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Sammanfattning

Rapporten beskriver aktuell status pa utvecklingen av ett ramverk for aterigenkdnning
av markmal i spaningsdata frén flygburna sensorer som utvecklas vid FOI. Arbetet
utfors inom projekten "ARCUS" och "Autonom Spaning". En komplex
signalbehandlingskedja diskuteras i rapporten. Denna kedja innehéller f6ljande
delmoment: detektion, multimalfdljning, visuell mélféljare, segmentering,
vyregistrering, egenskapsextraktion, aterigenkidnning, objektdatabas, planerare och
operatorsinteraktion.

Rapporten beskriver statusen for foljande fyra arbeten:

e Utveckling av en initial aterigenkdnningsansats som
baseras pa CCM ( color co-occurance matrices). Denna
ansats har verifierats mot simulerade sensordata inom det
visuella vaglangdsbandet.

e Integration av denna initiala ansats mot multimlf6ljning
via HLA-granssnitt inom MSS-lab vid FOL.

e Utveckling av en ny ansats som baseras pé inldrning av
effektiva sammanvégningar av deskriptorer for form och
farg. Denna ansats har verifierats mot en internationell
databas med tusentals hogupplosta fotografier inom det
visuella vaglangdsbandet av hundratals civila
bilmodeller. Klassificeringsprestanda pa denna nya
ansats bedoms vara vérldsledande.

e  Ett faltforsok har genomforts vid FOI i Linkoping for att
systematiskt registrera ankommande bilar pa
parkeringsplatsen vidFOI. Fordonen har registrarats med
ett flertal optiska sensorer inom de visuella och termiska
vaglangdsbanden. Faltforsoket beskrivs dvergripande i
rapporten och en ansats till annotering av sensordata ges.

Nyckelord: Spaning, 6vervakning, UAV, aterigenkdnning, detektion, mélfoljning,
bildanalys
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Summary

This report describes the current status of a framework for reidentification of ground
targets in aerial surveillance data being developed at FOI. The work has been
conducted within the project "ARCUS" and "Autonomous Surveillance". A complex
signal processing chain containing the following subparts is discussed: detection,
multi-target tracking, visual tracker, segmentation, view alignment, feature extraction,
reidentification, object database, planner, and operator interaction.

The report describes the status of four areas:

The implementation of an initial reidentification method
based on CCM (color co-occurance matrices).This work
has been verified against simulated sensor data in the
visual range.

Integration of the initial reidentification method with
modules for multi-target tracking using HLA.

The development of a novel reidentification method
based on learning effective combinations of local
descriptors of shape and color. This method has been
evaluated against an international database containing
thousands of color images of hundreds of civilian cars.
Based on test results, we believe the performance of this
method to represent the state-of-the-art in
reidentification.

A field trial has been conducted to systematically register
cars entering the parking lot at FOI. Each car has been
registred from different orientations using several optical
sensors within the thermal and visual ranges. The field
trial and an annotation method for collected data are
described.

Keywords: Surveillance, reconnaissance, reidentification, UAV, detection, tracking,

image analysis
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1 Introduction

1.1 Background

The need for autonomous on-board sensor data processing and sensor management
will increase in future aerial surveillance and reconnaissance systems. This arises
from the constantly growing quantity of sensors and associated raw data, as well as
limitations in communication bandwidth and processing capacity of human sensor op-
erators. Imaging sensors are widely used in surveillance and reconnaissance systems,
and increasingly in guided weapons and warning systems. Several basic functional-
ities of autonomous aerial surveillance systems, e.g. target geolocation, robust navi-
gation, collision avoidance, route and viewpoint planning all require advanced visual
capabilities such as target and landmark detection and recognition, scene topography
estimation, and image-motion computation.

A signal processing framework for autonomous UAV surveillance has been devel-
oped at FOI during the last years. Our working hypothesis is that integration of the
detection-tracking-recognition chain with spatial awareness makes possible intelligent
autonomous data acquisition by means of active sensor control and path planning. One
central research question in the development of such framework is how to be able to
reidentify earlier detected ground targets.

1.2 Reidentification

In this report we are concerned with methods answering the question “Is this the same
object (instance) that was previously observed?”. While this may be regarded as a
special case of object identification, we prefer to use the term reidentification, which
is well-established in the field of traffic surveillance. Objects to detect and reidentify
are typical ground vehicles, such as military vehicles and cars.

Reidentification differs from general object recognition (categorization and identi-
fication) in that, typically, in the former only a single previous (reference) observation
is available of the object of interest, whereas in the latter it is often assumed that a com-
prehensive signature database can be assembled, covering all possible appearances of
the object. Since, e.g., object pose and illumination conditions may be significantly
different when the object is observed again, matching methods used in reidentification
must be highly robust to such variations.

Reidentification is a general problem and can be used to identify people, vehicles
or other objects of interest. The scope of this report, however, is limited to reidentifi-
cation of vehicles using airborne sensors.

1.3 Two methods

Two reidentification methods are described in this report. The first method is aimed at
quickly closing the detection-tracking loop shown in figure 1.1. This well-established
method, based on colour histogram matching, is described in chapter 4. A second
(new) method, described in chapter 5, uses statistical learning from training data to
find discriminative image features which are matched using an optimal metric. The

7
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latter method is not yet integrated into the framework given in figure 1.1, but has very
promising performance.

1.3.1 Time aspects and sensor data variation

The typical time span between the first detection of a target, until the reidentification
step, depends on the surveillance scenario. In this work we assume that a typical time
span is from seconds into a couple of minutes. The selected object representation has
to handle natural variation in sensor data, such as:

e Variations in relative orientation and scale between the sensor on the surveil-
lance platform and the object to be reidentified. This can be at least partly
supported by prior knowledge from the platform navigation system and terrain
or road data from a Geographical Information System (GIS).

e Colour variations depending on natural variation in lightning condition (visual
sensor).

e Variations of the thermal radiance of the vehicle due to changes in thermal con-
dition of the object, i.e. heated targets tracks, friction in wheels, heated engine
and exhausts.

e Variations in specular reflection.

e Partial occlusion depending on scene interaction between the object and the
local neighborhood.

e Interaction with the surrounding neighborhood in the image, due to non-perfect
object/background segmentation (figure/ground segmentation) caused by e.g.
background clutter.

e Different shadow conditions, e.g. changes in cloudiness or changes in relative
orientation to the sun.

1.4 Reidentification processing scheme

Figure 1.1 shows the basic components of the reidentification system. A more detailed
descriptions of each component is given in chapter 2.

Detector The detection step points out positions in the imagery with a high degree
of confidence to contain a moving or stationary ground target (typical a vehicle). Our
inhouse developed method for detection of stationary ground targets is presented in
[12].

Multi-target tracker The multi-target tracker handles uncertainties of targets tracks
and establish, from at statistical point of view, correspondences between detections
and target tracks. The reidentification step is tightly interleaved with the association
step in the multi-target tracker.

Visual tracker The visual tracker is capable of tracking a detected target in a video
or infrared image stream (sequence). The implemented method can handle some ap-
pearance variations of the target signature, such as affine deformation (scaling, ro-
tation and skewing) and partial occlusion. This step is also responsible for the ob-
ject/background segmentation of moving targets. Details are given in chapter 3.2.
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Figure 1.1: Overview of the framework for reidentification of ground targets.

View alignment We have already mentioned the necessity of using distortion tol-
erant features in the matching process due to the signal data variations described in
section 1.3.1. However, there is a contradiction between discriminative power of fea-
tures, and robustness against signal data variations. Consequently, one should always
try to compensate for pose differences between the test and reference images. This
compensation step can be referred to as view alignment. Estimates of the relative
orientation and distance are produced by the multi-target tracker. Automatic view
alignment is, however, not yet implemented in our system.

Feature extraction This step extracts robust features that are tolerant against signal
variation, but still have discriminative capability. Typical features are SURF, SIFT or
color histograms, as described in section 5.3.1.

Reidentification The reidentification step defines the metric between earlier regis-
tered instances of detected object and new detections. The output is either "This is a
new target, and a new target is added to the target database" or "This is an old target,

9
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and the object signature database should be updated". Comparison methods are given
in section 4.3 and 5.2.1.

Object database The purpose of the object database is to gather relevant spatial
information of detected ground targets in such a way that new imagery can easily be
matched against earlier registrations of detected targets. The structure of as well as the
methods for updating such a database are both relevant research areas. Presently, the
database consists of subimages (image patches) containing detected targets in combi-
nation with pose and distance estimates.

Operator The operator is assumed to interact with the system by issuing high level
commands, such as "monitor all activity at place A and B" or "perform autonomous
surveillance of road C". The operator can prioritize between different targets, without
the need to directly interact with the control of the sensor or platform. This work is
not described in this report.

Planner A particle filter based method for simultaneous optimisation of platform
trajectory and sensor control is being developed within the project. This work is not
described in this report.

10
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2 HLA integration

2.1 Introduction

One important goal has been interoperability with the simulation system in use at
SAAB. Their system uses HLA (High Level Architechture for communication be-
tween the different modules (or federates in HLA terms), e.g. simulation platform,
sensor image renderer, target detection, tracking and reidentification. Several HLA
federates have been developed at FOI within this and other projects such as SE-MARK
and MOSART. There is of course a strong interdependence between these federates.
Detection requires simulation of sensor data, tracking requires detection etc. Reiden-
tification relies on several other federates; at least sensor simulation, detection and
tracking are required. This chapter introduces the reidentification federate and de-
scribes its communication with other federates. First, however, the other federates
which are necessary for reidentification are briefly introduced.

2.2 Other federates

2.2.1 Simulation platform

The HLA environment at FOI uses NetScene to keep track of the simulated world,
including vehicles (cars, tanks, UAV:s etc.) and sensors. In this context, sensors
typically refer to imaging devices either in the visual or thermal infrared spectrum,
but any kind of sensor can be used. NetScene provides a user interface for designing
scenarios, i.e. defining vehicles and trajectories for them to move along. However,
perhaps more importantly, it is also possible for other federates to send HLA messages
(called interactions) to NetScene, in order to control the vehicles and sensors. This is
very useful since it allows feedback within a scenario. For example, a planner federate
may respond to an observation (communicated by the detection federate) by planning
a new trajectory for a UAV carrying a sensor. So far, however, static scenarios have
been used.

Figure 2.1 shows the NetScene application. The large panel in the center shows a
map with objects and trajectories, while the surrounding panels provide an interface
for changing object properties etc.

2.2.2 Sensor simulation

SceneServer [4] is used to simulate data acquired by visual and infrared sensors. This
federate subscribes to information about the current location of all vehicles, as well
as sensor parameters such as position, orientation and field of view. Using this in-
formation, images are rendered and sent (as HLA interactions) to all federates which
subscribe to image data. The interval between images depends on the chosen cam-
era frame rate. In our scenario, the detection federate uses infrared images, while the
reidentification federate uses visual images. A typical image is shown in figure 2.2.

11
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Figure 2.1: A screenshot showing the NetScene application.

Figure 2.2: A typical simulated visual image from a sensor carried by a UAV.

2.2.3 Detection

At present, there are two detection federates: one real detector which uses infrared
images (based on the detection method presented in [12] and one pseudo-detector.
The latter “cheats” by subscribing to vehicle locations and calculating their sensor
projections. The pseudo-detector is of course very useful when testing other federates,
since its detection performance is optimal. However, the real detector has also been
shown to provide very good detection performance.

2.2.4 Tracking

A multi-target multi-hypothesis tracker is used for target tracking. The tracker used
within this project is highly modular, and hence different process and measurement
models can be combined with several filtering and data association techniques. Avail-
able filtering modules include extended and unscented Kalman filtering as well as

12
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particle filtering, while data association can be performed using either global nearest
neighbors (GNN) or joint probabilistic data association (JPDA). The modular struc-
ture also simplifies implementation of additional techniques.

This federate subscribes to observations from the detector and uses them to predict
the location of all vehicles. While the observations from the detector tells us that
something has been spotted at a certain position, the tracker ties these observations
together over time, assigning a unique identifier to each visible vehicle. However,
when a vehicle which has not been visible for some time reappears, the tracker is
generally not able to associate it with a previous track. This is where reidentification
is useful.

2.3 Reidentification

The purpose of the reidentification federate is to resolve the ambiguity which arises
when a vehicle, which has not been seen during the last few frames, is detected. By
inspecting the visual appearance of the vehicle, the reidentification federate tries to
determine if the vehicle is identical to any previously tracked vehicle, or if it has never
been observed before. In order to accomplish this, the reidentification federate uses
visual images from SceneServer as well as observations from the detector and track
predictions from the tracker. The visual information is of course used to recognize
the vehicles, while the observations and track predictions are used to determine which
parts of the images contain vehicles to be identified.

In the current version of the reidentification federate, the appearance of a vehicle
is represented by a color co-occurrence matrix (CCM, described in section 4.2). How-
ever, the federate is modular in the sense that the feature representation and matching
can easily be replaced without affecting other parts of the federate.

Under ideal circumstances, all vehicles which are visible in any image are ob-
served by the detector. The detector, however, only provides an approximate localiza-
tion. In particular, the observation does not delineate the vehicle from the surrounding
background. This makes extraction of visual features difficult, since we obviously
do not want the model of the vehicle’s appearance to be affected by the background.
In order to overcome this problem, we use a sequence of 10—15 consecutive images
where the vehicle is visible. Assuming that the vehicle is moving, its motion rela-
tive to the background can be used to obtain an approximate vehicle segmentation.
In conjunction with the actual sensor images, this segmentation is used to extract a
representation of the vehicle appearance. The segmentation is described in greater
detail in chapter 3. In this context, it is sufficient to know that the necessary input to
the segmentation algorithm is a sequence of images where a certain vehicle is visible,
and a set of image coordinates pointing to the approximate vehicle position in those
images.

At a first glance, finding the necessary input parameters to the segmentation algo-
rithm seems like a trivial task. The image sequence is simply a sequence of images
from the sensor, and the coordinates are available from the detection federate. Unfor-
tunately, the process is complicated by the fact that any image may contain more than
one vehicle, in which case there will be more than one observation from the detection
federate. Also, the detection federate may provide false alarms (i.e. incorrect detec-
tions), or it may not detect the vehicle at all in some images. All these cases have
to be handled in order to provide meaningful input to the segmentation algorithm.
A possible solution to these problems would be to attempt to track the observations,
associating observations in one image with those in the next and so on. This func-
tionality, however, is performed by the tracker, and should not be duplicated in the
reidentification federate. Instead, the reidentification relies both on observations from
the detection federate and on track predictions from the tracking federate. These are
combined into unambiguous short-term vehicle tracks (referred to as internal tracks

13
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or itracks), containing the coordinates needed to segment the images. Algorithm 1
describes how this is performed.

for each image (from sensor simulation) do

for each track t (from tracker) corresponding to this image do
find unambiguous observation o (from detector) related to t¢;

if such an observation was found then
find itrack i associated with ¢°;

if such an itrack was found then
append position of o to ¢;

mark ¢ as updated at current time;

else
create new itrack 7,,,,;

associate 4,,¢,, With ¢;

append position of 0 t0 iyew;

mark 7,,¢,, as updated at current time;
append 7,,¢,, to list of itracks;

end

end
end
for each itrack © do

if i is sufficiently long? and not previously identified then
perform segmentation of images using coordinates in ;

perform reidentification using segmented images®;
end

if ¢ not updated at current time then
| remove ¢ from list of itracks;

end

end
end

Algorithm 1: Association of observations to tracks, for management of internal
tracks.

“ A match between a track and an observation is considered unambiguous if the predicted track position
is close to the observation position, and no other tracks or observations are located near that position.

bEach internal track (itrack) is associated with the persistent identifier of one track. Hence the reiden-
tification federate does not need to associate observations at different times with each other, but can instead
rely on associations from the tracker.

“Each internal track contains a list of observation coordinates, which describe the path of an observed
vehicle.

4If a vehicle has been seen in at least 10-15 consecutive frames (i.e. if the path stored in an itrack
contains at least 10-15 coordinates corresponding to positions in consecutive frames), there is enough
information to perform a segmentation.

¢A representation of the vehicle’s appearance is calculated using the segmented image sequence and

the internal track. This representation is then matched to vehicles in the object database.

This implementation places rather high demands on the detection federate. Since
a vehicle must be visible and observed in a number of consecutive frames in order to
be segmented, no vehicles can be recognized unless the detector consistently observes
them during that number of frames. This requirement can be relaxed by “trusting” the
tracking federate to a greater degree, using the track predictions when no observation
is available. This is likely to improve the overall performance of the reidentification
federate while also obviating the rather complicated handling of internal tracks. This
has not yet been tested, however.

‘Whenever a vehicle has been observed in a sufficient number of consecutive frames,
it is segmented and a representation of its appearance is calculated. The representation
is then compared to those of all previously seen vehicles (the details of the matching

14
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Figure 2.3: The reidentification federate. The status of each vehicle is overlaid on the
sensor image.

process are available in section 4.3 and chapter 5 for the two representations discussed
in this report), and a matching score is calculated for each vehicle. If the current vehi-
cle is similar to one or more previously seen vehicles, a HLA interaction containing a
list of those vehicles and their matching scores is sent. If the newly calculated repre-
sentation is not similar to any of those stored in the object database, it is assumed that
the vehicle has not been seen before. A new internal vehicle ID is then created and
associated with the representation, and an HLA interaction containing the new ID is
sent.

Figure 2.3 shows a sensor image and the state of the reidentification federate. All
currently tracked vehicles are marked as either unidentified, new (not previously seen)
or recognized.

2.3.1  Future improvements

During the project, a number of possible improvements have been identified. Most of
these have not yet been investigated in any detail, but they are expected to significantly
improve the reidentification performance.

1. Include vehicle geometry: Currently, only features which can be directly ex-
tracted from the sensor images are utilized. However, since the camera param-
eters (position relative to the ground, orientation and focal length) are known,
it would be straight-forward to calculate some basic geometric properties of the
observed vehicles. For example, the length and width of the vehicles could be
used to exclude some erroneous matches from the identification process.

2. Prior knowledge of vehicle position: It is possible to obtain predictions of all
vehicle positions from the tracking federate. This information could be used as
a prior probability of finding a certain vehicle at a certain position, effectively

15
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excluding all vehicles which have recently been seen far from the currently
observed location.

3. View angle dependence: The current implementation assumes that all vehicles
are seen from above, i.e. that the UAV is flying at a rather high altitude. In
some scenarios, it may be more reasonable to expect vehicles to sometimes be
seen from the front, back or sides. By keeping track of the current viewing an-
gle, multiple appearance representations could be associated with each vehicle,
thereby improving recognition performance when the vehicles are seen from
different angles.

4. Object merging: When a vehicle is not recognized, it is assigned a new ID. Over
time, this is likely to result in all vehicles being associated with several different
ID:s (particularly if the vehicles are seen from different sides; see above). A
mechanism for merging these ID:s, either manually by operator intervention, or
automatically, should be implemented.

5. Updating of appearance representations: When a vehicle is reidentified, its
corresponding appearance representation should be updated to reflect the new
measurements.

16
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3 Object segmentation

3.1 Introduction

Separating the target object from the background and possible foreground occlusion
can be difficult. In our segmentation algorithm we use the assumption that target
vehicles are moving which simplifies the object separation.

3.2 Segmentation method

The object segmentation problem is handled as an estimation problem with hidden
variables. The segmentation is based on an assumption that the target moves during
the sequence and that the appearance to be segmented can be approximated by a plane
through the object. The plane is tracked using a smoother based on a tracker previ-
ously used with good results [13] [9]. Each pixel on and around the object is supposed
to originate from one of three possible sources: the foreground, the background or the
target itself. The source for each pixel is treated as hidden variables in the smoother
that estimates the trajectory. The trajectory and the segmentation is calculated in an
algorithm that is basically an approximated maximum a posteriori (MAP) form of the
expectation maximation (EM) algorithm [15].

The algorithm iterates between solving the expectation of which pixel that has the
target as source given the estimated trajectory (expectation step). The second step
is to maximize the a posteriori probability of the trajectory using a smoother given
the segmentation (maximation step). Basically the expectation step calculates the
probability for each pixel that it belongs to the classes: foreground, background or
target.

p(I(i)|pizel; C target) o< exp((1(i) — L1y (i) /R*) = wy 3.1
p(I(i)|pizel; C background) o< exp((1(i) — Ipy(i))?/R?) = wy (3.2)
p(I(3)|pizel; C foreground) o< 0.1 X wy = w3 (3.3)

Here, I(4) is the intensity at pixel 4, Ip4(7) is the intensity of the background
template and I;4(¢) is the intensity recorded for the initial target template. The tun-
ing parameter R can be viewed as a standard deviation of the pixel noise. The final
foreground probability is initialized using a subjective 10 percent chance that the seg-
mented background in the initial image, actually belongs to the foreground. In a com-
parison between an image with the target present and the same area without the target
there is no way to separate background and foreground based on differences from the
target image. It is assumed that the initial image is reasonably free from foreground
occlusion thus the 10 percent is as sound approximation. Since the classes are sup-
posed to be exhaustive the probability should sum to one giving the final segmentation

17
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Figure 3.1: Four frames from each of the three sequences of frames that are used by
the segmentation algorithm. Each sequence consist of 15 frames. Frame 1, 5, 10 and
15 are shown. The first row is the starting point, the second row the end point and the
third row the tracking of the vehicle.

estimates:
p(pizel; C target) = 3w—1 3.4)
k=1 Wk
af - w2
p(pizel; C background) = —z——— (3.5)
k=1 Wk
N w3
p(pizel; C foreground) = —z——— (3.6)
k=1 Wk

During the sequence a diffused version of the probabilities from one time is used
as an a priori to the next. This allows the foreground template to gain probability
in areas covering the target where the image does not match i. e. where a possible
occlusion from the foreground can be found. Currently the segmentation algorithm
operates on three sub-sequences of an image sequence: one covering the start position
of the vehicle through the sequence, one covering the end point and one tracking
the vehicle, see figure 3.1. The start and endpoint sequences allow initiation of the
background template with a vehicle-free image-patch. The smoother then consists of
a fusion of two filters: one working backwards through the image sequence and one
working forwards.

3.3 Results and future improvements

The segmentation algorithm shows very promising results for moving vehicles in Sce-
neServer simulations. One such vehicle separation is given in figure 3.2. So far no
simulations with partial foreground occlusion of the target vehicles have been per-
formed.

Besides the initialization, the background template is in the current implemen-
tation taken from the previous image thus only improving the segmentation where
the vehicle has moved. The current implementation has potential for improvements.
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Figure 3.2: Vehicle A before the segmentation, the mask given by the segmentation
algorithm and the vehicle after the background has been removed.

One direct improvement would be to include estimation of a vehicle-free background
template for each image in the sequence.
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4 Color Histogram Matching

4.1 Introduction

Color co-occurrence matrices (CCM) is an fast and simple way for reidentification
of objects in images. However, for the CCM to be efficient the objects (for our case
target vehicles) need to be segmented from the background, see chapter 3. There-
fore our reidentification algorithm first performs an object segmentation and then the
identification using CCM. We have been using sensor data within the visual spectrum
since CCM is a color matching algorithm. It would also be possible to use CCM in
the thermal infrared spectrum, but that does not seem to provide as good recognition
performance. It may, however, be beneficial to combine visual and thermal infrared
data, or to use multispectral visual images.

CCM was one of the two bases for reidentification that was proposed in the DARPA
program VIVID [8] [24] [25]. Our previous work with CCM have been described in
[19] [20].

42 CCM

Color co-occurrence matrix [3] can be described as a three dimensional color his-
togram that contains information about the distance between different colors in the
image. Since we are using CCM for the visual spectrum we have decided to work
within the HSV color space. In this color space the Euclidean distance between col-
ors is approximately proportional to the perceived color difference. Since no spatial
information except distance is used to determine CCM, this representation is invari-
ant to image rotation. One CCM is calculated for each color channel and during the
matching between two images an intersection is calculated for each channel. This is
described in more detail in section 4.3.

Before the CCM is calculated the size the target is estimated based on knowledge
about focal length and the distance between the sensor and the target. Thereafter the
image is rescaled so that the same target will be approximately the same number of
pixels in size each time we observe it. This is done since CCM has a limited invariance
to scale.

To limit the size of the CCM and make it robust and simple to handle, the number
of colors are quantized to n. The number of distances is given by m. The CCM is then
a three dimensional matrix of size n xnxm. An element [, j, k] in the CCM describes
how often colors ¢ and j occur at distance k from each other in the image. Below we
will give some more detailed information about the information stored in a CCM. The
colors i, j are labelled 0,1, ...,n — 1 and the distances k = 0, 1, ..., m — 1 are given in
pixels. For a given distance k we call the n x n matrix [0 : n — 1,0 : n — 1, k] a slice.
Each such slice in the CCM is symmetric. The CCM can be describes as consisting of
these five parts:

1. The matrix [0..n — 1,0..n — 1,0]: The slice given by the distance k = 0 is
diagonal and an ordinary color histogram, i.e. the element [, ¢, 0] represents the

number of pixels with value ¢ in the object.
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Figure 4.1: Four slices of a CCM for distance k = 0, 1,2 and 3 pixels. The CCM comes
from vehicle C.

2. The diagonal part of [0..n—1,0..n— 1, 1]: For the distance k = 1 the diagonal
elements [i, 7, 1] represent the number of pairs of neigbouring pixels of color i.
If for example one color x is located as one large connected region in the object
the element [, x, 1] will be large, while for a color y that is spread with few
neighboring pixels of the same color the element [y, y, 1] will be small.

3. The non-diagonal part of [0..n — 1,0..n — 1,1]: For the distance k = 1 the
non-diagonal elements [¢, 7, 1] with ¢ # j represent the number of neigbouring
pixels of colors 7 and j. If for example colors = and y are often located beside
each other the element [z, y, 1] is large. Two colors u and v that almost never
lie beside each other will give a small value of element [u, v, 1].

4. The diagonal part of [0..n — 1,0..n — 1,2..m — 1]: In the remaining slices the
diagonal elements [z, ¢, k] with k& > 2 represent the number of times that color %
recurs at distance k. This may either represent a pattern with specific frequency
or a large region of uniform color.

5. The non-diagonal part of [0..n — 1,0..n — 1,2..m — 1]: The non-diagonal
elements [4, j, 1] with ¢ # j and k& > 2 represent the number of pixel pairs with
colors ¢ and j that occur at distance k.

Figure 4.1 illustrates the four slices given by an 8 x 8 x 4 CCM. Color informa-
tion is mostly given by the top left plot (representing distance k£ = 0) while texture
information can be found in higher order slices.

