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Sammanfattning

Spaningsplattformars egenbuller kan kategoriseras i utrustnings- och plattformsbuller.
Utrustningsbuller karakteriseras av. momentana forlopp och &r inte knuten till sjalva
spaningen, t.ex. buller producerat av rorledningar. Buller fran sensorplattformen
inkluderar maskin- och hydrodynamiska ljud som orsakas av farkostens rorelser i
vattnet. Reduktion av den negativa paverkan som egenbuller har pa spaningsprestanda
angrips utifran ett signalbehandlingsperspektiv. Tva lovande bullerundertrycknings-
metoder studeras, dar bada metoderna uppskattar bullret och sedan sker en filtrering.
Den forsta metoden estimerar bullret genom anpassning till en AR (jmf. eng.
AutoRegressive) modell, medan den andra metoden anvander en ICA (jmf. eng.
Independent Component Analysis) metod. Sedan gors en filtrering med hjalp av ett FIR
(jmf. eng. Finite Impulse Response) Wiener filter samt tre olika adaptiva FIR filter:
LMS, NLMS och RLS. Metoderna tillampas pa signaler registrerade med en TAS (jmf.
eng. Towed Array Sonar), tagna fran ett faltforsok som genomforts i Stockholms
skargard. AR-metoden fungerar tillfredstallande och undertrycker buller med 30 dB/Hz
oberoende av vilket filter som anvands och &ven om Kkorrelationskoefficienten mellan
storning och uppmatt buller ar sa 1dg som 0.2. ICA metoden reducerar bullret med 10
dB/Hz i det frekvensband dar egenbullret aterfinns oberoende av vilket filter som
anvéands.

Nyckelord: Egenbullerundertryckning, Passiv sonar, TAS, ICA, AR process, Filter,
Wiener, LMS, NLMS, RLS



FOI-R--2573--SE

Summary

Self-noise generating mechanisms can be categorised in noise produced by the
equipment and the platform. Equipment noise has characteristics of being
instantaneous in nature, e.g. transients such as tube noise. The noise produced by the
sensor platform includes noise from the machinery and hydrodynamic noise generated
by the motion of the platform in the water. A signal processing perspective on reducing
the negative impact of self-noise is taken. Two promising self-noise cancellation
methods are investigated. Both methods consist of a noise estimation followed by
filtering. The first method estimates the noise by fitting an AutoRegressive (AR)
model, while the second approach uses an Independent Component Analysis (ICA)
method. A Finite Impulse Response (FIR) Wiener filter and three different adaptive
FIR filters, LMS, NLMS and RLS are then applied. The methods are applied to Towed
Array Sonar (TAS) signals taken from a field test carried out in the archipelago of
Stockholm. The AR approach performs well regardless of which filter used and
suppresses the noise by 30 dB/Hz even when the correlation coefficient between the
interfering and measured noise is as low as 0.2. The ICA method reduces the noise in
the main frequency band by 10 dB/Hz for all filters.

Keywords: Self-noise cancellation, Passive sonar, TAS, ICA, AR process, Filter,
Wiener, LMS, NLMS, RLS
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1 Introduction

Self-noise is a critical and complex aspect when considering the performance of
sensor platforms. When using a sensor platform for underwater reconnaissance,
e.g. sonar systems mounted on or towed by submarines and surface ships,
it usually includes motion. The motion of the platform generates self-noise,
which can degrade sonar performance. Presently in Sweden the self-noise is
monitored in sonar systems of the Royal Swedish Navy (RSwN) and when
possible measures are taken to prevent it. Attention should however also be
directed to the understanding of the generating mechanism of a particular self-
noise component in a sonar system. In addition, automatic tools for alerting of
the presence of self-noise and reducing its impact on the sonar are important,
and these tools will support the listening sonar operator in discriminating self-
noise from ambient noise and targets. Thus, the challenge of monitoring and
handling self-noise applies to the RSwN and is the motivation for the present
study. The report will focus on reducing the impact of self-noise in sonar from
a signal processing perspective.

Several mechanisms contribute to the self-noise and some strongly depend
on the sensor platform itself [1]. Some general features and mechanisms of
self-noise in sensors should still be mentioned. Sensor will here mean an ar-
ray of hydrophone elements used for passive sonar. By different travel paths
self-noise propagates as waves, and these waves are measured as signals in the
sensor, adding to the target signals and degrading the sensor performance. One
way of characterising these waves is by considering their contribution to the
energy spectrum as a function of frequency. This contribution to the spectrum
can be relatively stable and consist of either harmonic components, random
distributions over a broad frequency region or a combination of both. In ad-
dition, the contribution changes as functions of time both in a small and large
scale, e.g. instantaneous variation versus ageing effects of the platform. Self-
noise can also have transient behaviour, occurring instantaneous with different
echo durations. Furthermore the self-noise can reach a sensor through different
propagation paths and exhibit strong directivity.

