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Sammanfattning 
Optiska sensorsystem har med framgång utnyttjats för detektion av ytlagda minor på 
avsevärda avstånd i ett stort antal scenarier. Både passiva och aktiva hyperspektrala 
sensorer har påvisat hög kapacitet för automatisk detektion av minor och andra objekt 
och förmåga att visa in högupplösande sensorsystem för identifiering. 

Värdering av sensorsystemkombinationer försvåras av att prestanda beror även på 
förmågan hos utnyttjade detektionsalgoritmer. Här införs en informationsteoretisk 
ansats för att erhålla algoritmoberoende jämförelser. 

Tyngdpunkten i detta projekt är att ta fram nya idéer för optisk detektion, 
signalbehandling, mål- och bakgrundskarakterisering samt egenskapsextraktion för att 
erhålla förbättrad detektion och förbättrad klassningsförmåga. Det finns fortfarande 
viktig fenomenologi som ännu ej undersökts såsom polarimetriska egenskaper, 
emissivitetsvariationer i det termiska våglängdsområdet samt vilka fördelar som kan 
erhållas med tredimensionell avbildning. 

 

Nyckelord:  

truppminor, fordonsminor, detektion av landminor, optiska sensorsystem, 
signalbehandling
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Summary 
There are many tactical scenarios where optical sensor systems are proving promise in 
detecting surface-laid mines at substantial stand-off distance. Both passive and active 
hyperspectral sensors have shown high capability in automatically detecting mines and 
other man-made objects and the capability to cue other high resolution sensors for 
identification. 

Evaluation of sensor system combinations are typically hampered by detection 
algorithm capability uncertainties. Information theory is being invoked in order to 
obtain algorithm independent comparisons of sensor suits. 

The emphases of this project is to obtain new ideas for optical sensing, signal 
processing, target and background characterisation and data and feature fusion in order 
to improve on mine detection and classification performance. Important 
phenomenology for mine detection has still to be explored, such as polarimetric 
properties, emissivity variation in the long wave infrared spectral region and the benefit 
of detailed three dimensional imaging.  

 

Keywords:  

anti-personnel mines, antitank mines, land-mine detection, optical sensor systems, 
signal processing
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1 Introduction 
No single mine detection and classification sensor has shown the performance needed in 
order to fulfil the requirements in an operational scenario. There are however specific 
tasks that can be performed and this combination of sensors and tasks could potentially be 
useful. Infrared and multi/hyperspectral sensors are showing promise to be used in detect-
ing surface-laid mines at substantial stand-off distance, providing information extraction 
capability on several mine properties such as size, temperature, spectral and polarimetric 
properties. The sensors can be passive relying on thermal radiation or reflected solar 
radiation and active relying on an artificial source, e.g. a laser illuminator. The detection of 
surface mines is possible for an observer at close range but automatic systems are still of 
interest in wide-area search using e.g. airborne sensors. A general overview of the mine 
detection area has been previously reported [1]. 

Although large mine detection programs has been carried through, there is little informa-
tion yet published on the operating characteristics (ROC) of the receivers. A reason for 
this is that the performance depends on not only the sensor systems but also on the type of 
mines and the environmental conditions. This has resulted in a great number of concept 
demonstrations and studies of specific phenomena such as thermal contrast as a function 
of weather parameters. Detection of mine fields is typically much easier than the detection 
of single mines. For an optical system, a large enough mine surface must be exposed to the 
sensor in order to render a detection. With a large number of mines, the likelihood that 
some mines will be exposed is increasing. They will also permit increased classification 
capability from geometry and spectral pattern analysis. The engagement in international 
operations brings about new and difficult environments including forested or mountainous 
terrain as well as operations in urban environments against irregular forces. 

Mine detection has been demonstrated with a variety of optical sensor technologies cov-
ering the wavelength region from the ultraviolet (UV), visible and near infrared (VNIR), 
short wave infrared (SWIR), mid wave infrared (MWIR) to the long wave thermal infrared 
(LWIR). Both hyperspectral imaging (HSI) and multispectral imaging (MSI) has been 
demonstrated including in some cases polarisation information. Active hyperspectral 
imaging sensors with a pulsed artificial light source can be used in order to relax natural 
irradiance requirements. The artificial light source can be broadband in the VNIR spectral 
region. Irradiation with a monochromatic light source can be used for specific light-matter 
interactions such as fluorescence time decay. 

The emphases of this project is to obtain new ideas for optical sensing, signal processing, 
target and background characterisation and data and feature fusion in order to improve on 
mine detection and classification performance. Both new enabling technologies and new 
system concepts are of interest. The purpose of signal processing is to extract reliable 
target detection information from sensor data with a low false alarm rate and also be able 
to form target models and build feature databases for classification and recognition. 
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2 Remote detection issues 
This research program is focusing on remote detection of surface laid mines and mine-
fields at a standoff distance. Neutralization techniques will not be treated here. Data from 
collection sensor platforms, initially static ones, are being used for algorithm development 
and phenomenology assessment. A number of optical sensor technologies are being inves-
tigated such as staring focal plane arrays, multi/hyperspectral, passive polarisation, active 
illumination and 3-D LADAR sensors. Mine signatures related to these sensing technolo-
gies are catalogued in order to support evaluation of mine detection algorithms. As a result 
of the evaluation process, a down-selection of sensor technologies for specific platform 
sensor suits will be carried through. 

Thermal detection of both surface laid mines and buried mines attempt to take advantage 
of the difference in thermal conductivity and specific heat, i.e. the difference in heating 
and cooling rate between the mine or the disturbed soil above the mine and the surroun-
ding soil. The thermal contrast will depend on the solar loading, ambient air temperature, 
soil moisture and emissivity. Modelling of the optimal circumstances for detection has not 
yet been determined. 

The optimal multi-sensor suit with respect to sensor fusion and automatic target recogni-
tion in order to improve detection performance while reducing the number of false alarms 
will be established using e.g. information theory. Based on preliminary results, a first inte-
gration for sensor fusion/ATR will be suggested. More sensors will be added as supporting 
results are being obtained and new optimizations of the multi-sensor fusion approaches 
will be evaluated. 

Two main scene geometries with standoff detection capability, down-looking and forward-
looking, are being investigated. In order to support the methodology for evaluation of 
detection algorithms, mine signature simulations related to the signature database is devel-
oped. The optimal sensor combination is likely to be different in the two cases, since the 
phenomenology and appearance will be different. 

