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Abstract

Keywords

The report describes the development of a performance model for a precision
guided mortar munition (PGMM) with deployable wings. Most of the material,
however, is generally applicable to missiles with essentially cylinder symmet-
ric configuration which are operated in skid-to-turn mode. Topics covered are
modeling of aerodynamic and flight mechanical characteristics using so called
handbook methods, and performance attainable with a simple linear controller.
Particular attention is devoted to development of a reduced dynamics model
based on two sets of linearized pitch plane dynamics, and the assumptions
and simplifications that are made in this process. The vehicle used as design
example (PGMM) is a subsonic glider with moderate turn performance and rel-
atively low glide ratio where the goal of the aerodynamic design is primarily to
enhance range (compared to ballistic flight) and add maneuvering capabilities
to hit slowly moving targets.

Flight Mechanics, Control, Aerodynamics, Guided Munition, Missile
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Sammanfattning

Nyckelord

Rapporten beskriver utvecklingen av en prestandamodell för en precisionsstyrd
granatkastargranat (PGMM) med utfällbara vingar. Det mesta av materialet
är emellertid generellt tillämpbart p̊a missiler med väsentligen cylindersym-
metrisk konfiguration som flygs enligt den s.k. “skid-to-turn”-principen. Ämnen
som behandlas är modellering av aerodynamiska och flygmekaniska egenskaper
med hjälp av s.k. handboksmetoder, samt uppn̊aeliga prestanda med en enkel
linjär regulator. Speciell uppmärksamhet ägnas åt utveckling av en reducer-
ad dynamisk modell baserad p̊a tv̊a uppsättningar av den linjäriserade tipp-
kanalsdynamiken, och de antaganden och förenklingar som görs i denna pro-
cess. Farkosten som används som designexempel (PGMM) är en subsonisk
glidfarkost med modesta svängprestanda och relativt l̊agt glidtal. Det främsta
m̊alet med den aerodynamiska utformningen i detta fall är att utöka räckvidden
(jämfört med ballistisk flykt) och tillföra manöveregenskaper för att sl̊a fordon
och andra l̊angsamt rörliga m̊al.

Flygmekanik, Styrning, Aerodynamik, Styrd Granat, Missil, Robot
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1 Introduction
This work concerns performance modeling of a missile in the form of a preci-
sion guided mortar munition (PGMM). However, the methods and results are
generally applicable to a large class of (essentially cylinder symmetric) missiles.
The PGMM has deployable wings for increased range and maneuverability, and
the flight mechanic (and aerodynamic) characteristics are therefore similar to
a missile in non-powered flight. Our goal is to derive a performance model
which can be used to evaluate different design and operational concepts, such
as seeker design and flight and maneuver strategies in various types of missions.

In order to analytically describe the motion of a missile one needs equations
describing the dynamics and we shall rely on various forms of equations de-
rived from Newton-Euler’s (NE) rigid body equations. In the NE equations the
forces and moments can be interpreted as “driving terms” and for a missile in
atmospheric operation these are caused by gravity, thrust and aerodynamics.
Therefore, we shall first deal with aerodynamic modeling and then proceed to
modeling of the rigid body dynamics when developing our performance mod-
eling tools. It is assumed that the reader has some familiarity with basic flight
mechanics and aerodynamic concepts, such as Newton-Euler’s rigid body equa-
tions and aerodynamic force and moment coefficients (Stevens & Lewis, 2003).

1.1 Modeling Missile Aerodynamics

The two most important pieces of information for performance assessment of a
missile in non-powered atmospheric flight are the lift and drag curves. The lift
curve gives turning performance, and for a missile which is also supposed to
glide (like the mortar round with wings we shall consider) it gives also part of
the information to determine the attainable range. The other part of the infor-
mation needed to determine attainable range is the drag curve, and it moreover
gives information about the energy “bleed” during maneuvering. Fortunately,
both of these curves can often be easily calculated, to a good approximation,
using so called handbook methods (Fleeman, 2006). This is especially true
for (slender) cylinder symmetric missiles with simple configurations in terms of
wings and control surfaces. Aerodynamic handbook methods combine formulas
derived from various theories (slender body theory, linear wing theory, Newto-
nian impact theory) with empirical corrections and have proven very successful
in predicting missile performance when compared to wind tunnel tests for such
simple configurations (Abney & McDaniel, 2005; Sooy & Schmidt, 2005; Simon
& Blake, 1999; Lesieutre et al., 1996). After having described the PGMM con-
figuration in Chapter 2, we shall use such handbook methods in Chapter 3 to
make the aerodynamic predictions needed for the work in Chapter 4 where we
develop a reduced “2+3-DOF” model of the dynamics for the PGMM.

1.2 Modeling Missile Flight Mechanics

The goal with development of a performance model for a missile or guided
projectile is to provide a simplified description of its dynamics which has enough
detail to provide accurate predictions in the intended evaluation scenarios, but
not more than this.1 This can often be translated to mean that the dynamics

1Albert Einstein is attributed to having said “Things should be made as simple as pos-
sible, but not simpler.”
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should be modeled accurately enough to represent the behavior as it appears
to an outside observer. For instance, an outside observer can in general not
discern the part of the dynamics of a guided missile that is directly related
to the motion of the actuators (e.g. the servos driving the control surfaces)
since this occurs on a much faster time scale than the overall motion of the
missile airframe. Moreover, to an outside observer it might not be relevant
to single out the the parts of the overall dynamics that are related to the
control system, sensors or signal processing, even if they contribute to the
dynamics on the same timescale as the airframe dynamics. Indeed, it is often
the goal of the control system to make certain dynamic properties invariant with
respect to parameter variations (such as changes in center-of-mass, airspeed
and altitude, or even angle of attack) via dynamics synthesis and therefore it
is not relevant to try to describe e.g. the bare airframe dynamics separately
in the final model. Furthermore, in studies of homing missile systems the
(controlled) missile airframe dynamics and guidance dynamics are often lumped
together (“the homing loop dynamics”) (Zarchan, 1994). A performance model
will therefore normally include most, or all of, these parts of the dynamics,
described on a simplified form.

1.2.1 The simplest models

It follows from the discussion above that a good performance model can often
be obtained by reducing the detailed dynamics to a form which captures the
behavior of the vehicle as it appears from a distance to an observer with limited

resolution in time and space. The most extreme example of this is an observer
who views the missile as a point mass, and therefore is only interested in the
motion of the center of mass (CoM). This gives a three degrees-of-freedom (3-
DOF) model, which is one of the most often used simplified descriptions of a
missile or projectile.

If one regards the missile as a rigid body and wants to account for the
motion around the CoM there are several ways to proceed from the extreme
3-DOF case. One of the easiest ways is to restrict motion in space (in an Earth
fixed reference frame) to lie in a plane, and study the motion around the CoM
restricted to this plane. This approach leads to a 4-DOF model, where two
degrees of freedom are used to describe the (translational) motion of the CoM
in terms of the location coordinates and two degrees of freedom are used to
describe the (rotational) motion around the CoM in terms of the pitch and roll
angle. If the missile can be regarded as essentially cylinder symmetric (with
regard to aerodynamic and mass configuration properties), which is often the
case as a first approximation, one degree of freedom (roll angle) drops out, and
the model can be reduced to 3-DOF (in the given plane in space). Such a model
can be used to assess e.g. dynamic turn performance, i.e. how well a missile
will be able to go in and out of a horizontal turn, or to assess the performance
of engaging in a pitch-up or pitch-over, in case of a vertical maneuver.

In the case of a 3-DOF model of the latter type, where roll motion is dis-
regarded, there is still a need for six state variables in the differential equation
for the model. This is a consequence of the fact that the forces (described
by a two-dimensional vector) determine the acceleration of CoM, which after
two integrations affect the location of CoM (a two-dimensional vector), and
the pitch moment (a scalar) determines the pitch acceleration, which after two
integrations affects the pitch angle.2

2Thus, it is important to distinguish between the number of states and degrees of freedom.
The degrees of freedom correspond to the minimal number of physical location variables that

12
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1.2.2 Models of reduced complexity

If, on the other hand, one wants a model with high fidelity but possibly reduced
complexity, compared to a full 12-state model (see below), a natural approach
is to start with the full model and then remove states which are unnecessary
(or uninteresting). For missiles which are essentially cylinder symmetric this
often means that one in the body equations (see below) disregards the dy-
namics for the roll motion along the main axis, i.e. assumes that the angular
velocity around this axis is zero. This reduces the number of state variables
but the number of degrees of freedom is normally left at 6 (even though this
results in a redundant parameterization of the dynamics3). However, since the
most interesting variables for a maneuvering missile are those that correspond
to velocities and angular velocities one could also consider these variables as
representing the essential degrees of freedom (i.e. we consider the velocity level
as the base for our model). Moreover, the dynamics for these variables (which
are given by aerodynamics and gravity, and possibly propulsion) are consid-
erably more complicated than those for the location variables: The location
variables are obtained by integration of the velocity variables and therefore re-
quire no special modeling. A missile model with zero angular velocity around
the main axis in the body equations could then be called (with a slight abuse
of the standard language) a “2+3-DOF” model, and we shall henceforth use
this terminology.

The “2+3-DOF” type of model just outlined normally employs 11 states
and it is often convenient to express only some of these with respect to the
Earth fixed frame which is implicit in all of the discussion above. In fact, the
rotational part of the dynamics is most conveniently described in terms of a
body fixed Cartesian coordinate system since the moment of inertia matrix
then becomes time invariant, if one neglects mass flow effects (e.g. due to
propulsion). Moreover, it turns out that it is convenient to refer also the
velocities to the body fixed system, partly because the aerodynamic forces are
naturally expressed in the body fixed system. Only the location variables for
CoM and the variables describing the orientation of the body fixed frame in
the Earth fixed frame are then expressed with respect to the Earth frame.

1.2.3 Relation to full rigid body dynamics models

A full rigid body model based on Newton-Euler’s (NE) equations, i.e. a full 6-
DOF model, has 12 states, where six states come from the NE equations, three
states come from an equation for the orientation of the body frame expressed
in the Earth frame (via e.g. a restricted quaternion or Euler angles) and three
states come from the simple kinematic relationship between position and veloc-
ity in the Earth frame. It might then appear that a “2+3-DOF” model with 11
states is not much of a simplification over a full model. However, with proper
choice of coordinates (i.e. aerodynamic angles) the “2+3-DOF” approach yields
two systems of dynamics (one for pitch and one for yaw) which are in general

can be used when describing the position and orientation, and the states correspond to the
minimal number of generalized coordinates that can be used when formulating the (restricted)
dynamics (for the evolution of the position and orientation).

3Insisting that the angular velocity around the main axis is zero is a nonholonomic
condition, i.e. a condition on the tangent vectors, not the base manifold. However, using the
reduction techniques of Kane et al. (Kane & Wang, 1965; Kane & Lewinson, 1985) one can
make a variable transformation and reduce the dimension of the base manifold to that of the
restricted tangent space. Thus, the minimal degrees of freedom for zero roll rate is 5, the
minimal number of state variables is 10, and the quotation marks around “2+3-DOF” can
really be removed.
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only weakly coupled, and linearization effectively decouples these systems into
two sets of equations of the same form. Moreover, this form is preserved un-
der linear state feedback, so a simple linear controller is easily included in the
model.

In Chapter 4 we shall go through in detail how “2+3-DOF” models can be
developed along these lines in a systematic way. The results are in no way new,
they can be found (in different forms) in various places in the flight mechanics
literature, but we present them here in collected form (as a “manual”) and
point out what assumptions and simplifications are introduced in each step of
the derivation.

1.3 Notation

The notation used is standard; in the aerodynamics related parts we have tried
to adhere to the notation most often used in the aerodynamics community and
in the dynamics related parts we have used notation from the dynamics and
control community. Thus, for example, vectors and matrices are denoted with
bold face, such as F , and vectors are generally considered to be column vectors
unless otherwise noted. Transposition of a vector or matrix is marked as F T

and the norm (always the 2-norm) of a vector is marked as ‖F ‖. The (one-
dimensional) subspace spanned by a vector v is marked [v] and the orthogonal
complement is denoted [v]⊥ (the base space in these contexts is always R

3).
The symbol I is reserved for the identity matrix in R

3 and the projection
operator (matrix) for projection onto e.g. a subspace [v] is denoted P [v].

1.4 Acknowledgements
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2 Missile Configuration
The 120mm PGMM that we use as modeling example in this report is a con-
ceptual design, with ideas borrowed from the Lockheed Martin/Diehl design
XM395 (Bischer, 1999; Hollingsworth, 2002; Ness, 2004, p. 554), see Figure 2.1.
Our version of the PGMM, depicted in Figure 2.2, differs from the Lockheed

Figure 2.1: The 120mm precision guided mortar munition round developed by
Lockheed Martin/Diehl (Ness, 2004). (Source www.globalsecurity.org.)

