancy value. This is done in order to represent uncertainty within the grid. The
robot then has the ability to move from a cell to one of its eight adjacent neighbor
cells. A Hopfield net is set up with three neurons being horizontal distance to tar-
get, vertical distance to target and uncertainty of the cell. By choosing appropriate
weights and setting up a Lyapunov energy function the energies of surrounding cells
are calculated and the robot chooses to move to the cell with least energy.

The use of Hopfield Neural Networks in path planning is interesting and the
authors propose an addition to the method that prevents it from ending up in local
minimums. However, a more detailed description of the work would be necessary
in order to evaluate it properly.

B.3.6 Path Planning for UAVs

(Bortoff, 2000) presents a combined approach to path planning using Voronoi graph
search and virtual forces. The goal for the vehicle is to avoid detection by enemy
radars, hence a stealthy path is required. The initial, but coarse, plan is given by
dynamic programming on the Voronoi graph where the weight of each edge is a
function of length and probability of detection. In the next step a refined path is
generated as the steady-state solution to a Lagrangian mechanical system driven

72

B.3. PATH PLANNING

by virtual forces. The forces are made up by springs that exert a contracting force
which act to minimize path length, and force fields at the radar locations that
forces the chain of masses away. The force fields acts on the masses with a factor
1/distance* which is also found in the radar equation that determines on what
distance an object can be detected.

73

	Introduction
	Background
	Purpose and Goals
	Scope and Limitations
	Outline of Thesis
	Previous Work

	Task Break Down
	Execution Phase

	Combat Simulation
	Peace Support Operations
	Flight Simulation
	Computer Generated Forces
	UAV and UCAV
	Simulating Fixed-wing Aircraft
	Dynamic Model
	Interoceptive Sensors
	Exteroceptive Sensors

	Target Intercept
	Chasing a Dynamic Target
	Estimated Rendezvous

	Finding the Shortest Path
	Threats in the Environment

	Discretization
	Voronoi Tessellation

	Graph Search
	A* search
	Cost Function

	Post-processing
	Virtual Forces

	Implementation
	Plant Description
	Hardware
	HLA Framework
	T3SIM and Tools
	UCAV Model

	Matlab Simulations
	Simulator Integration
	Programming Environment
	Planner Module

	Simulations
	Test Scenario
	Test Results

	Discussion
	Performance Evaluation
	Radar Warner
	Virtual Forces
	Trajectory Following

	Conclusions and Further Work
	Goal Fulfillment
	Proposed Enhancements

	Bibliography
	Appendices
	Simulation Diagrams
	Reference Simulations
	Simulation Serie 1
	Simulation Serie 2
	Simulation Serie 3
	Simulation Serie 4
	Simulation Serie 5

	Background Study
	Cognitive Modeling
	Automated Intelligent Pilots for Combat Flight Simulation
	Participation of TacAir-Soar in Road Runner and Coyote Exercises at Air Force Research Lab, Mesa, AZ
	Intelligent Agents for Aircraft Combat Simulation
	Computer Generated Intelligent Companions for Distributed Virtual Environments

	Intelligent Control
	Towards A Neural Control Artificial Pilot
	Autonomous UCAV Strike Missions using Behavior Control Lyapunov Functions
	Hybrid control for aggressive maneuvering of autonomous aerial vehicles
	Autonomous formation flying of multiple UCAVs under communication failure
	Användning av artificiella neurala nät vid simulering av piloters taktiska beslut under luftstrid

	Path Planning
	Coordinated target assignment and intercept for unmanned air vehicles
	Combining Path Planning and Target Assignment to Minimize Risk in SEAD Mission
	Probabilistic Trajectory Planning for UAVs in Dynamic Environments
	The Delayed D* Algorithm for Efficient Path Replanning
	Solving robot motion planning problem using Hopfield neural network in a fuzzified environment
	Path Planning for UAVs