Assessment of ROC of the sensor system using a small number of targets (mines) and 
interfering objects (clutter) with restricted variability is a challenge. Several steps are 
being evaluated. In a first step, each mine and clutter object is treated individually in order 
to understand the interfering mechanism. In a second step, these results are combined with 
an estimate of the likelihood of observing a mine in the specific state. The state of appear-
ance and the degree of clutter will depend on the characteristics of the terrain. A measured 
variation in mine appearance is therefore required for each type of terrain. 

The operational speed can to some degree be varied depending on e.g. cost, size, weight, 
and maturity or risk considerations. In the final end, brass board detection systems should 
be realized for improved probability of detection and reduced false alarm rates while 
increasing operational speeds. 
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3 Sensor technologies 
Extensive experiments have been conducted using a large number of sensors [2]. Even so, 
some domains of variability have not been explored both from a phenomenology point of 
view and from a scene variability point of view including seasonal variations. There are 
several phenomena that have not yet been explored. The sensor equipments being used in 
the field trials are shown in the tables I and II. Missing domains are also indicated and 
serious shortcomings noted (0). 

Table I. Passive optical sensors. SC – Single spectral channel, MS – Multispectral, HS – Hyperspectral, P – Polarimetric, X 

– Tested in field trial, x – Tested in laboratory, 0 – Still to be tested. 

Spectral region SC MS HS P 
VNIR  X X  
SWIR  X X  
MWIR  X  0 
LWIR X 0 0 0 

 

Polarimetric imaging in the MWIR and LWIR has been shown to contribute to the char-
acteristics of mine surfaces. There is however still a need to find out to what extent this 
information is adding critical information with respect to other characteristics. 

Table II. Active optical sensors. 3-D – laser radar, Illumination – active illumination, P – Polarimetric, X – Tested in field trial, 

x – Tested in laboratory, 0 – Still to be tested. 

Spectral region 3-D Illumination P 
VNIR  X 0 
SWIR X X x 
MWIR    
LWIR    

 

Hyperspectral sensors collect data in many contiguous spectral bands, often of the order of 
several hundred. Spectral information improves on the discrimination capability with 
respect to background clutter and also supports signature based detection and classifica-
tion. Signal processing in real time enhances the operational capability of these systems. 
Dedicated parallel processing is needed in order to reduce the delay in making the infor-
mation available. 

Multispectral sensor systems could potentially produce useful capabilities by careful 
selection of the spectral bands with respect to both target and clutter characteristics. The 
advantage with multispectral systems stems from larger coverage capability and also the 
possibility to incorporate micro-polarisers directly on the focal plane array. In the long 
wave thermal infrared spectral region, filters could be selected to emphasize variations in 
emissivity together with the polarimetric characteristics. This has applications in e.g. 
disturbed soil detection. 

Hyperspectral sensor systems have proven very effective in automatic target detection, 
especially in the visible and near infrared spectral region. For night operations, illumi-
nation is needed with a broad band source. The performance of such systems compares 
quite favourably with the daylight systems due to reduced shadowing effects but they do 
have substantially increased power requirements. 

There is a fundamental difference in polarisation exploitation of passive sensor data com-
pared to active sensor data. Passive polarimetric imagery is of greatest interest in the ther-
mal infrared and for object surfaces being monitored close to Brewster angle. For this 
angle, the degree of polarisation will be larger than for natural background. In active 
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imagery, the depolarisation of the polarised illumination of the scene is being studied. 
There will be a difference in depolarisation depending on the ratio between surface scat-
tering and bulk multiple scattering. This can be exploited for target/background contrast 
enhancement. 

High spatial resolution data, both two-dimensional and three-dimensional, can be used for 
target recognition. In order to reduce the amount of data that has to be processed, multi- 
and/or hyperspectral sensors are used for cuing. 

The detection approach depends on how the mines are being deployed. Detection of e.g. 
buried antipersonnel mines (APM) is one of the greater challenges. They are made of non-
metallic materials and much smaller than the antitank mines. There are different types of 
APMs with variations in the killing mechanism. Blasting mines are usually buried under-
ground but some are scattered from airplanes or dispersed in rivers. Bounding fragmen-
tation mines are larger and can be buried or placed on surface. When activated, they 
bounce up and detonate causing harm at a greater distance. Directional fragmentation 
mines are mostly deployed on the surface. The lethal range can be over 200 m. 

Different types of mines will most likely require different types of feature extraction for 
detection and classification. It is therefore of interest to come up with a mine taxonomy 
that serves the purpose of both indicating the type of mine and the possible features avail-
able for detection. 
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4 Phenomenology 
The climate change problem has resulted in increased research in the solar irradiance 
budget components. Much information on a global scale has been obtained from satellite 
observations. Models has been developed that accounts for both direct and diffuse spectral 
components in the 0.2-4.0 μm region. For anomaly detection, shadowing effects pose a 
serious problem. Diffuse illumination due to clouds can be beneficial for the sensor perfor-
mance due to the lower scene contrast. System availability is limited by the amount of 
daylight, which varies with latitude and time of the year. Active illumination is resulting in 
very little shadowing but puts high demands on illumination uniformity and irradiance 
levels. 

Multispectral- and hyperspectral imaging has proven powerful in anomaly detection of 
objects in a cluttered background. Active illumination has been shown to produce viable 
results. Combining illumination with controlled polarisation properties with a polarimetric 
sensor has the potential to enhance the target/background contrast and improve on detec-
tion probabilities of low contrast targets. The coherence property of the illuminator is still 
a subject of concern. Illuminating the scene with a coherent source can lead to substantial 
decrease of the image quality due to speckle noise. 

The spectral properties of mines and potential clutter in the thermal infrared region have 
not been studied well enough in order to be evaluated. Using hyperspectral sensors in this 
spectral region permits the separation of temperature and emissivity. The emissivity of 
man made objects and clutter varies slowly with wavelength in this spectral region and 
could potentially be used for mine detection with day/night capability. Especially vegeta-
tion has a spectral signature that deviate from e.g. painted surfaces. The influence from the 
atmosphere, especially due to the variability in water vapour content, can be considerable. 
It has been shown however, that this influence can be taken care of using scene data and 
detailed atmospheric models [3]. These phenomena should be further studied in order to 
evaluate the potential night capability. 

The performance of thermal imagers is sometimes limited by the small thermal contrast 
between target and background. In polarimetric imaging, the difference in polarisation of 
the emitted radiation between the target and the background is detected. Polarimetric data 
depends on the target surface properties and its orientation and depends minimally on the 
temperature [4]. Natural background such as grass, sand or gravel emits and reflects radia-
tion that is less polarised. 