Self-noise generating mechanisms can be categorised in noise produced by
the equipment and the platform, see for instance [2]. Equipment noise has
characteristics of being more instantaneous in nature, e.g. transients, such as
tube noise. The means of reducing them are challenging involving both ro-
bustness aspects and adaptive capabilities. The noise produced by the sensor
platform includes noise from the machinery and hydrodynamic noise generated
by the motion of the platform in the water. Machinery noise mainly origi-
nates from the propulsion of the platform and auxiliary machinery, and can
consist of a combination of discrete harmonics and broad-band parts. The en-
ergy distribution is to some degree stable, but depends strongly on the speed
of the platform. This noise can be monitored and can also be partly counter-
acted by introducing damping material in the propagation path between the
generating noise source and the sensor. The ageing effects of machinery will
however change the energy distribution of the noise over time and could make
damping solutions less effective. Hydrodynamic noise mainly originates from
flow-excited vibration, turbulence and cavitations, and can as machinery noise
have both discrete and broader parts in their energy spectra. The type of noise
also depends on the speed of the platform. This noise can be partly reduced
by a careful design of the hull of the platform taking fluid mechanics aspects
into account. Generally, the monitoring of self-noise is achieved by reference
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sensors, such as accelerometers and hydrophones when applicable, which are
placed at carefully selected locations on the platform.

As mentioned, self-noise can be anticipated and partly prevented in the
construction phase of the platform. An alternative way is to consider the
possibility to use signal processing to reduce the negative impact of self-noise
in a sensor. As we have found in the literature, signal processing methods
are rarely found, which apply to the reduction of self-noise for underwater
reconnaissance platforms. However, some general comments can be made and
in this context filtering using measured self-noise in the sensor is an obvious
choice. As noise sources have different origins, filters either have to be adapted
for each type of noise or a single filter has to be robust and able to handle
different types of noise. One approach is to separate the self-noise from the
wanted wavefield in the frequency-wavenumber domain, see [3] and [4]. In
this way waves which have travelled with a speed different from the speed in
water can be discriminated from the hydroacoustic waves. The importance
of self-noise cancellation in sonar systems can be viewed from many different
perspectives. From an operator viewpoint [5] several different display tools
are crucial. As already mentioned, sonar systems in general are exposed to
disturbances, among which self-noise can degrade performance [1]. This can
be further emphasised by [6] with respect to beamforming and by [7] with
respect to filtering, in particular Least Mean Squares (LMS). Furthermore,
techniques from speech-recognition can be insightful, such as the Independent
Component Analysis (ICA) for blind signal separation combined with adaptive
noise cancelling found in [8].

We propose a combination of techniques which first assumes the noise to be
an AutoRegressive (AR) process [9] or possibly to be decomposed by means of
ICA [10]. This estimation requires a measurement without targets and varying
the speed of the platform, enabling easier characterisation of the self-noise. It
is also assumed that the properties of the ambient noise are a priori known or
estimated. If measurements are carried out with targets directly, some a priori
knowledge is needed regarding the properties of the ambient noise and either
some features of the target signatures or some characteristics of the self-noise.
The proposed combinations of methods can be seen as pre-processing of array
signals before applying for instance beamforming.

The AR model may be used to model a random process [11]. Filtering
white noise with a filter having p poles generates an AR(p) random process.
Carefully positioning of the poles using features of the signals generates the
desired process. ICA is instead a class of statistical methods, which are utilised
for transforming observed multidimensional data into components that are as
statistically independent as possible. The a priori knowledge required is how
many independent components should be searched for. In the literature several
approaches for ICA can be found, see for instance the extensive tutorial in [10].
The linear ICA approach used in the present investigation follows the one found
in [12]. It should be mentioned that the noise estimation techniques to some
extent use contradictive assumptions, for instance Gaussian or non-Gaussian
distributions, and different a priory knowledge, however this complies to the
noise characteristics which may vary for different applications.

When the noise has been estimated by AR modelling or ICA, Finite Im-
pulse Response (FIR) Wiener filtering techniques [11] are applied to the signals
using the estimates. The Wiener filter is designed to be the optimum filter in
recovering the desired signal from a noisy measurement. The filter is optimum
in the sense that it minimises the mean square error. An assumption however
requires the signals to be stationary, but the adaptive filters can be applied to
non-stationary signals. The adaptive Least Mean Squares (LMS), Normalised



Least Mean Squares (NLMS) and Recursive Least Squares (RLS) FIR filters
are also included in the study. Adaptive filters applied to the problem of noise
cancellation is described in [13]. Experimental results for practical applications
including electrocardiography, speech signals and antenna sidelobe interference
are shown together with computer simulations of periodic or broadband inter-
ference where there is no external reference source. Here direct-form FIR filters
are studied, the filters can however be implemented in other realizations and as
Infinite Impulse Response (IIR) filters. An overview of adaptive IIR filtering
is given in [14]. Two formulations: the equation-error and the output-error
are described using a direct-form implementation, the parallel and lattice real-
izations are briefly discussed. A thorough review of the LMS filter applied to
active noise control is found in [15].