Martin/Diehl design in several aspects, most notably in that ours has shorter
wings (which fold backwards) and has a different internal layout, and there-
fore (presumably) a different mass distribution. The main advantage with the
layout of our PGMM is that the warhead section is moved forward, which can
give benefits for the effectiveness of certain types of warheads. The price paid

Figure 2.2: Outline of the (conceptual) 120mm PGMM modeled in this report
(not drawn to scale). The four rectangular wings and tail fins are cruciform
(and in the same planes), and the cylindrical body consists of five sections.
Starting at the nose, the first section is the seeker lens assembly followed by
the navigation electronics. The third section is the warhead and fuze, and the
fourth section contains the battery and control electronics, and the four wings
when they are folded (they deploy at apogee). The fifth section (boattail and
tail tube) contains the servo actuators and linkages for the (movable) tail fins.
Attached to the fifth section are four strakes which contain the tail fins when
they are folded (they deploy immediately after the round has left the barrel).

15
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is that the wings must be smaller since they cannot occupy space in the war-
head section but must fold backwards into the battery and control electronics
section. On the other hand, in our PGMM there are (small) strakes on the aft
part of the body which adds some lifting surface area.1

2.1 Geometric Dimensions and Mass Distribution

The geometry for the lifting surfaces of the PGMM is given in Table 2.1,
assuming a standard aircraft body coordinate system B (Stevens & Lewis,
2003, p. 72), and the mass distribution is given in Table 2.2. Since the nose
tip hosts the seeker lens we have assumed that it is somewhat blunt and set
its length to 0.09 m. This brings the total length of the PGMM to 0.860 m,
including the nose and tail tube end, and the aerodynamic length of the body
(including nose and boattail, but excluding the tail tube end) is 0.718 m. The
total mass is 16.0 kg, the center of mass is located 0.30 m from the nose tip
and the moment of inertia2 around the y-axis (and z-axis) is 0.435 kgm2.

PGMM geometry for lifting surfaces

Surface Chord Base Center of pressure
Wing (1 of 4) 0.048 0.140 0.373

Tail fin (1 of 4) 0.025 0.080 0.740
Strake (1 of 4) 0.140 0.025 0.700

Table 2.1: Geometric characteristics of the lifting surfaces. The center of pres-
sure position (assumed constant) for each surface is measured along the body
x-axis from the tip of the nose and the total aerodynamic body length is 0.718 m
(not counting the tail tube end; with tail tube end the length is 0.860 m).

PGMM mass distribution

Component Length [m] Mass loc. [m] Mass [kg]
Seeker lens assembly 0.090 0.060 1.5
Navigation electronics 0.058 0.119 1.0

Warhead and fuze 0.180 0.238 8.5
Batt., ctrl. & tail 0.390 0.538 5.0

Table 2.2: The length of each of the five sections of the PGMM (cf. Fig. 2.2), the
location of its mass contribution (lumped mass model) measured from the tip of
the nose, and the mass of each section. In this description, the mass of sections
four (battery, guidance/control electronics) and five (tail with actuators) are
lumped together. The center of mass is located 0.30 m from the nose tip and
the total mass is 16.0 kg.

We have based the mass distribution on reasonable estimates of the masses
for the various parts of the PGMM and not on any detailed calculations. This
means in particular that the angle of attack required for constant velocity glide
(1g-flight) is not exactly the same as the angle of attack which gives optimal lift
to drag ratio (cf. Chap. 3) at constant airspeed glide. Hence, there is room for
improvement in the matching of aerodynamic and mass distribution properties.

1The tail fins are assumed to deploy immediately after the PGMM has left the barrel, to
give aerodynamic stability, but the wings deploy at apogee, to minimize drag.

2A value for the moment of inertia around the x-axis is not needed in this work.
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3 Aerodynamics
The two most important aerodynamic performance indicators are the lift and
drag curves. The lift curve determines turn performance and the drag curve
determines energy loss during maneuvering as well as coast. Together the two
curves also give the aerodynamic efficiency which is the lift to drag ratio, also
called the glide number, which delimits the radius of action in non-powered
flight. In this chapter we shall describe how these and some related character-
istics are modeled for the PGMM using so called handbook methods.

From an aerodynamics modeling perspective, the PGMM is made up from
two distinct types of parts; (slender) body and (thin) lifting surfaces. The
location and geometry of the lifting surfaces were described in the previous
chapter. The body is assumed to consist of three subparts; nose, main body
and tail. Together these parts define the aerodynamic characteristics of the
missile.

We shall use the method in (Fleeman, 2006) and compute contributions
(lift, drag etc.) from the various parts of the missile and simply add them
together to form a total contribution. Thus, the aerodynamic model buildup is
done without regard to interference effects, such as wing-body interactions1 or
downwash from the wings on the tail fins. This approach is reasonable given
the level of fidelity in the modeling we aim for here.

3.1 Flight Envelope and Mission Profile

We consider here a flight envelope2 of altitudes h ≤ 3000m, subsonic Mach
numbers; airspeed V ≤ 300m/s at sea level, and an angle of attack3 α ≤ 20◦.

The generic mission profile consists of launch from sea level at a muzzle
velocity of 300m/s or less, where the tail fins deploy immediately after launch.
Apogee, which occurs approximately 3000m downrange, is typically at an alti-
tude h = 2000m where the wings deploy and glide begins. The airspeed at glide
is V = 125m/s and with a glide ratio of approx. 4.25 the maximum range is
about 11500m. In many cases, however, the seeker opens at about h = 1000m
(or higher) and the missile dives and maneuvers the last part of the trajectory,
which makes the range shorter. The maneuvering is done in order to satisfy
terminal constraints in the form of a specified incidence angle on the target
or specified direction of approach (in e.g. urban environments), to satisfy con-
straints for the warhead or to pursuit and hit a moving target such as a ground
vehicle.

In the analysis of flight performance we assume that the PGMM is operated
in “+” mode, i.e. the flight trajectory is such that the z-axis in the body system
B (cf. Section 3.2) is (approximately) aligned with the z-axis in the Earth frame
E. The difference between this and “x” mode operation (where the z-axis in B
is at a 45◦ angle with the z-axis in the Earth frame E) is small however, and one
can approximately consider the glide and turn performance4 as independent of
the relative angle between the z-axis in B and E.

1Many well known handbook methods take also this into account, cf. (Pitts et al., 1957).
2We use the ISA atmosphere model (Standard Atmosphere, 1975), (Boiffier, 1998, p. 88).
3In this chapter the angle of attack (and local angle of attack for lifting surfaces) is always

nonnegative.
4A disadvantage with the “+” mode is that it usually is unstable in roll (Fleeman, 2006,

p. 72), but since we develop here a performance model (eventually with controller) without
regard to roll properties, this is not important.
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3.2 Coordinate System

We assume that the body fixed coordinate system B for the missile is Cartesian
and has a standard orientation for the axes (x-axis forward, y-axis pointing out
over the right wing and z-axis pointing downwards in the vehicle, cf. (Stevens
& Lewis, 2003)), as mentioned in the previous chapter. Later we shall exploit
symmetries between the dynamics in the xy and xz-planes which exist for many
missiles and therefore mostly concentrate on the dynamics in the xz-plane, the
pitch plane. It turns out that also for many aspects of the aerodynamics
modeling it is sufficient to restrict attention to the xz-plane, but not for all.

The (total) aerodynamic force component fz along the z-axis in B is essen-
tially only dependent on the angle of attack α and likewise the aerodynamic
force component fy along the y-axis in B is essentially only dependent on the
sideslip angle β, for small values of these angles. (For definitions of α, β see (4.9)
below.) Therefore, considering only the the xz-plane in B in the aerodynamics
modeling would give results for the force component fz that are transferable to
the force component fy in the xy-plane using symmetry, and vice versa, as long
as α, β are small. A similar interchangeability exists, by symmetry, between
the aerodynamic pitch and yaw moment. The force component fx along the
x-axis in B is approximately proportional to the total angle of attack αt, given
by tan2(αt) = tan2(α)+tan2(β), and can therefore approximately be obtained
by adding contributions due to angle of attack α and sideslip angle β computed
separately.

For these reasons, we have chosen to restrict attention in this chapter to
the pitch plane in B, and in particular we define lift and drag in terms of
the force components fx and fz. This means that the results here for fz

are transferable for results for fy, by using symmetry, and likewise for the
pitch and yaw moments. As a consequence, all results in the following chapter
which relate to the simplified pitch plane dynamics models are immediately
transferable to the yaw plane. For the study of glide ratio in this chapter it is
moreover reasonable to stay confined to the pitch plane in B. It is basically
only when one considers a maneuvering missile, such as when describing the
evolution of airspeed V in the next chapter, that one must consider the pitch
and yaw planes simultaneously. In particular, when calculating fx one must
use both α and β (i.e. αt) in order to correctly determine the induced drag (see
below).

3.3 Lift

The normal force coefficient CN is the aerodynamic coefficient expressing aero-
dynamic normalized force in the direction of the negative z-axis in B. It is
related to the lift coefficient CL, expressing normalized aerodynamic force in a
direction perpendicular to the velocity vector in the xz-plane in B, as

CL = CX sin(α) + CN cos(α), (3.1)

where α is the angle of attack in the xz-plane and CX is the (positive) axial
force coefficient expressing normalized force in the positive x-axis direction in
B (Stevens & Lewis, 2003, p. 84). The normal force coefficient CN for the entire
vehicle is obtained as a sum of partial normal force coefficients from the body
and the various lifting surfaces, cf. (Fleeman, 2006, p. 78). This represents an
instance of the simplified handbook approach described in the beginning of the
chapter.
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3.3.1 Contributions to lift

The normal force coefficient CN,body for the body of the missile is predicted (us-
ing slender body theory and body crossflow theory) by the formula (Fleeman,
2006, p. 36), (cf. (Jorgensen, 1973; Pitts et al., 1957) and (Aiello & Bateman,
1979, p. 39ff))

CN,body = sin(2α) cos(α/2) +
2ℓ

d
sin2(α), (3.2)

where ℓ = 0.718 m is the aerodynamic length of the body (nose, main body and
boattail) and d = 0.12 m is the diameter. The formula is generally valid for a
body fineness ℓ/d > 5. The center of pressure xcp,body for the body (the point
where the moment caused by the aerodynamic normal force vanishes (Pamadi,
2004, Sec. 1.5.2)), measured from the tip of the nose, can be predicted (using
slender body theory and crossflow theory) by (Fleeman, 2006, p. 20) (cf. (Pitts
et al., 1957), (Jorgensen, 1973))

xcp,body = 0.63ℓlose(1 − sin2(α)) + 0.5ℓbody sin2(α),

where ℓnose, ℓbody are the length of the nose and body, respectively (all lengths
in the same unit).

For the lifting surfaces (wings, tail fins and strakes) the normal force coef-
ficient CN,surf is predicted (using slender wing theory and Newtonian impact
theory) by the formula (Fleeman, 2006, p. 45) (cf. (Tavares, 1990, p. 86))

CN,surf =
πARsurf

2

Ssurf

Sref

(
sin(αloc) cos(αloc) + 2 sin2(αloc)

)
, (3.3)

where subscript ’surf’ refers to the surface in question, Sref = π(d/2)2 =
0.011 m2 is the reference area of the missile and ARsurf is the aspect ratio. In
(3.3) the angle of attack variable αloc is the local angle of attack, as it appears
over the surface in question for a given flight condition and control surface
deflection. The formula is most accurate for low aspect ratios ARsurf < 3. For
a rectangular wing, the aspect ratio AR is given by AR = b/c where b is the
base and c is the chord length. The center of pressure (which is the same as
aerodynamic center for symmetric airfoils, cf. (Pamadi, 2004, Sec. 1.5.2)) can
be predicted (using lifting line theory) to lie at 0.25c from the leading edge of
the wing for wings with an aspect ratio larger that about 1.5 (Pitts et al., 1957,
Chart 11).

Both (3.2) and (3.3) are independent of Mach number, but the latter is
more applicable for subsonic and low supersonic Mach numbers. A plot of the
normal and lift force coefficients for the body and each of the lifting surfaces
is given in Figure 3.1, and in Figure 3.2 the total is given.

The lift force fL, normal force fN and axial force fx are computed from the
aerodynamic coefficients CL, CN and CX as (Stevens & Lewis, 2003, p. 76)

fL =
1

2
ρV 2SrefCL, fN =

1

2
ρV 2SrefCN , fx =

1

2
ρV 2SrefCX , (3.4)

where where ρ is the air density and V is the airspeed, so a linear relation
between the three is obtained by a simple scaling both sides of (3.1). An
example of the resulting lift force curve is given in Figure 3.3.

3.3.2 Turn performance

3.3.2.1 Normal (“cross wind”) acceleration

Normal acceleration in B is defined as a multiple of the (total) force in B
which acts perpendicular to the velocity vector (cf. Section 4.4.3 below). In
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Figure 3.1: Normal and lift coefficient CN , CL, respectively, as a function of
angle of attack α for the body and a pair of each of the lifting surfaces listed in
Table 2.1 for the PGMM, predicted according to the formulas (3.2) and (3.3),
respectively. For the lifting surfaces, the value of the angle of attack variable
α refers to the local angle of attack (the tail fins are set at zero deflection).

the xz-plane the (normalized) aerodynamic contribution to normal acceleration
is defined by the ratio fL/fW , where fW for the PGMM is given by fW =
mg = 157.0 N with the mass m = 16.0 kg and gravitation acceleration constant
g = 9.81. An example of the aerodynamic normal acceleration for the PGMM
is shown in Figure 3.4. Since the lift curve is essentially linear in α, so is the
aerodynamic normal acceleration curve. As an example, to maintain a turn
with (normalized) normal acceleration of 2g we see that an angle of attack of
about 16◦ is required, if we disregard gravity.
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Figure 3.2: Total normal and lift coefficient CN , CL, respectively, for the
PGMM as defined by the sum of the contributions in Figure 3.1 (tail fins
at zero deflection)
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Figure 3.3: Lift force fL as a function of angle of attack α for the PGMM at
the airspeed V = 125m/s and altitude h = 1500m (tail fins set for zero static
pitch moment; “trimmed” position).