4.3 Matching
Two target images are matched by taking the intersection I between their CCMs
m—1n—1n—1
I= min(qCCM[, ICCME) “.1)
k=0 i=0 j=0

with gCC'M being the color co-occurrence matrix from the query image and [CC M
being one of the stored target CCM in the database. During the intersection a weight-
ing can be used to control how much of the different slices and their diagonal and
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I R R TRT

Figure 4.2: The five target vehicles A, B, C, D and E as seen from the UAV in a
simulation in SceneServer. The first row illustrates vehicle A, B and C driving from the
camera and the second row is vehicle D and E driving towards the camera.

non-diagonal parts should affect the outcome. For color images each object has one
CCM for every color channel so the result from these intersections needs to be com-
bined to finalize the matching.

4.4 Results

We have used a scenario with five different vehicles driving in a spread column and an
observing UAV that travels back and forth between them. Since the five target vehicles
are separated by some distance, the UAV will not be able to observe all of them at the
same time. Usually only one or two targets are within the observing range. The five
target vehicles A-E can be seen in figure 4.2. The current version of SceneServer does
not support antialiasing, cast shadows, and some other advanced rendering options,
and hence the produced images are not quite photo-realistic. This impacts the realism
of our simulations. At the time of the test, the tracker was still under development
and therefore the algorithm for associating observations and tracks could not be used.
Instead, exact vehicle localizations were obtained using the pseudo-detector.

Our initial reidentification method based on CCM will give three possible out-
comes after the intersection between the query target and the saved targets in the
database. A threshold is used to determine whether the CCMs originates from the
same object or not.

1. No match: None of the target CCMs saved in the database is close enough for
the query target CCM. Therefore we update the target database with the query
target as a new vehicle type.

2. One match: The query target CCM is close to one of the target CCMs in the
database. The query target is labeled with that targets database id. In this ini-
tial test the CCM from the matched target in the database is not updated with
new information from the query (this could be done for example by taking a
weighted mean of the two CCMs).

3. More than one match: The query target CCM is close to two or more target
CCMs in the database. Therefore the query target is labeled with all of these
database id’s.
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| Observation | Targer | Labeled as

1 A | not enough data for segmentation

2 Al

3 B |1

4 Ccl|2

5 B |3

6 All3

7 A3

8 B |3

9 Cl| 4
10 D |5
11 E|S
12 D|5
13 cl6
14 B |3
15 Al L3
16 Al
17 B |3
18 C |4
19 D |5
20 E |7
21 D|5
22 C |24
23 B |3
24 A3

Table 4.1: Result after scenario with 24 observations. For each color channel n = 8
colors are used and the number of distances m = 4. The threshold in the matching is
set to 2.25. Each time a new vehicle is labeled it is written in bold.

If the threshold is set too high there will often be a "no match" and if the threshold
is too low there will often be "more than one match". Therefore a correct threshold is
very important.

In table 4.1 we can see the result after one such scenario with 24 observations.
The five vehicles are called A, B, C, D and E. The target database was empty at the
beginning of the scenario. The first observation was too short for a segmentation to
be done and therefore no CCM was calculated. For the second observation a CCM
was calculated and since the database was empty the target was labeled vehicle 1. The
third observation was also labeled vehicle 1 even though it was not target A but B that
was observed. Since target A and B are similar (see figure 4.2) this does not seem
too strange. The fourth observation is correctly labeled as the new vehicle 2. The
fifth observation is also labeled as a new vehicle even though target B have already
been observe once before. For the sixth observation two possible vehicles are labeled
(vehicle 1 & 3). Again, this is not strange, since these vehicles are simular.

In table 4.2 the matching from the scenario is collected. We note that target C
is often seen as a new vehicle (2, 4 & 6). Target D and E are once mistaken as
being the same vehicle but since they are similar even for the human eye that is a
reasonable misclassification. As mentioned before the similar looking targets A and
B are sometimes mistaken for one another. Positive is that targets A and B are never
misstaken for being any other than vehicle I and 3, target C is the sole target associated
with vehicle 2, vehicle 4 and 6, and finally that target D and E are not associated
with any other vehicles than 5 and 7. So no cross-associations are made between the
three target groups [A,B], [C] and [D,E]. By only using a constant threshold and a
simple intersection without any weights a promising result has been achieved. Further
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A | 22 2/2

B| 1 5

C 1/1 2/1 1

D

E 1 1

Table 4.2: The collected matching from the 24 observations in the scenario. Bold
numbers indicate what target was the first to label that vehicle id. Numbers after a
slash comes from observations with more than one match.

optimization of the parameters is expected to improve the reidentification.
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5 Boosted distance measurement

5.1 Introduction

In this report we are concerned with methods answering the question “Is this the same
object (instance) that was previously observed?”. While this may be regarded as a
special case of object identification, we prefer to use the term reidentification, which
is well-established in the field of traffic surveillance.

Reidentification differs from general object recognition (categorization and identi-
fication) in that, typically, in the former only a single previous (reference) observation
is available of the object of interest, whereas in the latter it is often assumed that a com-
prehensive signature database can be assembled, covering all possible appearances of
the object. Since, e.g., object pose and illumination conditions may be significantly
different when the object is observed again, matching methods used in reidentification
must be highly robust to such variations.

The observations used in reidentification with data from imaging sensors may be
single images or sequences. Consequently, matching may involve two images, two
sequences, or one image and one sequence. The data may be generated by the same
sensor or two different ones, which may even be of different type (e.g., visual and
infrared). In this report we limit ourselves to matching between two images from
sensors of the same type.

Reidentification is basically a classification problem. Let I; € [; and I, € I
denote the images to be compared. We are then looking for a binary-valued function
F: I x I — {0, 1}, such that the output is 1 if the images depict the same object,
and 0 otherwise. Sometimes it is instead of interest to have F’ generate an estimate of
the (posterior) probability that the images depict the same object; this is the approach
taken in the present work.

We assume objects of the correct category can be detected, manually or automat-
ically, and that a coarse estimate of the object pose can be obtained in each image.
Consequently, we also assume the images can be fairly well aligned, though not nec-
essarily on a pixel level.

5.2 Theory

5.2.1 Distance measures

A digital image with N pixels can be represented in vector form I = [I IR CT | N] T
Consequently, two images I; and I, of equal size can be compared using the Eu-
clidean distance

DE(IIp) = (I — 1) (I — 1) 5.1)
A somewhat more sophisticated measure is the Mahalanobis distance
D}, (11,L) = (I; - L)"M(I; — I,) (5.2)

where M is a symmetric positive semi-definite matrix. This makes it possible to take
into account that the appearance of different parts of the object covary, and that the
appearance is more stable at certain parts than others.
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To achieve sufficient robustness against variations in pose and illumination it is
necessary to change image representation. We therefore transform the image by means
of amapping & : I x = from the pixel basis I to a feature space =, and form the feature
vector £(I). Histogram-based representations have proven robust and discriminative,
and have therefore become very popular in recent years. A well-known example is
the SIFT descriptor [14]. We can now compute the Mahalanobis distance between the
images in the feature space:

D3 (€(Ih), £(I2)) = (£(Ih) — £(T2)) " M(£(T) — €(I2)) (5.3)

A good metric M consistently makes the distance large between images of dif-
ferent objects, and small between images of the same object. Several methods for
Mahalanobis metric learning from labeled data pairs have been proposed in recent
years, e.g., [18, 23]. These and other methods generally produce full-rank matrices.
For computational as well as statistical reasons we find it preferable to learn a low-
rank (pseudo-) metric. We choose a method rejected by Xing et al., which produces a
rank-one metric matrix.

Let the data set be divided into pairs Z, = {I} ;, I i}fv:pl of images of the same

object, and pairs Z,, = {17, Igi}fv " of images of different objects. Here p and n

denote positives and negatives, respectively. Furthermore, let A&} = £(I7 ;) —£(15 ;)
and A = (17 ) — €(13,).

We then choose M such that the average (squared) distance in feature space for
positive pairs is minimised, subject to the average distance for negatives being larger
than a constant (which may be set to one), i.e.,

NP
: P\T p
min ;(Agi) MAE! (5.4)
subject to

N,
> (Aag) ™A > 1 (5.5)
=1
M >0 (5.6)

The optimal M is given by M = mm?, where m is the eigenvector corresponding
to the largest eigenvalue of the generalised eigenvalue problem

N, Ny

D AGAG)Tm =) AL(AE) 'm (57)

i=1 i=1
To increase the dimensionality of M, if so desired, we propose using Friedman’s
structure removal [7] technique. Briefly, in the present case, this amount to transform-
ing the feature vector differences A¢ such that the projection of positive and negative
examples onto m, separately, become standard normal distributed, leaving orthogonal
dimensions unchanged. This effectively removes any separation between the classes
in the direction m, and forces the optimisation algorithm to select a complementary
direction. The procedure is suboptimal, since removing structure in one direction may
re-introduce class separation in a previously “removed” direction. Structure removal
has nevertheless proven useful in increasing the number of projections in linear dis-
criminant analysis [1].

5.2.2 Features
The SURF descriptor

We have already emphasized the importance of using robust discriminative features
in order to achieve tolerance to variations in pose and illumination. Based on positive
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Figure 5.1: SURF descriptor. (a) Thermal infrared image of a deer. (b) Gradient image.
(c) The image (region) is divided into a set of subregions (here 2 x 2 = 4). In each
subregion the sum of filter responses and their absolute values for derivative operators
in horizontal and vertical directions are computed. The final descriptor is obtained by
concatenating the components and normalising the result.

experience from previous investigations in object detection, we have chosen to use
the SURF descriptor [2] in the present work. SURF is similar to the SIFT descriptor
in using a gradient image as source. But instead of forming histograms of gradient
vector directions in rectangular image subregions, the SURF descriptor represents a
subregion R as a four-vector

Z [Irvuz|7—ry7|ly”T (5.8)

(z,y)€ER

of spatial sums of partial derivatives and their absolute values. The complete descrip-
tor for an image region is obtained by concatenating the descriptors of the subregions,
and normalising the resulting vector. See Figure 5.1.

Colour histogram

SUREF, of course, has a fundamental limitation in that it (like SIFT and other similar
constructs) only describes shape. As a results, objects of similar shape but with dif-
ferent colours may be falsely classified as equal. To add colour discrimination ability
we use a histogram-based colour descriptor proposed in [21].

For every subregion used in assembling the SURF descriptor a colour histogram
is computed, where the colour space is divided into a set of colour classes, based
on colour names assigned by humans to example data. The basic idea is to achieve
a certain tolerance to photometric variations, without losing as much discriminative
power as when using photometric invariants.

We use eight colour names: black, blue, brown, green, grey, red, white, and yellow.
These are the dominant colour names for cars according to DuPont’s annual Color
Popularity Report of vehicle colours !. We collected 400 samples of car colours from
21 manufacturers’ websites (“Build your car”). Only colour samples that had names
containing any of the eight colour names were used (with exception for “silver”, which
was interpreted as white or grey depending on the average intensity). The colour sam-
ples where transformed from RGB to the more perceptually uniform L*a*b* repre-
sentation. For each colour class this space was divided into 256 x 256 x 256 bins and
the pixels from the colour samples in each class were distributed among these. The
data volumes were subsequently reduced via lowpass filtering and subsampling into
8 x 16 x 16 bins. After normalisation this gives an estimate of the probability density

"http://www.dupont .com
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p(L*a*b|cy) for observing a particular L*a*b combination in colour name class c.
Using Bayes’ theorem
p(L*a*b|cg) P(ck)
P(ci|L*a*b) = (5.9)
(L) = 5 pLFamblen) Pler)

posterior probabilities for each colour class can be computed at each pixel position.
We average the posterior colour probabilities in each SURF subregion and form an
eight-vector. The complete colour descriptor is obtained by concatenating the feature
vectors from all subregions and normalising the result. Finally, the colour descriptor is
concatenated to the SURF vector to form a combined description of colour and shape.

5.2.3 Boosting

Reidentification is a classification problem, and the methods presented in Section 5.2.1
makes it possible to design a simple classifier by determining, from training data, a
threshold value for the distance between two images, such that if the distance is larger
than the threshold, the images are deemed to depict different object. However, we can
achieve much better results by combining a number of local distance measurements.

We use LogitBoost [10] to model the probability that the images depict the same
object. LogitBoost (and, incidentally, AdaBoost) is a procedure for determining, from
training data, the exponent F' in the logistic model

1

P(same|I;, 1) = T+ o F.0)) (5.10)

LogitBoost does this by an iterative procedure F'* = FF~! 4 £, where in each
iteration the current estimate is modified by determining a function f that satisfies

L(FF*=1 4+ f) > L(FF 1) (5.11)

where L is the binomial likelihood function for the probability model. L is concave in
F so there is a single extremum. f is computed as an approximate Newton-Raphson
step from the current position in function space. This, however, specifies f only for
arguments corresponding to the training examples. To be useful, f must be extended
to the entire space of image pairs. This is done by defining a function family G and
selecting, by means of least-squares fitting, the family member that best approximates
the ideal f for training data.

In the present work we choose G to be binary regression trees where, at each
internal node, the distance between two corresponding image regions is tested against
a threshold. More specifically, we limit ourselves to stumps, i.e., binary trees with a
single internal node.

Figure 5.2 shows a pair of images to be compared. In the images are also shown
the three first regions selected by the boosting algorithm. At each boosting stage a
large number of candidate regions of random size and position are generated, and the
algorithm picks the region whose associated regression stump best approximates the
current ideal boosting step f. If we use multiple feature types, we randomly select a
representation for each region.

To conclude, the boosting algorithm generates a discriminant function

F(I,,I3) = ka(RUc,Rzk) (5.12)
%

where f}, is a regression stump and R and Ry, are corresponding image regions in
the two images. The stump computes

I, D (€x(Rag),
[z, D, (&x(Rag),

k(Raor)) < Tk

5.13
r(Rak)) > 7 .

fi(Rup, Rop) = { 2
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Figure 5.3: Examples of data used by Ferencz et al.(a) Original imagery. (b) Geomet-
rically transformed images.

where D)y, is the Mahalanobis metric optimised for image region k, &, the selected
feature type, and f}, f7, and 74 are parameters determined by the training process. If
the discriminant sum F' is greater than a threshold value, the image pair is classified
as depicting the same object.

5.3 Resulis

We have applied our reidentification algorithm to public data generated by Ferencz
et al.[5]. This data set consists of 4162 images of 358 unique cars. Every car is
depicted from two different views, with a small number of images for each view, see
Figure 5.3(a). The images are subsequently geometrically transformed so that the car
side is parallel to the image plane, and the distance between the front and rear wheel
is constant, see Figure 5.3(b).

Cross-validation was used when training, i.e., the data set was divided into & dis-
junct subsets, of which k& — 1 were used for training and one for validation. There are k&
ways to choose a unique validation subset, and that many training sessions were there-
fore conducted. From the set of validation results the expected algorithm performance
with uncertainty was estimated. We used k£ = 5 in our experiments.

All images of each vehicle were used either for training or validation (i.e., they
were not divided between the training and validation subsets). While approximately
20000 positive examples (i.e., pairs of images depicting the same vehicle) can be
generated from the data set, the number of unique negative examples that can be gen-
erated is much larger. It should be noted, however, that although there are on average
about ten images of each vehicle, many of these are similar. Consequently, on should
not anticipate classification performance at the level expected for an equal size set of
independent training examples.
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Figure 5.4: ROC curve for reidentification algorithm using 50 SURF features. Uncer-
tainty bounds (one standard deviation) based on five-fold cross-validation are shown.

5.3.1 Validation results
SURF features

We used boosting to combine 50 distance measurements between SURF-represented
image regions. At each iteration the algorithm selected one of 50 randomly generated
regions. The SURF descriptors used 2 x 2 subregions with a minimum with of 7
pixels (the distance between the front and rear wheels is 150 pixels). In each cross-
validation batch training data consisted of 30000 negatives and approximately 19000
positives from images of about 280 vehicles. The validation used 7500 negatives and
approximately 4750 positives from about 70 vehicles. Figure 5.4 shows a ROC-curve
with uncertainty bounds for performance on validation data. In Figure 5.5 the equal-
error rate is plotted as a function of the number of boosting stages.

Although not directly comparable, we believe our results are better than with pre-
vious approaches [6, 11, 16] applied to this data. Furthermore, it is clear from Fig-
ure 5.5 that performance can be improved by adding more components.

SURF and colour histograms

In Figure 5.6 is shown a ROC-curve for an algorithm using 50 combined SURF de-
scriptors and colour histograms; all other parameters are as above. The performance
is significantly better than without colour information. In Figure 5.7 the equal-error
rate is plotted as a function of the number of boosting stages. Note that with just
15 components the performance is already better than with 50 SURF components.

To determine the relative importance of shape and colour information one may
study the norm of the part of m (cf. Section 5.2.1) that acts on the SURF-descriptor
(16 components). Figure 5.8 shows a histogram of the norm of this sub-vector of the
unit-norm m. Clearly the contribution from the SURF descriptor is generally small,
not to say insignificant.
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Figure 5.5: Equal-error rate as a function of the number of boosting components (i.e.,
distance measurements) using SURF features. Error bars show ones standard devia-
tion.

5.4 Discussion

In the present work we have assumed that the images to compare are roughly aligned,
and we therefore do not search for best matching regions. We cope with remaining
misalignment by using robust distortion-tolerant region descriptors and by learning an
optimal region-specific metric. Although we believe this to be a reasonable approach
for rigid objects—since a sufficiently accurate pose estimate can often be obtained once
the object is detected—it is straightforward to introduce a (correlation type) search
phase.

The situation is somewhat different for articulated objects, in particular pedes-
trians. A natural approach in this case is to use SIFT or similar feature matching
techniques to handle significant pose variation. Alternatively, if sequences (of gait
cycles, etc.) are available for matching one may search for the best matching images
in each sequence using the approach taken in the present study. An exhaustive search
may be avoided by first applying a pose estimation algorithm, e.g., [17].

In our work we have used regression stumps to approximate the ideal step in each
boosting iteration. It is straightforward to generalise this to arbitrary regression trees
by allowing the tree growing algorithm to use more than one image region compar-
ison. A computationally attractive approach may be to build a larger tree for each
image region using multiple projections/metrics generated using the structure removal
method, as proposed in Section 5.2.1.

The reidentification algorithm is well suited for real-time execution in a single mi-
croprocessor or DSP. The extraction of SURF as well as colour histogram region de-
scriptors can be efficiently implemented using the integral image representation [22].
The use of low-rank (pseudo-) metrics also contributes to computational efficiency.
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Figure 5.6: ROC curve for reidentification algorithm using 50 combined SURF and
colour histogram features. Uncertainty bounds (one standard deviation) based on five-
fold cross-validation are shown.
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Figure 5.7: Equal-error rate as a function of the number of boosting components (i.e.,
distance measurements) using combined SURF and colour histogram features. Error
bars show ones standard deviation.
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Figure 5.8: Histogram of the norm of the SURF part of the projection vector m.
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6 Field trial

6.1 Background

6.1.1 Purpose

The purpose of the data collection was to capture a large number of vehicles in
different views from several sensors. The data will be used to benchmark the re-
identification process.

6.1.2 Location

The sensors where place on top of the roof at the FOI-building near the parking-lot.
During a 3 hour long morning session approximately 100 different vehicles where
captured.

6.1.3 Sensor setup

The placement of the sensors was done so we could capture a vehicle in many different
views. In order to get as many views of a vehicle as possible from each sensor, we
focused our sensors at the entrance of the parking-lot (marked as the red circle). To
get into the parking-lot the cars must do a 90 degree turn. During the turn each sensor
will see the vehicle from several angles. We also had a secondary setup with a single
visual sensor that captures vehicles in a side view (marked as a black circle).

Figure 6.1: Overview of the FOI-building and parking-lot.

37



FOI-R--2586--SE

Figure 6.4: View from SONY4 (left) and IR2 (right).

6.2 Sensors used

We used 5 visual standard video cameras, 2 Marlin F-145 cameras in a stereo rig and
2 Thermal infrared cameras (EO/IR). The thermal infrared cameras are placed in pairs
with a visual camera.

Model Sensor Type Quantity | Name
FLIR QWIP IR 1 IR1

FLIR SC2000 IR 1 1IR2

Sony DCR-DR190 | Visual 5 SONY1-5
Marlin F-145 C2 Visual CMOS | 2 MARLIN

6.3 Sensor views

Example views from different sensors are shown in figures 6.2 to 6.5.