The present analysis can be seen as an initial study of two promising self-
noise cancellation methods taken from the vast number of possible methods
found in signal processing research. Despite this fact, the methods have been
tested on signals from field tests. A first attempt was made to apply the meth-
ods on signals taken from a field test involving an operative sensor platform
of the RSwN. In this case sonar signals were registered both without and with
targets. In addition, the speed of the sensor platform was varied enabling some
discrimination of ambient-noise and self-noise. Unfortunately the signals were
of poor quality due to malfunctions in the data acquisition equipment. The
attention was instead directed to a field test where signals were registered with
a Towed Array Sonar (TAS) of the RSwN, including self-noise, ambient noise
and target at the same time [16]. The target was however a fixed source trans-
mitting four tones, which simplifies the discrimination of the target signature.
Nevertheless, the noise has to be estimated with the target present, which is
a modification to the wanted prerequisites of the pre-processing and not the
optimum choice. In addition, as the target consists of tones an obvious choice
would be to process the data with a band-pass filter, but it is assumed that
target information is not known a priori to comply with the self-noise cancel-
lation methods proposed. Some recent progress in TAS research is reported
in [1].

The structure of the report is as follows. In Chapter 2, brief explanations of
noise cancellation filters and ICA are found. Then Chapter 3 starts with some
information regarding the field test and the signals, which will be processed.
This chapter also includes results from the AR, ICA and filter processing. The
report ends with conclusions in Chapter 4, along with some comments regarding
the next steps in the future development of self-noise cancellation methods.

FOI-R--2573--SE






2 Methods

2.1 Notations

In this chapter the investigated methods are briefly explained and some general
notation rules are therefore required. The first and second derivative of a
function of one variable f(z) are indicated by f’(x) and f”(x). Matrices are
written in bold capital letters (A) while vectors are written in bold small letters
(). Symbols for matrix operations are defined which are: A7, A* and A™!
denoting the transpose, the conjugate and the inverse of a matrix respectively.
The transpose and conjugate are also applicable on vectors. The null matrix
is denoted by O.

Let © = [z1,...,2n]T be a vector with dimension N. The expectation value
of x is denoted by E{x} ~ m, and estimates its sample mean m, = % vazl Zi-
The expectation value of a matrix can be written as E{X} ~ m, and is a col-
umn vector with N components, where each n*" component equals the mean of
the corresponding row n. The matrix X = X —m,, is defined to be centred as
E{X} = 0. To apply whitening/sphering on X an eigenvalue decomposition
of its covariance matrix R, = E{X X T} is required. Assuming that the eigen-
value decomposition of the covariance matrix can be written in the following
form R, = EDE", a change of coordinates to X = ED Y?2ETX will result

in X being whitened, i.e. E{XXT} = I. If a vector  or a matrix X are

estimated, the estimations are denoted by & and X respectively. A p'" order
FIR filter W is denoted by its system function W (z) = Zf;ol w(l)z~" or the

impulse response vector w = [w(0), w(1),...,w(p—1)]". The adaptive filter
coefficients at time n is denoted by wy, = [w(0)n, w(1)n, ..., w(p —1)n]".

2.2 Noise cancellation filters

Assume that an observation x of a desired signal d is interfered by additive
noise vy as follows,

z(n) = d(n) +vi(n) . (2.1)
The noise is also measured by a reference sensor vy, where vy is not equal to

vy but correlated to it [11]. From wa, v; is estimated, 1, using a filter W (z).
The desired signal is then estimated as,

d(n) = z(n) —01(n) . (2.2)
Thus the noise can be decreased if v; can be determined from wvo. Using this
system the task of removing the noise v; is merely determining the filter W (z).

The remainder of this section will describe different methods to estimate v
from vy following [11].

2.2.1 FIR Wiener filter

A Wiener filter is an optimum filter minimising the mean square error £ as,

ém) = B {Je(n)’} = £ {\dm) - d(n)\g} | (23

11
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Consider a p** order FIR filter,

The error can then be written as,

=0

p—1
e(n) = d(n) — (:L’(n) = w(lyva(n — 1)> : (2.5)
The optimum filter coefficients, w(k), is found by setting the derivative of £
with respect to w*(k) equal to zero for k =0,1,...,p — 1. This yields,
E{e(n)vi(n—k)} =0, k=0,1,...,p—1. (2.6)

Using equation (2.5) in (2.6) and assuming that vy is uncorrelated with d gives
the Wiener-Hopf equations,

|
—

P
w(l)ry, (k= 1) =rpp,(k), k=0,1,...,p—1, (2.7)
!

I
o

where r,,(k) = E {va(n)vi(n — k)} is the autocorrelation of ve and 7., (k) =
E{x(n)vi(n — k)} is the cross-correlation between x and ve. Introducing the
matrix of autocorrelations,

I
Rv2 _ rvz:( ) Tvz:( ) s T’uz (p - ) (28)
T'vg (p - ]-) T'vg (p - 2) cee T'vy (0)

the Wiener-Hopf equations can be written in matrix form,
R, w ="y, , (2.9)

where w = [w(0),w(1)...w(p — 1|7 and rru, = [Frvy (0); Tavy (1), - - Touy (p —
1)]T. The Wiener filter requires the autocorrelation and cross correlation to be
known or estimated. Furthermore d, v; and vy are assumed to be wide-sense
stationary.

2.2.2 LMS - Least Mean Squares

Consider an adaptive pt* order FIR filter where the filter coefficients are con-
tinuously updated as follows,

Wot1 = [W(0) i1, w(Dnst, s wp = Dnga]” = wy + Aw, . (2.10)

Let w,, be an estimate minimising the quadratic mean square error function in
equation (2.3). Using the method of steepest descent w,, is updated by taking
a step of size p in the direction of maximum descent down the error surface as,

Wpi1 = wy, — pVE(N) , (2.11)
where V denotes the gradient. The derivative of ¢ with respect to w* yields,

Vé(n) = —E{e(n)vs(n)} (2.12)

12



The expectation in equation (2.12) can be estimated by the sample mean as,
L—1

e(n—Nvy(n—1) . (2.13)
1=0

Equations (2.11) and (2.13) with (L = 1) yields the LMS algorithm,

E{e(n)vy(n)} =

S

Wpt1 = wy, + pe(n)vi(n) . (2.14)

The LMS algorithm converges in the mean to the optimum filter w if

O<pu<

; (2.15)

)\m.az

where A\nqp is the largest eigenvalue of the autocorrelation matrix R,,. The
autocorrelation is required to be known or estimated if convergence in the mean
is to be guaranteed. Compared to the Wiener filter, the LMS filter coefficients
are time dependent allowing d, v; and vy to be nonstationary.

2.2.3 NLMS - Normalised Least Mean Squares

By introducing the normalised step size,
I

=, (2.16)
[oa(n)]|?
into the LMS algorithm (2.14) yields the NLMS algorithm,
Wpt1 = Wy + /61]27(71)6(”) ) (217)

2
e+ [lva(n)]|

where € is some small positive number. The NLMS algorithm converges in the
mean to the optimum filter w if

0<B<2. (2.18)

The NLMS algorithm requires no correlation matrices and d, v; and v are
allowed to be nonstationary.

2.2.4 RLS - Recursive Least Squares

Consider the exponentially weighted least squares error,

n , .2
n) =3 A e Z)\” ild(i) — d( )‘ : (2.19)
i=0
where the forgetting factor A is 0 < A < 1. An adaptive FIR filter,
Wnp+1 = [w(o)nJrh w(]-)nJrlv tee »w(P - 1)n+1}T = Wy + Awn 9 (220)

yields the following error,

e(i) =d(i ( piw Dua(i —1) > . (2.21)

=

The optimum filter coefficients, w,,, minimising the least squares error is found
by setting the derivative of ¢ with respect to w (k) equal to zero for k =
0,1,...,p— 1. This yields,

Zx” (i)vs(i—k)=0, k=0,1,....,p—1. (2.22)

13

FOI-R--2573--SE



FOI-R--2573--SE

Introducing the data vector v (i) = [v2(i), v2(i — 1), ,v2(i — p)]* and using
equation (2.21) in (2.22) gives the deterministic normal equations,

Ry, (n)wn = r50,(n) , (2.23)
where R,,(n) is the exponentially weighted deterministic autocorrelation ma-

trix at time n,

n

Ro,(n) = SN w3 (i] (0) | (2.24)

i=0
and 7.,,(n) is the exponentially weighted deterministic cross-correlation be-
tween = and vs,

n

Tavy(n) = Y A" a(i)vs(i) . (2.25)

=0

Notice that the correlations may be determined recursively in the following
way,

Ry,(n) = ARy, (n — 1) +v3(n)v; (n) | (2.26)

Troy (M) = AT g, (n — 1) + z(n)vi(n) . (2.27)

Let P(n) = R, '(n) denote the inverse of the autocorrelation matrix at time
n. Applying Woodbury’s identity [17] the inverse of the autocorrelation matrix
can recursively be updated,

P(n)=X"[P(n—-1)- g(n)vl(n)P(n — ], (2.28)

where
B A7LP(n — 1)v3(n)

g(n) = 1+ Al (n)P(n—1)vi(n) (229)
The recursive solution to (2.23) is then,

wy, = Wp—1+ a(n)g(n) ’ (230)
where

a(n) = z(n) —wl_vs(n) . (2.31)

Since the RLS algorithm minimises the least squares error instead of the mean
square error no statistical information needs to be estimated and correlation
matrices may be computed from the data. Furthermore the deterministic ap-
proach of adapting the filter coefficients to the instantaneous signals removes
any constraint on stationary signals. In fact two signals from the same random
process will produce two different filters.

2.3 ICA - Independent Component Analysis

ICA is utilised for transforming observed multidimensional data into compo-
nents that are as statistically independent as possible. The linear ICA approach
used in the present investigation follows the one found in [12]. Here the theory
behind the approach is repeated and put into context with respect to the ap-
plication, measuring target signals with a hydrophone array and where noise
from the sensor platform interfere the signals.

14



Let data be gathered in a matrix X with dimensions (N x M). For time-
series data registered with an array the dimension N denotes the number of
sensor elements and the dimension M denotes the number of instantaneous
time samples of the signal. Let in addition instantaneous samples of ob-
served time-series data in N sensor elements be gathered in a column vector
x = [r1,...,2y5]T and assume that the signals consist of a mixture of statis-
tically mutually independent components s = [sy, ..., sx]? with non-Gaussian
probability distributions. The components of s could be seen as signals orig-
inating from target signals or noise sources. The data x could for instance
consist of registered signals in N hydrophone elements of a TAS at a fixed
instantaneous time x(¢;) = z;. The ICA problem can be formulated as esti-
mating a weight matrix W resulting in a linear transformation of the observed
data x [12],

s=Wx . (2.32)

The transformation of equation (2.32) should result in the components s; be-
ing as statistically independent as possible. An alternative is to consider the
following mixing model [12],

x=As, (2.33)

and where A denotes the mixing matrix. As can be seen in equations (2.32)
and (2.33) the matrix W is obtained by the estimated inverse of the mixing
matrix, A7L.

Having stated the starting point of ICA in equation (2.33), consider a lin-

ear combination of z; weighted with a column vector w = [wy,...,wy]T as

y = wTx. The vector w should now be determined. If w would equal the
i*" row of A™! with i € [1,..., N], the resulting linear combination will re-
sult in y = s;. The question is how to find an estimator of w which ap-
proximates one of the rows of A~!. By introducing the variables z = AT w,
i.e. a coordinate transformation, the linear combination y can be written as
y = wlx = wl As = 2T's. This results in y being a linear combination of
the independent component s; with weights given by z;. The idea of ICA
is that the sum of independent random variables tends to be more Gaussian
compared with the original variables and y = 2”'s is least Gaussian when only
one element z; in z is nonzero. Thus by maximising the non-Gaussianity of
y, one independent component can be obtained +s;. It turns out that the
sign of the optimum is undetermined due to the optimisation landscape of y
having two local maxima. In addition, the ambiguities of the present ICA ap-
proach will include no possibility to determine the variances and the order of
the independent components [12].

Thus, the non-Gaussianity of y should be maximised. An information-
theoretic measure of independence between random variables is the mutual
information, however there exists other measures as well. It can be shown [12]
that finding an invertible transformation of W that minimises the mutual
information is roughly equivalent to finding directions in which the negentropy
is maximised. The negentropy can be defined by normalising the differential
entropy [12].

An estimate of the negentropy is required, i.e. an objective (contrast) func-
tion, where the sum of the negentropies of the components should be max-
imised. The choice of the objective function depends on consistency, asymptotic
variance and robustness, as well as practical considerations such as computa-
tion complexity and processing time requirements [12]. It can be shown that

15
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maximising the negentropy is approximately equivalent to search for the max-
imum of the following object function E{G;(y)}. The functions G;(y) should
be selected with care and here are some candidates [12],

1

Gl(y) = Zy47
1

Go(y) = a—lln{cosh(aly)}, (2.34)
1 asy?

Caly) = ——exp{5)

where a; and ag are constants. The choice of G;(y) is most important for
optimising the ICA method itself.

Algorithms are suggested for the required maximisation of E{G;(y)}, the
fixed-point ICA algorithm for one unit along with a deflation scheme to handle
several independent components [12]. The investigated data is denoted by
X with dimensions according to the previously mentioned notations. Before
the algorithm is applied to X, pre-processing is performed by centring and if
applicable X is whitened, i.e. a subspace is selected of dimensionality P <
N. Firstly, let weight vectors w, be gathered in a matrix W. The p index
denotes the p*™ independent component of a total of P number of independent
components searched for. The suggested algorithm follows the steps below.

1) Initialise W =0

i7) Select an initial random weight vector w,
141) Apply decorrelation and normalisation to w,
iv) Check a convergence criterion

If the convergence criterion is fulfilled gather w, in the pth

column of {W'}, and repeat from step i:) with the next

independent component wp1.

If the convergence criterion is not fulfilled continue to step v).
v)  Let w) = B{XG{(X"w,)} — B{G/ (X w,)}w,

v1) Normalise w;:, set wy, = w;ﬂ and continue from step ii).

The deflation scheme (decorrelation) in step 4ii) can be written as
Wpew = Wold — WWTwold ; (235)

and the normalisation of weight vectors found in steps iii) and vi) are given
by the standard 2-norm. In addition, the convergence criterion in step iv) is
fulfilled if ||Wnew — Wora|] < € and ||Wpew + Wora|| < € are reached, where €
is an appropriately selected small number. The step v) above is derived from
conditions stated in [12] along with finding an optimum utilising Newton’s
method. In practice, the expectation values found in the algorithm is replaced
by estimates using the corresponding sample means.

By selecting the number of independent components searched for with care,
the ICA processing in the array case will produce a set of independent signals.
The choice of the number of independent components depends on several as-
pects, such as number of targets, target signature, self-noise and ambient noise.
In the present study, ICA is used to suggest an estimation of the noise in the
measured signals and then this estimate is used in the noise cancellation filters
previously explained.
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3 Results

3.1 Experimental data

The described methods in Chapter 2 are applied to experimental data taken
from a field test [16]. This field test was carried out in the archipelago of
Stockholm, where the underwater environment was typical of the shallow wa-
ters found in the Baltic Sea. With a fixed transmitter signals were registered
with a TAS. The source transmitted tones (sinusoids) at four different frequen-
cies 80, 93, 121 and 173 Hz. The measured signals are expected to contain
both ambient- and self-noise, which can degrade the performance of the TAS.
The sensor platform is considered to encompass both the TAS and the towing
surface ship, and thus the self-noise can be assumed to originate firstly from
the ship, e.g. machinery and hydrodynamic noise. Secondly the motion of the
TAS will induce flow noise, most likely being turbulence, which adds to the
self-noise energy in the signals. As previously mentioned in Chapter 1, self-
noise in general is a critical and complex issue, and it can originate from several
different mechanisms [2]. To characterise the noise sources is however not the
main focus of the study, instead it is the presence of noise in the signals and
the ability of the proposed methods to reduce the noise that is of importance
here.

The tracks of the ship towing the TAS consisted of a straight leg followed by
a sharp turn and then this motion was repeated several times. The straight legs
of the tracks were approximately perpendicular to the direction of propagation
from the source to the center of the straight track. If only the transmitted
energy from the source is considered, the received energy in the TAS will vary
in bearing as a function of time. The sharp turn will instead mainly result
in the TAS receiving energy from a constant bearing, while in addition being
curved. Furthermore, the turn will probably produce additional self-noise and
also introducing difficulties with the TAS being end-fire to the source degrading
the resolution. Data from a straight track was selected for the analysis, and the
TAS was approximated with a linear array. Data was taken with a sampling
frequency of 3333 Hz and encompassed 32 sensor elements of the TAS.

In Figure 3.1, a Bearing Time Record (BTR) is found for which signals have
been processed with Conventional Beamforming (CB). Two channels have been
excluded as they showed a different spectrum in comparison to the remaining
channels. The diagram has been produced with CB in the frequency domain
using a time step of 5 s and a window length of approximately 0.3 s. In the
frequency synthesis, data between 60 and 1000 Hz have been processed, which
includes the tones transmitted by the source, and without any further tamper-
ing of data. As can be seen in Figure 3.1 there is one completely dominating
target, originating from the transmitted tones of the source, and the bearing
of this track is varying with time as expected.

In Figure 3.2, the time series of sensor 30 is displayed, taken from the
starting phase of the measurement. The characteristics of the signal are fairly
typical for this data set. Looking into more details of the signals, in particular
Power Spectral Density (PSD) estimates in Figure 3.2, the tones from the
source can easily be discriminated and are fairly strong in comparison to the
noise. The corresponding normalised PSD estimate in Figure 3.2 is based
on approximately 2.5 s of data. The PSD has been calculated using a Welch
spectral estimator and a segment length of 200 samples. A Chebyshev tapering
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Figure 3.1: Resulting BTR when the signal data has been processed with a conven-
tional frequency beamformer and selecting frequencies between 60 and 1000 Hz. The
signals were processed with a 5 s time step and a window length of approximately
0.3 s.

window is used with a side-lobe attenuation of 80 dB and overlap of 30%. With
a segment length of 200 and an overlap of 30%, enough averages are made to
reduce the variance of the spectrum. Thus the focus is on amplitudes/levels
rather than resolution, i.e. in this study the characteristics of possible ambient-
and self-noise are of less importance. As can be seen in the PDS of Figure 3.2
the tones are dominating around 200 Hz, however only one peak is present due
to the reduction of variance in the spectrum. Thus, this indicates that the data
is well suited for the proposed filtering processes proposed. The setting of the
PSD estimate used in Figure 3.2 will hereafter be used for all remaining PSD
estimates presented, only varying in respect to using normalised amplitudes or
dB-levels.

0 50 100 150 0 02 04 06 08
Time [ms] Frequency [kHz]

Figure 3.2: Left - Normalised signal as function of time for channel 30, taken from
the starting phase of the measurement. Right - Normalised PSD estimate of the time
signal using approximately 2.5 s of data. Black dots indicate the frequencies of the
tones.
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3.2 Wiener filter processing

In this section the performance of the noise cancellation filters, Wiener filter,
LMS, NLM and RLS will be studied. The experimental data consists of signals
from 32 TAS elements and here the arbitrary selected channel 11 will be stud-
ied. Since no reference measurement of the noise, i.e. ambient- and self-noise,
is available the interfering noise has to be estimated. Note that the following
estimation is only possible because the desired signal is simple and known.
Normally this will not be the case and the noise should be measured. However
for the purpose of evaluating the noise cancellation filters it is applicable. First
the four sinusoids transmitted by the source are identified in the Fourier spec-
tra. The noise is estimated using interpolation at the frequency bins occupied
by the tones. The estimated noise time series will from now on be denoted by
1. Now assume that the noise could be modelled as an AR process. Thus
the noise could be generated by filtering unit variance noise, g with an all-pole
filter, A(z). Using the Yule-Walker method [11] a 50" order AR model was
estimated from ¢;. Finally the unit variance noise § was determined from the
estimated model and the noise Fourier spectra.

In Figure 3.3 the PSD estimates are shown for the data before and after
filtering with the four different noise cancellation filters. The order of all filters
where set to 6 and 77 was used as the reference noise. All filters performs well
and a Signal-to-Noise Ratio (SNR) gain at about 40 dB/Hz is observed.

20

N
o

Power/Frequency [dB/Hz]
Power/Frequency [dB/Hz]

Power/Frequency [dB/Hz]
Power/Frequency [dB/Hz]

0.5 1 0.5 1
Frequency [kHz] Frequency [kHz]

Figure 3.3: PSD estimates using measured signals before (blue dashed line) and after
(red line) filtering with a 6*® order noise cancellation filter and estimating noise with
an AR model. Wiener (top left), LMS (top right), NLMS (bottom left) and RLS (bottom
right). See Figure 3.2 for details regarding the PSD settings.

Additional PSD estimates of the data and the result after filtering with the
four different noise cancellation filters are shown in Figure 3.4. The order of
all filters where 200 and § was used as the reference noise. The correlation
coefficient between ¢ and 7 was 0.2. Still all filters produce similar results as
above and a SNR gain at about 40 dB/Hz is observed.

The experimental data has a high SNR. To evaluate performance at different
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Figure 3.4: PSD estimates using measured signals before (blue dashed line) and after
(red line) filtering with a 200" order noise cancellation filter and estimating noise with
an AR model. Wiener (top left), LMS (top right), NLMS (bottom left) and RLS (bottom
right). See Figure 3.2 for details regarding the PSD settings.

SNR conditions, simulations have been carried out. First a low SNR setup is
studied. The data consists of a single sinusoid corrupted by noise. The PSD
estimates before and after noise cancellation are shown in Figure 3.5. The
sinusoid not visible in the original data becomes prominent after filtering. An
SNR gain at about 60 dB/Hz for Wiener, LMS and NLMS is observed and
70 dB/Hz is observed for RLS.
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Figure 3.5: PSD estimates using simulated signals before (blue dashed line) and after
(red line) filtering with Wiener (top left), LMS (top right), NLMS (bottom left) and RLS
(bottom right). See Figure 3.2 for details regarding the PSD settings.
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Examples of the LMS filter coefficients are shown in Figure 3.6. The coeffi-
cients converge after about 1000 samples to the correct value. All PSDs shown
in this chapter are estimated using the output after the filters have converged.
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Figure 3.6: The estimated LMS filter coefficients from the simulation shown in Fig-
ure 3.5.

Figure 3.7 depicts the result from a simulation where the noise which in-
terfere the observation is uncorrelated with the measured noise. The PSD
estimates are shown for the observation, interfering noise, measured noise and
result after Wiener filtering. As expected no improvement was achieved. When
the interfering noise consists of contributions from different sources, e.g. differ-
ent machinery parts, the different noise sources are likely to be uncorrelated.
As seen in the previous simulation the measured noise has to be correlated with
the corrupting noise to achieve any improvement.
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Figure 3.7: PSD estimates using simulated uncorrelated noise measured signal (top
left), interfering noise (top right), measured noise (bottom left) and after Wiener filtering
(bottom right). See Figure 3.2 for details regarding the PSD settings.
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A simulation to test this situation has been performed. The total interfer-
ing noise in the observation of a sinusoid consists of the summation of three
uncorrelated noise sources with different spectrum. A reference measurement
of each individual noise source is available together with a reference measure-
ment of the total noise. The situation is shown by PSD estimates in Figure 3.8
together with the result after noise cancellation with a Wiener filter. Both a
single filter working with the reference measurement of the combined noise and
three successive filters working with a measurement of each noise source were
tested. The single filter achieves a SNR gain of about 10 dB/Hz and does not
reveal the sinusoid. The test with three successive filters shows that the noise
correlated to the measured noise is removed after each filter and the final result
gives a SNR gain of about 60 dB/Hz with a very prominent sinusoid.
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Figure 3.8: PSD estimates using simulated signals with three types of noise. Top,left -
measured signal. Top, right - interfering noise 1 (red line), noise 2 (blue dashed line),
noise 3 (gray dotted line). Bottom, left - measured noise 1 (red line), noise 2 (blue
dashed line), noise 3 (gray dotted line) and total measured noise (green dashed line).
Bottom, right - measured signal (blue dashed line), result after Wiener filtering with
total interfering noise (gray dotted line), with noise 1 (green dashed line), with noise 1
and 2 (light blue line) and with noise 1, 2 and 3 (red line). See Figure 3.2 for details
regarding the PSD settings.

3.3 ICA processing

The ICA processing will estimate the noise in the TAS signals. The noise
estimate will then be used in the noise cancellation filters to enhance the con-
tributions from the target, in this case the tones. The first question is which
channels to include in the ICA processing. As mentioned previously two chan-
nels have been excluded as they showed a different spectrum in comparison
to the remaining channels. It can be assumed that the self-noise originating
from the towing ship should be more prominent in TAS elements which are
located close to the towing ship. Furthermore, the self-noise originating from
the hydrodynamic noise produced by the TAS in motion can be assumed to be
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more or less uniformly distributed along all elements. Unfortunately there are
no measurements without targets and neither is there any data which could
reveal the self-noise dependence of the speed of the ship. Under these fairly
weak assumptions and without having proper information regarding ambient-
and self-noise characteristics, the 15 sensors closest to the ship were selected
for ICA processing. Then the number of independent components has to be
decided. As the data contained four tones, five independent components were
searched for. The fifth component would in an ideal case mainly be composed
of interfering noise. As five independent components are searched for, the
five largest eigenvalues are kept in the whitening pre-processing of the signals.
The ICA processing was tested on the signals, and in particular results will
be presented for approximately 2.5 s of data taken from the starting phase
of the measurement. In the optimisation five independent components were
searched for, and the optimisation was stopped either if € = 1076, c.f. with
[|Wnew £ Worq|| < € in Chapter 2, or if 1000 number of iterations was reached.
The function G1(y) in equation 2.34 was used as the object function in the
ICA processing.

In Figure 3.9, typical time signals after ICA processing are found for the
present trial. The time signals in Figure 3.9 are normalised and four signals

Amp. [|

Amp. []

Amp. []

Amp. []

Amp. []

L L 1 L L
0 20 40 60 80 100 120 140 160 180
Time [ms]

Figure 3.9: Normalised signal as function of time, corresponding to five independent
components after ICA processing and using signals from 15 sensors. The four first
signals show characteristics of tones (blue line), while the fifth has characteristics of
noise (red line).

show characteristics of tones while the fifth has characteristics of noise. This
becomes more evident when the corresponding normalised PSD estimates of
the signals are considered, see Figure 3.10. The normalised PSD estimates
have been calculated using approximately 2.5 s of data. In Figure 3.10, tones
dominates in four spectra, while the fifth spectra has more characteristics of
noise with a concentration of energy around 500 Hz.

The time signal with noise characteristics is then fed to the noise cance-
lation filters. The order of the filters were set to 200, 20, 20 and 10 for the
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Figure 3.10: Normalised PSD estimates of time signals in Figure 3.9 using approxi-
mately 2.5 s of data. Estimates corresponds to five independent components after ICA
processing and using signals from 15 sensors. The four first estimates show character-
istics of tones (blue line), while the fifth has more broad band characteristics of noise
(red line). Black dots indicate the frequencies of the tones. See Figure 3.2 for details
regarding the PSD settings.

Wiener, LMS, NLMS and RLS filter respectively. The resulting PDS estimates
using approximately 1.25 s of data from channel 30 are found in Figure 3.11,
without and with filtering. As can be seen the reduction around 500 Hz is
about 10 dB/Hz, which is as expected due to the noise signal fed to the filter
having a concentration of energy around 500 Hz.
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Figure 3.11: PDS estimates using approximately 1.25 s of data from channel 30 with-
out (blue dashed line) and with filtering (red line). Wiener (top left), LMS (top right),
NLMS (bottom left) and RLS (bottom right). See Figure 3.2 for details regarding the
PSD settings.
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4 Conclusions

Two promising self-noise cancellation methods have been applied to TAS sig-
nals from a field test carried out in the archipelago of Stockholm. Signals
encompassed a target, four tones from a fixed source, and most likely addi-
tive self-noise and ambient noise. Unfortunately there were no measurements
without targets establishing the properties of the ambient noise, neither was
there any data which could reveal the self-noise dependence of the speed of
the ship. Nevertheless, as the target consisted of tones, the discrimination of
the target signal was simplified. Thus, the noise has to be estimated with
the target present, which is a modification to the wanted prerequisites of the
pre-processing when utilising the proposed methods.

The first combination of techniques consisted of an AR process which esti-
mates the noise excluding only the tones from the target. This noise is then
fed to the noise cancellation filters, Wiener, LMS, NLMS and RLS. This ap-
proach performed well on the measured signals and suppressed the noise at
about 30 dB/Hz for all filters, even when the correlation coefficient between
the corrupting and measured noise was very low. In the field test the SNR was
high. Simulated data at low SNR was also investigated and in this case the
noise was suppressed at about 60 dB/Hz.

The second combination of techniques, first estimates the noise by ICA.
Signals were taken from the 15 sensors closest to the ship and then the dimen-
sion of the data was reduced to five by whitening. Thus, in the ICA processing
five independent components were searched for, which produced four signals
with characteristics of tones. The fifth signal could be attributed as noise with
a concentration of energy in a frequency band not including the target tones.
The ICA estimated noise signal was then fed to the noise cancellation filters. In
the frequency band of the noise, a suppression at about 10 dB/Hz was achieved.

Results indicate that a reduction of self noise is obtained for simulated
as well as real data sets, even when the self noise measurements have a low
degree of correlation with the corrupting noise. Thus future research should
be directed towards investigating an operational platform equipped with noise
sensors. Alternatively the design of an onboard noise measurement system
that can separately do self noise measurements with a reasonable degree of
correlation should be investigated. In addition the spatial decorrelation effects
arising from having the noise measurement system at different position than the
sensor should be studied. Investigation of other methods to reduce the impact
of self-noise without the need to separately measure the noise is of interest.
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