3.3.2.2 Turn radius

For circular motion we have the simple relation

ar = v2

between magnitude of velocity v, acceleration a and the turning radius r. It
follows that the turning radius for the PGMM in a gravity free turn can be
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PGMM model: Trimmed value of normal acc. F
L
/(m*g) (V=125 m/s)

Figure 3.4: Aerodynamic normal acceleration fL/(mg) as a function of angle
of attack α for the PGMM at the airspeed V = 125m/s and the altitude
h = 1500m (tail fins set for zero static pitch moment). The figure shows that
an angle of attack of approximately 9◦ is required to compensate for gravity
and obtain force equilibrium in the vertical direction in the Earth fixed frame
E (assuming a small flight path angle), for this flight condition. At an angle of
attack of approx. 16◦ an aerodynamic normal acceleration (no gravity) of 2g is
obtained, which corresponds to a turn radius of close to 800m at V = 125m/s.
(The turn radius is ideally independent of airspeed, for fixed altitude.)
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predicted by (cf. (Fleeman, 2006, Sec. 5.8))

r =
V 2

fL(α)/m
=

V 2/g

fL(α)/(mg)
=

mV 2

ρSrefCL(α)V 2/2
=

2fW

gρSrefCL(α)
, (3.5)

where we have made the dependence on the angle of attack α explicit. Thus, the
turning radius is (ideally) independent of the velocity and the minimal turning
radius for a given altitude (i.e. air density ρ) is determined by the maximal
allowed angle of attack α. If we limit the angle of attack α to 20◦ we see
from (3.4), (3.5) and Figure 3.3 that at the altitude h = 1500m and airspeed
V = 125m/s the maximal normal acceleration possible to obtain (without
gravity) is close to 2.6g, which gives a minimal turning radius of approximately
615m. At sea level an angle of attack α = 20◦ gives a normal acceleration of
approx. 3g for the same airspeed, and the minimal turn radius deceases to
about 530m. Limiting the angle of attack to α ≤ 20◦ is reasonable for the
PGMM (due to considerations regarding actuators and control system) as will
be shown in the next chapter.

3.3.2.3 Turn rate (and normal acceleration revisited)

For circular motion we also have the relation

ω =
v

r
=

a

v
,

between turn rate (angular velocity) ω, and turning radius r and velocity v.
Thus, the turn rate can be computed from only knowledge of the velocity
and the normal acceleration. As an example, we see that for a 2g-turn at an
airspeed of V = 125m/s the turn rate will be approx. 0.157 rad/s (8.99◦/s).

Turn rate measures the ability to make changes in the heading angle for
the missile but since it is directly proportional to normal acceleration for a
given velocity it is often more appropriate to revert back to considering normal
acceleration. This is particularly true in end game scenarios using variants of
proportional navigation (PN) (Zarchan, 1994) against maneuvering targets. In
order for PN to be successful against a maneuvering target the missile will need
to have not only a velocity advantage but also an acceleration advantage, the
latter often in the order of a factor 3 compared to the target (Zarchan, 1994,
Ch. 8).

It is therefore instructive to compute the normal acceleration for maximal
angle of attack α = 20◦ at sea level and for a higher airspeed, which could be
the result of a dive and pursuit of a moving target on the ground. An angle
of attack α = 20◦ at sea level and airspeed V = 170m/s gives an aerody-
namic contribution to normal acceleration of approx. 5.5g (and a turn rate of
0.317 rad/s, i.e. 18.2◦/s). As a comparison, a normal acceleration of 1g for a
vehicle moving on the ground at a velocity of 40km/h corresponds to a turning
radius of about 12.6 m, which is a rather sharp turn.5

3.4 Drag

The drag coefficient CD expresses the normalized force in the negative direction
of the velocity vector in B (Stevens & Lewis, 2003, p. 79). In analogy with
(3.4) the drag force fD is given by

fD =
1

2
ρV 2SrefCD.

5Vehicles travelling on ordinary roads rarely exceed lateral acceleration levels of 1g, which
is the limit imposed by the grip of ordinary tires (Blundell & Harty, 2004, p. 6), (Karnopp,
2004, p. 66).
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When restricting attention to the xz-plane the drag force coefficient is related
to the axial and normal force coefficients, respectively, as

CD = −CX cos(α) + CN sin(α). (3.6)

The drag coefficient for the entire missile is calculated as a sum of contribu-
tions of drag coefficients from body and lifting surfaces, just as with the lift
coefficient. Normally, the drag coefficient is divided into two principal parts as
(Stevens & Lewis, 2003, p. 80)

CD = CD0 + CDi, (3.7)

where CD0 models the so called parasite drag6 (form drag and friction drag),
which is independent of the angle of attack α, and CDi models the induced
drag (“drag due to lift”), which is dependent on α. (For a body which is
symmetric when mirrored in the xy-plane in B, such as the missile body itself
or a symmetric airfoil, the induced drag coefficient CDi is zero when α = 0.)

As stated earlier, we shall in this chapter restrict attention to the xz-plane
and this means that in order to translate the results here for the induced drag
to the general case (not restricted to the xz-plane) one must substitute7 the
angle of attack α for the total angle of attack αt.

3.4.1 Parasite drag

For a slender missile in subsonic coast the parasite drag for the body is made up
of form drag and friction drag, where the form drag is mostly due to base drag
effects, i.e. flow separation effects around the tail. A boattail can reduce these
effects and therefore it is common to have some form of gradual decrease of the
body diameter near the tail, such as the boattail of the PGMM in Figure 2.2.
The total parasite drag coefficient CD0,body for the body of the missile is thus

CD0,body = CD0,bodybase + CD0,bodyfric, (3.8)

where the subscripts indicate base and friction components.
The base drag coefficient for the body of a slender missile with flat base in

subsonic (non-powered) coast can be predicted by (Fleeman, 2006, p. 32)

CD0,bodybase = 0.12 + 0.13M2, (3.9)

where M = V/Va is the Mach number defined by the airspeed V and the speed
of sound Va. When the missile has a boattail the coefficient CD0,bodybase is
reduced by a certain factor (which essentially translates the base drag to that
of a body with smaller base), for the PGMM the factor used is 0.5.

The body friction coefficient for a missile can be predicted by (Fleeman,
2006, p. 32) (cf. Jerger (1960))

CD0,bodyfric = 0.053
( ℓ

d

)( M

q̄psf ℓft

)0.2
, (3.10)

where ℓ, d is the missile length and diameter (in the same unit), respectively, ℓft

is the missile length in feet and q̄psf is the dynamic pressure ρV 2/2 expressed
in pounds per square foot.

6A third component, the wave drag, is present in CD0 at transonic and supersonic Mach
numbers, but this is not present here since we only consider a subsonic flight envelope for
the PGMM.

7This means that the contributions to the induced drag from the lifting surfaces must be
adjusted to the situation with flight at a nonzero sideslip angle.
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For thin lifting surfaces the form drag part of the parasite drag can be
neglected and the parasite drag CD0,surf consists thus (at subsonic speeds)
only of the friction drag CD0,surffric, i.e.

CD0,surf = CD0,surffric. (3.11)

The friction drag coefficient CD0,surffric for a thin lifting surface (with two
sides wetted) can be predicted by (Fleeman, 2006, p. 49) (cf. Jerger (1960))

CD0,surffric = 2
Ssurf

Sref

0.0133
( M

q̄psfcft

)0.2
, (3.12)

where cft is the (mean aerodynamic) chord of the lifting surface in units of
feet.

3.4.2 Induced drag

The induced drag coefficient CDi,body for the body of a missile can be predicted
by the simple formula (Simon & Blake, 1999)

CDi,body = CL,body sin(α),

(which is a reasonable approximation considering (3.1) and (3.6)) and the pre-
diction is valid for angles of attack α up to about 30◦. For a lifting surface the
induced drag coefficient CDi,surf can be predicted (using slender wing theory)
with the classic formula (Stevens & Lewis, 2003, p. 80)

CDi,surf =
C2

L,surf

πefARsurf

,

where CL,surf is the lift coefficient for the surface in question (computed for
the local angle of attack αloc) and ef is the efficiency factor, which depends on
the geometry. For a rectangular wing the efficiently factor is 0.7, and this is
the value used for all lifting surfaces of the PGMM.

In Figure 3.5 different contributions to the drag coefficient CD of the PGMM
are shown (the friction coefficients for the tail fins and strakes are omitted since
they are very small) and in Figure 3.6 the total drag value of CD is shown.
An example of the resulting drag force curve is given in Figure 3.7.

3.5 Aerodynamic Efficiency

The aerodynamic efficiency of a lifting body or surface is often measured in
terms of the lift-to-drag ratio fL/fD (Pamadi, 2004, p. 71), (Fleeman, 2006, p.
36). When referred to an entire vehicle it is commonly called the glide ratio.
In Figure 3.8 an example of the glide ratio for the PGMM is plotted. The glide
ratio can give an estimate of the glide angle, i.e. flight path angle γ for coast
with constant airspeed V (Stevens & Lewis, 2003, p. 100) (and this angle is
unique, for fixed V , see below). To see this one needs to write down the force
balance equations for constant airspeed glide, and this is most often done in
the vertical plane “wind axes” (Pamadi, 2004, p. 74) since this gives simpler
equations. However, it is useful also to write the balance equations in the
vertical and horizontal directions directly since properties of the solutions are
more apparent then.
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Figure 3.5: Various components of the drag coefficient CD as a function of the
angle of attack α for the PGMM at the airspeed V = 125m/s and altitude
h = 1500m. The angle of attack variable α for the lifting surfaces refers to the
local angle of attack over a surface (the tail fin deflection is set to zero).

3.5.1 Glide angle

If the airspeed is held fixed at some value V , the vertical and horizontal balance
equations for glide can be written on matrix-vector form as

[
cos(−γ) sin(−γ)
sin(−γ) − cos(−γ)

]

︸ ︷︷ ︸

Rγ

[
fL(α)
fD(α)

]

=

[
fW

0

]

, (3.13)

where γ ∈ [−π/2, π/2] per definition. Under the assumption that there exists
an interval [0, α̂] of values of α such that the equation

f2
L(α) + f2

D(α) = f2
W (3.14)
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Figure 3.6: Total drag coefficient CD for the contributions shown in Figure 3.5
(tail fins set to zero deflection).
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Figure 3.7: Drag force fD as a function of angle of attack α for the PGMM at
the airspeed V = 125m/s and altitude h = 1500m (tail fins set for zero static
pitch moment).

has a unique solution α ∈ [0, α̂] the system of equations (3.13) has a unique so-
lution (α, γ) ∈ [0, α̂]× [−π/2, 0]. Such a value of fW can be called admissible.8

The assumption about uniqueness in (3.14) is fulfilled for many aerodynamic
configurations, in particular for the PGMM since both fL, fD are monotoni-
cally increasing functions of α up to stall (which can be used to define α̂), cf.
Figures 3.3 and 3.7.

To see how the solution to (3.13) can be obtained we note that matrix Rγ

on the left in (3.13) is symmetric and involutive (R2
γ = I), so it preserves the

2-norm of a vector. The solution is therefore obtained by choosing (the unique
admissible) α such that (3.14) is fulfilled (so that the two sides of (3.13) have

8Thus, any weight that can be balanced by the magnitude of the aerodynamic forces
gives a glide solution, i.e. a solution (α, γ) to (3.13).
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Figure 3.8: Ratio fL/fD of lift force over drag force (glide ratio) for the PGMM
as a function of angle of attack α for the PGMM at the airspeed V = 125m/s
and altitude h = 1500m (tail fin deflection set for zero pitch moment). The
maximum occurs at approx. α = 9◦ and the value then obtained is approx.
4.25.
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equal magnitude) and then γ so that the first row on the left is positive and
the second row vanishes (i.e. so that the two sides of (3.13) also have equal
direction in R

2). The second row on the left in (3.13) vanishes precisely when

tan(−γ) =
1

fL(α)/fD(α)
(3.15)

and since the right hand side here is nonnegative we must have −γ ∈ [0, π/2],
and then the first row is always positive. Thus, (3.14) and (3.15) together form
a necessary and sufficient condition for a solution (α, γ) ∈ [0, α̂] × [−π/2, 0] to
(3.13), i.e. a glide solution.

