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Sammanfattning

Nyckelord:

I praktiskt taget alla situationer där arrayer med element används, däribland
radar och sonar, är estimering av bäring och hastighet av ett m̊al som p̊a
n̊agot sätt genererar en signal ett av huvudintressena för spaningen. Andra
intressen är att filtrera signaler spatiellt och detektion av objekt. För att
f̊a ett bra estimat krävs en signal som är uppmätt p̊a ett sätt som passar
analysen i fr̊aga. Det här examensarbetet är gjort p̊a Totalförsvarets Forskn-
ingsinstitut, FOI. Målet är att implementera en fullt adaptiv space-time pro-
cessor och genom det f̊a insikt om sv̊arigheterna inom omr̊adet och försöka
förlara dessa. Tv̊a olika metoder för att behandla interferenskovariansmatrisen
beskrivs och utvärderas. Det visar sig att de adaptiva processorerna är klart
bättre än den konventionella processen för analys av signaler, dock till priset
av hög beräkningskomplexitet. Många förbättringar återst̊ar att göra och hu-
vudomr̊adet där en större fördjupning behövs är estimeringen av kovariansma-
trisen och även uppskattningen av antalet interferenskällor.

Lobformning, STAP, Space-Time Adaptive Processing, Diagonal
Loading
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Summary

Keywords:

In both radar and sonar, in fact in all situations where an array of elements
is used, one of the interests is to locate targets both spatially and in terms of
velocity. In order to have a good estimate of a target’s bearing and velcity ,
the signal that is analysed has to be well measured, and well suited for the
kind of the analysis made. This thesis is carried out at FOI, the Swedish
Defence Research Agency. The goal is to implement a fully adaptive space-
time processor and identify the main difficulties and try to explain them. Two
different methods for handling the noise and interference covariance matrix are
described and evaluated. It turns out that the adaptive processors outperform
the conventional way of analysing signals, however to a high computational
cost. Still, many improvements are to be done and the main field of interest
should be the estimation of the covariance matrix and also the estimation of
number of interference sources.

Beamforming, STAP, Space-Time Adaptive Processing, Diagonal
loading
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1 Abbreviations and symbols
⊗ Kronecker product
M Number of temporal snapshots
N Number of sensors
ωt Target frequency
ω0 Carrier frequency
$ Normalised Doppler frequency
d Distance between adjacent sensors
c Propagation speed in water, approx. 1500 m/s
λ Wavelength
θ Bearing
ϑ Spatial frequency
v Steering vector
x Measured signal
R̂ Sample Covariance Matrix
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2 Introduction

2.1 Background

Sonar1 is an established technique for finding and mapping underwater ob-
jects. It is used in many different fields one of which is the estimation of a
possible target’s bearing and velocity. The traditional way of processing the
measured signal sometimes becomes inaccurate since it does not take the prop-
erties of reverberation into consideration. Thus, it is desirable to filter the
signal to limit the contribution from undesired sources. However, it is at great
risk to filter more than needed if the weights of the filter are always constant.
Space-Time Adaptive Processing (5), hereafter abbreviated STAP, is at help
here, adapting the filter weights to become more suitable at one given moment.

The research on underwater surveillance systems has been extensive over the
last decades and the evolution of digital signal processing has made it pos-
sible to implement complex algorithms in real time systems. The literature
in the field of STAP is quite far-reaching and very well describes the theory
(5),(12). Though, most of the research is done for STAP applied to the radar
case and it is well understood by most people that the propagation difference
between air and water implies a few differences in the application of the theory.

STAP is an active technique in which a signal is transmitted and properties
of the environment is identified by studying the properties of the returns. Re-
flections that are received by the sensor may very well be reflections from the
sea bottom or surface (6). These reflections are called clutter or reverberation.
Although space-time clutter characteristics could be considered known through
the angle-Doppler relation, eq. (2.3), adaptive techniques may be at help when
non-adaptive methods fail due to e.g. perturbations in the sensor. If a model
is built, the accuracy of the results depends on how exact the model is, and
the more exact the model is the more sensitive to deviations in the real world
it gets. Skipping the model building and instead making use of an adaptive
filter is often a good way to work around the problem.

In STAP the adaptivity refers to the fact that one adjust the beamformer to the
properties of the clutter, which also may be called interference. Considering
that only first and second order properties the characteristics can be assembled
in a covariance matrix of the interference. A lot of effort has been made try-
ing to handle the large dimensions of the space-time covariance matrix. Fully
adaptive processors though, are based on the full space-time covariance matrix.
For small numbers of sensor elements and temporal samples the fully adaptive
processor is quite easy to handle. However, as the number of elements and
temporal samples grow, so will also the dimension of the covariance matrix,
and the complexity of the processor becomes very high. Also, as the dimension
gets larger, the amount of required training data grows and problems with es-
timating the sample covariance matrix arise. Often fully adaptive processing
is used to give reference results to compare with when using suboptimum tech-
niques.

1Sound Navigation and Ranging
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2.2 Notation

The notation used in this thesis is mainly taken from the MATLAB environ-
ment. In the matrix and vector notation [x; y] means a 2 × 1 column vector
while [x, y] means a 1 × 2 row vector. If x and y instead are L long vectors
F = [x,y] will be a L × 2 matrix and F = [x; y] will correspond to a 1 × 2L
matrix. The � is the Kronecker-product and E {} denotes the expectation of
a random quantity. When the index t is used at a variable, it denotes that the
variable belongs to the desired target. When used as a variable it denotes time.

2.3 Scope

First the assumptions and model are described, after which the theory regard-
ing covariance matrices and beamforming is ventilated. The evaluation part
consists of a description of how this work is done and by which means the al-
gorithms are evaluated. Finally some conclusions about the promises of STAP
are given.

2.4 Problem formulation

The problem that is handled in this thesis comes from the fact that when an
active sonar is used and a signal is emitted reflections will occur. As desired re-
flections of this signal will be hidden in interference emanating from the motion
of the sonar platform and also by ambient noise the main task in this thesis is
to implement a fully adaptive space-time processor that will detect the desired
reflections against a background of interference plus noise. Figures 2.2 and 2.3
show the undesired and desired reflections. The implementation involves the
problem of understanding that the main difficulty in implementing STAP in
a somewhat realistic environment relates to the estimation of the interference
covariance matrix. Since enough training data for the fully adaptive processor
is seldom available (12), two different methods for estimation are described
and compared. Besides that, a conventional beamformer is implemented for
comparison reasons.

2.5 Model discussion

2.5.1 Assumptions

For this thesis, certain assumptions have been made regarding the signals.
Every desired target and the interference are modelled as narrowband point
sources. The sound waves are travelling in a media that is homogenous and non-
dispersive. No consideration has been taken to elevation angles to targets, i.e.
only azimuthal bearing is calculated. Further, the desired targets are assumed
to lie in the far field, allowing for the postulation that arriving sound waves
may be taken for planar. Desired source signals are considered independent and
uncorrelated to the interference signals plus ambient noise. The ambient noise
is regarded as normally distributed and isotropic, that is, equally strong in all
directions. The sensors are omnidirectional and identical, equally spaced with
d = λ

2 which implies that spatial aliasing is avoided (3). λ is the wavelength of
the highest frequency expected to be received.

10
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2.5.2 Physical limitations

In this work an uniform linear array, ULA, is used. The fact that the array is
only used in 180° half-plane, north-south ambiguity arises, fig. 2.1. This means
that two targets at opposite sides of the aperture will yield the same bearing
estimate even though they are not at the same bearing at all.

Figure 2.1: Illustration of north-south ambiguity.

2.5.3 Data model

Assume a narrow-band continuous wave signal is transmitted from the sonar
at the green submarine like in fig. 2.2. The signal received by the sonar will
not only be reflections from targets, like other submarines but also from the
sea bottom and surface. These reflections are called reverberation and are vis-
ible in fig. 2.3 as the blue arrows. As mentioned earlier the reverberation also
contains reflections from the sea bottom and surface. The green submarine is
the one with sonar platform mounted on it and the red submarines are desired
targets. The reverberation is in this work also called interference. The signal
transmitted is a narrowband signal that, if a Hilbert transform based demod-
ulation is applied, can be expressed as (12)

str(t) = αtru(t)ej(ω0t+φ) (2.1)

where αtr is the random complex amplitude and ω0 is the angular frequency
and φ is the phase, this is usually called a pulse. u(t) is the envelope of the
signal and may be a window that suppresses sidelobes. The window used in
this thesis though, is a rectangular one, hence u(t) = 1 when 0 ≤ t ≤ T and 0

11
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Figure 2.2: Illustration of scenario when a signal is emitted.

Figure 2.3: Illustration of the scenario when the reflected signals are recieved.

12
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elsewhere. Hence, T is the pulse length. The received signal will be corrupted
by a Doppler shift if the target and/or sonar platform are moving. If the sonar
platform is moving then a Doppler shift will be applied to the reverberation
according to (6)

ωt =
2vt
λ0

(2.2)

where
vt = Vp cos θ (2.3)

which is the radial velocity of the target relative the platform. Vp is the veloc-
ity of the platform. Note that the Doppler shift is linearly dependent on cos θ,
resulting in a diagonal ridge over the Doppler-Azimuth spectrum, fig. 2.4. The
figure does not show a fully diagonal ridge because the bearing on the y-axis
is given in degrees instead of cosine values. The Doppler effect is described by
the azimuthal velocity of an object with respect to some reference point. It is
this velocity that is calculated with the cosine of the angle between the object
and the reference point and that is why the clutter interference is showing up
like a diagonal ridge over the bearing-Doppler spectrum.

Figure 2.4: The motion induced Doppler-ridge.

The signal received by every of the N elements is expressed as

sn(t) = αru(t− τn)ej((ω0+ωt)(t−τn)+φ). (2.4)

where αr is the echo amplitude and ω0 is the frequency of the transmitted sig-
nal. n denotes element 1...N . It is sometimes convenient to use the normalised
Doppler frequency defined by

$t =
ωt
ωs

(2.5)

where ωs is sampling frequency. The normalisation gives that the target
Doppler shift will lie in the interval −π2 to π

2 . The delay, τn, in (2.4) consists
of two parts, the roundtrip delay, τt = 2Rt

c , Rt being the target range, plus the
time delay between the reference sensor and nth element, which is described by

τ ′n = −nd
c

cos θt (2.6)

when using an ULA. The spatial frequency is defined by

ϑt =
d

λ0
cos θt (2.7)

13
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and enables the phase delay to be written as

−ω0τ
′
n = n2πϑt. (2.8)

If we assume a narrowband scenario then the relative delay, τ ′n, is negligible in
the complex envelope term

s̃n(t) = αre
jφejn2πϑtu(t− τt)ejωttejω0t (2.9)

where fixed phase terms have been included in the random phase φ. After
conversion to baseband the signal is

sn(t) = s̃n(t)e−jω0t = αre
jφejn2πϑtu(t− τt)ejωtt. (2.10)

If we then consider only one specific τt corresponding to a specific range, the
sampled target signal at snapshot k can be expressed as

xt = αte
jn2πϑtejm$t ,

n =0, . . . , N − 1
m=0, . . . ,M − 1 (2.11)

including the random complex phase term in αt. As can be seen, one of the
exponential terms depends on the spatial index n and the other on the tempo-
ral snapshot index m. These terms by themselves form spatial and temporal
steering vectors, respectively. The spatial steering vector contains information
about which direction the signal comes from and the temporal ditto describes
the normalised Doppler shift that affects the signal when reflected by a target.
One snapshot k therefore contains M samples over the array consisting of N
elements stacked on top of each other, resulting in an NM × 1 space-time
steering vector for each angle and Doppler shift accounted for, see fig. 2.5, is
formed

v(θ,$) = b($) � a(θ). (2.12)

where
a(θ) =

[
1, ejπϑt , ejπ2ϑt , . . . , ejπ(N−1)ϑt

]T
(2.13)

and
b($) =

[
1, ejπ$, ejπ2$, . . . , ejπ(M−1)$

]T
(2.14)

are the spatial and temporal steering vectors respectively.
This is the response of a target at a certain bearing and normalised Doppler.
Thus the target can be modelled as

xt = αtvt (2.15)

where vt = v(θt, $t) is called the target steering vector.

14
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Figure 2.5: M measurements over the array forms one NM × 1 vector that forms the
space-time snapshot.
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3 Theory

3.1 Conventional Beamforming

Conventional Beamforming is the most common method when estimating the
direction of arrival. Basically, the method is to simulate a steering of the
array’s main beam in a certain direction. Every main beam is built up by
different time delays τn on the sensors’ output signals. The time delay will cause
constructive and destructive interference and by that, it is possible to simulate
the array looking in the directions of interest, and hence find the direction of
arrival. Where the constructive interference is strongest, a mainlobe is formed.
Constructive interference will also occur in other directions, adjacent to the
direction of present interest as well, but will be much weaker. These lobes
are called sidelobes. The sidelobe signals will also include contributions from
targets and the sea itself (6). Those contributions are referred to as sidelobe
clutter. The principle for passive and active processing is basically the same
and here the theory is described for the passive processing. Passive processing
means that signals emerging from possible targets are received and analysed to
classify the object causing the signals. Active processing involves transmitting
a signal from one’s own platform which is reflected by a possible target. By
analysing the received signal the target can be located and the speed of the
target may be determined. With the expression given for the signal xt in (2.11)
the output of the beamformer is a matched filter to xt. The information desired
in xt is the complex exponential part of (2.11). Hence, matching x with v will
show how well correlated the two signals are.

y =
N−1∑
n=0

M−1∑
m=0

v∗(θn, $m)x[n,m], (3.1)

where x[n,m] is the sampled version of x(t) and v∗ is a value in the steering
vector corresponding to a certain bearing and Doppler shift. The asterisk
denotes complex conjugate. (3.1) can be written as a vector multiplication

y = v(θ,$)Hx. (3.2)

To find the direction of arrival x(t) is matched with every possible θ and $ in
v. The power of the beamformer, y, is calculated by

P (θ,$) = E
{
|y|2
}
. (3.3)

Inserting (3.2) in (3.3) gives

P (θ,$) = E
{
|v(θ,$)Hx|2

}
= E {v(θ,$)HxxHv(θ,$)} = v(θ,$)HRxxv(θ,$)

(3.4)
since v is deterministic. The power P is estimated in every direction to find
the direction of arrival. The bearing that gives the maximum value of P is
assumed to be the direction of arrival. Of course there may be several targets
but the powers may not be the same. However, the power of a signal reflected
by a target should be much stronger than the environmental noise and will
therefore be detected as a target. The steering vector v(θ, ω) is defined by the
Kronecker product between the spatial and temporal steering vectors a and b
described earlier,

v(θ,$) = b($)⊗ a(θ). (3.5)

17



FOI-R--2524--SE

The conventional beamforming method is a robust method that more or less
always works independently of the signal assumption. The disadvantage is
that it can not make a difference between desired signals and interference.
If conventional beamforming is used, the resolution depends on the number of
sensors and the distance between the sensors. The minimum bearing separation
between two targets is usually approximated by two different measures (11).
The half power beamwidth, defined by

θcb =
ελ

Nd
radians (3.6)

and the distance to the first null from the top of the beam which is defined by

θcb ≈
λ

Nd
radians (3.7)

where λ is the wavelength of the signal and Nd is the length of the aperture.
ε is a constant which depends on the weights of the signal which means that if
a window is used the resolution of the conventional beamformer may change,
but as mentioned earlier this work assumes a rectangular window and for that
case, ε ≈ 0.891 radians. The two measures of θcb practically gives the same
result and it is merely a question of which one wants to use.

3.2 Fully Adaptive STAP

The purpose of the sonar is to detect presence of targets in a noisy envi-
ronment. Under some conditions the targets may be weak with respect to
background noise and interference signals which makes it necessary to sup-
press the undesired signals to obtain appropriate detection performance. The
assignment becomes exceptionally challenging if the sonar platform is moving,
producing self-induced Doppler spread of reverberation. The whole idea with
Space-Time Adaptive Processing is to use both spatial and temporal informa-
tion simultaneously to suppress interference. Conventional processing usually
processes the signal in the temporal domain at first, followed by spatial process-
ing. The optimum spatial adaptive processor places a stopband determined by
the transmit main beam which makes the sonar blind (5). Therefore, filtering
in the spatio-temporal domain has two advantages over conventional process-
ing. First, targets may be discerned. Second, as will be seen, the filtering is
done better in the meaning of possibilty in discovering slow moving targets.
The space-time processor also makes it possible to discover weak targets that
otherwise might be obscured by sidelobe clutter. As can be seen in fig. 3.1
the self-induced Doppler ridge is quite narrow if observed from the lower left
corner. The space-time adaptive filter operates in that direction, applying only
a narrow notch, instead of a relatively broad stopband-filter in each domain. It
is well seen in the figure that slow targets which lie in the stopband of the adap-
tive Doppler filter may be detected when the spatio-temporal filter is applied.
STAP is robust to system errors and has capability of handling non-stationary
interference. However, if the interference has too much variability, i.e. under-
goes severe variation between the range gate under test and the training gates,
then the algorithm will deteriorate. The concept of training gates will be ex-
plained in 3.3. To calculate the angle-Doppler spectrum one wishes to apply
some weight vector w(θ,$) to the measured signal at hand. The spectrum is
then given by

P (θ,$) = |w(θ,$)Hx|2. (3.8)

Since the task is to mitigate interference and noise a natural design criterion

18
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Figure 3.1: Mainlobe clutter and the separate filters projected onto corresponding axis.

for w(θ,$) is to maximize the signal to interference-plus-noise ratio (SINR).
Under that approach the spatio-temporal beamformer is obtained as(2)

w(θ,$) = γR−1
nnv(θ,$). (3.9)

Rnn is the interference covariance matrix, i.e. it describes the characteristics
of the interference. The use of R−1

nn in 3.9 can be interpreted as that the
interference is coloured and has to be whitened. Hence, a whitening filter
applied to the measured signal x. Note that the whitening filter is created from
the interference, hence it is only the interference part of x that is whitened.
Performing the multiplication R−1/2

nn RnnR−1/2
nn gives the identity matrix I.

Therefore, R−1/2
nn is a whitening filter. R−1/2

nn exists because Rnn is positive
semi-definite. The whitening of the signal x implies that the steering vector v
also has to be whitened to match the signal, which gives

P (θ,$) = |
(
R−1/2
nn v

)H

R−1/2
nn x|2 = |vHR−1

nnx| = |wHx|2 (3.10)

This is in the literature referred to as fully adaptive STAP (5). The term
adaptive is deduced from the fact that the solution adapts to the characteristics
of the interference, Rnn. Using the Schwarz inequality it is shown that w
maximizes the SINR (2). γ from (3.9) is a constant and different values of
γ results in different algorithms. However, the value of γ does not affect the
SINR and is in this work chosen to be (9)

γ =
1√

v(θ,$)HR−1
nnv(θ,$)

(3.11)

yielding the complete calculation of w as

w =
R−1
nnv(θ,$)√

v(θ,$)HR−1
nnv(θ,$)

. (3.12)

19



FOI-R--2524--SE

The weight vector w is called the adaptive matched filter. P in (3.8) can be
seen as a test variable, to be tested against two hypotheses. H0 : Target absent
and H1 : Target present. When handling statistically estimated measures, it
is always a risk that a test result like the one above proves wrong. Therefore
design criteria exist such as probability of detection and probability of false
alarm. The choice of γ also results in constant false alarm rate (CFAR)(9).

It is sometimes useful to apply a low-sidelobe window to the assumed tar-
get steering vector. This is usually called tapering. The tapering window is
obtained by

t = tb � ta (3.13)

where tb is the M×1 desired Doppler low-sidelobe window and ta is the desired
low-sidelobe angle window. Then the low-sidelobe adapted pattern is produced
by

gt = t � vt. (3.14)

If the steering vector is built in this way the term ”tapered fully adaptive” is
used. When the steering vector is tapered like this, not only are the sidelobes
reduced but also the mainlobe is undesirably widened which leads to a trade-off.

The space-time adaptive processor has the great advantage of being able to
suppress the undesired interference and noise. Though, the cost of getting this
advantage is quite high, the matrix inversion is computationally heavy and also
the required amount of training data for the fully adaptive processor is very
high since Rnn has to be estimated. Because of the fact that an extensive
amount of training data is required other methods have evolved which may
work very well even though they do not require the same amount of training
data.

3.3 Covariance Matrix Estimation

As can be seen above the interference covariance matrix, (Rnn), plays a large
role in STAP. It is used to assemble information about the interference char-
acteristics. In this thesis it is assumed that enough training data is available
basically meaning that the interference plus noise covariance matrix is known.
In practise this is not the case and the covariance matrix has to be estimated
from adjacent range gates. The neighboring range gates to the gate under
test are called guard gates and is not taken into consideration when estimating
the covariance matrix since there may be leakage from the range gate under
test. The range gates lying outside the guard gates are used as training data
and are hence called the training gates. This reasoning is illustrated in fig. 3.2.

The training gates are assumed to be free of targets while still carrying the
same interference characteristics. For natural reasons this is not the case when
it comes to real data as the environment might change drastically depending
on water depth etc. However, the assumption of same characteristics has to
be done to enable the development of adaptive processors. The optimum per-
formance is usually used as a reference measure when evaluating suboptimum
techniques. The method used to estimate the covariance matrices is called the
Sample Covariance Matrix (SCM) and is the simplest form of estimating a
covariance matrix. The covariance matrix of interference plus noise is defined
by

Rnn = E {nnH} (3.15)
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Figure 3.2: The space-time data cube.

which is estimated by the sample mean

R̂nn =
1
K

ΣKnnH =
1
K

NNH (3.16)

where n is a vector that contains jammers, i.e. intentional interference signals,
clutter and noise respectively and N is a matrix formed by several vectors
(n). Jammers are disregarded in this work. The measured signal at the array
sensors will be

x = s + n (3.17)

where s is the desired signal component. The sample covariance matrix then
is defined in the same way:

Rxx = E {xxH} ≈ 1
K

ΣKxxH = R̂xx. (3.18)

To allow for the inversion of R̂nn and reach performance close to the optimum
processor where the target steering vectors are used, the amount of train-
ing data, K, has to be sufficiently large. According to Brennan et al. (2),
K = 2NM to reach performance within 3 dB of optimum performance. For a
realistic aperture and a realistic amount of snapshots, K becomes a very large
number and gives unmanageable dimensions. Though, in a theoretical context
the use of small dimensions alleviates the understanding process.

As described in sect. 3.1, the conventional beamforming method discerns both
the desired signal and the jammers as targets which is unwanted. Instead a
fully adaptive space time adaptive processing method was presented in section
3.2 which nulls out the interference and only discerns the desired component s
as a target.

Realising that the difficulty in STAP relates to the fact that it seldom exists
the amount of data required by the fully adaptive approach, alternative ways
of estimating the interference covariance matrix have evolved. One method to
use is diagonal loading, described in 3.3.1.
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3.3.1 Diagonal loading

If only the formula is considered, the method of diagonal loading does not seem
too advanced. The SCM is updated with constants along its main diagonal,

ˆ̂Rdiag = R̂nn + αI (3.19)

where I is the identity matrix. The operation is also referred to as regularising
of the SCM. The problem with this method is to define α, and unfortunately
there is no clear theory in what way α should be designed. In (10) the empir-
ical Bayesian approach is described. This thesis employs a strictly empirical
method to design α. The diagonal loading compresses the eigenvalue spread-
ing, which is desirable since it reduces the random noise eigenbeams. Loading
the diagonal with a constant has little effect on large eigenvalues but affects
originally small eigenvalues. The nulling of interference which is represented
by large eigenvalues is not affected although the adaptivity against weak in-
terference is clearly reduced. Adding the identity matrix to R̂nn is similar to
adding a white noise constraint and forcing the weight vector w to compensate
for a higher noise level than the actual level. A too large choice of α will lead
to a beamformer that becomes a scaled version of the conventional beamformer
described in 3.1 since

ˆ̂Rdiag −−→α�∞ αI. (3.20)

A short derivation is given:

w =
(αI)−1v(θ,$)√

v(θ,$)H(αI)−1v(θ,$)
(3.21)

which in turn gives the expression for P as

P = wHR̂xxw =
1
α2 v(θ,$)HR̂xxv(θ,$)

1
αv(θ,$)Hv(θ,$)

(3.22)

and since the steering vector v has norm 1 the result is the same as the output
of the conventional beamformer but scaled with 1

α . Also note that if α � ∞,
P � 0. The derivation was only given to show that if α becomes large the
space-time processor will approach the conventional beamformer. A large α
will not necessarily be unimaginable large. During this thesis an α of 30 is
large. Such an α will not cause P to approach zero but will however cause the
processor to approach the conventional beamformer.

The dependency of available data when choosing α is explained by the size
of the eigenvalues of R̂nn. When few snapshots of R̂nn are available, most
eigenvalues will be zero or very close to zero. Then a very small α will still
have effect on the SCM. Though, when more snapshots are used to form R̂nn

but still not enough to allow for the inversion, the eigenvalues of R̂nn will be
large in comparison to α and α will not have any effect on R̂nn. This is also the
reason to why diagonal loading is appropriate when small amount of training
data exist. The regularisation will decrease the eigenvalues spread and hence
improve the condition number of R̂nn. The condition number is the ratio be-
tween the largest and smallest eigenvalues of R̂nn. A high condition number
corresponds to an ill-conditioned covariance matrix.

3.3.2 Eigenvalue Decomposition

One additional way to deal with the fact that large amounts of training data
seldom exist is to use certain ways of inverting the SCM. Eigenvalue decom-
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position is a method to get the significant eigenvalues and the corresponding
matrices U and V containing the left and right eigenvectors, respectively. Any
matrix can be decomposed as

A = UΣVH. (3.23)

Σ is the matrix containing the eigenvalues or singular values. If the matrix A
is symmetric then U = V. Then the inversion of A is carried out as

A−1 = UΣ−1UH. (3.24)

In (12) it is suggested that the effective rank of R̂nn is equal to the number of
interference sources. Taking this into account gives opportunity to obtain the
pseudo-inverse of R̂nn. This means that the eigenvalues belonging to the noise
subspace are not taken into consideration which in turn means that the condi-
tion number does not matter at all. In the real world it is almost impossible
to know the number of interference sources that exist in data. The method
of eigenvalue decomposition will therefore be very difficult to implement in a
real application. Though, in theory the number of interference sources is often
considered known which alleviates the use of this method. Results obtained by
the use of this method will not be better than the ones obtained by regularisa-
tion. However, this method is not evaluated in this work but is brought up in
section 5.2 as a possible way of handling the problem in the real world where
the amount of training data is heavily limited.
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4 Evaluation

4.1 Matlab

The evaluation made in the Matlab environment consisted of two targets,
placed at v1(θ, ω) = (85.9,−0.1) and v2(θ, ω) = (94.5, 0.1), i.e. one target
in direction 85.9 degrees with relative Doppler -0.1 and a second target in 94.5
with a relative Doppler of 0.1. The targets may be seen as slow moving targets
if the frequency of the emitted signal and the frequency of the target reflections
are close to each other. The signals are modelled as in eq. (2.10), i.e. in base
band and with normalised Doppler frequency. Motion induced reverberation
is modelled by 15 sources located in a diagonal ridge starting at 30 degrees up
to 150 degrees and the relative Doppler shifts goes from -0.7 to 0.7. Figures
4.1 and 4.2 present the performance of the conventional beamformer. Fig. 4.1
shows the interference plus targets where the targets are marked with white
asterisks. Fig. 4.2 illustrates the targets inside the motion induced Doppler
ridge.

Figure 4.1: The simulated model with the targets marked with white marks.

The desired targets have power compared to the background noise giving an
SNR of 7 dB and the reverberation sources are about 3 dB stronger than the
targets. The signal is evaluated at 100 different angles and Doppler shifts from
0 − 180° and −1 to 1, respectively. The simulated uniform linear array con-
sists of N = 15 equally spaced elements. The length of the continuous wave
pulse is M = 50 samples in time which generates an overall scenario with di-
mensionality NM = 750. The model did not contain any information about
the frequency of the transmitted signal since it was modelled as a received
basebanded signal. The dimensionality implicates that the required amount of
training data is K = 2NM = 1500. The evaluation is done by changing the
amount of training data available to the algorithm.
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Figure 4.2: Targets hidden in the Doppler ridge.

4.2 Evaluation criteria

In this work three methods are evaluated, the conventional beamformer for
comparison reasons and two methods of estimating the interference covariance
matrix. There are different ways of comparing methods. One of the methods
may not be better in all criteria and one has to decide which criterion is most
significant. One very important criterion is if the algorithm under test actually
works.

4.2.1 Performance

Fig. 4.3 speaks for itself. The reverberation from the stationary background is
completely suppressed and the targets are detected at their correct bearings and
Doppler shifts if K = 2NM . The separation of target v1 is explained by the
fact that the target is placed right in the middle of the modelled interference.
The processor therefore has placed a null where the interference is located
which happens to be partly in the same bearing as the target. If the method
of diagonal loading is used no difference is clearly visible as seen in fig. 4.4. In
fact the diagonally loaded version tends to show parts of the interference due
to a too large α compared to the large sample support. Fig. 4.5 shows the
results when K = NM . This is the amount of data required to make inversion
of the SCM possible at all. As we can see, no target can be distinguished
from interference, due to an ill-conditioned R̂nn. The diagonal loading method
however, still reveals the targets as seen in 4.4. The sidelobes of the targets
are less suppressed and some interference is visible. Nevertheless, the targets
can be clearly discerned from interference. Reducing the amount of training
data even more, to suit a more realistic situation, K is set to 40 i.e. twice the
amount of modelled interference sources plus 10. The value is decided by the
fact that the effective rank of the interference subspace of R̂nn is equal to the
amount of interference sources, in our case 15. Brennan’s rule says that the
amount of training data should be twice that rank. Because of the small sample
support, R̂nn becomes singular and inversion is not possible. We can still note
in fig. 4.7 that the diagonal loaded approach is still able to distinguish the
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targets from interference. Decreasing the sample support even more to see if
one can make use of data collected in situations where the environment changes
so much, that the required amount of data is not possible to collect gives the
result shown in fig. 4.8. As a matter of fact, one can still see the targets
even though the interference has become more visible. Decreasing the sample
support even more will enhance that effect. Fig. 4.9 shows the result of the
diagonal loading approach when using a too large α. Here α = 30. As described
in 3.3.1 the beamformer approaches the result of the conventional beamformer.
This illustrates the importance of using a good value of α.

Figure 4.3: Performance of the fully adaptive STAP with K = 2NM .

Figure 4.4: Performance of the diagonally loaded STAP with K = 2NM .
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Figure 4.5: Performance of the fully adaptive STAP with K = NM .

Figure 4.6: Performance of the diagonally loaded STAP with K = NM .
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Figure 4.7: Performance of the diagonally loaded STAP with K = 40.

Figure 4.8: Performance of the diagonally loaded STAP with K = 20.
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Figure 4.9: Performance of the diagonally loaded STAP with K = 40. α is set to 30.

4.2.2 Adapted pattern

Another thing to look at is how well the filter w has adapted. This is called the
adapted pattern. Given the weight vector in (3.9) the angle-Doppler response
of the filter is calculated as

Pw(θ,$) = |wHv(θ,$)|2. (4.1)

This response is called the adapted pattern and shows how well the filter sup-
presses interference. Ideally, the adapted pattern has nulls in the directions
of interference. To compare with the narrow notch shown in fig. 3.1 a cross
section of the adaptive pattern is shown. Note that the values at the y-axis
are cos θ instead of just θ. This follows from that the motion induced Doppler
ridge is somewhat curvy when seen from above. As described in eq.(2.3), the
Doppler frequency is linearly dependent of cos θ and not θ. Realising that these
nulls may not be so deep in the case of real data, still the adapted pattern will
give a hint on the promise of the algorithm under test. In fig. 4.10 it can
clearly be seen that the processor places nulls in the clutter ridge and that the
self induced Doppler interference is suppressed by about 17 dB. In fig. 4.11
the nulls are not as deep as in fig. 4.10 depending on the behaviour of the
diagonally loaded approach. As described earlier the performance approaches
the conventional beamformer, which indeed do not perform any nulling at all.
The amount of suppression is naturally dependent on the strength of the in-
terference, if the interference becomes stronger, then the adaptive filter will
place a deeper null in the point of interference. However, if the strength of the
reverberation is increased heavily, the covariance matrix will be ill-conditioned
which impedes inversion. Though, the algorithm tends to be robust for clutter
to noise ratios up to 50 dB. As expected, the adapted pattern for the fully
adaptive STAP when K = NM , as shown in fig. 4.12, does not contain any
valuable information but is only shown as a comparison to the adapted pat-
tern of the diagonally loaded version of STAP. In the other cases where the
number of samples has been heavily limited we can see that when diagonal
loading is used the adapted pattern takes almost the same shape as for unlim-
ited amounts of training data. Although, the notches get more shallow as the
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amount of training data decreases. This can be seen in fig. 4.14 and 4.15. The
reason for this is that when α is added to the main diagonal, the performance
of the processor will approach the one of the conventional beamformer. This
will lead to a not so efficient suppression of the interference.

Figure 4.10: Adapted pattern for the fully adaptive processor with K = 2NM

.

Figure 4.11: Adapted pattern for the diagonally loaded STAP with K = 2NM .
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Figure 4.12: The adapted pattern for the fully adapted processor with K = NM .

Figure 4.13: Adapted pattern for the diagonally loaded STAP with K = NM .
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Figure 4.14: Adapted pattern for the diagonally loaded STAP with K = 40.

Figure 4.15: Adapted pattern for the diagonally loaded STAP with K = 20.
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5 Conclusion

5.1 Findings

It has been shown that the fully adaptive space time processor is much better
than the conventional beamformer at resolving targets and for suppressing
reverberation. However, the results from the fully adaptive processor may
be somewhat misleading since they depend on an unrealistic large amount of
training data. The interference covariance matrix can never be completely
known as is the case in this thesis. But as mentioned earlier, these results
are often used as reference when evaluating suboptimum techniques. If the
space time adaptive processor is to be used, other methods for estimating the
covariance matrix should be employed. It is shown how the algorithm tends
to fail when enough training data is not acquired and also the most common
remedy to this problem. The method of diagonal loading was described in
3.3.1, which showed that STAP may be useful even in situations where small
amount of training data is available. Other methods exist that address the
issue of small training data sets but these are beyond the scope of this thesis
to describe such methods although some references are given which enables
further reading.

5.2 Further improvements

A natural step after this thesis is to explore real data and to investigate the sta-
tionarity of the reverberation in the range bins adjacent to the one under test.
As mentioned in section 3.3 the real world will not be as nice as the assump-
tions made in this thesis. The result of the investigation will most probably
show that the reverberation cannot be considered fully stationary and the fol-
lowing analysis then has to determine the stationarity of the reverberation in
those range bins. This is of course not a simple analysis and a lot of theory
on statistical analysis has to be studied. Nevertheless, the real world is of
great interest and the analysis must be done. The real world also offers multi-
path propagation of the sound and all other intrinsic properties of the medium.

Further work may be done to explore and exploit the low rank structure of
the interference covariance matrix as suggested in (8) where some promising
results from the Multistage Wiener Filters (4) are shown. The method using
MWF reduces the dimension of the problem in an adaptive way and it would
be of great interest to implement such a processor and apply it to real data.
The low rank structure is also described in (12), where a partially adaptive tax-
onomy is listed. One should keep in mind that even though these methods may
offer good ways of estimating Rnn, the computational complexity may not be
reduced, it will rather increase. Still, that may not be the main concern since
the performance characteristics of today’s computers is very high. Even though
Brennan’s rule still applies, the order of complexity will decrease from 2NM to
maybe 2× rank(Rnn) and the rank of Rnn is much less than the dimension of
the Rnn. The singular value decomposition was described in 3.3.2 and is also
a way of exploiting the low-rank structure of the interference. In further works
that method may be well implemented. Nevertheless, the difficulty with such a
method is, as mentioned before, the estimation of interference sources. Overall,
implementing techniques that employ a structure that reduces the dimension
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is almost a necessary step in order to evaluate real data.
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