4.1 Solar irradiance and atmospheric effects 

The illumination of the ground depends on the solar zenith angle. The solar zenith angle is 
the angle from the zenith to the solar position in the sky. The zenith angle depends on 
latitude, solar declination angle and time of day. The solar declination angle depends on 
the time of the year. The zenith angle is given by 

 ( )Hcoscoscossinsincos 1 δδθ Φ+Φ= −  (1) 

where Φ is the latitude, δ is the solar declination angle and H is the angle of radiation due 
to the time of day. Time is given in solar time as the hour of the day from midnight. The 
parameter H is given by 

 ( )12
180

15 −= TimeH
π

 [rad] (2) 

The solar declination angles for the northern hemisphere is derived from the following fix 
points: 
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- Vernal Equinox Mar. 21/22 δ=0° 
- Summer Solstice Jun. 21/22 δ=23.5° 
- Autumnal Equinox Sept. 21/22 δ=0° 
- Winter Solstice Dec. 21/22 δ=-23.5° 

 

The solar declination angle can be approximated by 

 ⎟
⎠
⎞

⎜
⎝
⎛ +−=

180365

10
cos

180

5.23 ππδ day
 [rad] (3) 

 
 

 

Fig. 1. The availability of optical systems relying on reflected solar radiation increases as shown towards midsummer for a 

latitude of 60 degrees. The sun is always below 10 degrees elevation during almost three winter months. 

4.1.1 Atmospheric transmission 

The atmosphere alters the spectral irradiance at earth’s surface significantly. The spectral 

transmission, ( )λτ down , is governed by both molecular absorption and aerosol scattering. A 

typical transmission spectrum is shown in figure 2 for the elevation angles 30 and 60 
degrees. The absorption bands of water vapour and carbon dioxide are pronounced. The 
decrease in transmittance in the short wavelength spectral region is due to Rayleigh scat-
tering from air molecules with a λ-4 dependence on wavelength. With aerosols present, 
Mie scattering is also affecting the transmission. For large particles, this scattering is 
wavelength independent. For particle sizes in the range λ /π and 2 λ /π, there is a wave-
length dependence that is less than that of Rayleigh scattering. Attenuation in a real 
atmosphere is of course due to a combination of molecular absorption, Mie and Rayleigh 
scattering and particle absorption. 
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Fig. 2. Transmittance of the atmosphere as calculated by the code MODTRAN. The solar elevation angles are between 10 

and 50 degrees or zenith angles between 40 and 80 degrees. The absorption bands are primarily due to water vapour and 

carbon dioxide. The atmospheric model is “subarctic summer” and a “visibility” of 23 km is assumed. 

4.1.2 Solar irradiance as a function of solar elevation 

The solar irradiance is given by 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )θλλτλ

θλλτλ

CosEE

CosdLE

sundownsun

sunsundownsun

0=

Ω=
 (4/5) 

where ( )λτ down  is the solar path atmospheric transmittance and θ is the angle between the 

surface normal and the direction of incidence of the irradiance. The atmospheric transmis-
sion depends on the solar elevation. The spectral solar irradiance at ground level is illus-
trated in figure 3 for three elevation angles, 10, 30 and 50 degrees respectively. 
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b) 

Fig. 3. Solar irradiance in the visible, near infrared and short wave infrared at ground level for elevation angles between 10, 

30 and 50 degrees or zenith angles 40, 60 and 80 degrees where figure a) is for a surface perpendicular to the irradiance 

and b) is for a surface with normal in nadir direction. 
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4.2 Bidirectional reflectance distribution function 

The surface characteristics of painted objects such as mines and mine-like objects deviate 
substantially from natural background. The deferens can be observed both with respect to 
spectral properties, surface scattering properties and with respect to effects on the state of 
polarisation. It is therefore important to characterise surfaces of interest and build a rele-
vant material database. The bidirectional reflectance distribution function (BRDF) is a 4-
dimensional function that defines how radiation is reflected at a surface and is used to 
characterize the surfaces. 

 

Fig. 4. Definition of angles in connection to BRDF measurements. 

When determining the scattering properties of a surface, an area large compared to the 
wavelength but still small enough to be considered to be homogeneous must be selected. 
Illumination is within a solid angle Ωi that can be small for collimated illumination or 
cover the whole hemisphere 2π sr. The zenith angle is denoted θi and the azimuth angle is 
denoted φi. For an isotropic material, the scattering properties depend only on the differ-
ence in the azimuth between incoming and reflected radiation. Therefore, the centre of the 
irradiance azimuth, φio , is conveniently set to -π rad. 

The irradiance E at the surface is given by 

 ( ) ( ) ( )∫ ∫=
π

π

φθθθφθ
2

0

2

0

sincos, ddLE i  , (6) 

where Li(θ, φ) describes the angular variation of the incident radiation. BRDF is defined 
by the relation 

 ( ) ( ) ( ) ( ) ( ) iiiiiiirriirrr ddLL φθθθφθφθφθρφθ
π

π

sincos,,,,,
2

0

2

0
∫ ∫=  , (7) 

where ( )rrii φθφθρ ,,,  depends on both the angle of incidence and the angle of reflection. 

This interdependency can be very complex and does not always have an analytical solu-
tion. Emissivity is given by Kirchhoff’s law 

 ( ) ( ) ( ) ( ) iiiirriirr dd φθθθφθφθρφθε
π

π

sincos,,,1,
2

0

2

0
∫ ∫−= . (8) 

y 

z 

øi 

ør 

θi 

θr 

dωi 

dωr 

x 
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In accordance to the Helmholtz reciprocity theorem, we have 

 ( ) ( )iirrrrii φθφθρφθφθρ ,,,,,, = . (9) 

4.2.1 BRDF models for reflective surface and diffuse surface 

In the thermal infrared spectral region, scattering from painted and metallic objects is 
mainly from the surface. In the visual spectral region substantial part of the scattering can 
be attributed to the bulk material. It is therefore natural to specifically consider two 
extreme surfaces, i.e. the perfectly reflecting surface (mirror) and the perfectly diffuse 
surface (Lambertian). 

For a perfectly reflecting surface the following relation is valid 

 ( ) ( ) ( ) ( )
( ) ( )rr

irir
iMrriiMIRROR θθ

πφφδθθδθρφθφθρ
sincos

,,,
−−−=  [sr-1]  , (10) 

where ( )iM θρ  can be polarisation dependent.  

For a perfectly diffuse surface, the angular dependence of the BRDF is given by 

 
π

ρρ 1
DDIFFUSE =  [sr-1]. (11) 

4.3 Radiometry 

The spectral regions used for reconnaissance and surveillance are dictated by the atmo-
spheric “windows” where the atmosphere is transparent. Between these “windows”, gas 
molecules are absorbing the radiation, primarily due to water vapour and carbon dioxide. 
In the visible and near infrared spectral region, the radiation is dominated by reflected 
solar radiation, while in the thermal infrared spectral region, the radiation is dominated by 
the thermal radiation from the object itself. The spectral regions are summarized in table 
III. 

Table III. Primary spectral regions used in optical sensing. Small variations in the values of spectral boundaries can be 

found in different references. 

Name Wavelength range Radiation source Surface property of 
interest 

Visible (V) 0.4-0.7 μm Solar Reflectance 
Near InfraRed 

(NIR) 
0.7-1.1 μm Solar Reflectance 

Short Wave 
InfraRed (SWIR) 

1.1-2.5 μm Solar Reflectance 

Mid Wave InfraRed 
(MWIR) 

3-5 μm Solar  
Thermal 

Reflectance 
Emissivity 

Temperature 
Long Wave 

InfraRed (LWIR) 
8-14 μm Thermal Emissivity 

Temperature 
 

Spectral regions are sometimes further divided due to the finer details of the atmospheric 
transmission properties. E.g. the SWIR region is subdivided into 1.1-1.35, 1.4-1.8 and 2-
2.5 μm regions. The MWIR 3-5 μm region is sometimes subdivided into 3-4 and 4.5-5 μm 
regions and the LWIR region is divided into 8-9.5 and 10-14 μm regions. 

Passive sensors in the VNIR and SWIR spectral region rely on solar illumination and are 
therefore daylight sensors. The spectral signatures of targets and background in these 
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solar-reflective spectral regions are therefore defined by the reflectance as a function of 
wavelength. In the thermal spectral regions, the spectral signature is defined by the wave-
length dependent emissivity. 

The spectral radiance at the sensor is given by three main contributions. The most impor-
tant contributions are the reflected downwelling irradiance at the object surface and the 
surface emitted radiance. Important contributions to the radiation level originate from 
radiation scattered by the atmosphere and from emitted upwelling radiance. 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )λλλρλτλλελτλ upsunatmbbatmsensor LETLL ++= ,  (12) 

where the spectral radiance of a blackbody source Lbb is given by 

 ( )

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

=

1

2
,

5

2

Tk

hcbb

e

ch
TL

λλ

λ   [W m-2 sr-1 m-1]  , (13) 

and where it is assumed that the relation 

 ( ) ( )( )λελρ −= 1  (14) 

is true. 

h = Planck´s constant 
c = Speed of light 
k = Boltzmann´s constant 
L(λ) = Spectral radiance 
Lbb = Blackbody radiation 
Ldown = Solar, sky and atmospheric downwelling radiance 
Lup = Scattered solar and atmospheric upwelling radiance 
ε( λ) = Emissivity 
ρ( λ) = Bidirectional reflection distribution function 

The various components can be calculated using the radiative transfer code MODTRAN.  
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5 Spectral signatures 

5.1 Surface land mines and occluded land mines 

Surface mines can be detected at some stand-off range. Both surface scattering properties 
and thermal behaviour is often quite different from the surrounding. Solar heated mines 
therefore often exhibit high contrast to the background. Knowledge of the sun elevation 
and the impact of weather conditions should be used in predicting sensor performance. 
The shape of the mine can also support in the classification process. This contrast is not 
affected by e.g. camouflage paint in the VNIR spectral region. 

The spectral property of mines is often quite distinct compared to soil and vegetation. 
Hyperspectral detection is therefore a powerful tool for mine discrimination. If the mine is 
spatially resolved, a small region exhibiting a spectral anomaly is observed. The polari-
metric properties can also be exploited at relatively low observation angles since material 
like grass in contrast to flat surfaces tend to have random polarisation. Unfortunately, 
mines can be obscured by vegetation at those angles. 

Active illumination is of interest when solar illumination is insufficient. The polarimetric 
issues are here quite different from the passive situation since the illumination is polarised 
and flat surfaces observed even at nadir will not depolarise the radiation, while grass tend 
to depolarise the radiation. 

5.1.1 Reflectivity and emissivity 

An example of reflectance spectra of both natural background (grass) and man-made 
surfaces (green paint) is shown in figure 5. Even if the paint can appear quite similar to the 
background to the eye, the detailed reflectance spectra can deviate quite substantially. In 
this example, increased reflectance in the near infrared is introduced in order to simulate 
the decreasing chlorophyll absorption in this spectral region. Mines routinely do not 
exhibit this feature and will therefore show increased contrast in this spectral region. 
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Fig. 5. Reflectance spectrum of grass (green), light green paint (blue) and dark green paint (purple). 
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More spectral features of the spectral radiance from objects in the visible and near infrared 
region is added due to atmospheric filtering. Examples of this filtering effect are shown in 
figure 6. 
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Fig. 6. Spectral radiance from grass (green), light green paint (blue) and dark green paint (purple) illuminated by sun at a 

zenith angle of 40 degrees. 

When the spectral responsivity of the imaging hyperspectral instrument is added, the result 
of figure 7 is obtained. 
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Fig. 7. Calculated signal from grass background (green), light green target (blue) and dark green target (purple) illuminated 

at a solar zenith angle of 40 degrees. 
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5.2 Buried land mines and disturbed soil 

Buried antipersonnel mines are especially challenging. Thermal detection using passive 
sensors relies on the heating of the soil by the solar irradiance. The increase in surface 
temperature depends on the detailed properties of the soil such as density, moisture 
content, surface roughness, wind etc. These properties can be changed if the soil is dis-
turbed by e.g. a buried mine. The diurnal solar heating and cooling tends to affect the 
disturbed soil differently compared to the surrounding soil. Since the mine is a better 
thermal insulator than the soil, this will create a measurable temperature difference that 
can be detected. During daytime solar load the thin layer of soil on top of the mine tends to 
be at higher temperature than the surrounding soil due to the fact that the mine is impeding 
the transport of energy to lower levels compared to the neighbouring soil. Conversely, the 
thin layer of soil over the mine tends to cool off more rapidly than the surrounding soil in 
the evening. In between these events, there will be a moment when the temperature above 
the mine and the surrounding will have the same temperature. If the top surface is not dis-
turbed and the emissivity changed, the mine can not be detected at those moments. Since 
the temperature of the disturbed soil has a different time dependency than the homoge-
neous soil, time sequences can improve on the detection probability. Selecting the right 
time and the right weather conditions for monitoring an area is therefore crucial for 
thermal detection of buried mines. This is called dynamic thermography. Multispectral 
thermal imaging can improve on the performance with respect to temperature/emissivity 
separation (TES) preventing drop-out at no temperature contrast. Polarisation effects in the 
disturbed surface compared to the surrounding might also improve the detection capabi-
lity. 

The mine tends also to prevent the water to drain away during rain and to dry out more 
efficiently otherwise. This is causing a change in the surface particle composition of the 
surface and increased stress on the vegetation. This can be clearly visible and detected 
using e.g. hyperspectral sensors, possibly in combination with a polarimetric sensor. 
Under unfavourable illumination, active polarimetric systems can be used for increased 
contrast at close range. 
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6 Signal processing considerations 
In this chapter we will consider a target discrimination system (figure 8) which measures 
target and background features. Spatial properties are not considered here. The target 
position is unknown. Statistical expectations may however be known or assumed and thus 
the occurrence is described by the stochastic variable },{ tbX ∈  (b for background and t 

for target) with probability distribution )(xpX . 

The exact properties of the scene where measurement is taken place is not known but the 
statistical properties may be known or assumed and is described by the stochastic variable 

Z with conditional probability distribution )|(| xzp XZ . The radiation from the scene includ-

ing the targets is represented by the stochastic variable Z. 

The sensor system has both random and deterministic properties and is described by the 

stochastic variable Y with the conditional probability distribution )|(| zyp ZY . 

The detection algorithm is a deterministic function denoted )(yg whose goal is to make a 

decision based on the sensor system output on whether a target is present or not with as 
low error probability as possible. We will consider the relation between the sensor system 
output represented by the stochastic variable Y and the occurrence of a target represented 
by the stochastic variable X. 

 

Fig. 8. A model of a target discrimination system from a signal processing point of view. 

In this chapter we will only consider the relation between the sensor system output and the 
occurrence of a target, thus we will only consider the conditional probability distribution 

 )|()|()|( ||| xzpzypxyp XZZYXY = . (15) 

6.1 Receiver operating characteristics 

Suppose that a signal or some feature measure, represented by the stochastic variable 

ℜ∈X  with probability distribution )(xpX , has to be detected in a clutter background. 

The signal distribution depends on whether the target is present or not. When the target is 
present, the signal mean will be μ1 and when the target is absent, the mean will be μ0. 
Assume for the moment that the probability distributions are normal with different means 
but the same variance, i.e. p(x|ωi)~N(μ i,σ2). 

The detector will apply a detection threshold, xth, in order to determine if the target is pre-
sent or not. How well the target can be discriminated depends on the separation between 
the two distributions and the size of the variance. By varying the threshold, detection pro-
babilities can be studied as a function of false alarm rates. In the same time, some targets 
will be missed and some clutter will be correctly rejected. The following probabilities 
could be considered: 

P(x> xth | x∈ω1): detection probability with target present 
P(x> xth | x∈ω0): false alarm probability with target absent 
P(x< xth | x∈ω1): missing probability with target present 
P(x< xth | x∈ω0): correct rejection probability with target absent 
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X Y X
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where 

 ( ) ( )dxxpXxXP
thx

th 11 ωω |=∈|> ∫
∞

 (16) 

and p(x|ω0) is the corresponding probability density. This is illustrated in figure 9. 

 

 

Fig. 9. Probability distribution for a normal distributed signal without and with the target present. The blue shaded area 

represents the area above threshold. 

These probability distributions can be determined from experiments. If the probability 
distribution is stationary, the detection probability can be determined as a function of the 
change in false alarm rate. Plotting the detection probability as a function of false alarm 
rate is called a receiver operating characteristic (ROC) curve, see figure 10. 

The ROC curve allows the study of discrimination capability as a function of decision 
bias. This is very useful since the target can be better characterized than background clut-
ter. The variability in background clutter brings with it variability in false alarm rate. In 
order to obtain a constant false alarm rate (CFAR), which is highly desirable, the threshold 
has to be adaptable. 

In the present applications, the feature measure X is a vector which assumes only discrete 
values {v1,…,vm}. The values do not belong to an ordered set and hence the decision 

threshold is replaced by a decision set thν  which consists of all vectors considered to origi-

nate from a measurement on a target. The corresponding probability is now calculated by 
the corresponding sum, e.g. 

 ( ) ( )∑
∈

|=∈|∈
thvx

th xpXvXP 11 ωω . (17) 

where PD = P(X∈vth |X∈ω1) now is the fraction of the specific target being detected. The 
probability to detect a number of different targets has to be further elaborated since the 
nature of features, ωi, will vary with the type of target. At present, the different targets are 
mainly treated individually. Similar targets might be possible to order into classes where 
each class will have a unique set-up of features. 

xth 
ω0 

ω1 
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Fig. 10. Receiver operating characteristic curve (ROC). The parameter PD is the target detection probability given by PD= 

P(X> xth | X∈ω1). The false alarm rate (FAR) probability is given by PFA= P(X> xth | X∈ω0). 

The features present in the scene, targets and background, defines the feature total space 
ωscene={v1,…,vm}. The target feature space consists of a small part of this feature space, or 
ωtarget={v1,…,vl}. Assuming that targets are rare, the background feature space will be 
close to the total scene feature space but might deviate by some unique target features or 
ωbackground={vk,…,vm}. Compared to the scene feature space, the following grouping 
applies: 

ωscene={v1,…,vk, …, vl ,…, vm } 
ωbackground={ vk, …, vl ,…, vm } 
ωtarget={v1,…,vk, …, vl } 

where the feature space { vk, …, vl } will be common to both the background and the target 
and constitutes a region where false alarms are present. The feature space {v1,…,vk-1 } 
constitutes a region where the target can be detected without any false alarms. 

The statistical distribution does not have to be a normal distribution as in the continuous 
example given above but could have any distribution. In order to build an optimal ROC 
curve from a general distribution, the features should be sorted in descending order with 

respect to )|(/)|( 01 ωω xpxp . If the new reordered feature space is given by 

ωtarget={u1,…,uk, …, ul }, the detection probability is obtained by summing partial 
detection probabilities as a function of the corresponding summed false alarm 
probabilities, i.e. 
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This is illustrated in figure 11. 

The false alarm rate is here scaled to a probability per pixel where the scene constitutes the 
total number of pixels. The scene will cover a specific area why the false alarm rate also 
can be interpreted as a false alarm rate per unit area. This is of interest when using this 
information for estimating sensor performance. 
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Fig. 11. ROC curve for a target in background clutter. 

In a multidimensional feature space where the detection probability depends on a specific 
detection algorithm, it is not possible to know if the optimal ROC is approached. In prac-
tise improvements in operating characteristics is studied by varying feature approaches 
and varying the threshold. It is therefore desirable to find algorithm independent 
approaches. 

6.2 Mutual information 

The problem of optimizing multi-sensor performance and the difficulty to define metrics 
for performance assessments from the characteristics of detection algorithms has motiva-
ted the development of processing techniques based on information theory [5]. 
Information theory can, besides estimation of optimal detection performance, also be used 
for classification and identification feature extraction and for data registration. For an 
objective estimate of performance, the ideal information must be known such as target and 
clutter characteristics. The method is therefore useful in situations where substantial in situ 
information is available, e.g. object positions and other object characteristics. Using infor-
mation theory, the mutual information of the fused data can be compared to the 
corresponding information of the separate sources. 

Here, information theory will be applied to the spectral imaging of objects and clutter. The 
amount of mutual information between the source data and the fused data will be studied 
as a function of dynamic range and the interrelated spectral band selection. The method as 
used here is requiring detailed masks for both targets and other man-made objects. Other 
parts of the data will be considered to be genuine clutter. Conclusions from results are 
therefore only valid with respect to the detailed scenario given. Generalisations have to be 
made with caution and be based on modelling and simulations. 

First, what is meant by spectral information has to be defined. Here, a new approach is 
being adopted, where the spectral reflectance of an object is characterising the object while 
the sensor information also is depending on illumination, atmospheric transmission and 
scattering, spectral responsivity and spatial resolution. In this way, the spectral information 
of the target varies with the number of pixels on target. The information of spectral clutter 
varies similarly. Practically, the number of measured spectral features on target varies with 
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the dynamic range of the measurement and the number of pixels on target. Each spectral 
feature is considered as being a discrete random variable. 

Suppose targets and background clutter occurs randomly in the scene. How much infor-
mation about what is present in a specific position (features X with values from the set 
{t,b} for target and background) is obtained at a sensor level (features Y with values from 
the set that is output from the sensor). The conditional probability is P(Y|X). Equivalently, 
the conditional probability that X is present given the sensor information Y is given by 
P(Y|X). The quantity of information for events A and B according to Shannon is given by 

 ( ) ( )
( )BP

BAP
BAI

|≡ 2log;  (20) 

and the expected value over all outcomes of the stochastic variables X and Y is given by 

 ( ) ( )
( )xp

yxp
yxpYXI

x y

|=∑∑ 2log),(;  (21) 

where the unit for I is the “bit.” 

Observed spectral features, A={yi}, are first obtained for both the known target area 

(At={yit}) and the background area (Ab={yib}). Further bttb AAA ∩= . There is likely to be 

common information between At and Ab. To the features A, there will be connected a 
probability for observing that feature in the target area, Pi,t , and/or in the background area, 
Pi,b where i stands for feature number and t,b stands for target or background. For all Pi,t 
where the corresponding probability Pi,b is zero, there will not be any uncertainty whether 
target or background is present, i.e. P(A|B)=1. These features will not contribute to the 
mutual information since log(1)=0. Only those features that are present both in the target 
area and in the background area will contribute to the mutual information between target 
and background. For the present problem,  

 I(X;Y)=H(X)-H(X|Y) (22) 
where H(X) is constant and given by 

 ( ) ∑−=
x

xpxpXH )(log)( . (23) 

and for a binary variable X with probabilities p and 1-p. 

 H(X) = –p log(p) – (1-p) log(1-p). (24) 
The conditional entropy H(X|Y) is now given by 

 ( ) ∑ ==|
y

yYXHypYXH )|()(  (25) 

and  

 ( ) ∑−==|
x

yxpyxpyYXH )|(log)|(  (26) 

which gives 

 ( ) ∑∑
∈

−=|
xAy

yxpyxpypYXH
tb

)|(log)|()(  (27) 

where the summation is over non-zero elements, i.e. feature elements common to both the 
target and the background area.  

The mutual information is 

 ( ) ∑∑
∈

+=
xAy

yxpyxpypXHYXI
tb

)|(log)|()()(; . (28) 

The detector is a function which takes observed spectral features as input and determines if 
the measurement most likely comes from a target or from the background, i. e. each 
possible observed feature is assigned to the output target or background. For each possible 
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sensor output the detector has to make a choice whether it believes that the output comes 
from a measurement on the target or on the background.  

The total false alarm probability is given by 

 ( )∑
∈

|=
tbAy

YXYFA ybpypP |)(  (29) 

or 

 ( )∑
∈

|=
tbAy

XXYFA bpbypP )(| . (30) 

P(Ab|At)=0 means target detection without any false alarms and P(Ab|At)=1 means an 
indiscriminate detector with 100 % false alarms. The corresponding target detection 
probability is given by 

 ∑
∈

=
tAy

YXD ytpypP )|()( |  (31) 

and P(At)=1 by definition. The optimal receiver operating characteristics (ROC) can be 
obtained by sorting the relation Pit/Pib in descending order and Pjt and Pjb are now the 
same probabilities but now sorted in this canonical order. The ROC curve is now obtained 
by plotting the cumulative detection probability, PD(Act) against the cumulative false alarm 
rate PFA(Acb) where 
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 (32/33) 

and nc is the number of features above threshold. The ROC curve can be used for 
estimating optimal sensor performance and to estimate performance gain or loss as a 
function of sensor parameters. 

It is common to normalize the spectrum before running detection algorithms, i.e. z=x*y 
where x is the normalized spectrum and y is a scalar intensity. This can be done with limi-
ted loss of information, provided the spectral shape and spectral intensity are independent 
and the information in the intensity is very low or P(z)=P(x)*P(y) and H(P(y))=0. This 
might be reasonable for hyperspectral sensors but is becoming less accurate with decreas-
ing number of spectral bands. For a single band, all information is of course in the 
intensity. A less stringent requirement is that the two probability distributions are indepen-
dent with the two limiting cases, P(z)≈P(x) for hyperspectral data and P(z)≈P(y) for 
monochromatic data. The advantage using this separation is that objects with similar 
spectral shape but different intensities can be obtained within the same feature. The 
intensity contains information on e.g. variations in illumination. Data will however no 
longer be whitened after normalization. It is not clear that anything is gained from this 
separation compared to post-processing the results using the original data. 

The ROC approach can be used for assessing the variation in performance with respect to 
variations in the number of spectral bands, the spectral width and extension to other sen-
sors that can be co-registered. Several criteria are in use as a measure of performance. The 
FAR can be noted at a detection level of a specific percentage of the target. The area under 
the ROC curve is another measure of the performance. How these measures can be inter-
preted as a general target detection probability requires further information on target 
variability and clutter in the specific scene. 
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7 Preliminary signal processing results 
Robust detection of mines and minefields is a challenge. There are many different types of 
anomaly detection algorithms that can be applied. The performance of the algorithm 
depends not only on the algorithm itself but also on the detailed feature characteristics of 
targets and clutter. The algorithms being applied will not be detailed here but the results 
presented will be indicative to what can be achieved. 

The first scenario to be studied is a grass field with a set of mines and man-made clutter 
situated on the FOI premises. The observed area is 4.8×5.3 m2 (25 m2). A false alarm rate 
of 10-3 corresponds to 0.025 m2 per 25 m2 area or 0.001 m2 per 1 m2.The ground truth is 
shown in figure 12. 

 

Fig. 12. Targets in the grass area outside the FOI building. 

7.1 Hyperspectral sensor in VNIR 

Anomaly detection is first shown using the VNIR data. The 17 first detections are presen-
ted in fig. 13. Of these objects, two are not identified and two are tentatively identified. 
Further improvements can be obtained by clustering the anomalies and disregarding 
clusters associated with the background. 

 

Fig. 13. Results from nearest neighbour anomaly detection using hyperspectral data in the visible and near infrared spectral 

region. Observed anomalies are subsequently clustered and the result colour coded. 
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Using only anomaly detections, an estimate of the sensor capability with respect to detec-
ting individual mines can be performed. The detailed ROC curve depends on which 
objects are being considered as targets and which are considered to be clutter. Here, all 
man-made objects are masked as targets leaving the variability in the grass field as clutter. 
This is reasonable since all objects that are not natural in a specific environment must be 
considered to be an anomaly. The result is also depending on what is the estimated largest 
object of interest. 
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Fig. 14. ROC curves for the four largest mines in the grass field using anomaly detection. 

 

 

Fig. 15. The spectral content of mine-like objects spectrally similar to TMA-1 are enhanced. 

Spectral similarities between objects can be studied by using the spectral features of a 
known object with a given dynamic range and compare which objects that correlate with 
this set of features. This gives the optimal separability at this specific dynamic range. An 
example is given in figure 15 where the spectral properties of TMA-1 are being used. 
Already at 4 bits of dynamic range, the separability is very good. 
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In a new test, 25 objects where detected and ordered in decreasing likelihood. The result is 
shown in figure 16. Knowing in which order the detections are obtained and which ones 
that corresponds to an identified object, a ROC curve can subsequently be constructed. 
The ROC curve for this case is shown in figure 17. 

 

Fig. 16. Detection using nearest neighbourhood detector is shown. Anomalies are clustered but that information is not used 

in the detection process. 
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Fig. 17. Very few false alarms are obtained for this case with a simple grass background. 

It is interesting to find out how the different targets correlate spectrally. For correlations 
larger than 0.9, the result for the 25 targets is colour coded and shown in figure 18. Useful 
results can be obtained even when the dynamic range is reduced to 3 bits, see figure 19. 
This indicates that spectral information, even when the dynamic range is very low, can 
contain information useful for discrimination. 
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Fig. 18. Correlations between spectral anomalies are shown with 90 % correlation or higher. 
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Fig. 19. Detection at 3 bits dynamic range. The targets are the four largest ones, TMA-1, TMA-5, AT-47b and TRMP-6. 

Note that the FAR scale is different from figure 14. 

It might be that reduced scale to a certain extent favours the target to background discrimi-
nation capability due to the texture scales. If the background texture contains finer details 
than for the targets, averaging will reduce the spectral variability in the background faster 
than the corresponding reduction on target. Increasing the dynamic range to 5 bits and 
reducing the spatial resolution by binning 4×4 pixels gives the result shown in figure 20. 
Further reduction in dynamic range results in less useful results. 
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Fig. 20. ROC curve at 5 bits dynamic range and binning by 4×4 pixels. The performance is similar to the previous case with 

no spatial binning and 3 bits dynamic range. 

Even when the scene is compressed by 8×8 blocks, useful results can still be observed. At 
this reduced scale and at 5 bits dynamic range, the results shown in figure 21 is obtained. 
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Fig. 21. Reduced performance at 8×8 block averaging and 5 bits dynamic range. 

Results when reducing the number of spectral bands is so far inconclusive. This might 
depend on the larger variability in man-made objects compared to earlier results for 
camouflaged objects. Further studies are needed in order to find out if multispectral 
systems with acceptable performance can be designed. 

Measurements of mines in backgrounds of varying complexity were performed during the 
fall under quite unfavourable conditions. The light levels were low with substantial 
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shadowing. A test of hyperspectral anomaly detection was carried through. The scene is 
shown in figure 22. 

 

Fig. 22. The grass scene at Eksjö with objects identified in the scene (red points) and other known objects with estimated 

positions (white points). 

The result of the spectral anomaly detector is shown in figure 23 after spectral clustering. 
The green colour shows object with mine-like characteristics. The results are encouraging 
also under these very constrained conditions. 

 

Fig. 23. Anomaly detection and clustering using the scene in figure 22. 

Seven of the identified objects were selected for a ROC analysis. Surprisingly good results 
are obtained, see figure 24. In this situation, active illumination might still further improve 
on the false alarm reduction. 

The ROC curve can generally be further improved by clustering anomalies and invoking a 
target size dependent detection algorithm. The improvement is shown in figure 25. 
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Fig. 24. ROC curves for targets 1 to 7 with 34 bands and 4 bits. 
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Fig. 25. ROC curves for the same targets as in figure 24 after anomaly clustering. 

7.2 Multispectral sensor in SWIR/MWIR 

The multispectral camera in the short wave and mid wave infrared spectral region has a 
rather narrow field of view and high spatial resolution. Anomaly detection is shown using 
the SWIR/MWIR data from the same mine field as above. First a picture showing mines 
from parts of the grass area. 
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Fig. 26. False colour presentation of parts of the scene using both SWIR and MWIR data. 

The anomaly ROC curve is shown in figure 27 for the mine indicated in figure 26. At this 
spatial resolution, the FAR is very low. 
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Fig. 27. ROC curve for the mine indicated in the previous figure using full dynamic range anomaly detection. 

Clustering the spectral content of the mine under study, using three basis vectors at a 
dynamic range of 4 bits, results in the target discrimination shown in figure 28. The 
different colours also indicate which clusters that are present also on interfering objects. 
The corresponding optimal ROC curve at 4 bits dynamic range is shown in figure 29. 
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Fig. 28. The three first bases vectors for mine discrimination at 4 bits dynamic range is colour coded. 
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Fig. 29. ROC curve of the multispectral scene shown in figure 26 at a 4 bits dynamic range. 

7.3 Long wave thermal infrared sensor 

The thermodynamic mechanism of buried objects has previously been extensively 
modelled [6] and the favourable conditions for detection studied [7]. The thermal 
behaviour of surface lade objects has been studied in similar ways and the analysis is still 
progressing. Since the target signature relies on the thermal history, the results are very 
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weather dependant and detection can therefore not be made on demand. If the thermal 
history is recorded, improved detection probabilities can be obtained. An example of such 
a scene sequence is shown below. In figure 30, a sequence of three recordings is colour 
coded. Differences in colour are a manifestation of differences in thermal history. 

1

2 3 4 5

1

2 3 4 5

 

Fig. 30. Three images from three different times are used in order to illustrate the thermal variation. Mines 1 to 5 are 

discussed below. 

The 25 largest anomalies in figure 30 are detected and presented in figure 31. The anoma-
lies are clustered according to the thermal variations and these clusters are also presented 
in figure 31 using colour coded labels. 

 

Fig. 31. Detection of 25 objects in the thermal sequence illustrated in figure 30. Detection results has subsequently been 

clustered. 

The objects that can be identified in the scene are designated as targets just as before. The 
ROC curve for the combined sequence is shown in figure 32. 

The number of targets detected in the individual thermal images varies depending on the 
thermal contrast at that situation. It is therefore expected and also observed that the perfor-
mance using individual thermal images is lower than for the time sequence. An example is 
shown in figure 33. 

The five targets indicated in figure 30 were also studied for the three separate frames, here 
called 4, 17 and 34. The fraction of each mine being detected is shown as a function of 
false alarm rate. It can be seen that frame 17 shows the best performance. 
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There are many different types of detection algorithms available. Results from a simple 
Laplace detector is shown in figure 37. 
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Fig. 32. ROC curve for the thermal time sequence discussed above. The numbered targets are detected with three false 

alarms. 
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Fig. 33. Total number of targets being detected as a function of total number of false alarms. The result is consistent with 

the results above. 
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Fig. 34. Illustration of detection capability using frame number 4. Data 1 to 5 refers to mines 1 to 5 as numbered in figure 

30. 
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Fig. 35. Illustration of detection capability using frame number 17. 
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Fig. 36. Illustration of detection capability using frame number 34. 

ThermaCam 3000, 070509 12:30, laplace_adaptive, sigma=1.5, threshold=2

50 100 150 200

10

20

30

40

50

60

70

80

90

100

110

 

Fig. 37. Detection results using a Laplace detector with σ=1.5. 

7.4 White light illumination 

Preliminary results from active illumination and multispectral sensing in the visible and 
near infrared spectral region are quite encouraging. A flashlight was used as an illumi-
nator. The spectral bands of the sensor are not optimized for the purpose and further 
improvement can therefore be expected. An example of an image showing the grass field 
with mines at FOI is shown in figure 38. 
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Fig. 38. Multispectral image in the visible and near infrared spectral region. 

Nearest neighbour results are shown in figure 39 after clustering. The main objects are 
detected. 

 

Fig. 39. Anomaly detection after clustering. 

A ROC curve with rather high false alarm rate is shown in figure 40. There is, however, 
information available that could be potentially used for improved performance. This will 
be further discussed below. 

In order to illustrate the potential improvements that can be obtained using alternative pro-
cessing, an image using PCA analysis is shown in figure 41. This image contains the same 
information as in image 39. Anomaly detection using component 3 gives the result shown 
in figure 42.  

Results from applying a detection algorithm is shown in figure 43. Only the 25 strongest 
detections are shown with blue colour indicating strong signal and red indicating weak 
signal.  
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Fig. 40. ROC curve for a multispectral sensor and active illumination. 

 

 

Fig. 41. The image shows the PCA-components 3, 2 and 1 as RGB of the image shown in figure 39. 

The same scene was recorded in daylight at a later time. New objects have been added in 
between, why a direct comparison can not be made. At diffuse illumination, i.e. with a 
cloudy sky, the performance is quite similar to active illumination. At direct sunlight with 
sharp shadows, the performance degrades. The daylight scene is shown in figure 44. 

Anomaly detection using nearest neighbour is shown in figure 45 after clustering. Perfor-
mance seems to be better than at active illumination depending on a higher signal level.  

Active illumination should be further pursued in order to find out what illumination levels 
that are needed and what the influence of coherent illumination will be on detection proba-
bilities. 
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Fig. 42. Detection using the PCA component 3 is exhibiting very low false alarm rate. 

 

Fig. 43. Detection of 25 targets. Blue targets are detected first and red last. 

 

 

Fig. 44. Daylight scene with clouds using a multispectral camera in the visible and near infrared spectral region. 
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Fig. 45. Anomaly detection using the scene in figure 44. 
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8 Discussion and conclusions 
Hyperspectral imaging has proven to be a powerful technology for object detection and 
classification. Studies addressing the possibility to reduce the number of spectral channels 
in order to improve on performance should continue. The trade-off between performance 
and spatial resolution should also be further studied. This trade-off depends on the spectral 
variability of the targets versus the corresponding variability of the background clutter. 
Lower spatial resolution can be translated into larger coverage rate. The present under-
standing is that relatively high spatial resolution in combination with narrow band widths 
using hyperspectral imagers are needed for reliable detection. However, multispectral 
sensors might be possible to design, ones the spectral bands has been carefully selected. 

Hyperspectral imaging with day/night capability can be obtained using instrumentation in 
the thermal infrared spectral region. This technology is not yet well developed in Europe 
but a number of countries are now vigorously pushing the technology. There is a potential 
for low cost systems based on un-cooled imaging technology and interferometry. These 
possibilities should be further pursued. 

Sensors relying on the thermal history of objects can not be used on demand. We might 
have applications when a scene can be monitored over an extended time and where change 
detection could be of importance. Polarimetric sensing in the thermal infrared region is 
basically not dependent on the thermal history and can be used for detection. The benefit 
of this functionality has to be further studied. 

Active illumination is of great benefit due to the elimination of shadowing effects. The 
technologies for both coherent and incoherent illumination should be studied. Another 
benefit with active illumination is the control of the polarisation state of the illumination 
that can be exercised. Man made targets and background clutter exhibit very different 
depolarisation properties and registration of the polarisation state of the backscattered 
radiation should further improve on the detection and classification capabilities. 

Information theory should be applied to the measurements in order to obtain optimal ROC 
curves that are independent of detection algorithms. The ROC curves that are obtained by 
applying detection algorithms to the same scene can be compared to these optimal ROC 
curves. Information theory can also be used for comparing the performance of individual 
sensors and also for comparison of the mutual information between different sensors. It is 
important to characterize each individual sensor ahead of combining sensors, sometimes 
called sensor cueing and sensor fusion. 
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