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Abstract

Keywords

Aerodynamic shape optimization based on Computational Fluid Dynamics can
automatically improve the design of aircraft components. In order to obtain
the best computational efficiency, the adjoint method is applied on the com-
plete mapping, from the parameters of design to the evaluation of the cost
function or constraints. The mapping considered here includes the parame-
terization, the mesh deformation, the primal-to-dual mesh transformation and
the flow equations solved by the unstructured flow solver Edge distributed
by FOI. The program AESOP integrates as subroutines the flow and adjoint
flow solver, mesh deformation schemes, algorithms of shape parameterization
and algorithms for gradient-based optimization. The result is a portable and
efficient implementation for large scale aerodynamic shape optimization and fu-
ture applications in multidisciplinary shape optimization. The structure of the
program is outlined and examples of applications are presented. The method
of shape parameterization using Radial Basis Functions is discussed in more
details because it is expected to play a major role in the development of mul-
tidisciplinary optimization.

Flow equations, Edge-based Finite Volumes, Shape optimization, Adjoint equa-
tions, Radial Basis Functions
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Sammanfattning

Nyckelord

Aerodynamisk formoptimering baserad p̊a datorsimuleringar kan förbättra
utformningen av flygplans. Med hjälp av s̊a kallade adjunktsekvatio-
ner kan man effektivt beräkna gradienten av funktioner som beror p̊a
strömningsekvationernas lösning. Programmet AESOP tillämpar denna me-
todik p̊a alla de delar av beräkningskedjan som involveras när man optimera
aerodynamiska former, fr̊an styrning av geometriska förskjutningar till lösning
av strömningsekvationerna med hjälp av programmet Edge som utvecklas av
FOI. AESOP integrerar alla komponenter som subrutiner, s̊a väl lösaren för
strömningsekvationer och adjunktsekvationer som förskjutningsprogram för
beräkningsnätet och optimeringsalgoritmer. Resultatet är en flexibel och ef-
fektiv programvara som är anpassad till att lösa storskaliga aerodynamis-
ka formoptimerings problem och framtida multidisciplinära formoptimerings
tillämpningar. Programmets struktur presenteras tillsammans med exempel p̊a
tillämpningar. Parametriseringen av geometriska förskjutningar med radiella
basfunktioner (RBF) är särskilt detaljerat eftersom den förväntas spela en vik-
tig roll i utvecklingen av multidisciplinär optimering, i synnerhet när man kopp-
lar strömning och struktur ekvationer.

Strömningsekvationer, Kantbaserad finita-volymsdiskretisering, Formoptimer-
ing, Adjunktsekvationer, Radiella basfunktioner
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1 Introduction
In aeronautic industry, the prospect of aerodynamic shape optimization is to
speed up the design of aircraft components. The continuous development of
Computational Fluid Dynamics (CFD) plays a major role in the development
of this activity because it improves the reliability of the predicted aerodynamic
forces and moments that are used in problems of shape optimization. However,
the accuracy of the CFD predictions around aircrafts comes at a cost that is
incomparably higher than for solving, say, the aircraft structural deformations
in the framework of linear elasticity. In aerodynamic optimization this cost
is multiplied by the number of flow solutions required for solving the (nonlin-
ear) problem of aerodynamic optimization. This number of CFD simulations
is closely related to the algorithm of optimization, for a given problem to be
solved. To date, the algorithms based on the derivatives of the cost function
and constraints, with respect to the design variables (gradients), are the most
efficient, provided that the derivatives can be calculated accurately and effi-
ciently. The cost of the classical computation of gradients by finite differences
is proportional to the number of design parameters n, which penalizes this ap-
proach when n is larger than the number of constraints. The finite difference
method may also be inaccurate because it requires small perturbations of the
design parameters whereas shape perturbations smaller than a certain limit
may not be resolved by the CFD, thus leading to round-off errors due to the
difference scheme. In an optimal control approach, the gradient of one function
can be calculated by solving once an adjoint of the flow equations. Regarding
the cost of optimization, the optimal control approach, or adjoint sensitivi-
ties analysis, has the advantage on the finite difference method for a number
of design parameters larger than the number of constraints. Nonetheless, the
accuracy of the adjoint approach does not rely on a perturbation parameter,
which is another advantage.

The numerical platform AESOP1 has been developed for the realization of
an optimal control approach based on the adjoint flow equations implemented
in Edge [1], FOI’s software for CFD [8].

Design optimization using an optimal control approach has become popular
in the last two decades in all fields of engineering. For a detailed presentation of
techniques of optimal shape design for systems governed by elliptic equations,
the reader may refer to a book by Pironneau [20]. For an introduction focusing
on aerodynamic shape optimization, the reader may refer to Giles & Pierce [12].

Natural Laminar Flow design based on the adjoint approach is one of the
first applications that AESOP was developed for [2]. This requires additional
solvers, and adjoint solvers, for the laminar boundary layer equations and for
the stability equations in the boundary layer. The procedure will not be de-
scribed here but an example of application is given in §4.2 and the interested
reader can find a detailed presentation of the method in reference [2].

The general structure of AESOP is presented in §2. The parameterization
of shape deformations based on Radial Basis Functions (RBF) is presented
in §3. It has been recently investigated because it can give rise to a general
strategy for the optimization of various shapes in both two and three dimen-
sional applications. This method is directly inspired from a previous work on
RBF-based mesh deformation [14]. The examples are presented in §4.

1Stands here for AErodynamic Shape OPtimization (Aesop is the name of a legendary
Greek fabulist).
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2 Gradient-based optimization in AESOP
Concerning optimization based on Computational Fluid Dynamics (CFD), the
use of adjoint equations has become a common approach in recent years [3, 4,
5, 6, 7, 9, 10, 15, 16, 18, 21, 25, 27].