The aerodynamic and mass properties are well matched for glide at a given
airspeed V if the solution (α, γ) to (3.13) gives a high value on the aerodynamic
efficiency fL(α)/fD(α) since this gives a small value on the glide angle γ for
this speed. To quantify this we introduce the bound γ̂ for the glide angle γ at
a given airspeed V by

tan(−γ̂) =
1

R̂ae

, (3.16)

where is R̂ae the maximal value (over α) of the glide ratio fL(α)/fD(α) at the
given airspeed. From (3.16) we have −γ̂ ≤ −γ for any γ which is part of a
solution (α, γ) to (3.13). Thus, by comparing the glide angle γ from (3.13) and
γ̂ from (3.16) over airspeeds V we can quantify how well the aerodynamic and
mass properties are matched for glide at a given V , and also determine the
value of V which gives an optimal value for γ. In the ideal case, the bound
−γ̂ ≤ −γ becomes tight for an airspeed that is allowed with respect to the
constraints of the missile,9 and this also occurs for the airspeed where −γ̂ is
minimal.

In Figure 3.9 the glide angle γ is shown for the PGMM model along with
the bound γ̂ and in Figure 3.10 the corresponding angle of attack α for glide
with γ is shown. It is clear that the bound γ̂ in this case becomes tight
for a reasonable airspeed since it is attained at the airspeed V = 128m/s,
which is somewhere in the middle of the range of available airspeeds for coast.
However, the airspeed at which γ = γ̂ is not exactly the same as the airspeed
at which γ̂ becomes minimal (V = 130m/s), so there is some (small) room for
improvement in the matching between aerodynamic and mass properties of the
PGMM model (and an accompanying, small, increase in range).

3.6 Aerodynamic Stability

3.6.1 Static stability

The question of aerodynamic static stability10 is of central importance for
control of a missile and is directly related to e.g. the sizing of control surfaces.

3.6.1.1 Static margin

A key indicator for static stability is the (normalized) static margin ∆sm defined
(for a missile) as

∆sm =
xcp − xcg

d
, (3.17)

9For the PGMM, these can include mission constraints, such as seeker and data processing
constraints or constraints on the travel time.

10With static stability we here (somewhat loosely) mean moment equilibrium properties
for a non rotating airframe.
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Figure 3.9: Glide angle γ for the PGMM model as a function of airspeed V ,
at the altitude h = 1500m (tail fin deflection set for zero pitch moment). The
values shown are obtained by solving the force balance equations (3.13) (upper
curve, red) and calculating the bound γ̂ in (3.16) (lower curve, green). The best
value for the glide angle γ is approx. 13.2◦ obtained at close to V = 128m/s
and the best value for the bound γ̂ is slightly less than 13.2◦ and obtained close
to V = 130m/s. However, for the entire range V = 105–150m/s the glide angle
is at most 14◦.

where xcp, xcg is the location along the body x-axis, measured from the tip,
of the (total) center of pressure and CoM, respectively, and d is the body
diameter. In order to have static stability we must have ∆sm > 0. An example
of the static margin for the PGMM is shown in Figure 3.11. The static margin
is significant for α = 0 but approaches neutral stability for α = 20◦, and the
large variation in static margin means that there will be large variation in the
short period dynamics (see below).
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PGMM model: α for glide angle γ at trim (from force bal.)

Figure 3.10: Angle of attack α for constant airspeed glide as a function of
airspeed V , with the glide angle γ given by the force balance solution in Fig-
ure 3.9. For glide at V = 128m/s an angle of attack of α = 8.8◦ is required
(approximately).
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Figure 3.11: Static margin ∆sm as in (3.17) for the PGMM as a function of
angle of attack α for the airspeed V = 125m/s and altitude h = 1500m.

3.6.1.2 Pitch stiffness

The second key indicator for static stability is the pitch stiffness derivative Cmα

(Stevens & Lewis, 2003, p. 133) defined as

Cmα
=

∂Cm

∂α
,

where Cm is the pitch moment aerodynamic coefficient (Stevens & Lewis, 2003,
p. 92ff), (Blakelock, 1991, p. 32ff) describing moment around the positive y-
axis in the body system B. For later reference we note that for a non rotating
airframe (i.e. zero pitch angular velocity q) the pitch moment coefficient can
be approximated by

Cm = C(0)
m + C(0)

mα
α (3.18)

for tail fins at nominal (zero deflection) position and small angles of attack,

where C
(0)
mα

denotes Cmα
evaluated at α = 0. The term C

(0)
m does not depend

on α and is zero for a vehicle which is symmetric when mirrored in the xy-plane
in B, such as the PGMM. The pitching moment my is obtained from Cm as

my =
1

2
ρV 2SrefcℓCm, (3.19)

where ρ, Sref are the air density and reference area, respectively, (cf. Sec-
tion 3.1, 3.3) and cℓ is some characteristic length of the vehicle or significant
individual lifting surface (such as the mean aerodynamic chord of a wing). The
choice of the reference length cℓ is not crucial (since it is only a scaling of Cm,
and the latter is really defined in terms of my) and here we take

cℓ = d,

the diameter of the missile. By symmetry of the missile we assume that the
force fx along the body x-axis does not produce any pitch moment and thus
only the force fz acting along the body z-axis contributes to the pitching mo-
ment.

In case not only the static margin but also the overall center of pressure
point for the missile is known, such as for the PGMM model where it is obtained
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Figure 3.12: Pitch moment (static) coefficient Cm for the PGMM as a function
of angle of attack α (tail fins set for zero deflection).

from the aerodynamic component buildup, the value of the pitch moment co-
efficient Cm can be conveniently computed from CN using a simple formula.
Indeed, we have 11

1

2
ρV 2SrefdCm = my = −fN (xcp − xcg) = −1

2
ρV 2SrefCN (xcp − xcg).

and therefore

Cm = −CN∆sm. (3.20)

The pitch moment coefficient Cm for the PGMM is shown in Figure 3.12
and the corresponding pitch stiffness derivative Cmα

is shown in Figure 3.13.
Since the static margin ∆sm is positive for α ≤ 20◦ we know that Cm ≤ 0 in
this region, as can be seen from Figure 3.12. Moreover, Cmα

≤ 0 for angles of
attack α ≤ 20◦, as can be seen from Figure 3.13, which means that if we add

11Recall that we have defined xcp, xcg as (positive) distances from the nose tip in accor-
dance with standard missile practice, not as coordinates along the body x-axis.
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Figure 3.13: Pitch stiffness derivative (static) Cmα
for the PGMM as a function

of angle of attack α (tail fins set for zero deflection).
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Figure 3.14: Pitch moment (static) my for the PGMM as a function of angle of
attack α (tail fins at zero deflection) for the airspeed V = 125m/s and altitude
h = 1500m.

a trim moment (via tail fin deflection) to create aerodynamic (static) moment
equilibrium for any of these values of α, it will be a (statically) stable point.

In Figure 3.14 an example of the pitching moment for the PGMM is shown
(with tail fins at zero deflection). This is the amount of pitch moment that has
to be counteracted by tail fin deflection in order to produce zero aerodynamic
(static) pitch moment at a given value of the angle of attack.

3.6.2 Static control authority

A requirement for a good matching between aerodynamic design and mass
distribution properties is that sufficient control authority exist to produce the
necessary trim moments and still have some margin for control (before stall
occurs on the control surfaces, due to local angle of attack). As a rough measure
of this one can take the ratio (Fleeman, 2006, p. 73)

Rca =

∣
∣
∣
∣

α

δtrim

∣
∣
∣
∣
,

where δtrim is the control surface deflection angle required to produce zero
pitch moment for the angle of attack value α. The value of Rca should be
larger than 1 for good authority, since most control surfaces have deflection
limits in the order of ±30◦ and angles of attack up to α = 20◦ may need to
be trimmed (for zero static pitch moment). This is the case for the PGMM,
for example, and the control authority Rca is larger than 1 for the PGMM as
can be seen from Figure 3.15. The value for Rca for the PGMM is about 1 for
small angles of attack and grows to over 2 for α approaching 15◦. The maximal
control surface deflection needed for α ≤ 15◦ is just approximately −6◦ which
gives a fair amount of room for motion required by the controller (to synthesize
the desired dynamics in pitch), cf. Section 4.5.3.
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Figure 3.15: Tail fin deflection angle δ (positive for trailing edge down) required
for zero (static) aerodynamic pitch moment as a function of angle of attack α
for the airspeed V = 125m/s and altitude h = 1500m. A deflection of approx.
δ = −5.2◦ is required for pitch moment equilibrium at α = 9◦.

3.6.3 Dynamic stability

The (open loop) dynamic stability properties12 of the missile determine how
much control authority the control system must have to be able to realize the
desired synthesized (closed loop) dynamics.

3.6.3.1 Pitch damping

The key indicator for dynamic stability is the pitch damping derivative Cmq

(Stevens & Lewis, 2003, pp. 133-134) defined as13

Cmq
=

∂Cm

∂q
,

where q is the pitch rate, i.e. the angular velocity around the body y-axis. For
a rotating airframe the expression for pitch moment coefficient Cm in (3.18)
can be straightforwardly generalized and Cm can thus be approximated by

Cm = C(0)
m + C(0)

mα
α + C(0)

mq
q,

for small angles of attack α and pitch rates q, where C
(0)
m does not depend

on α, q and C
(0)
mq

denotes Cmq
evaluated14 for α = q = 0. There are also

instationary effects related to α̇ that contribute to Cm, but these are generally
smaller and will only be partially taken into account here.

Both the body and tail section contribute to Cmq
, and for aircraft the tail

contribution is often the largest (Stevens & Lewis, 2003, p. 133). This is true
also for slender projectile configurations with tail fins, such as an ordinary
mortar round, there the body contribution can be in the order of 15% of the
total (Pierens, 1994). For the PGMM however, it turns out that the tail gives
the dominant contribution only for small angles of attack.

12With dynamic stability we here mean (somewhat loosely) pitch stability properties for
a (possibly) rotating airframe.

13In the literature there are two forms of this derivative; dimensional and non dimensional
(normalized) form. We use here the dimensional form. (For the non dimensional form, as it
is defined in aircraft contexts, see e.g. (Stevens & Lewis, 2003, p. 76, 130). In missile contexts
the reference length used is often the missile diameter d, cf. (Blakelock, 1991, p. 235ff).)

14Strictly speaking we must here also interpret C
(0)
mα

as being evaluated for q = 0.
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3.6.3.2 Body

A simple prediction formula for the body related pitch damping effects was
derived by A.E. Bryson (1953) based on a variant of slender body theory, and
independently also by Sacks (1954). The formula of Bryson and Sacks reads
(on dimensional form15)

Cmq
+ Cmα̇

= −d

u

(
ℓ − xcg

d

)2
∂CN,body

∂α
, (3.21)

where CN,body is the contribution to the normal force coefficient CN from the
body, u is the component of the velocity along the body x-axis and, as before,
ℓ is the length of the missile, xcg is the distance from the tip to the center
of mass and d is the missile diameter. The term Cmα̇

on the left of (3.21) is
the pitch damping derivative due to α̇ but this term is usually considerably
smaller than16 Cmq

(Weinacht & Danberg, 2005, 2004). Therefore, we shall
assume that it can be neglected without sacrificing too much accuracy17 and
we predict Cmq

with the formula

Cmq
= − (ℓ − xcg)

2

V d

∂CN,body

∂α
, (3.22)

where the partial derivative on the right is evaluated for the value of the an-
gle of attack α which corresponds to trim (static aerodynamic pitch moment
equilibrium).

3.6.3.3 Tail

The main mechanism18 underlying the contribution to Cmq
from the tail is

the change in angle of attack over the tail fins as the airframe rotates in the
airstream and the resulting change in lift contribution from the tail (Stevens
& Lewis, 2003, pp. 133-134), (Pamadi, 2004, p. 397), (Blakelock, 1991, p. 237).
When we refer to the tail we shall throughout this section mean the combination
of tail fins and strakes, since for the PGMM in this context each tail fin and
supporting strake can be regarded as one lifting surface.

If we assume that the tail has center of pressure along the body axis of the
missile, and aft of the CoM, the contribution my,tail from the tail to the pitch
moment my can be written

my,tail = −fN,tailℓtail = −1

2
ρV 2Sref ℓtailCN,tail, (3.23)

where ℓtail is the distance from the tail center of pressure to the center of mass
and CN,tail is the contribution from the tail to the normal force coefficient.

To derive an expression for the contribution to Cmq
from the tail we consider

only small angles of attack α and assume, as an approximation, that CN,tail is

15Note that Bryson and Sacks use the factor V/d to put the pitch damping coefficient on
non-dimensional form, as is often done in missile and projectile contexts.

16The figures in (Weinacht & Danberg, 2005, 2004) show the distribution of the contribu-
tion to the damping coefficients Cmq

, Cmα̇
over the body length for a slender projectile at

various Mach numbers, computed using both computational fluid dynamics calculations and
relations of Sacks (including (3.21)) with good agreement between the two.

17In fact, as shown in Sect. 4.4.2.1, inserting a value for Cmq
which in fact represents the

sum Cmq
+ Cmα̇

into the simplified short period dynamics relations we shall employ (which
do not account for instationary effects) is actually likely to produce a more accurate result.

18There is also an effect due to downwash from the wings hitting the tail which gives rise
to a term Cmα̇

, but since this effect usually is smaller than Cmq
(Stevens & Lewis, 2003, p.

132), (Blakelock, 1991, pp. 236-237) we shall ignore it here.
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linear (affine) in the local angle of attack αloc, viz.