6.4 Annotation

Each vehicle will be annotated in a couple of different frames from a reference sensor.
The annotation will mark the wheelbase of a vehicle and its unique identity. With help
of camera-calibration this marking can be transformed to other sensors. The annota-
tion also provides information about the rotation of a vehicle. A special annotation
tool has been developed for this task.
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Figure 6.5: View from SONY1 (left) and Marlin (right).

Figure 6.6: The wheelbase of a Volvo XC90 is marked with a thin blue line.
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7 Conclusion and future work

This report describes the current status of a framework for reidentification of ground
targets in aerial surveillance data being developed at FOI. A complex signal process-
ing chain containing the following subparts is discussed: detection, multi-target track-
ing, visual tracker, segmentation, view alignment, feature extraction, reidentification,
object database, planner, and operator interaction.

The main conclusion is that reidentification is a necessity in an autonomous surveil-
lance system, and that promising results have been achieved on simulated scenarios,
but also on public databases containing images of civilian cars. The implemented
framework still lacks some system functionalities, such as view alignment and a struc-
tured aggregation of new imagery in the object database.

7.1 Future work

Field trial database and performance evaluation All sensor data from the field
trial will be annotated semi-automatically. This database will be used to measure
performance of the method described in chapter 5 over a larger span of poses, and it
will also be used for developing method for the object database.

Prior Knowledge Prior knowledge, such as terrain models, vegetation type, and
road network, should be used in the multi-target tracker to enhance the prediction of
target motion. The modular structure of the multi-target tracker code permits such
models, but this has not yet been implemented and evaluated.

Alignment  An alignment method has to be implemented to achieve a better pose
registration of new detections to object candidates in the database.

Object database Multiple appearance representations (a set of "canonical views")
should be implemented to handle the discontinuous nature of signal variation for dif-
ferent poses.

Object merging When a vehicle is not recognized, it is assigned a new ID. Over
time, this is likely to result in all vehicles being associated with several different ID:s,
particularly if the vehicles are seen from different sides. A mechanism for merging
these ID:s, either manually by operator intervention, or automatically, should be im-
plemented. This can be seen as redundancy elimination or pruning of the database,
and can be implemented by applying the reidentification algorithm to pairs of database
entries.

Operator interaction Operator interaction can enhance the performance in many
situations, such as target prioritization, target track merging,

41






FOI-R--2586--SE

Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

M. Aladjem. Linear discriminant analysis for two classes via removal of classi-
fication structure. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 19(2):187-191, 1997.

H. Bay, T. Tuytelaars, and L. Van Gool. SURF: Speeded Up Robust Features. In
Proceedings of the 9th European Conference on Computer Vision, 20006.

P. Chang and J. Krum. Object recognition with color cooccurrence histograms.
In IEEE Conference on Computer Vision and Pattern Recognition, 1999.

S. Fenelius F. Bennet. Sceneserver - a 3D software assisting developers of com-
puter vision algorithms. Technical Report FOI-R-0831-SE, Swedish Defence
Research Agency, Linkoping, 2003.

A. Ferencz, E. Learned-Miller, and J. Malik. Learning hyper-features for visual
identification. In Advances in Neural Information Processing Systems 17, 2005.

A. Ferencz, E. G. Learned-Miller, and J. Malik. Learning to locate informa-
tive features for visual identification. International Journal of Computer Vision,
77(1-3):3-24, 2008.

J. H. Friedman. Exploratory projection pursuit. Journal of the American Statis-
tical Association, 82:249-266, 1987.

D. Guarino, B. Walls, and E. Miles. Confirmatory identification of targets in
video - final report. Video Verification of Identity (VIVID): Automated Video
Processing for Unmanned Aircraft - A compilation of scientific papers and tech-
nical reports that summarizes the accomplishments of the DARPA VIVID pro-
gram, Phase 1, Edited T. Strat and L. Hollan, 2005.

G. D. Hager and P. N. Belhumeur. Efficient region tracking with parametric
models of geometry and illumination. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 20(10):1025-1039, 1998.

T. Hastie J. Friedman and R. Tibshirani. Additive logistic regression: a statistical
view of boosting. Annals of Statistics, 28(2):337-407, 2000.

V. Jain, A. Ferencz, and E. Learned-Miller. Discriminative training of hyper-
feature models for object identification. In British machine vision conference,
volume 1, pages 357-366, 2006.

J. Karlholm. Implementering av en detektionsalgoritm for realtidsbearbetning
av IR-video. Technical Report FOI-R-1761-SE, Swedish Defence Research
Agency, Linkoping, 2005.

H. Karlsson, J. Nygards, and M. Ulvklo. Efficient region tracking and target po-
sition estimation in image sequences using Kalman filters. Technical Report
FOI-R-0595-SE, Swedish Defence Research Agency, Linkoping, September
2002.

43



FOI-R--2586--SE

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

D. G. Lowe. Distinctive image features form scale-invariant keypoints. Interna-
tional Journal of Computer Vision, 60(2):91-110, 2004.

G. McLachlan and T. Krishnan. The EM Algorithm and Extensions. John Wiley
& Sons, 1996.

E. Nowak and F. Jurie. Learning visual similarity measures for comparing never
seen objects. In IEEE Conference on Computer Vision and Pattern Recognition,
2007.

G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose estimation with parameter
sensitive hashing. In Proceedings of the International Conference on Computer
Vision, 2003.

S. Shalev-Shwartz, Y. Singer, and A. Y. Ng. Online and batch learning of pseudo-
metrics. In Proceedings of the 21st International Conference on Machine Learn-
ing, 2004.

K-G. Stenborg. Re-identification of previously observed targets in EO/IR-data
from UAV - a survey. Technical Report FOI-R-2335-SE, Swedish Defence Re-
search Agency, Linkoping, September 2007.

K-G. Stenborg, M. Ulvklo, and J. Rydell. Implementering och virdering av bild-
behandlingsmetoder for aterigenkénning. Technical Report FOI-Memo—2268—
SE, Swedish Defence Research Agency, Linkoping, December 2007.

J. van de Weijer and C. Schmid. Applying color names to image description. In
Proceedings of the International Conference on Image Processing, 2007.

P. Viola and M. J. Jones. Robust real-time face detection. International Journal
of Computer Vision, 57(2):137-154, 2004.

E. Xing, A. Y. Ng, M. Jordan, and S. Russell. Distance metric learning, with ap-
plication to clustering with side -information. In Advances in Neural Information
Processing Systems 15, 2003.

Z. Yue, D. Guarino, and R. Chellappa. Synthesis of novel views of moving ob-
jects airborne video. Video Verification of Identity (VIVID): Automated Video
Processing for Unmanned Aircraft - A compilation of scientific papers and tech-
nical reports that summarizes the accomplishments of the DARPA VIVID pro-
gram, Phase 1, Edited T. Strat and L. Hollan, 2005.

Z. Yue, D. Guarino, and R. Chellappa. Moving objects verification in airborne
video. In EEE International Conference on Computer Vision Systems (ICVS),
New York, 2006.

44



	1 Inledning 