There are however different views on the application of the theory of optimal
control in CFD [13]. In the so-called continuous approach, the adjoint equations
and the expression of the gradient are derived from the Partial Differential
Equations (PDEs) that model the flow and from the exact cost function, see [4,
10, 15, 25, 27]. The resulting expressions are then discretized. In the so-called
discrete approach, the adjoint equations and gradient expression are obtained
from the discretized flow equations and cost function [3, 7, 9, 18].

The discrete approach is preferred here because it can provide the exact
gradient of the cost function and constraints being optimized. Otherwise, lack
of accuracy can cause a failure of the optimization algorithm in finding a descent
direction. There are though possible simplifications in the discrete approach,
as shown in one example in paragraph §2.5 or as discussed in [26, 17]. To
become more familiar with the adjoint approach applied here consider a simpler
problem in the spirit of Giles & Pierce [12]. Let a cost function J be linear
with respect to the vector of state variables w,

J (w) = gT w , (2.1)

with g ∈ R
m given and w ∈ R

m subject to the state equation

Aw = Na , (2.2)

where a ∈ R
n is the vector of design variables, A ∈ R

m×m, and N ∈ R
m×n.

Assume that A is nonsingular. The reduced gradient of J , that is, the
gradient of the mapping a 7→ J (w (a)), denoted ∇Ja, may be obtained by
solving the sensitivity equations of the state: given a variation of the control
variable δa, a corresponding variation of the state δw is defined as the solution
to the sensitivity equations

A δw = N δa , (2.3)

which enables us to express the variation of the function J

δJ = gT δw ≡ gT A−1N δa . (2.4)

Therefore, solving the sensitivity equations, once for each component of the
vector a, yields the gradient ∇Ja, component by component.

However, rewriting (2.4) as

δJ =
(

NT
(

AT
)−1

g
)T

δa , (2.5)

reveals that replacing
(

AT
)−1

g in (2.5) by the adjoint state w∗, defined as the
solution to

AT w∗ = g , (2.6)

gives an expression for ∇Ja,

∇Ja = NT w∗ . (2.7)

The cost for computing the gradient by expression (2.7) is one costate solu-
tion (2.6) and a matrix-vector product (2.7), instead of m solutions of the
sensitivity equations (2.3) when expression (2.4) is used.

13
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Figure 2.1: Iterative gradient-based aerodynamic shape optimization as implemented
in the numerical platform AESOP (“deform.” stands for “deformation”).

The generalization to nonlinear state equations and nonlinear functions J
is straightforward:

• g is the vector of partial derivatives of the function J with respect to the
vector of the state variables w.

• A is the Jacobian matrix of the system of discretized state equations with
respect to the state variables. The efficient assembly of the products
between the transpose of this matrix and costate vectors (w∗) is crucial
for solving efficiently equation (2.6). These operations are presented in
details in reference [1] when (2.3) is the system of equations obtained by
linearization of the Euler equations discretized by a median-dual finite
volume scheme [8].

• N is the Jacobian matrix of the system of discretized state equations with
respect to the parameters of optimization. In our CFD applications [1],
this involves:

– The pre-processing of the mesh, which is the nodes-to-edges transfor-
mation, also described as primal-to-dual transformation; the trans-
posed Jacobian maps gradients with respect to the dual data (the
control surfaces attributed to an edge) to gradients with respect to
the nodal data (nodal coordinates).

– The deformation of the mesh, for a given deformation of the shape.

14
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– The parameterization of the shape deformation, for given parame-
ters of optimization.

Section 2.2 presents in more details the operations involved in equa-
tion (2.7).

2.1 Optimization algorithms

The optimization algorithms implemented so far in the numerical platform (see
Figure 2.1) are textbook gradient-based methods supplemented by a line search
algorithm using the Goldstein condition as globalization strategy [19]:

• conjugate gradient from Polak-Ribière;

• quasi-Newton method Broyden-Fletcher-Goldfarb-Shanno (BFGS) with
Hessian updates;

• exact augmented Lagrangian method.

The Lagrangian method handles constraints whereas the conjugate gradient
and quasi-Newton methods are used for unconstrained optimization. Note
that the Lagrangian method approaches the solution of constrained problems of
optimization through a sequence of unconstrained optimization problems. The
unconstrained problems are approximately solved using either the conjugate
gradient or the quasi-Newton algorithm above.

2.2 Functions and gradients computation

The following describes the algorithms or equations involved in the computa-
tion of the cost function, or of a constraint, depending on just one flow solution.
Such a function is composed of five mappings:

• Parameterization of shape deformations: ah → dh

It mapps a vector of design parameters ah into a vector of nodal dis-
placements. Consider the mesh node with index i on the shape ∂Ωw. Its
coordinates, denoted xi, are related to the initial shape (∂Ω0

w), through
the nodal displacements dh = {di}1≤i≤Nw

as

xi = x
0
i + di , for i ∈ V(∂Ωw) , (2.8)

where V(∂Ωw) denotes the set of indexes of the mesh nodes on ∂Ωw. The
mapping of the design parameters ah = {ai}1≤i≤N into displacements dh

is expressed as
Sh (dh,ah) = 0 . (2.9)

There are many strategies for the parameterization of shapes, or shapes
deformations. Two kinds of parameterizations used here are presented
below (see §3).

• Mesh deformation: dh → Xh

To retain mesh quality, the coordinates of all mesh nodes Xh must be
adapted to the displacements dh of the nodes on the part of the bound-
ary being optimized. This is accomplished here by a mesh deformation
algorithm, a smoother as in [1] or a method of interpolation based on
RBF as in [14]:

Mh (Xh,dh) = 0 . (2.10)

15
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• Re-calculation of the control volumes/surface vectors: Xh → nh

By deforming the mesh we conserve the connectivities between the nodes,
but the control volumes of the dual grid and their surface normals nh (the
vector of all control surface normals) need to be re-computed. Therefore,
nh is a function of the mesh coordinates, which we denote

nh ≡ nh (Xh) . (2.11)

General expressions for the surface vectors of the dual mesh control vol-
umes nh are given in 2D and 3D in reference [1].