CN,tail = C
(0)
N,tail +

∂CN,tail

∂αloc

αloc,

where C
(0)
N,tail does not depend on αloc and the derivative should be evaluated

for the value of αloc which corresponds to the reference point (angle of attack
for body) in question. An instantaneous change in pitch rate ∆q produces a
corresponding change ∆αloc in the local angle of attack which depends on both
α and αloc. In the simplest case α = αloc = 0 the change ∆αloc is given by

∆αloc = arctan
(ℓtail∆q

V

)

and this gives a corresponding change ∆CN,tail in the value of the normal force
coefficient for the tail which is approximately

∆CN,tail =
∂CN,tail

∂αloc

∆αloc =
∂CN,tail

∂αloc

ℓtail∆q

V
,

for small values of the ratio ℓtail∆q/V . From (3.23) it follows that the resulting
change ∆my in pitch moment is

∆my = −1

2
ρV 2Sref ℓtail∆CN,tail = −1

2
ρV Sref ℓ2tail∆q

∂CN,tail

∂αloc

,

so that approximately

∆my

∆q
= −1

2
ρV Sref ℓ2tail

∂CN,tail

∂αloc

, (3.24)

for small values of α, αloc and ℓtail∆q/V , where the partial derivative on the
right is evaluated for αloc = 0. This should be compared with the definition of
the linear approximation of the effect of a change in q which is

∂my

∂q
=

1

2
ρV 2SrefdCmq

. (3.25)

Thus, from (3.24) and (3.25) we can conclude that approximately19

Cmq
= −ℓ2tail

V d

∂CN,tail

∂αloc

.

The value of the partial derivative on the right is essentially constant for the
tail fins and strakes for a large region of values of αloc, cf. Figure 3.1, and
therefore we use the value 1.9 for the fins and the value 0.5 for the strakes
(both values estimated from the figure) throughout. The result for body as
well as tail, and the total, is shown in Figure 3.16. It can be noted that the
large nonlinearity of the body normal force coefficient, cf. Figure 3.1, manifests
itself in the contribution from the body to Cmq

and that while the tail contri-
bution dominates for angles of attack up to about 2.5◦, the body contribution
dominates thereafter.

19When comparing this to expressions in the literature, in particular ones involving the
so called horizontal tail volume ratio (Stevens & Lewis, 2003, p. 134), one should bear in
mind that we have used the missile diameter d as reference length in (3.19) and have already
included a factor Ssurf /Sref in the definition of CN,tail, cf. (3.3). Moreover, we consider
only small values of the angle of attack and we employ the dimensional form on the pitch
damping derivative.
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4 Flight Mechanics
We assume that the missile can be regarded as a rigid body with constant mass
distribution, and that the body fixed Cartesian coordinate system B has the
origin in the center of mass and that the Earth fixed Cartesian system E is an
inertial frame. Moreover, we consider non-powered flight; adding thrust to the
model is straightforward.

4.1 Rigid Body Mechanics

The motion of CoM and the motion around CoM can be described by Newton-
Euler’s equations, which when expressed in B takes the form

v̇ =
1

m
f − ω × v, (4.1)

ω̇ = J−1(m − ω × Jω), (4.2)

where v = [u, v, w]T is the velocity, ω = [p, q, r]T is the angular velocity,
f = [fx, fy, fz]

T is the force, m is the moment, m is the mass and J is the
moment of inertia matrix which we assume1 has the form

J =





Jxx 0 Jxz

0 Jyy 0
Jxz 0 Jzz



 . (4.3)

The force vector f is made up of aerodynamic forces and gravity, and therefore

we divide the forces fx, fy, fz into aerodynamic components f
(a)
x , f

(a)
y , f

(a)
z and

gravity induced components f
(g)
x , f

(g)
y , f

(g)
z , respectively, so that2

fx = f
(a)
x + f

(g)
x ,

fy = f
(a)
y + f

(g)
y ,

fz = f
(a)
z + f

(g)
z .

(4.4)

The moment vector m consists of aerodynamic moments. Aerodynamic mis-
siles are normally controlled using control surfaces forward (canards) or aft
(tail fins), and in both these cases deflection of a control surface gives a con-
siderably larger relative change in m than in f . It is therefore reasonable,
as an approximation, to neglect the force contributions from the control sur-
faces. Further, it is convenient to partition the moment m as m = m(a) + u,
where u = [ux, uy, uz]

T is the moment caused by the control surface deflec-
tions (from their nominal position) and represents the control variable, and

m(a) = [m
(a)
x ,m

(a)
y ,m

(a)
z ]T is the remaining aerodynamic moment (which is

mainly due to the orientation of the velocity vector v in B and on ω, for a
given Mach number).

1If the mass distribution is symmetric when mirrored in the xz-plane we have Jxy =
Jyx = Jyz = Jzy = 0, which is a common assumption common in flight mechanics when the
coordinate axes in B have the standard orientation (Stevens & Lewis, 2003). If moreover the
mass distribution is symmetric when mirrored in the xy-plane, which can often be assumed
for (essentially) cylinder symmetric missiles, we get Jxz = Jzx = 0 and the coordinate axes
in B form a principal axes system for the inertia matrix.

2Thus, we change notation somewhat compared to the previous chapter where we used
the symbols fx, fy , fz to denote aerodynamic components.
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To get the complete motion in E it is necessary to complement (4.1), (4.2)
with kinematic and dynamic relations which translate the motion to E, e.g.

V = R(q)v, (4.5)

q̇ =
1

2
q ◦ (0,ω), (4.6)

where V is the velocity for the CoM expressed in E and R(q) is the rotation
matrix which relates B and E. The rotation matrix R(q) is here expressed
as a function of an orientation quaternion q (the symbol ◦ denotes quaternion
multiplication and (0,ω) is the purely imaginary quaternion obtained from the
vector ω). In what follows we will focus on different ways to (simplify and)
represent the Newton-Euler equations (4.1), (4.2).

Eventually we shall also need Newton’s second law of motion for the CoM
in E which reads

V̇ =
1

m
F , (4.7)

where the total force F in E is related to its counterpart f in B as

F = R(q)f . (4.8)

4.2 Partitioning the Dynamics

When working with detailed models of the missile dynamics (full 6-DOF mod-
els) the motion of the missile is normally calculated by describing f and m in
B, and integrating (4.1), (4.2) together with (4.5), (4.6) to translate the mo-
tion to E, as outlined above. However, when working with simplified models
of the type we shall consider here there are special circumstances which make
another partitioning of the calculations preferable.

4.2.1 Aerodynamic coordinates

In aerodynamic contexts it is common to use other coordinates than the Carte-
sian primarily defined in B, in particular it is common to employ angle of at-
tack3 α, sideslip angle β and airspeed (or total velocity) V . To make certain
relations simpler below we shall here use the definition of β which is common
in missile contexts4. We therefore introduce α, β and V as5

α = arctan(w/u),
β = arctan(v/u),

V =
√

u2 + v2 + w2,
(4.9)

where α, β ∈ (−π/2, π/2), which gives us the inverse relations

u =
V

D(α, β)
, (4.10)

v =
V tan(β)

D(α, β)
, (4.11)

w =
V tan(α)

D(α, β)
, (4.12)

3In this chapter, unlike the previous, we shall consider more than one symmetry plane
of the missile at the same time and therefore we need at least two aerodynamic angles.

4This gives a symmetric form of “semi”-spherical coordinates (in aircraft contexts β is
usually defined as β = arcsin(v/V )).

5Since we shall not consider missiles that fly “backwards” or “sideways” there is no
practical restriction in making the domain of definition for α, β as “small” as we do.
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where D(α, β) is defined as

D(α, β) =
√

1 + tan(α)2 + tan(β)2.

With these definitions the force equation (4.1) can be expressed in the form of
the following three equations (cf. (Johansson, 1998, p. 14))

α̇ =
Fα

V
− p cos2(α) tan(β) − r sin(α) cos(α) tan(β) + q, (4.13)

β̇ =
Fβ

V
+ p cos2(β) tan(α) + q sin(β) cos(β) tan(α) − r, (4.14)

V̇ = FV , (4.15)

where

Fα =
D(α, β)

m

(
fz cos2(α) − fx sin(α) cos(α)

)
,

Fβ =
D(α, β)

m

(
fy cos2(β) − fx sin(β) cos(β)

)
,

FV =
1

mD(α, β)
(fx + fy tan(β) + fz tan(α)).

4.2.2 Geometric interpretation

To gain some insight into the geometric meaning of the equations (4.13)–(4.15)
it is worthwhile to write these on matrix-vector form as





α̇

β̇

V̇



 = DG





fx

fy

fz



 + H





p
q
r



 , (4.16)

where

D =






D(α,β)
mV

0 0

0 D(α,β)
mV

0
0 0 1

D(α,β)




 , G =





− sin(α) cos(α) 0 cos2(α)
− sin(β) cos(β) cos2(β) 0

1 tan(β) tan(α)



 ,

and

H =





− cos2(α) tan(β) 1 − sin(α) cos(α) tan(β)
cos2(β) tan(α) sin(β) cos(β) tan(α) −1

0 0 0



 .

The last row G3,1:3 in the matrix G spans the same space as the vector
v, i.e. [G3,1:3] = [v], and this row is moreover orthogonal to the two first
rows G1,1:3, G2,1:3 (which, in their turn, are linearly independent) so that
[{G1,1:3, G2,1:3}] = [v]⊥. This explains how the first term on the right in
(4.16) “distributes” f = [fx, fy, fz]

T over [v] and [v]⊥, and in particular we
see that

V̇ = FV =
1

mV
fT v =

1

m

fT v

‖v‖ =
1

m
eT

v f , (4.17)

where ev is a unit vector in v’s direction. Further, we see that the last row
G3,1:3 in the matrix G is orthogonal to the first two rows H1,1:3,H2,1:3 in the
matrix H, so that also [{H1,1:3,H2,1:3}] = [v]⊥. Thus, the vector ω = [p, q, r]T

is “distributed” in a similar way over [v]⊥ by the second term on the right in
(4.16).
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It is moreover clear that there are symmetries in (4.13)–(4.15) which can
be used to obtain simplified dynamical models, at least if one as customary in
missile control contexts neglect the effect of gravity so that fx, fy, fz is only
determined by aerodynamics (which can be motivated for an agile maneuvering
missile).

4.3 Simplified Equations

To obtain simplifications to the system (4.13)–(4.15) and (4.2) we shall start by
considering the latter equation and investigate what simplifying assumptions
are reasonable to make, in particular with regard to the moment of inertia
matrix J in (4.3) and the roll rate p in the moment equation (4.2).

4.3.1 Simplified moment equation

For a slender, essentially cylinder symmetric missile one can assume that
|Jxz| < Jxx (|Jxz| is generally much smaller than Jxx; for an exactly cylin-
der symmetric missile Jxz is zero) and Jyy = Jzz, where Jxx is considerably
smaller than Jyy (often Jxx is in the range Jyy/100 to Jyy/50).

The rotation of the missile around the body x-axis is expressed by p and
the dynamic equation for p can be extracted form (4.2) as

ṗ =
Jzz(qrJyy − q(pJxz + rJzz))

JxxJzz − J2
xz

+
Jxz(pqJyy − q(rJxz + pJxx))

JxxJzz − J2
xz

+
Jzz

JxxJzz − J2
xz

(m(a)
x + ux) − Jxz

JxxJzz − J2
xz

(m(a)
z + uz).

If we introduce the approximation Jxz = 0 in this equation together with the
assumption Jyy = Jzz the coupling terms with components from J vanish and
we get the following simple dynamics

ṗ =
1

Jxx

(m(a)
x + ux). (4.18)

These dynamics are very straightforward to stabilize with a state feedback
controller, e.g. of the simple PID-type, and for this reason skid-to-turn (STT)
operated missiles are often assumed to be roll stabilized (p = 0) in studies
of missile dynamics. Using the same approximations and assumptions (Jxz =
0, Jyy = Jzz) we get for the q, r-dynamics

q̇ =
pr(Jyy − Jxx)

Jyy

+
1

Jyy

(m(a)
y + uy), (4.19)

ṙ =
qp(Jxx − Jyy)

Jyy

+
1

Jyy

(m(a)
z + uz). (4.20)

Due to (4.18), and an accompanying reasonable assumption of the existence of
a separate controller for the roll channel, it is motivated to make the approxi-
mation p = 0, whereupon also (4.19), (4.20) simplify to

q̇ =
1

Jyy

(m(a)
y + uy), (4.21)

ṙ =
1

Jyy

(m(a)
z + uz). (4.22)

Thus, this simple form for the moment equation is obtained when Jxz =
0, Jyy = Jzz and p = 0.
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Before we proceed we note that the simplified moment equation derived
here should not be interpreted to mean that we can later on fix p at 0 in the
overall dynamic equations. It merely means that we model the roll rate p as
being so slow that it doesn’t affect the rigid body dynamics6 in B, i.e. the roll
rate p need not be taken into account for the rigid body dynamics (over shorter
time scales) when attention is restricted to motion in the the body system B.

4.3.2 Simplified force equation

If we use the approximation p = 0 in (4.13), (4.14) we obtain

α̇ =
Fα

V
− r sin(α) cos(α) tan(β) + q, (4.23)

β̇ =
Fβ

V
+ q sin(β) cos(β) tan(α) − r, (4.24)

with Fα, Fβ given by the same expressions as before, i.e.

Fα =
D(α, β)

m

(
fz cos2(α) − fx sin(α) cos(α)

)
, (4.25)

Fβ =
D(α, β)

m

(
fy cos2(β) − fx sin(β) cos(β)

)
. (4.26)

With the definitions in (4.4) we can also divide Fα, Fβ correspondingly as

Fα = F
(a)
α + F

(g)
α ,

Fβ = F
(a)
β + F

(g)
β ,

where

F (a)
α =

D(α, β)

m

(
f (a)

z cos2(α) − f (a)
x sin(α) cos(α)

)
, (4.27)

F
(a)
β =

D(α, β)

m

(
f (a)

y cos2(β) − f (a)
x sin(β) cos(β)

)
, (4.28)

and

F (g)
α =

D(α, β)

m

(
f (g)

z cos2(α) − f (g)
x sin(α) cos(α)

)
, (4.29)

F
(g)
β =

D(α, β)

m

(
f (g)

y cos2(β) − f (g)
x sin(β) cos(β)

)
. (4.30)

The expressions (4.27), (4.28) for F
(a)
α , F

(a)
β can be simplified somewhat if we

note that (4.13)–(4.15) show that fx mainly has effect on the dynamics for V .
Moreover, for a (significantly) maneuvering missile (in non-powered flight) the

magnitude of |f (a)
x | is generally much smaller than

√

(f
(a)
y )2 + (f

(a)
z )2 and it is

then motivated to introduce the approximation f
(a)
x = 0 in (4.27), (4.28).

4.3.3 Simplified (decoupled) nonlinear model

We have seen that it is reasonable to assume that Jxz = 0, Jyy = Jzz, p = 0 and
under this assumption the missile dynamics are given by (4.21)–(4.24), with

6Referring back to an earlier footnote, we know that insisting that p = 0 is a non-
holonomic restriction so that the dimension of the base manifold, here rotation angles, can
actually be reduced. However, in order to be able to drop one of the coordinates on the base
manifold one needs to make a coordinate change first.
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Fα, Fβ given by (4.25), (4.26). For a (significantly) maneuvering missile it can

moreover be reasonable to use the approximation f
(a)
x = 0, as mentioned at

the end of the previous section.
Additional simplifications can be obtained if one notes that the aerodynamic

force f
(a)
z often mainly7 depends on α (more than on q and β for fix V , if the

arguments u, v, w in f
(a)
z are expressed in terms of α, β, V ) and in a similar

way f
(a)
y depends mainly on β (Stevens & Lewis, 2003, p. 76). The moment

m
(a)
y depends mainly on α and q, and m

(a)
z depends mainly on β and r. This

makes it possible to assume that the coupling between the α-dynamics and

β-dynamics in (4.21)–(4.24) through f
(a)
y , f

(a)
z is generally weak. If we use this

assumption together with the assumption that α, β, q, r are small and replace
all geometric nonlinearities in (4.23), (4.24), (4.27), (4.28) with their first order
approximations in α, β (around α, β = 0) we obtain a model of the form

α̇ =
Z(α)

V
+ q +

F
(g)
α

V
, (4.31)

β̇ =
Y (β)

V
− r +

F
(g)
β

V
, (4.32)

q̇ = M(α, q) + U (y), (4.33)

ṙ = N(β, r) + U (z), (4.34)

where we have introduced the normalized forces8 and moments9 according to

Z =
f

(a)
z

m
, Y =

f
(a)
y

m
, M =

m
(a)
y

Jyy

, N =
m

(a)
z

Jyy

,

U (y) =
uy

Jyy

, U (z) =
uz

Jyy

. (4.35)

In (4.31)–(4.34) there is no coupling between the pitch dynamics in (α, q) and
yaw dynamics in (β, r), and the two subsystems are moreover of the same form,
after a simple change of variable in the latter (e.g. by (z, r) → −(z, r) in (4.32),
(4.34)). For this reason we will henceforth consider only the pitch plane part

(4.31), (4.33) of the simplified rigid body dynamics (4.31)–(4.34).
For later reference we note that the assumption that α, β, q, r are small

makes the expressions for the aerodynamic forces F
(a)
α , F

(a)
β in B simple while

the gravity induced components F
(g)
α , F

(g)
β in B become complicated (compared

to their counterparts in E). In the Earth fixed frame E the opposite holds,
and this observation can be useful in implementations.

7The q-dependence in f
(a)
z is mainly due to the fact a rotation around the y-axis makes

the tail fins move relative to the surrounding air which produces a force. This force is however
weak for the missiles with small tail fins and we will therefore neglect it here. In a similar
way a rotation around the y-axis also produces a moment around this axis, as described in
Sect. 3.6.3.1, and also this moment is generally small but we shall still take it into account

in m
(a)
y . Analogous dependencies exist in f

(a)
y and m

(a)
z .

8Note that Y, Z, M and N all have implicit dependence on V , cf. (3.4).
9To see how the normalized pitch moment in (4.33) can be separated into two parts M

and U(y), where U(y) is a control variable (and can be assigned “arbitrary” values), let the
(total) normalized pitch moment be M(α, q, δ) where δ is the control fin deflection. Locally
around a reference value δr we can write M(α, q, δ) = M(α, q, δr) + M̃(α, q, δr, δ)(δ − δr),
where M̃(α, q, δr, δ) has a finite limit as δ → δr, for any α, q. For any region D of values
α, q and interval I of values δ such that I ∋ δ 7→ M̃(α, q, δr, δ)(δ − δr) is monotone, for fixed
(α, q) ∈ D, we can define the normalized control moment as U(y) = M̃(α, q, δr, δ)(δ − δr).
Physically, M̃(α, q, δr, δ)(δ − δr) is the “differential” moment contribution by the control
surfaces. Analogous remarks apply for the yaw plane.
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4.3.4 Linearized model of the pitch plane dynamics

In order to arrive at (4.31)–(4.34) we linearized the geometric nonlinearities
(i.e. used small angle assumptions) and used some assumptions on the aero-
dynamics. Of course, the decoupling of the pitch and yaw dynamics which is
obtained in (4.31)–(4.34) is also obtained by direct (full) linearization around
α, β = 0 of the equations (4.21)–(4.26) if the assumptions Jxz = 0, Jyy =

Jzz, p = 0, f
(a)
x = 0 are used together with the assumptions that f

(a)
z depends

only on α and that f
(a)
y depends only on β (since the middle term on the right

in (4.23) and (4.24) vanishes in the linearization.) Alternatively, the equations

(4.31)–(4.34) can be linearized with the same result (if F
(g)
α , F

(g)
β are set to

zero).
For later use we need to write down how the simplified rigid body equations

in the form they appear after linearization around some point α0, q0 and for the
reasons given at the end of the preceding section we shall here restrict ourselves
to consider only the pitch plane dynamics (4.31), (4.33). The linearization is
assumed to be performed around a point α = α0, q = q0 where α0, q0 are small
(so that (4.31), (4.33) provide a good approximation of the dynamics in the
pitch plane) and slowly varying10 (so that α̇0 = 0, q̇0 = 0). If we introduce the
deviations

α̃ = α − α0, q̃ = q − q0, Ũ = U (y) − U
(y)
0 , (4.36)

then linearization around α0, q0 of the right hand sides in (4.31), (4.33) gives

˙̃α =
Zα(α0)

V
α̃ + q̃ + Rα(α0, q0), (4.37)

˙̃q = Mα(α0, q0)α̃ + Mq(α0, q0)q̃ + Ũ + Rq(α0, q0), (4.38)

where

Zα =
dZ

dα
, Mα =

∂M

∂α
, Mq =

∂M

∂q
, (4.39)

and

Rα(α0, q0) =
Z(α0)

V
+ q0 +

F
(g)
α

V
, Rq(α0, q0) = M(α0, q0) + U

(y)
0 . (4.40)

It is tempting here to try to chose the reference point (α0, q0) so that the
remainder terms Rα(α0, q0), Rq(α0, q0) in (4.40) become zero, but as we shall
see this is not always the best choice. We also point out that the gravity

induced term F
(g)
α depends on the orientation in E of the missile, a fact which

must be kept in mind in the following.

4.3.4.1 The case where (α0, q0) is an equilibrium point

The reference point (α0, q0) is an equilibrium point to (4.31), (4.33) for Ũ = 0 if
and only if the two remainder terms Rα(α0, q0), Rq(α0, q0) in (4.40) vanish. For

a given α0, the two remainder terms in (4.40) vanish precisely when q0 = q
(g)
0

and U
(y)
0 = U

(y,g)
0 where

q
(g)
0 = −Z(α0)

V
− F

(g)
α

V
, (4.41)

10If α0, q0 cannot be assumed to be slowly varying then α̇0, q̇0 must be part of Rα(α0, q0)

and Rq(α0, q0), respectively, and the substitutions F
(g)
α → F

(g)
α + α̇0 and U

(y)
0 → U

(y)
0 + q̇0

must be made in all of what follows.
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and

U
(y,g)
0 = −M(α0, q

(g)
0 ). (4.42)

This choice of reference point is often not the best for a maneuvering missile,
as we shall see next.

4.3.4.2 The effect of gravity: I

From (4.41) and (4.42) we see that if we linearize around an equilibrium point

(α0, q
(g)
0 ) for (4.31), (4.33) then q

(g)
0 and U

(y,g)
0 will always depend on the

gravity force term F
(g)
α /V and we cannot immediately “extract” the effect of

gravity. (In particular, the reference value q
(g)
0 of the pitch rate which corre-

sponds to a fixed α0 will then depend on the orientation in E of the missile.)
If, however, we chose to linearize around a reference point (α0, q0) which is not
an equilibrium point for (4.31), (4.33), in particular a reference point which
gives equilibrium in the absence of gravity (“aerodynamic equilibrium”), then
such an extraction is straightforward (and the reference values will not depend
on the orientation of the missile).

For a missile in (essentially) “nominal” position, i.e. with its coordinate axes
in B (essentially) aligned with those in E (so that in particular, both z-axes
“point downwards”) the second term on the right in (4.41) has sign given by

F
(g)
α /V > 0. Thus, if the missile is symmetric with respect to mirroring in the

xy-plane in B and α0 ≥ 0 then the first term on the right in (4.41) has sign

given by Z(α0)/V ≤ 0 and it is possible to have q
(g)
0 = 0 for α0 ≥ 0, which

is necessary for glide flight. If, however, we linearize around a reference point
where we disregard gravity the reference value q0 will not be zero unless α0 is
zero (at least for a missile which is symmetric with respect to the xy-plane).

4.3.4.3 The case where (α0, q0) gives aerodynamic equilibrium

A convenient choice for linearization point is to select α0 and then set q0 = q
(a)
0

with q
(a)
0 given by

q
(a)
0 = −Z(α0)

V
, (4.43)

which is the value of q0 which would have given equilibrium in (4.31) if the
missile were flying in a gravity free sea of air, i.e. the value of q0 which would

yield aerodynamic force equilibrium. In this case we get Rα(α0, q
(a)
0 ) = F

(g)
α /V .

We can still chose U
(y)
0 so that Rq(α0, q0) = 0, i.e. we can chose U

(y)
0 = U

(y,a)
0

where

U
(y,a)
0 = −M(α0, q

(a)
0 ), (4.44)

which is the value for the normalized tail fin trim moment U
(y)
0 which gives

total moment 0 in (4.33) for (α0, q
(a)
0 ), i.e. aerodynamic moment equilibrium.

We are going to refer to a reference point (α0, q
(a)
0 ) of this type as aerodynamic

equilibrium.
It natural to regard α0 as an independent parameter and q0 as a dependent

parameter11 and with α0, q0 = q
(a)
0 (α0), U

(y)
0 = U

(y,a)
0 given by (4.43), (4.44)

11Since (4.43) represents a one-to-one correspondence between α0 and q0 for a large region
of values of α0 (up to stall) we could equally well have started with q0 as an independent
parameter and then let α0 be a dependent parameter.
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the system (4.37), (4.38) assumes the form

˙̃α =
Zα(α0)

V
α̃ + q̃ +

F
(g)
α

V
, (4.45)

˙̃q = Mα(α0, q
(a)
0 (α0))α̃ + Mq(α0, q

(a)
0 (α0))q̃ + Ũ . (4.46)

Here, gravity becomes an explicit “disturbance” in the force equation (4.45).
If the system (4.45), (4.46) is written on matrix-vector form as

[
˙̃α
˙̃q

]

=

[
Zα(α0)/V 1

Mα(α0, q
(a)
0 (α0)) Mq(α0, q

(a)
0 (α0))

] [
α̃
q̃

]

+

[

F
(g)
α /V

Ũ

]

(4.47)

it is clear that the gravity term F
(g)
α /V can simply be regarded as part of the

driving signal to the system.
The gravity term in (4.47) can be transformed (by “backstepping”12) to an

equivalent term acting alongside with Ũ by introducing the new state variable
ξ as

ξ = q̃ + F (g)
α /V,

which gives the equivalent system

[
˙̃α

ξ̇

]

=

[
Zα(α0)/V 1

Mα(α0, q
(a)
0 (α0)) Mq(α0, q

(a)
0 (α0))

] [
α̃
ξ

]

+

[
0
1

]

u, (4.48)

where

u = Ũ + U (g)(α0)

and

U (g)(α0) = −Mq(α0)
F

(g)
α

V
+

d

dt

F
(g)
α

V
.

The two systems (4.47) and (4.48) has the same system poles but different
transfer functions from input to α̃ since the definition of input signals differ (in
particular, one is two-dimensional and the other is one-dimensional).

4.4 Pitch Plane Dynamics

From now on we shall mostly consider the case where the reference point q0

is given by q
(a)
0 in (4.43) and it will be convenient to introduce the short form

notation

Mα(α0) = Mα(α0, q
(a)
0 (α0)),

Mq(α0) = Mq(α0, q
(a)
0 (α0)),

(4.49)

where the right hand sides are given by (4.39). These short forms are moreover
motivated by the fact that the pitch stiffness and pitch damping derivatives

C
(0)
mα

and Cmq
, respectively, are often modeled without dependence on the pitch

rate q. In the model of the PGMM aerodynamics developed in Chapter 3, for
instance, this is the case.

12The name backstepping is very natural given how the mathematical operation can be
illustrated in block diagram form, see (Khalil, 2002, p. 591).
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4.4.1 The short period approximation

The equations for the linearized pitch plane dynamics (4.45), (4.46) around an

aerodynamic equilibrium point (α0, q
(a)
0 ) can be written on scalar (SISO) form

in terms of the variable α̃ by eliminating q̃ as

¨̃α =
Zα(α0)

V
˙̃α − Zα(α0)V̇

V 2
α̃ + Mα(α0)α̃ + Mq(α0)q̃ + Ũ +

d

dt

F
(g)
α

V

=
Zα(α0)

V
˙̃α − Zα(α0)V̇

V 2
α̃ + Mα(α0)α̃ + Mq(α0)( ˙̃α − Zα(α0)

V
α̃ − F

(g)
α

V
)

+Ũ +
d

dt

F
(g)
α

V

=
(Zα(α0)

V
+ Mq(α0)

)
˙̃α +

(
Mα(α0) − Mq(α0)

Zα(α0)

V
− Zα(α0)V̇

V 2

)
α̃

+Ũ − Mq(α0)
F

(g)
α

V
+

d

dt

F
(g)
α

V
. (4.50)

The second order linear dynamics described by the differential equation (4.50)
is often referred to (for V̇ = 0) as the short period approximation (Ananthkr-
ishnan & Unnikrishnan, 2001) of the pitch plane dynamics.

Using the approximation V̇ = 0 the short period approximation (4.50) can
be parameterized as

¨̃α + 2ζsp(α0)ωsp(α0) ˙̃α + ω2
sp(α0)α̃ = Ũ + U (g)(α0), (4.51)

where

Ũ = U (y) − U
(y,a)
0 , U (g)(α0) = −Mq(α0)

F
(g)
α

V
+

Ḟ
(g)
α

V
, (4.52)

and the natural angular frequency ωsp(α0) and damping ζsp(α0), respectively,
are given by

ω2
sp(α0) = −(Mα(α0) − Mq(α0)(Zα(α0)/V )), (4.53)

2ζsp(α0)ωsp(α0) = −(Mq(α0) + Zα(α0)/V ). (4.54)

The expressions (4.53), (4.54) for the natural frequency and damping are the
ones often given in the literature to describe the short period approximation13

(cf. e.g. Ananthkrishnan & Unnikrishnan (2001, Eq. (10)), or Stevens & Lewis
(2003, Eq. (4.2-10)) with Zα̇, Zq,Mα̇ = 0).

The quantities on the right in (4.53), (4.54) can conveniently be expressed
in terms of aerodynamic coefficients, for instance we have (cf. Chapter 3)

Zα(α0) =
1

m

∂fz

∂α
|α=α0

=
1

2m
ρV 2Sref

∂CZ

∂α
|α=α0

,

where ρ is the air density, Sref is the reference area and CZ is the aerodynamic
force coefficient in the (positive) z-direction. The other constants can anal-
ogously be described in terms of derivatives of the appropriate aerodynamic
force and moment coefficients (see Chapter 3).

13Usually, however, the linearization point (α0, q0) chosen in the literature is the one in
(4.41), (4.42) which gives equilibrium for (4.37), (4.38), and the flight condition is straight
and level horizontal flight (Ananthkrishnan & Unnikrishnan, 2001).
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4.4.1.1 State space representation

For later reference it will be useful with a state space representation of the
scalar relation (4.51). The simplest choice of state variables x1, x2 is

x1 = α̃, x2 = ẋ1

which gives the representation

[
ẋ1

ẋ2

]

=

[
0 1

Mα(α0) − Mq(α0)
Zα(α0)

V

Zα(α0)
V

+ Mq(α0)

] [
x1

x2

]

+

[
0
1

]

u

=

[
0 1

−ω2
sp(α0) −2ζsp(α0)ω

2
sp(α0)

] [
x1

x2

]

+

[
0
1

]

u, (4.55)

where

u = Ũ − Mq(α0)
F

(g)
α

V
+

Ḟ
(g)
α

V
= Ũ + U (g)(α0) (4.56)

and Ũ , U (g)(α0) are defined as in (4.52) (recall that V̇ = 0 in (4.51)).

4.4.1.2 The effect of gravity: II

It is easy to incorporate “gravity compensation” in (4.55) and (4.56) by simply

defining a new reference value Û
(y)
0 for the normalized control surface moment

U (y) as

Û
(y)
0 = U

(y,a)
0 − U (g)(α0), (4.57)

since with this reference value the deviation U (y) − Û
(y)
0 becomes

U (y) − Û
(y)
0 = U (y) − U

(y,a)
0 + U (g)(α0) = Ũ + U (g)(α0),

and (α̃, ˙̃α) = (0, 0) will be an equilibrium point for (4.55) when U (y) = Û
(y)
0 .

Moreover, when Ḟ
(g)
α = 0 the reference moment Û

(y)
0 is, to first order, equal to

the normalized moment U
(y,g)
0 in (4.42) which yields equilibrium14 in (4.37),

(4.38) for (α0, q
(g)
0 ). To see this, we use the result (4.42), the definitions (4.41),

(4.43) for q
(g)
0 and q

(a)
0 , respectively, and the following linear approximation

U
(y,g)
0 = −M(α0, q

(g)
0 )

= −M(α0, q
(a)
0 ) − Mq(α0, q

(a)
0 )(q

(g)
0 − q

(a)
0 )

= U
(y,a)
0 + Mq(α0)

F
(g)
α

V

= U
(y,a)
0 − U (g)(α0), (4.58)

where we also have used the definition of U (g)(α0) in (4.52) (with Ḟ
(g)
α = 0)

and the second short form in (4.49). Hence, the reference moment in (4.57)
can, under these assumptions, be approximated as

Û
(y)
0 = U

(y,g)
0 . (4.59)

14The very definition of a time invariant equilibrium as in (4.41) requires, for fixed α0,

that the time derivative (d/dt)(F
(g)
α /V ) vanishes and since we have assumed V̇ = 0 the

condition on the time derivative collapses to Ḟ
(g)
α = 0.
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4.4.2 Control authority and trimming

We know from the previous section that the control surface induced normalized
moment U (y) required to maintain a constant angle of attack α0 is (for V̇ = 0)
given by

U (y) = Û
(y)
0

where Û
(y)
0 is defined in (4.57). To see how large the moment Û

(y)
0 can be we

invoke the assumption that the normalized pitch damping moment Mq defined
in (4.39) is independent of the pitch rate q (i.e. constant as a function of q),

as suggested in the beginning of Section 4.4, so that Mq(α0, q
(a)
0 ) = Mq(α0, 0).

We can then make the following linear approximation

M(α0, q
(a)
0 ) = M(α0, 0) + Mq(α0, 0)q

(a)
0

= M(α0, 0) + Mq(α0)q
(a)
0

= M(α0, 0) − Mq(α0)
Z(α0)

V
,

where we have used the definition (4.43) and Mq(α0) is the short form intro-
duced in (4.49) (applied to the special case where Mq is independent of q).
With this approximation we have, using also the definitions (4.41), (4.52) and
(4.57), that

Û
(y)
0 = U

(y,a)
0 − U (g)(α0)

= −M(α0, q
(a)
0 ) + Mq(α0)

F
(g)
α

V
− Ḟ

(g)
α

V

= −M(α0, 0) + Mq(α0)
(Z(α0)

V
+

F
(g)
α

V

)
− Ḟ

(g)
α

V

= −M(α0, 0) − Mq(α0)q
(g)
0 − Ḟ

(g)
α

V
. (4.60)

The first term on the right is due to the normalized static aerodynamic
pitch moment M(α0, 0) induced by the airframe (an example of which is given
for the PGMM (in unnormalized form) in Figure 3.14). For glide flight the

right hand side in (4.60) consists of only this term since then q
(g)
0 = 0 and

Ḟ
(g)
α = 0 so the last two terms vanish, and the trimming moment required for

glide will thus be given by −M(α0, 0). This also means that for the value of
α0 which corresponds to glide flight the term Mq(α0)Z(α0)/V is of the same

size as the term Mq(α0)F
(g)
α /V , but of different sign. (Therefore, the tail fin

angle in Figure 3.15 which yields zero static aerodynamic pitch moment for

the PGMM is the one that corresponds to Û
(y)
0 for glide.) Thus, by plotting

Mq(α0)Z(α0)/V as a function of α0 (as in Figure 4.1) it is easy to estimate
the size of the sum of these terms also for other values of α0.

For maneuvering flight it is instructive to consider the gravity free case

(F
(g)
α = 0, Ḟ

(g)
α = 0), for example to assess horizontal turn performance (after

a change to yaw plane variables). In this case the right hand side in (4.60) can
be written

−M(α0, 0) + Mq(α0)
Z(α0)

V
,

which under the present linear approximation equals −M(α0, q
(a)
0 ). Thus, the

right hand side gets a contribution only from the moment M(α0, q
(a)
0 ) at aero-

dynamic equilibrium and the trimming moment required for this flight case
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is given by −M(α0, q
(a)
0 ). Finally, in the general case the right hand side of

(4.60) is given (approximately) by (4.59), if we assume slowly varying gravity

contribution (Ḟ
(g)
α = 0). Thus in this case the trim moment is simply U

(y,g)
0 . If

also the rightmost term on the right in (4.60) is to be included in the analysis
of control effort it is perhaps best roughly estimated and then included in the
allowable control error budget, see below.

4.4.2.1 Effects of nonstationary aerodynamics

It is common to include also instationary effects in the aerodynamics and the
most prominent contributions are often those that depend on α̇. The discussion
above is easy to generalize to incorporate also such effects, at least for the case
where the normal force and pitch moment coefficients have linear dependence
on α̇.

In case the right hand side of the α-dynamics in (4.45) contains a term which
is linear in α̇ one can simply solve the resulting algebraic equation for α̇, which
will again yield an equation of the form (4.45). Thus, after this substitution
the expressions (4.53) and (4.54) will apply without change.

When the q-dynamics in (4.46) has a right hand side with linear dependence
on α̇ then it is easy to see, by retracing the steps from (4.45) through (4.50)
leading to (4.54), that the expression (4.54) will be replaced by

2ζsp(α0)ωsp(α0) = −(Mq(α0) + Mα̇(α0) + Zα(α0)/V ), (4.61)

but the expression (4.53) will remain the same. The question then arises what
the effects are of the term Mα̇(α0) in (4.61).

To get some idea of this, at least for the PGMM, it is instructive to study the
relative size of the terms making up the expression (4.61) given in Figure 4.1.
From this figure it is clear that Zα(α0)/V is clearly smaller in size than Mq(α0),
so a perturbation of Mq(α0) with the term Mα̇(α0) will likely not be “masked”
by Zα(α0)/V but will be visible in the result. At the same time we note that
a perturbation of the term Mq(α0) (due to e.g. an error) in (4.53) is not likely
to have a large effect since the term Mq(α0)Zα(α0)/V is, for angles of attack
less than approximately 15◦, much smaller than Mα(α0).

This means that the product ζsp(α0)ωsp(α0) will in fact be calculated more
correctly if we use (e.g. inadvertently) a value for Mq(α0) in (4.54) which in
fact is a value for Mq(α0)+Mα̇(α0), such as if we use the formula (3.22) which
is based on the total body pitch damping contribution in (3.21). At the same
time, doing the same substitution (e.g. inadvertently) in (4.53) when calcu-
lating ωsp(α0)

2 is likely to have little effect since the term Mα(α0) dominates
Mq(α0)Zα(α0)/V ), at least for the PGMM as can be seen from Figure 4.1.

4.4.2.2 Short period dynamics of the PGMM

An example the resulting natural frequency ωsp(α0) and damping ζsp(α0) as
given by the short period approximation expressions in (4.53), (4.54) are shown
in Figure 4.2 and in Figure 4.3 an example of how the pole locations vary with
airspeed and angle of attack is given. From these figures it is clear that for the
altitude h = 1500m and airspeed V = 125m/s the damping is low for angles of
attack below 15◦, in particular it is about 0.2 for coasting horizontal flight at
approximately α = 9◦. There is also a fair amount of variation of the dynamics
with the angle of attack and airspeed.
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Figure 4.1: The different terms Zα(α0)/V , Mq(α0), Mq(α0)Zα(α0)/V (top)
and Mα(α0) (bottom) that make up ωsp(α0) and ζsp(α0) in (4.53), (4.54) for
the PGMM as a function of angle of attack α0, for the airspeed V = 125m/s
and altitude h = 1500m. (The quantities in (4.53), (4.54) are defined for an

aerodynamic equilibrium point (α0, q
(a)
0 ) as in (4.43), (4.44) but in the aerody-

namic model of the PGMM there is no dependence on q0 in these quantities.)

4.4.3 Normal force and normal acceleration

Normal acceleration is generally defined in E as P [V ]⊥V̇ , i.e. the component

of the acceleration V̇ which is perpendicular to the velocity vector V , and by
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PGMM model: Short period dynamics (open loop, trimmed) (V=125 m/s)
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Figure 4.2: Natural frequency ωsp(α0) (top) and damping ζsp(α0) (bottom)
according to (4.53), (4.54) for the PGMM at as a function of angle of attack
α0, for the airspeed V = 125m/s and altitude h = 1500m. (There is no
dependence on q0 in ωsp, ζsp for the PGMM model.)
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Figure 4.3: Variation in location of the poles λ1,2 = −ζspωsp ± jωsp
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in the complex plane for the short period approximation (4.53), (4.54) for the
PGMM as a function of airspeed V and angle of attack α0, at the altitude
h = 1500m. (There is no dependence on q0 in λ1,2 for the PGMM model.)

(4.5), (4.7) and (4.8) it can be related to the force f in B as

P [V ]⊥V̇ = (I − P [V ])
1

m
F

=
(
I − 1

‖V ‖2
V V T

) 1

m
R(q)f

=
(
R(q) − 1

‖v‖2
R(q)vvT

) 1

m
f

= R(q)
(
I − P [v]

) 1

m
f

= R(q)P [v]⊥
1

m
f , (4.62)

where we have used the fact that R(q) is a rotation matrix (and therefore
orthogonal) several times. From (4.62) we see that it is natural to define
normal acceleration in B simply as the term P [v]⊥f/m, i.e. the projection

of f/m onto the plane [v]⊥ perpendicular to the velocity vector v in B, and
this is the definition we shall use. However, we are here going to focus on the
aerodynamic contribution to (normalized) normal acceleration P [v]⊥f (a)/(mg)

in B, where the aerodynamic force vector f (a) in B is defined in terms of the
components in (4.4) as

f (a) = [f (a)
x , f (a)

y , f (a)
z ]T .

In the xz-plane in B, the pitch plane, the (signed) magnitude of the aero-
dynamic normal acceleration η is defined in terms of the lift and weight force
components fL and fW , respectively (cf. Section 3.3.2.1), as

η =
fL

fW

=
fL

mg
. (4.63)

51



FOI-R--2618--SE

4.4.3.1 Pitch plane acceleration dynamics

For a missile which is symmetric with respect to mirroring in the xy-plane in B
the lift force magnitude fL is approximately proportional to α, for small α, cf.
e.g. Figure 3.3. Therefore, also the deviation f̃L = fL − fL0

from the value fL0

that corresponds to a reference value α0 for the angle of attack is proportional
to α̃ = α − α0, for small deviations α̃ (and small α0). Since η is proportional
to fL it can be obtained (approximately) by a simple rescaling of α,

η = Cηα, (4.64)

cf. Figure 3.4. By comparing the expression for lift force fL in terms of aerody-
namic coefficients (3.4) with the definition of aerodynamic normal acceleration
(4.63) we see that the scale factor Cη is given by

Cη =
ρV 2

2mg
SrefC

(0)
Lα

,

where C
(0)
Lα

denotes the lift coefficient derivative CLα
= ∂CL/∂α evaluated at

0.
A linear model for the acceleration dynamics expressed in terms of deviation

η̃ = η− η0 from a reference value η0 = Cηα0 can be directly obtained from the
short period approximation (4.51) as

¨̃η + 2ζspωsp
˙̃η + ω2

spη̃ = ω2
sp(η̃c + η(g)), (4.65)

where η̃c = ηc − η0 and the relations to the moments are given by15

η(g) =
Cη

ω2
sp

U (g)(α0), ηc =
Cη

ω2
sp

U (y), η0 =
Cη

ω2
sp

U
(y,a)
0 . (4.66)

In this setting, the reference value for acceleration is η0, the commanded value is
ηc and the acceleration component η(g) which is due to acceleration enters as an
auxiliary input. However, often it is convenient to lump the gravity component
together with the reference value and rewrite the dynamics in terms of gravity
compensated variables, in the sense discussed in Section 4.4.1.2.

To arrive at a gravity compensated form of the dynamics we define a new
reference value η̂0 for the commanded acceleration as

η̂0 = η0 − η(g) (4.67)

so that
η̃c + η(g) = ηc − (η0 − η(g)) = ηc − η̂0,

where

η̂0 =
Cη

ω2
sp

Û
(y)
0 (4.68)

and Û
(y)
0 is defined in (4.57). A new deviation variable ν = ηc − η̂0 for the

commanded acceleration can then be considered so that the dynamics (4.65)
takes the form

¨̃η + 2ζspωsp
˙̃η + ω2

spη̃ = ω2
spν, (4.69)

where ν = 0 gives the aerodynamic normal acceleration η0 for the aerodynamic
equilibrium at α0. Normally, the system (4.69) is operated with ν = 0 since ηc

15With this scaling of η̃c + η(g) the “gain” from η̃c + η(g) to η̃ becomes 1 in steady state.
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is chosen to track changes in η̂0 which then, in effect, becomes the commanded
variable.

The representation (4.69) is very useful for performance modeling since it
contains all the essential features of the linearized pitch plane aerodynamic ac-

celeration dynamics, while suppressing the less important ones (such as exactly
how the input is formed from (supposedly) known quantities).

A state space realization of the dynamics (4.65), or the gravity compensated
form (4.69), is immediately obtained from (4.55) and (4.66), or (4.67).

4.4.4 Drag force

So far we have concentrated on developing a simplified, but still relatively
detailed, model of forces (accelerations) in the normal direction (i.e. perpen-
dicular to the velocity vector v) in the xz-plane in B. What remains to get the
pitch plane dynamics model complete is expressions for forces (accelerations)
parallel to the velocity vector. Since it is straightforward to add a force repre-
senting the thrust (i.e. thrust force components in the normal direction and its
orthogonal complement), and since the PGMM lacks propulsion, we shall here
only consider the non-powered case so that the force component in the pitch
plane parallel to the velocity vector is the drag fD only (cf. Section 3.4).

From (4.17) we know that the change in airspeed V̇ is determined by the
force component parallel to the velocity vector v, which in the pitch plane
representation (for non-powered flight) is fD, but we have not discussed here
how this force can be related to the other variables in the pitch plane dynam-
ics. However, from Section 3.4 we know that fD can be decomposed into two
components as fD = fD0 + fDi where the base drag fD0 is independent of α
and the induced drag fDi is approximatively proportional to α2. Since fDi is
approximately proportional to α2 is it approximatively proportional to the lift
force fL, cf. Figure 4.4, and can thus be expressed as a (linear) function of fL,
or (by using (4.64)) as a linear function of the aerodynamic normal acceleration
η.

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
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Figure 4.4: Ratio of induced drag force fDi over lift force fL as a function of
angle of attack α for the PGMM at the airspeed V = 125m/s and altitude
h = 1500m.
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4.5 Controller

4.5.1 Synthesis of normal acceleration dynamics

The expression (4.69) above describes the open loop (no controller) system
dynamics for the aerodynamic contribution to normal acceleration (deviation)
η̃ in the pitch plane, where commanded normal acceleration ηc is the control
variable for variations around a reference value η̂0 (which corresponds to an
angle of attack α0, at a given orientation of the missile since gravity is included
in the reference value). Due to the variation in these dynamics with the flight
condition which is common, cf. Figure 4.3, a controller is normally placed
between these dynamics and the guidance system, and this controller (autopilot

in missile parlance) synthesizes desired dynamics for the normal acceleration
(from commanded normal acceleration ηc) to actual ditto η̃. By a remark made
in connection with (4.69) we know that this is normally by be interpreted as
the dynamics for regulation of the system (4.69) around a reference value of
ν = 0.

Simple missiles do not have sensors to directly measure the angle of attack
α but often have sensors to measure accelerations and angular accelerations
(such as q̇, ṙ), and hence also (via integration) q, r and the orientation of the
gravity vector in the body system B. This, together with the simple linear
relation (4.46) which relates q̃, ˙̃q, α̃ and the deviation Ũ from reference in the
moment makes it reasonable to assume that also α̃ is available16 for feedback,
and via (4.45) also ˙̃α. One can therefore assume that α̃, q̃ are available for state
feedback, alternatively α̃, ˙̃α, also for many simpler missiles. For these reasons
we shall employ state feedback (using the full state vector) in the synthesis of
pitch plane dynamics.

4.5.1.1 Pole placement

To see how linear pitch plane dynamics synthesis can be realized we assume
that we have some given desired (aerodynamic) normal acceleration dynamics,
e.g. in terms of deviation variables (with gravity compensation) as

¨̃η + 2ζsp,dωsp,d
˙̃η + ω2

sp,dη̃ = ω2
sp,dν̂, (4.70)

where ωsp,d and ζsp,d are desired values for the natural angular frequency and
damping, respectively, and ν̂ is a new input variable (see below). If we then
let the commanded acceleration ηc in (4.69) be given as ηc = η̂c where η̂c is a
linear (affine) function of η̃, ˙̃η as

η̂c = η̂0 + k0η̃ + k1
˙̃η + cν̂, (4.71)

where k0, k1, c are three constants, and compare with (4.70) we see that if we
choose

k0 = (ω2
sp − ω2

sp,d)/ω2
sp,

k1 = 2(ζspωsp − ζsp,dωsp,d)/ω2
sp,

c = ω2
sp,d/ω2

sp,
(4.72)

then the desired dynamics is realized for the closed loop system. Again, the
value for the input variable ν̂ which ought to be the most common is 0 since
the acceleration command is implicitly communicated to the system through
the (gravity compensated) reference value η̂0.

16In practice several of the aerodynamic derivatives, which are required in order to calcu-
late α, α̇, are not known exactly and different forms of observers or estimators are used to
estimate α, α̇.
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A state space realization of the simple (gravity compensating) pole place-
ment controller (4.71) and (4.72) is readily obtained from (4.55) and (4.64).

4.5.2 Control authority for dynamics synthesis

To synthesize the desired dynamics (4.70) for deviations around (a gravity
compensated) reference value η̂0 (i.e. in practice to “bring back” η to η̂0 after
a change in the latter) requires further moments than those corresponding to

Û
(y)
0 in (4.60), and these additional moments are in the worst case determined

by the maximally allowed values of η̃, ˙̃η, or equivalently, the maximally allowed
values of α̃, ˙̃α.

To see how large the additional moments can be we note that when con-
trolling the (aerodynamic) normal acceleration η around a reference value η̂0

with the controller in (4.71) the variable ν̂ in (4.70) is identically zero and we
get the following bound for the deviation η̂c − η̂0 between commanded normal
acceleration and the reference value for acceleration commands

|η̂c − η̂0| = |k0η̃ + k1
˙̃η|

≤ |k0||η̃|max + |k1|| ˙̃η|max

= Cη(|k0||α̃|max + |k1|| ˙̃α|max), (4.73)

where the max-limits |α̃|max, | ˙̃α|max for α̃, ˙̃α, respectively, are given by struc-
tural or aerodynamic limitations, or limitations in the actuators. Since η̂c is
simply a value for the command ηc issued by the controller (4.71) we can use
(4.66) and (4.68) to obtain the following relation between deviation in acceler-
ation variables and deviation in normalized control moments

U (y) − Û
(y)
0 =

ω2
sp

Cη

(η̂c − η̂0), (4.74)

where the value U (y) = Û
(y)
0 of the normalized control surface induced moment

yields the aerodynamic equilibrium (α0, q
(a)
0 ) for the dynamics in (4.55), (4.56).

Therefore, if we define the reference moment ûy,0 by

ûy,0 = JyyÛ
(y)
0 (4.75)

and recall (from (4.35)) that uy = JyyU (y) we obtain from (4.73) and (4.74) for
the deviation moment uy − ûy,0 corresponding to η̂c− η̂0 the following estimate

|uy − ûy,0|
Jyy

= |U (y) − Û
(y)
0 |

=
ω2

sp|η̂c − η̂0|
Cη

≤ ω2
sp(|k0||α̃|max + |k1|| ˙̃α|max)

= |ω2
sp − ω2

sp,d||α̃|max + 2|ζspωsp − ζsp,dωsp,d|| ˙̃α|max,

with k0, k1 given by (4.72). It follows that the control surface induced moment
uy can be bounded as follows

uy ≤ ûy,0 + Jyy(|ω2
sp − ω2

sp,d||α̃|max + 2|ζspωsp − ζsp,dωsp,d|| ˙̃α|max),

uy ