FOI, Swedish Defence Research Agency, is a mainly assignment-funded agency under the Ministry of Defence. The core activities are research, method and technology
development, as well as studies conducted in the interests of Swedish defence and the safety and security of society. The organisation employs approximately 1000 per-
sonnel of whom about 800 are scientists. This makes FOI Sweden’s largest research institute. FOI gives its customers access to leading-edge expertise in a large number
of fields such as security policy studies, defence and security related analyses, the assessment of various types of threat, systems for control and management of crises,
protection against and management of hazardous substances, IT security and the potential offered by new sensors.

FOl
Defence Research Agency Phone: +46 8 555 030 00 www.foi.se
Forsvars- och sakerhetssystem Fax:  +46 8 555 031 00

SE-164 90 Stockholm

Parallel computer algorithms for the
solution of volume integral equation
models in marine electromagnetics

BRODD LEIF ANDERSSON, JAN-OVE HALL, KURT OTTO

FOI-R-- 2326 --SE Technical report

ISSN 1650-1942

December 2007

Forsvars- och sdakerhetssystem



Brodd Leif Andersson, Jan-Ove Hall, Kurt Otto

Parallel computer algorithms
for the solution of volume
Integral equation models in
marine electromagnetics



Rapportnr/Report no FOI-R--2326--SE

Rapporttyp Teknisk rapport

Report Type Technical report
Utgivningsar/Year 2007

Antal sidor/Pages 13p

ISSN ISSN 1650-1942

Kund/Customer Férsvarsmakten
Forskningsomrade 4. Sensorer och signaturanpassning
Programme area 4. Sensors and Low Observables
Delomrade 43 UV-teknik - sensorer
Subcategory

Projektnr/Project no E20607

Godkand av/Approved by Matts Gustavsson

Totalférsvarets Forskningsinstitut FOI

Avdelningen foér Férsvars- och sékerhetssystem

164 90 Stockholm



FOI-R-2326-SE

Table of Contents

1 Introduction 5
2 Governing equations 6
3 The structure of the EMrad code 7
4 Direct solver 8

4.1 Direct solution of a one-dimensional test problem . . . . . .. ... ... ...

4.2 Numerical investigation of the parallel efficiency . . . . ... ... ... ... 9
S TIterative solvers 11
5.1 Krylovsubspacemethods . . . . . . ... ... ... ... ... 12
5.2 Preconditioning . . . . . . . . ... 12
6 Summary 12

References 13



Sammanfattning

Volymintegralekvationer &r ett viktigt hjdlpmedel for att modellera och analysera
elektromagnetisk vagutbredning i marin miljo, t.ex. for att bedoma detektionsavstand. I
denna rapport studeras algoritmer for att 16sa volymintegralekvationer med hjilp av
parallelldatorer. Speciellt har algoritmer for 16sning av linjdra ekvationssystem med
fyllda matriser studerats. En implementation av en direktlosare for parallelldatorer har
utvirderats genom att 16sa ett endimensionellt integralekvationsproblem. Losaren visar
sig vara mycket effektiv. Iterativa 16sare och prekonditionerare som &r lampliga for
parallelldatorer diskuteras ocksa. Dessa algoritmer kan implementeras i framtida
parallelliserade versioner av EMrad, som ir en kod for elektromagnetisk vagutbredning i
marin miljo. Denna studie visar att kodens prestanda kan forbittras avsevirt genom att
anviénda parallelldatoralgoritmer.

Nyckelord: integralekvationsmetod, marin elektromagnetik, tre dimensioner



Summary

Volume integral equations are a useful tool to model and analyze electromagnetic wave
propagation in marine environments, e.g., to estimate detection ranges. In the present
report, parallel computer algorithms for the solution of volume integral equations are
examined. In particular, algorithms for the solution of dense systems of linear equations
are considered. A parallel computer implementation of a direct solver has been evaluated
by solving a one-dimensional integral equation. The solver shows high parallel
efficiency. Iterative solvers and preconditioners appropriate for parallel computers are
also discussed. These algorithms could be implemented in future parallelized versions of
the marine electromagnetic wave propagation model EMrad. The present investigation
shows that the performance of EMrad code can be significantly increased by using
parallel computer algorithms.

Keyword: integral equation method, marine electromagnetics, three-dimensions
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1 Introduction

The propagation of electromagnetic (EM) waves in marine environments is important in many
military and civil applications. An example of a military application is EM Rapid Environmen-
tal Assessment (REA). EM REA aims at determining a model of the electrical properties in the
sub-bottom structure. For example, this information is necessary in order to estimate detection
ranges and vulnerability to detection for own assets. It was shown in Ref. [1] that detection
ranges may be underestimated or overestimated by as much as 50% when using inappropriate
models of the electrical properties. See Ref. [2] for an overview of recent EM REA research
performed by the Swedish Defence Research Agency (FOI). Low frequency EM wave prop-
agation is governed by the conductivity of the marine environment. The conductivity of the
sub-bottom structure can be estimated by using Controlled Source Electromagnetic (CSEM)
methods. The response from the sub-bottom is measured when a strong signal from a known
source is transmitted and scattered off the bottom structure. The sub-bottom conductivity profile
is then estimated by iteratively matching a forward wave propagation model to the experimen-
tal data. The iterative procedure requires many evaluations of the forward wave propagation
model. Thus, the forward wave propagation model must be sufficiently fast. Many marine
environments can be modeled using a horizontally stratified model. For this purpose, FOI has
developed the numerical code NLAYER [3].

Some situations require a more detailed description where the three-dimensional nature of the
environment must be taken into account, e.g., in harbors and other coastal areas. The subject
of three-dimensional EM modeling and inversion of sub-bottom structures is an active area
of research and has experienced a tremendous progress in the last decade, see Ref. [4] for a
recent review. Many sub-bottom and bathymetry structures in marine electromagnetism can be
modeled as a set of three-dimensional conductivity irregularities embedded in a horizontally
stratified medium. This type of geometry is well suited for volume integral equation methods,
where the time consuming computational part is limited to the conductivity irregularities. The
impact of the horizontally stratified background medium can be absorbed into the kernel of the
integral equation via a Green’s function. This integral equation method has been implemented in
the forward wave propagation model EMrad [5]. The numerical method is based on the method
of collocation, which transforms the continuous integral equation problem into an approximate
finite dimension matrix equation. The resulting matrix equation can be solved by using either
an iterative or a direct method.

Further developments and improvements of the EMrad code are necessary in order to increase
the performance to a level useful for sub-bottom inversion. The main bottleneck in the existing
single processor version of EMrad is the solution of the matrix equations. In the present report,
parallel algorithms for the solution of dense systems of linear equations are discussed. These
algorithms can be implemented in future parallelized versions of EMrad in order to significantly
increase the performance of the code.

The report is organized in the following way. The governing integral equation and the corre-
sponding discrete matrix equation are briefly discussed in Sec. 2. The structure of the single
processor version of the EMrad code is reviewed in Sec. 3. In sections 4 and 5 direct and
iterative solvers are discussed, respectively. The report is concluded by a summary in Sec. 6.
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2 Governing equations

Many sub-bottom and bathymetry structures in marine electromagnetism can be modeled as a

set of three-dimensional conductivity irregularities embedded in a horizontally stratified medium.
The conductivity can thus be written as o (x) = 0¢(z) + Ao (x), where o((z) describes the hor-

izontal stratification, and Ao (x) describes the conductivity irregularities. The positive z axis

is pointing downward. One can show that the electric field is governed by the vector integral

equation [6]

E(x) = Eo(x) + / / /D AV G(x, X ) Ao (x)E(X) (1)

where E is the total electric field and Ej is the incident electric field, i.e., the electric field
in the absence of irregularities. G, is the 3 x 3 electric dyadic Green’s function. D is the
volume where Ao is different from zero. The dyadic Green’s function satisfies a vector wave
equation, where the local wave number of the medium depends on oy [7]. In many applications,
it is necessary to solve Eq. (1) for several frequencies and positions of the source. In frequency
sounding experiments, the number of frequencies is typically of the order of 10. In order to solve
the integral equation (1) numerically, the volume D is discretized into /N rectangular volume
elements. It is important to note that only the volume where Ao # 0 need to be discretized. By
using the method of collocation with pulse subsectional functions [8], an approximate solution
of the continuous integral equation can be found as a solution of the matrix equation

Ae=ey, (2)
wheree = [E,1,....E; N, Ey1, ..., Eyn, E. 1, ... ,EZvN]T describes the total electric field in
the grid points x = x;, 7 = 1,..., N. Analogously, the vector e, describes the incident electric

field. The system matrix is A = I — GS, where

FH FlN FH FlN FH FlN
T Ot xx Ty Ty Tz " T xE
FNI FNN FNl . FNN FNl FNN
Tr T Ty " Ty xz Tz
11 1N 11 LN 11 v
R FW...FW Fyy---ryy Fyz"'ryz
G_ : : 3)
| ISR BENELE DG P AR B e
rioriorioorhtoori iy
N1 NN N1 . NN N1 NN
sz c Fz:c Fzy cee Fzy Fzz T FZZ 3Nx3N
] i
Vi
S = diag ([Aoy, ..., Aon, Aoy, ..., Aoy, Aoy, ..., Aoy]) , (5)

V% is the volume occupied by the kth volume element j, k= 1,..., N,and o, § = z, 9, 2.

Due to the singularity of the dyadic Green’s function, a principal value integral has to be per-
formed for Fﬂfb, j=1,..., N [6]. The electric field can be calculated in any desired field point
by inserting the solution of Eq. (2) into Eq. (1). The system matrix is dense, i.e., all matrix
elements are non-zero, and the size of the system matrix is 3N x 3N. N is typically larger than

10,000.
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3 The structure of the EMrad code

The volume integral equation method described in Sec. 2 has been implemented in the forward
wave propagation model EMrad [5]. The program is implemented for single processor comput-
ers and the code is mainly written in FORTRAN 77. For FOI users, the code can be downloaded
from a local SUBVERSION server. The dyadic Green’s functions for the horizontally stratified
medium are computed by the NLAYER code [3]. The structure of the EMrad code is summa-
rized in Alg. (1).

Algorithm 1 EMrad pseudo-code
1: for all Frequencies do
2: fori=1:3Ndo > Assemble the system matrix A

3: for)=1:3N do
4: Calculate the dyadic Green’s function using NLAYER
5: Calculate and store the matrix element A;;
6: end for
7: end for
8: for all Source positions do
9: Calculate and assemble the right-hand side e
10: Solve the system of linear equations
11: for all Field points do
12: Calculate E at the field point
13: end for
14: end for
15: end for

Equation (2) can be solved either by iterative or direct methods. In early versions of the EMrad
code the matrix equation was solved iteratively using the generalized minimal residual (GM-
RES) algorithm. When using the GMRES algorithm, it is necessary to apply preconditioning
of the system matrix to achieve convergence. Following Ref. [9], the extended Born approxi-
mation was used in the preconditioning procedure. However, the iterative solution showed very
poor convergence for some important applications of the EMrad code. In fact, the convergence
was so slow that a direct solver gave a better performance [10]. Direct methods such as Gaus-
sian elimination suffer from an O(N?) scaling of the arithmetic work [11]. An iterative method
with a promising preconditioner is discussed in Sec. 5.

The volume integral method requires a substantial amount of memory when applied to realistic
problems. The reason is that the system matrix is dense. Both for an iterative and a direct
solver, 9 N2 complex valued matrix elements must be stored. Consider, for example, a block
shaped volume which is discretized with 30 points in each direction, i.e., N = 30% = 27, 000.
If the matrix elements are represented in double precision, one needs to allocate 16(3N)? =
16 - 9 - (30%)? bytes ~ 100 Gbytes of memory for the storage of the matrix. This is by far
more memory than is available in modern workstations. Attempts to circumvent this problem
has been made by discarding “small” matrix elements [12]. On the other hand, cluster com-
puters can be employed to solve systems of this size, since a cluster may contain hundreds of
processors each equipped with a few Gbytes of memory.

As pointed out in Ref. [5], the volume integral equation formulation is ideal for parallelization
as the method is inherently divided into several independent steps. A number of subtasks in the
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code can be identified, which could be parallelized in future developments of the code. They
are:

1. Assembling the system matrix (calculate Fi’; using NLAYER)
2. Solving the system of linear equations

3. Evaluation of the EM fields for several source locations

4. Evaluation of the EM fields at several sensor points

5. Several frequencies in parallel

4 Direct solver

In this section, we explore the possibility to use a parallelized direct solver for solving the
system of linear equations given in Eq. (2). As mentioned above, direct solvers are slow due
to the O(N?) scaling of the execution time. By using parallel computers, this scaling can to
some extent be counterbalanced by using a large number of processors. Algorithms for direct
solution can be found in the literature, e.g., see Ref. [13]. Here, we have chosen to use an
existing implementation found in the linear algebra routine library ScaLAPACK [14], which is
a parallel computer version of the well-known LAPACK library.

The ScaLAPACK routine PZGESV computes the solution of a complex system of linear equa-
tions in double precision. The routine uses LU decomposition with partial pivoting and row
interchanges to factor A as A = PLU, where P is a permutation matrix, L is unit lower trian-
gular, and U is upper triangular. No additional memory needs to be allocated in order to store
the matrices L and U. Instead, the original system matrix A is overwritten to store L and U.
The elements of the system matrix must be distributed to submatrices stored in the individual
nodes of the computer cluster. ScalLAPACK uses the block-cyclic partition of the system matrix
to minimize load imbalance and idling problems [13, 14].

4.1 Direct solution of a one-dimensional test problem

In order to investigate the performance of the routine PZGESV, we have implemented a numer-
ical solution of a one-dimensional test problem. The considered model equation is

vy + [ " G, (o) = ol ). ©)

where G (z, x") = —ikg exp(—iko|x—2'|)/2 and ky is a constant. The right hand side ¢y (z; x5) =
2 G(z, x5) [ ko represents the field generated by a point source located at x = z5. The wave field
generated by the source is scattered off the irregularity n(x), where n(x) = ngexp[—(z —
r.)?/(2L?)] for x € [y, 73] and n = 0 otherwise. The parameters 7o, z., and L describe the
position and size of the irregularity. Equation (6) is of the same type as Eq. (1), i.e., a Fredholm
integral equation of the second kind. A numerical method for the solution of Eq. (6) can be
formulated as a matrix equation. The field X inside the irregularity is determined by the matrix
equation

AX =B (7
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Figure 1: Execution time of the parallel algorithm as a function of the number of processors.
The result for N =10,000 and N =30,000 are drawn with * signs and o signs, respectively.

where the matrix elements are A;; = 6;; + G(x;, z;)n(z;)Azx; and B;; = 2G(x;, 5 ;) /Ko,
where 7,5 = 1,...,N. The N x N matrix A is dense and nonsymmetric. When Eq. (7) is
solved, the solution can be used to calculate ) at any field point.

The numerical method outlined above has been implemented in a FORTRAN 90 code named
fie2kld. The code is designed for a distributed memory architecture using the Message
Passing Interface (MPI) standard. Below, we will highlight some important features of the
code. The submatrices of the distributed system matrix are allocated dynamically and the size
of the problem can be determined at run time. This allows the user to execute the code with an
arbitrary matrix size on an arbitrary number of processors. The elements of the system matrix
are computed by the node which store that particular element. This is important in cases where
the computation of the matrix elements is time consuming, e.g., when it is necessary to call
the NLAYER code to calculate the dyadic Green’s function. The direct solver allows us to
treat several positions of the source in parallel. Only the right hand side of Eq. (7) is changed
when the position of the source is altered. Consequently, the computationally demanding LU
decomposition of the system matrix can be reused for all positions. The total number of floating-
point operations to solve the problem for multiple source configurations is still not higher than
O(N?). Finally, the evaluation of the field at an arbitrary number of points is parallelized by
multiplication of distributed matrices. Thus, the implemented program shows possible solutions
to the first four items listed in Sec. 3. The software solutions must be modified somewhat in
order to apply to the three dimensional case, but the same principles can be used.

4.2 Numerical investigation of the parallel efficiency

A common figure of merit in parallel computing is the speedup. Speedup refers to how much
faster a parallel algorithm is compared with its sequential counterpart [13]. It is defined by the
equation S, = Tieq/T},, Where T, is the execution time of the sequential algorithm and 7}, is
the execution time of the parallel algorithm with p processors. In an ideal parallel system, the
speedup is equal to p. In practice, S, < p as the processors cannot devote their entire time
to the computations of the algorithm. Part of the time the processors are communicating with
other nodes or are idling. Another figure of merit is the parallel efficiency, which is a measure
of the fraction of time for which a processor is usefully employed. The parallel efficiency
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Figure 2: Speedup as a function of the number of processors. The result for N =10,000 and
N =30,000 are drawn with * signs and o signs, respectively.

is defined as £ = S,/p. In a nonideal parallel system, the efficiency is smaller than one.
In this section the execution time, speedup, and parallel efficiency of the code fie2k1d is
investigated by using the cluster computer Tunnan. The test problem has been solved with
10,000 and 30,000 unknown field components, respectively, and 1000 source locations (number
of right-hand sides). The number of processors is varied from 1 to 100.

The problem with N = 10,000 unknowns can be solved on a single node in the cluster, and the
execution time was found to be T = Ty.q ~ 4337 s. Figure 1 shows T}, as a function of p = n?,
forn = 1,2,...,10. The execution time decreases rapidly when p is increased from 1 to 25.
In fact, 7), is close to the ideal execution time 7., /p, which is indicated by the solid curve in
Fig. 1. Figure 2 shows S, as a function of p. The solid line shows the ideal speedup S, = p.
For p > 16, S, starts to deviate from the ideal speedup. Consequently, the parallel efficiency
decreases with increasing number of processors. For p = 100, the efficiency has decreased from
the maximum value 93 % at p =16 to ~35%. This behavior is illustrated in Fig. 3, where £ is
plotted as a function of p.

10
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Figure 3: Parallel efficiency as a function of the number of processors. The result for
N =10,000 and N =30,000 are drawn with * signs and o signs, respectively.

The larger problem with N = 30,000 unknowns cannot be solved on a single node as the
memory per node is limited to 2 Gbytes. When 25 processors are used the execution time
is roughly 1.5 h. In contrast to the smaller problem discussed above, 7, is close to the ideal
execution time for all investigated values p, and the estimated speedup is almost linear. For
p =100, the execution time is reduced to 24 minutes.

An approximate expression for 7, is given in Ref. [14], where it was suggested that

n,= G G, Cnl
p p f \/}—) v Nb m

)

where ¢; is the time to execute one floating-point operation by one processor, C;yN* is the total
number of floating-point operations, ¢, is the time per data item communication, C,, N2/ VP18
the total number of data items communicated, ¢,, is the time to communicate a message of zero
length (also called the latency), NN, is the data distribution block size, and C,,, N/N} is the total
number of messages. The execution time of the sequential algorithm is T, ~ C'; N3¢y, giving

1 Omtm p CUtU \/]_) -
E=(1+— P Ve 9
(+Nbcfth2+0fth) ©)

As seen in Egs. (8) and (9), the impact of communication and latency is more severe for small /V,
where the last two terms can be dominating. This is in qualitative agreement with the numerical
experiments discussed above.

5 Iterative solvers

Since the coefficient matrix in Eq. (2) is dense, the arithmetic complexity for Gaussian elimi-
nation grows cubically in /N (the number of cells). For large values of /V, this arithmetic cost
becomes prohibitively high. A possible remedy is to use a rapidly convergent iterative method
instead, where the arithmetic complexity might be as low as O(N?). Thus, there is a potential
to reduce the arithmetic work by an order of magnitude in V.

11
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5.1 Krylov subspace methods

The state of the art for iterative solution of linear systems is to employ some Krylov subspace
method [15]. For simplicity and robustness, we advocate the restarted generalized minimal
residual (GMRES(¢)) algorithm [16], where ¢ is the restarting length. Within the current project,
a serial version of the restarted GMRES algorithm has been thoroughly implemented in FOR-
TRAN 90.

5.2 Preconditioning

In order to achieve an acceptable rate of convergence and, more importantly, a short total ex-
ecution time, it is crucial to construct an effective, parallelizable preconditioner. For the type
of systems that we are considering, standard preconditioning techniques like incomplete LU
factorizations are likely to perform poorly. A viable alternative is to use preconditioners based
on sparse approximate inverses (SPAI) [17], the construction of which are inherently parallel.
Furthermore, they are possible to tune by altering a tolerance parameter ¢.

6 Summary

In the present report, we have discussed parallel computer algorithms for the solution of vol-
ume integral equation models in marine electromagnetics. In particular, parallel algorithms
for the solution of systems of linear equations have been discussed. These algorithms could
be implemented in future parallelized versions of EMrad in order to significantly increase the
performance of the code.

A parallel computer implementation of a direct solver has been evaluated by solving a one-
dimensional test problem. The solver shows high parallel efficiency for large problems. For the
iterative solvers, we suggest that the continued work should be focused on parallelization of the
GMRES code using MPI, implementation of sequential SPAI preconditioners, and paralleliza-
tion of SPAI preconditioners.

12
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