• Solution of the discretized Euler equations: nh → wh

As mentioned previously, the program Edge [8] solves the Euler equations
on a dual mesh. The discretized Euler equation in steady state yields
a system of equations in residual form where the discrete flow state wh

(the density, velocity and pressure at all nodes) is the unknown and the
dual mesh data nh parameterize this system1:

Rh (wh,nh) = 0 (2.12)

• Function evaluation: Xh,nh,wh → J

For the sake of the presentation, let us consider a function which mini-
mization involves a reduction of the drag coefficient (CD) and penalized
changes in lift (CL) and pitching moment (Cm):

J (wh,nh,Xh) =µDCD (wh,nh) +
1

2
µL

(

CL (wh,nh) − C0
L

)2
+

1

2
µM

(

Cm (wh,nh,Xh) − C0
m

)2
,

(2.13)

where µ are positive scalars and the upperscript 0 denotes the values at
initial design. The aerodynamic coefficients (CD , CL , Cm), also used in
the examples (§4), are defined here as:

CD (wh,nh) =
∑

i ∈ V(∂Ωw)

pini · dD

1
2ρ∞v2

∞Sref

,

CL (wh,nh) =
∑

i ∈ V(∂Ωw)

pini · dL

1
2ρ∞v2

∞Sref

,

Cm (wh,nh,Xh) =
∑

i ∈ V(∂Ωw)

pidM ·
(

xi − Oref.
)

× ni

1
2ρ∞v2

∞SrefLref

,

(2.14)

were dD = v∞/|v∞|, v∞ is the far-field air velocity, dL is an upward
oriented unit vector orthogonal to dD, dM is a unit vector orthogonal
to dD and dL, pi is the pressure at node i, ni, an element of nh, is the
outward-oriented surface normal at the boundary node i, ρ∞ denotes the
far-field air density, Sref a reference surface, Lref a reference length.

The gradient of J (2.13) with respect to ah, subject to the constraints (2.9)-
(2.12), also called the reduced gradient of J , is denoted ∇Ja. All functions in
expressions (2.9)-(2.13) being assumed continuously differentiable2, the com-
putation of ∇Ja can be formulated as:

1The discretized Reynolds Averaged Navier–Stokes equations also depend explicitly on
the mesh nodal coordinates Xh.

2Neglecting the artificial diffusivities used in the solution procedure of the flow equa-
tions [1].
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• For a given design ah and corresponding mesh Xh (2.9)-(2.10), dual grid
data nh (2.11) and discrete flow solution wh (2.12), compute the adjoint
flow solution w∗

h by solving (see [1])

(

∂Rh

∂wh

)∗

w∗
h =

(

∂J

∂wh

)T

. (2.15)

• Calculate the gradient with respect to the dual grid data ∇Jn and the
gradient with respect to the nodal coordinates ∇JX as follows:

∇Jn = −
(

∂Rh

∂nh

)∗

w∗
h +

(

∂J

∂nh

)T

, (2.16)

∇JX =

(

dnh

dXh

)T

∇Jn +

(

∂J

∂Xh

)T

. (2.17)

• Solve the adjoint mesh deformation equation, see [1, 14] for details:

(

∂Mh

∂Xh

)∗

X∗
h = −∇JX . (2.18)

• Calculate the gradient with respect to the shape deformations ∇Jd:

∇Jd =

(

∂Mh

∂dh

)∗

X∗
h . (2.19)

• Solve the adjoint parameterization equation, details are given below for
two examples of parameterization (§3):

(

∂Sh

∂dh

)∗

d∗
h = −∇Jd . (2.20)

• Finally, calculate the reduced gradient with respect to the parameters of
design:

∇Ja =

(

∂Sh

∂ah

)∗

d∗
h , (2.21)

where ∗ denotes the adjoint of an operator or the unknown in an adjoint equa-
tion.

2.3 Example of geometrical constraint

Problems of shape optimization usually include constraints on the geometry.
We give here the expressions used in the examples (§4) for computing the
thickness of an airfoil section or its volume. Let us define the thickness of an
airfoil: suppose, for the sake of the presentation, that the leading and trailing
edges are on the x-axis as in Figure 2.2, we call f (x,ah) the distance, measured
perpendicularly to the x-axis, between the upper and lower sides of the airfoil
and define the thickness of the airfoil as the maximum of this function:

T (Γ) = max
x0≤x≤x1

f (x,ah) (2.22)
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Figure 2.2: Sketch showing the principle of the streamwise discretization used for com-
puting the thickness of airfoils or streamwise sections of wings. Here m = 4, |Su

2 | = 4,
|Sl

2| = 5, but in the applications §4 m = 20

Applying definition (2.22) on the discretization of an airfoil, or a section
of a wing is straightforward. However, it is not a differentiable function with
respect to the parameters of design.

As an alternative we can approximate the maximum norm by the p-norm
(p <∞):

‖f‖p =

[
∫ x1

x0

|f (x,ah) |pdx
]

1
p

(2.23)

because:
‖f‖∞ = lim

p→∞
‖f‖p , (2.24)

The norm (2.23) is differentiable with respect to the shape even if the shape is
discretized. The integral in (2.23) is approximated, after discretization of the
x-axis in m intervals (Figure 2.2), here using the trapezoidal quadrature:

Th =

[

1

2
hfp

1 +

m−1
∑

k=2

hfp
k +

1

2
hfp

m

]

1
p

, (2.25)

where fk approximates f (xk,ah):

fk = ‖uk − lk‖ , (2.26)

with uk and lk are the mass centers of the points on the upper or lower side
of the airfoil. Denoting by Su

k , respectively, Sl
k, the set of indices of the nodes

in the interval k on the upper side, respectively, on the lower side, then:

uk =
1

|Su
k |

∑

i∈Su
k

xi , and lk =
1

|Sl
k|

∑

i∈Sl
k

xi (2.27)

For p = 1 expression (2.23) is the cross-section area and expressions (2.25)-
(2.27) give an approximation of this area.

Gradient of the thickness constraint

We detail here the expressions that are necessary in order to calculate explicitly
the gradient of the thickness. Suppose that the coordinates of node i on the
airfoil is displaced by δxi. We derive the first variation of the thickness (2.25)
due to the perturbation δxi:

δTh =







hT
(1−p)
h fp−1

k δfk for i ∈ Su or l
k with 2 ≤ k ≤ m− 1

1

2
hT

(1−p)
h fp−1

k δfk for i ∈ Su or l
k with k = 1orm

(2.28)
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and the first perturbation of the local thickness δfk is for a node i on the upper
side:

δfk =
1

|Su
k |

uk − lk

fk

· δxi (2.29)

or for a node i on the lower side:

δfk = − 1

|Sl
k|

uk − lk

fk

· δxi (2.30)

which gives expressions for calculating ∂Th/∂xi for all nodes on the airfoil.
Using relations (2.20)-(2.21) gives the gradient of Th with respect to all design
variables.

2.4 Aspects of parallel computations

The numerical platform AESOP is parallelized in two ways. Either the loop
is parallelized so that the flow and adjoint flow solution are computed “se-
quentially”, but several at a time. Or, the flow and adjoint flow solutions are
obtained on a partitioned domain, that is solving in parallel one flow (2.12)
or adjoint flow problem (2.15) at a time. The first option enables to obtain a
speed up even for small problems where there is no advantage in partitioning
the computational domain. The second approach is of course advantageous
for large computational meshes. The computation of ∇JX (2.16)-(2.17) is per-
formed in Edge following the scheme described in reference [1], which is also
parallelized.

2.5 Discrete against continuous adjoint sensitivities

The purpose of this example is to show that the discrete approach for calcu-
lating gradients of the cost function or constraints (2.15)-(2.21) can sometimes
be simplified without important change in the results of the optimization.

For instance the calculation of gradients requires adjoints of the mesh de-
formation (2.18) (one adjoint per cost function and constraint that depend on
mesh deformations). If the shape optimization is based on inviscid flow equa-
tions, skipping the solution of equation (2.18) may not affect the optimization
as Figure 2.3 shows the results of optimization for the M6 wing obtained by a
complete gradient calculation ’Optim1-1’ compared to the same optimization
where the adjoint mesh equation is not solved ’Optim1-2’. The first opti-
mization required a total of 155 flow equivalent solutions3 against 163 for the
second optimization, which indicates that the loss of accuracy did not destroy
the convergence of the numerical optimization. Regarding the computer cost
there is no savings here because the CPU time due to solving the adjoint mesh
equations is less than the cost of the additional flow computations required in
’Optim1-2’. This could be different in optimization involving the RANS equa-
tions because the cost of deforming the RANS mesh can be considerably higher
than deforming inviscid meshes [14] and the cost of solving the adjoint of the
mesh deformation equation has a similar amplitude.

3Flow equivalent solution means here one flow or adjoint flow solution. The cost for one
flow solution in this example is 1520 seconds CPU, and 24 seconds CPU for the solution of
one adjoint mesh deformation equation.
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Figure 2.3: M6 wing optimization with complete gradient calculation ’Optim1-1’ against
a gradient calculation without adjoint mesh solution ’Optim1-2’.
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3 RBF parameterization of shape
deformations
The choice of the RBF method for the parameterization of shapes in aerody-
namic shape optimization can be motivated by the following properties:

1. scattered data interpolation - Shapes are generally described by clouds
of points without topological information. The primal idea of the pa-
rameterization defined below (§3.1) is to interpolate the displacements
of control points scattered in R

2 or R
3 in order to define displacements

everywhere.

2. regularization - In gradient-based optimization, the parameters are up-
dated given shape gradients of the aerodynamic coefficients, which have
no known regularity, an example is given in Figure 3.1. The parameters in
our RBF parameterization are the displacements of control points. When
the RBF is such that it can resolve the high frequencies of the shape gra-
dient, the interpolated displacements would inevitably create wavy shape
deformations. Therefore, a regularized approximation as defined in §3.2
is in this case preferred to an interpolant, see Figure 3.2.

3. extrapolation - Aeroelastic shape optimization requires deforming the
structure model according to changes in the parameters that describe
the shape. The same RBF can be used for the parameterization of the
wetted surface deformations and for the deformation of the inner struc-
ture model.

4. ’arbitrary’ dimensions - The RBF formulation involves a distance between
the location of data, which is invariant with respect to the dimension.

The RBF interpolation and approximation (regularized RBF) are presented in
the next two sections. This type of representation of shape deformations often
requires to set boundaries to the region where the deformations are defined [14],
for example defining cut-off functions as in section 3.3. Finally, the computa-
tion of gradients, the steps (2.20)-(2.21) above, is described in section §3.4.

3.1 RBF interpolant

For the sake of the presentation, the parameters of design used here {ai ∈ R , 1 ≤ i ≤ n}
are the displacements in y-direction of n control points. Denoting by x =
[x, y, z, ...] the coordinates in R

d of a material point, and the superscript 0 de-
noting its position at rest, a displacement mapping dh (x) : R

d → R
d is defined

here, generalizing the definition (2.8) to all points in R
d:

x = x
0 + dh

(

x
0
)

. (3.1)

The mapping is further defined by imposing the following interpolation condi-
tion at the control points:

dy (xi) = ai , 1 ≤ i ≤ n , (3.2)

where dy (x) is the y-component of dh. The displacements dy (x), represented
by a RBF such as the one derived in reference [14], are expressed as:

dy (x) =
n

∑

i=1

cy,iφǫ (x − xi) +
d+1
∑

k=1

by,kQk (x) , (3.3)
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Figure 3.1: Gradient of the drag coefficient with respect to the nodal coordinates on
the airfoil, including flow derivatives: x-coordinates (left) and y-coordinates (right)

 

 

initial
case: 1
case: 2

 

 

initial
case: 1
case: 2

Figure 3.2: Comparison of inviscid optimization of airfoils using RBF parameterization:
with regularization (case:1) and without regularization (case:2) - pressure coefficients
(−Cp) on the left and geometries on the right.

where the radial function φǫ (r) is defined by a real valued function Φ (t) (see
Table 3.1 for examples) via

φǫ (r) = Φ (ǫ‖r‖) , (3.4)

and ‖.‖ denotes here the Euclidean norm, ǫ being the shape factor, a strictly

Basis function Φ (t) where t ≥ 0
Wendland (W3,1) (4t+ 1) × (1 − t)4 , if 0 ≤ t ≤ 1 , 0 otherwise
Inverse multi-quadric (IMQ) 1√

1+t2

Multi-quadric (MQ)
√

1 + t2

Gaussian (GS) e−t2

Thin Plate Splines (TPS2) t2log (t) , if t > 0 , 0 otherwise
Thin Plate Splines (TPS4) t4log (t) , if t > 0 , 0 otherwise

Table 3.1: Example of “RBF” functions.
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positive real number. For 3D applications (d = 3) the monomials Q are:

Q1 (x) = 1

Q2 (x) = x

Q3 (x) = y

Q4 (x) = z

(3.5)

The coefficients of the RBF (3.3), {ch;bh} = {cy,i ∈ R , 1 ≤ i ≤ n ; by,k ∈ R , 1 ≤ k ≤ d+ 1},
need to fulfill the system of n+ d+ 1 equations:

[

A P
PT 0

] [

cy

by

]

=

[

ah

0

]

, (3.6)

where A is the interpolation matrix:

A = {Aij} 1 ≤ i ≤ n
1 ≤ j ≤ n

,

Aij = φǫ (xi − xj) , 1 ≤ i ≤ n , 1 ≤ j ≤ n ,

(3.7)

and P is the matrix of constraints

P = {Pik} 1 ≤ i ≤ n
1 ≤ k ≤ d+ 1

,

Pik = Qk (xi) , 1 ≤ i ≤ n , 1 ≤ k ≤ d+ 1 .

(3.8)

The system (3.6) is not singular if the coordinates of the control points xi are
distinct and if A defined by (3.7) is not singular. The last condition is fulfilled
for certain functions Φ, see reference [29] and the examples in Table 3.1. The d+
1 constraints are imposed in reference [14] in order to obtain interpolations that
are translation and rotation invariant, in addition to fulfilling the interpolation
conditions (3.2).

3.2 Regularized RBF

The interpolation presented above may induce wiggles when increasing the
number of control points n in (3.2)-(3.3). Even small oscillations on the geom-
etry, as in the example shown in Figure 3.2, affect the pressure in a way that
could trigger flow separation or (laminar to turbulent) transition, for example.
A possible cure is to penalize a norm of the RBF (3.3) while approximating
the displacements of the control points. By this approach the relation (3.2)
does not necessarily hold. The standard approach, in order to define an ap-
proximation dy of the form (3.3), is to observe that the solution of the system
of equations (3.6) above is solution of the least-square approximation problem
with constraints:























min
cy∈Rn,by∈Rd+1

n
∑

i=1

[dy (xi) − ai]
2

subject to
n

∑

i=1

cy,iq (xi) = 0,

(3.9)

where dy (x) is defined by (3.3) and q (x) is any first degree polynomial.
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Adding a penalty on the (native space) norm of the RBF yields the following
problem of approximation:























min
cy∈Rn,by∈Rd+1

n
∑

i=1

[dy (xi) − ai]
2

+ β

n
∑

i=1

n
∑

j=1

cy,icy,jφǫ (xi − xj)

subject to

n
∑

i=1

cy,iq (xi) = 0,

(3.10)

where dy and q are defined as in problem (3.9) and β ∈ R
+. If the matrix A

defined by (3.7) is not singular, the solution of the problem (3.10) is given by
the solution of the system:

[

A + βI P
PT 0

] [

cy

by

]

=

[

ah

0

]

, (3.11)

The choice of the parameter β is of course determining the “quality” of the
approximation in terms of the pointwise error:

ey,i = dy (xi) − ai , 1 ≤ i ≤ n (3.12)

and in terms of the oscillations of dy. Small values of β give small pointwise
errors |ey,i|, with a risk of overshooting, whereas large values of β potentially
eliminate overshooting at the cost of increased pointwise errors. When approx-
imating functionals, there are no known optimal values of β but an attempt
can be made to reduce the influence of “noise” and therefore reduce the inte-
grated error (based on the L2 norm for example) by cross-validation, as found
in Rudholm and Wojciechowski [22].

3.3 Boundary conditions

In certain applications, such as the 3D examples presented in §4.3 or in ref-
erence [14], it is necessary to limit the support of the deformation defined by
RBF (3.3). Given a plane P (defined by a point xP and a normal vector nP ),
the displacements in the half-space P− (defined by xP − nP ∈ P−) should be
zero. We define a cut-off function ϕP (x) that is 0 for points in P− and 1 away
from the plane P by:











ϕP (x) =1 − ΦW

(

ǫP (x − xP ) · nP

‖nP ‖

)

, for x /∈ P−

ϕP (x) =0 , for x ∈ P−
(3.13)

where ΦW is the Wendland function from Table 3.1. A displacement dP
y , null

in P−, would for example be used instead of dy, the latter being defined by
(3.9) or (3.10):

dP
y (x) = ϕP (x) dy (x) . (3.14)

The same approach can be used in order to impose pointwise constraints.

3.4 Computation of shape gradients

The following gives the details of the operations (2.20)-(2.21) in cases where
the parameterization equation (2.9) is defined by the RBF approach described
above. In order to make the example more general suppose that regularization
is used (§3.2) as well as boundary conditions (§3.3). Suppose that we are given
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the gradient of J with respect to the y-coordinates displacements on the shape
dJ/ddy, calculating the gradient of J with respect to the RBF coefficients cy

and by requires the following operations:

∂J

∂λy
i

=

Nw
∑

j=1

ϕP (xj)ψi (xj)
dJ

ddy,j

, 1 ≤ i ≤ n+ d+ 1 , (3.15)

where we included eventual cut-off functions in ϕP (xj) as defined in §3.3 by
relation (3.13). The following notations were used in (3.15):

λy
i = cy,i , and ψi (x) = φǫ (x − xj) , 1 ≤ i ≤ n

λy
n+i = by,i , and ψn+i (x) = Qi (x) , 1 ≤ i ≤ d+ 1

(3.16)

Calling dJ/dλy the vector of all partial derivatives of J with respect to the
RBF coefficients (3.15)-(3.16), we can calculate the gradient of J with respect
to the vector of all control points (y-)displacements ah by solving the system:

[

A + βI P
PT 0

] [

dJ/dah

0

]

=

[

dJ/dλy

0

]

, (3.17)
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4 Examples
All examples below are solved in AESOP using the augmented Lagrangian
algorithm (see §2.1). The accuracy of the gradients computed by adjoint flow
equations as exposed above is an important aspect of these optimizations. An
estimation of the accuracy can be done comparing “adjoint gradients” with
finite difference approximations (see for example [1, 2]). In Figure 4.1 the
gradients of the drag, lift and pitch, used in the multipoint optimization test
case below (see §4.1), are computed by the procedure above and by finite
differences approximations where the perturbations of the design variables vary
between 10−4 and 10−7. The gradients obtained by the two methods argee
within 1 − 2% at design point 1, and within 0.5% at design point 2, at least
for perturbation parameters smaller or equal than 10−5. The difference of
“accuracy” between the two design points probably depends on the difference
in shock strength. The shock is stringer at design point 1 than at design
point 2, which involves that the artificial viscosity is has a more important role
at design point 1 thus leading to larger errors because the artificial viscosity
was not differentiated when deriving the adjoint flow equations used here (see
reference [1].
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10
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R
el
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e 
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ro
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drag
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merit
lift

1

pitch
1

lift
2

pitch
2

drag
2

Figure 4.1: Comparison of the gradients at first iteration obtained by adjoint method
vs finite differences with different perturbation of the design variables - The subscript
indicates the design point (1 or 2).

4.1 Inviscid multipoint optimization

This is an example of airfoil design at cruise for Mach number 0.716, a study
performed in the European project CESAR. The goal was here to minimize
the drag due to shocks, in contrast to the next example (see §4.2) where the
main objective is to reduce the viscous friction. It is therefore sufficient to
use the Euler equations in order to model the flow. Note, however, that the
performance of the final design was verified in the project, as it is customary,
solving the RANS equations around the initial and final airfoils, but these
results are not presented here. Constraints are imposed on the thickness, the
pitching moment and the lift, whereas the goal is to minimize the drag. The
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Figure 4.2: Multipoint inviscid airfoil optimization at Mach=0.716 - Pressure coefficients
−Cp at design point 1 (left) and design point 2 (right), unscaled airfoils (bottom), where
the dashed blue line is for the initial design and the solid red line is for the final design.

multipoint approach consists here in defining a problem of optimization that
depends on more than one flight condition, for instance two angles of attack
{α1, α2}. Here α2 gives the required lift coefficient at Mach= 0.716 , but the
wave drag is only 20 drag counts. Chosing to minimize the drag at a higher
angle of attack was the strategy chosen by the author in order to have better
sensitivities of the cost function with respect to changes in the geometry. The
cost function is thus the wave drag at α1, an angle of attack at which the
initial drag is about 80 drag counts. The lift coefficients at both design points
are imposed to be larger or equal than the values for the baseline. Regarding
the pitching moments, the project required values larger than those of the
baseline, so that a lower bound was finally chosen at −0.12. Note that the
pitching moments based only on the pressure can be very different from the
values that include the effect of viscosity, so that the main objective is to
increase the pitching moments (the convention here is negative pitch for nose
down moment), not to achieve precise values.

To summarize, the optimization problem is formulated as:































































min
Γ

CD1

CD
0
1

subject to

CD2 ≤ CD
0
2

CL1 ≥ CL
0
1

CL2 ≥ CL
0
2

Cm1 ≥ Cm
min
1

Cm2 ≥ Cm
min
2

t ≥ tmin

(4.1)

where the superscript 0 indicates the values at initial design (baseline), min in-
dicates values chosen that are different from the baseline: tmin = 9%, Cm

min
1 =

−0.12, Cm
min
2 = −0.12. The parameterization of the airfoil Γ, or its deforma-
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tions, is the regularized RBF method described in section 3.2. The radial
function φǫ in expression (3.3) is the Gaussian (see Table 3.1) with a shape
factor ǫ = 2.5, a regularization parameter β = 1.1 in (3.10)-(3.11), and 11 con-
trol points distributed on the surface. Note that imposing the constraints on
the pitching moment, in the multipoint approach, has allowed here to achieve
a better design at both design points {α1, α2} than the designs that could
be obtained by performing only single point optimization at α1 and α2, with
less constraining conditions on the pitching moment. Not only the wave drag
is reduced of 70 drag counts at α1 and 12 drag counts at α2, the lift at α2

was increased as well as the pitching moments at both design points, all other
constraints being satisfied (Figure 4.3). A possible explanation is that non-
linear problems of optimization of this kind have local minima and imposing
constraints away from the values at initial design may help moving away from
local optimum solutions.

29



FOI-R--2538--SE

10
0

10
1

10
2

10
0

design loop (1=initial)

M
er

it 
fu

nc
tio

n 
(F

)

10
0

10
1

10
2

10
−1

10
0

10
1

10
2

10
3

10
4

design loop (1=initial)
||∇

 F
||

10
0

10
1

10
2

0

0.005

0.01

0.015

design

O
bj

ec
tiv

e 
co

m
po

ne
nt

 f 1 (
C

D
1)

0 10 20
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

parameter index

∇
f 1

10
0

10
1

10
2

0.5

0.55

0.6

0.65

0.7

0.75

design loop (1=initial)

C
on

st
ra

in
t f

1 (
C

L 1)

0 10 20
−15

−10

−5

0

5

parameter index

∇
f 1

10
0

10
1

10
2

0.2

0.25

0.3

0.35

0.4

0.45

design loop (1=initial)

C
on

st
ra

in
t f

4 (
C

L 2)

0 10 20
−15

−10

−5

0

5

parameter index

∇
f 4

10
0

10
1

10
2

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

design loop (1=initial)

C
on

st
ra

in
t f

3 (
C

m
1)

0 10 20
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

parameter index

∇
f 3

10
0

10
1

10
2

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

design loop (1=initial)

C
on

st
ra

in
t f

5 (
C

m
2)

0 10 20
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

parameter index

∇
f 5

10
0

10
1

10
2

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−3

design loop (1=initial)

C
on

st
ra

in
t f

6 (
C

D
2)

0 10 20
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

parameter index

∇
f 6

10
0

10
1

10
2

0.08

0.1

0.12

0.14

0.16

0.18

design loop (1=initial)

C
on

st
ra

in
t f

2 (
th

ic
kn

es
s)

0 10 20
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

parameter index

∇
f 2

Figure 4.3: Multipoint inviscid airfoil optimization at M=0.716 - Merit function and gradi-
ent norm (first row left), drag and gradient at design point 1 (first row right), lift at design
point 1 (second row left), lift at design point 2 (second row right), pitching moment at
design point 1 (third row left), pitching moment at design point 2 (third row right), drag
at design point 2 (bottom left), thickness (bottom right). The gradients are represented
at initial (dashed blue lines) and final design. (solid red lines).
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4.2 Natural Laminar Flow design optimization

This is an example of laminar airfoil design at cruise conditions, the Mach
number is 0.372 and the Reynolds number is 12E6. This work was also per-
formed for the European project CESAR. In constrast to the previous example
the goal is to reduce the viscous drag. The common strategy in the area, and
the one applied here, is to increase the laminar portion of the flow. For this
purpose the flow equations (Euler in this example) are complemented with a
model of the propagation of disturbances in the laminar part of the boundary
layer. The reason is that the mechanism of laminar-to-turbulent transition is
generally governed by the growth of such disturbances. Therefore, damping
the growth of those disturbances is expected to delay downstream the location
of this transition, increasing the laminar portion of the flow where the friction
coefficient is much lower than in the turbulent area. The strategy used here
has been implemented for the design of laminar airfoils using adjoint sensi-
tivities in reference [2]. For this purpose the platform AESOP communicates
with additional solvers for the boundary layer flow and stability equations (and
their adjoints). Following this strategy the cost function is the energy of a se-
lected disturbance (E) propagated in the boundary layer on the suction side.
Constraints are imposed on the thickness, the pitching moment and the lift. In
order to avoid increasing the wave drag, around 10 drag counts for the baseline,
a penalty term is added to the energy in the cost function. This is preferred to
a usual constraint because a design with a slightly higher wave drag could be
acceptable, if the laminar region of the flow is sufficiently increased. The lift
and pitching moment coefficients are imposed to be larger or equal than the
values for the baseline, the angle of attack being such that the initial lift is the
minimum required lift.

To summarize, the optimization problem is formulated as:































min
Γ

log (E) + 0.1
CD

CD
0 subject to

CL ≥ CL
0

Cm ≥ Cm
0

t ≥ tmin

(4.2)

 

 

initial
final

 

 

initial
final

Figure 4.4: NLF airfoil optimization at Mach=0.312, Re=12E6 - Pressure coefficients
−Cp (left) and unscaled airfoils (right), where the dashed blue line is for the initial
design and the solid red line is for the final design.
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Figure 4.5: NLF airfoil optimization at Mach=0.312, Re=12E6 - Merit function and gra-
dient norm (first row left), disturbance energy and gradient (first row right), wave drag
(2nd row left), lift (2nd row right), pitching moment (bottom left), thickness (bottom
right). The gradients are represented at initial (dashed blue lines) and final design
(solid red lines).

where the superscript 0 indicates the values at initial design (baseline) and
min indicates a different reference value than that of the baseline: tmin =
12%. The parameterization of the airfoil Γ deformations is the regularized
RBF method described in §3.2. The radial function φǫ in expression (3.3)
is the Gaussian (see Table 3.1) with a shape factor ǫ = 1.7, a regularization
parameters β = 0.1 in (3.10)-(3.11), and 8 control points distributed on the
surface. As explained earlier, the computation of the energy of a disturbance
involves here the solution of the flow in the laminar part of the boundary
layer and the solution of the transport equations for the disturbance in the
boundary layer (here the Parabolized Stability Equations). In order to calculate
efficiently and accurately the gradients, the adjoint of the boundary layer and
of the stability equations are solved, in addition to the adjoint of the Euler flow
equations [2]. The reduction of the energy function (Figure 4.5) is due to the
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favorable pressure gradient on the suction side, which damps the growth of this
disturbance (see Figure 4.4). Note that the use of the logaritm of the energy
is necessary due to variations of several orders of magnitude of the function E
from the baseline design to the final design (Figure 4.5).

4.3 Inviscid transonic wing optimization

The ONERA M6 wing, described in the AGARD report [24], is optimized here
at Mach number 0.8395 and angle of attack α = 3.06o using the Euler equations
as flow model. The parameterization of the deformations of the wing Γ is the
interpolation RBF method described in section 3.1 (without regularization).
A similar optimization was carried out in reference [1] using a parameteriza-
tion of the twist, camber and thickness along the spanwise direction. Another
difference with those previous results is that the lift and pitching moment coef-
ficients are here considered as constraints, which was not the case in [1] where
changes in these coefficients were only penalized. The radial functions φǫ in
Table 3.1 are compared: W3,1 (’Optim1’), GS (’Optim2’), TPS2 (’Optim3’)
and TPS4 (’Optim4’). The shape factor is ǫ = 0.17 for a chord that varies
between 10m at the root to 5.5m at the tip (see Figure 4.6) and there are 52
control points distributed on the surface. Concerning the boundary conditions
of the flow domain, a symmetry plane (x-z) is placed at the root of the wing.
The root section geometry is fixed through a cut-off function as described in
section 3.3 where nP = (0, 1, 0) (orthogonal to the plane x-z) and ǫP = 0.33.

To summarize, the optimization problem is formulated as:







































min
Γ

CD

CD
0 subject to

CL ≥ CL
0

Cm ≥ Cm
0

t20% ≥ t020%

t50% ≥ t050%

(4.3)

where the superscript 0 indicates the values at initial design (baseline), t20%
and t50% indicate the thicknesses of the streamwise wing sections at 20% and
50% of span.
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Figure 4.6: Distribution of the control points on the M6 wing (on both sides).
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Figure 4.7: Optimization - Influence of the parameterization of the M6 wing deforma-
tions: Wendland (Optim1), Gauss (Optim2), TPS2 (Optim3), TPS3 (Optim4).

The trend for all four cases is visible in Figures 4.7-4.8: the drag is reduced
due to the weakening of the shock, while the lift and pitching moment coef-
ficients are kept to their initial values. The new shapes perform even better
than in reference [1] without reducing the thickness of the wing. Unless for the
Optim2 case, where the drag at final design is larger than in the three other
cases, there is no large difference between the aerodynamic performances of the
designs obtained by the three parameterizations used in Optim1, Optim3 and
Optim4 (see Merit function, drag, lift and pitch in Figure 4.7). Comparing the
airfoils from Optim1 (Figure 5.1) and Optim2 (Figure 5.2) shows important
differences, for example in trailing edges thickness and leading edges radius,
depending on the methods of parameterization (the Optim3 and Optim4 air-
foils, not shown here, show similar trends as Optim1).These results are very
different from the ones obtained in reference [1] because the reduction in drag
is here around 40 drag counts, without violation of the constraints whereas the
reduction obtained in [1] was at best 30 drag counts with up to 1% violation
of the lift. This improvement is due to the shape parameterization used here.
The use of RBF enables to change the shape of the “airfoils” without being
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limited to changes in twist and camber. Note that the drag induced by the lift
for an elliptic lift distribution is C2

L/πAR, where AR is the aspect ratio of the
M6 wing (3.85), which is 90 drag counts for CL = 0.33. The wings obtained
by optimization (Optim1, Optim3 and Optim4) are thus quite closed to the
theoretical optimal wing with the same aspect ratio.

Figure 4.8: Pressure coefficients and iso-Mach lines of the M6 wing (left) and of the
optimized ’Optim1’ (right), at Mach=0.84, angle of attack of 3 degrees.
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5 Summary and outlook
AESOP is a platform for large scale aerodynamic shape optimization and for
the development of multidisciplinary design optimization (MDO). Large scale
refers here to problems of optimization with many design parameters or with
computationaly intensive functions evaluations. The main advantage of the
program is to take fully advantage of the adjoint approach developed in re-
cent years in CFD, for instance via the coupling with the unstructured flow
and adjoint flow solver in Edge [1]. Several developments can improve the
performance or broaden the fields of applications. The performance could for
example be improved using other optimization algorithms, for example the
Method of Moving Asymptotes from Svanberg [28] and NLPQLP (a Sequential
Quadratic Programming implementation) from Schittkowski [23], which is the
goal of current investigations.

Typical problems of aerodynamic shape optimization in aeronautics concern
the design or re-design of airfoils, wings, turbine blades, canals, pylons, fairing
of surfaces intersections, among others. Devising a strategy of parameteriza-
tion that gives satisfying results for the optimization of all these shapes is not
straightforward but it seems that the properties of the Radial Basis Functions
(RBF) presented above could help building a general stategy.

An adjoint RANS solver is also being developed in Edge [11]. The capability
to take into account viscous turbulent flows in the optimization will enable the
optimization of systems where the viscous effects are dominant, such as high-
lift systems. Another important aspect is that the use of the RANS equations
instead of Euler will improve the reliability of the results of optimization. For
instance, the pressure distribution around an optimized shape obtained with
Euler may well lead to flow separation althgough the aerodynamic coefficients
computed by the inviscid flow model can indicate that the shape has a low
drag coefficient and the right lift.

Finally, aeroelasticity is being integrated in the aerodynamic shape opti-
mization framework presented here, starting by superposing static deforma-
tions due to loads and shape deformations due to optimization.
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Figure 5.1: Optimization - Comparison of the M6 wing shape and Cp with Optim1 wing
at 0, 43 and 93 percent of span.
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Figure 5.2: Optimization - Comparison of the M6 wing shape and Cp with Optim2 wing
at 0, 43 and 93 percent of span.

44






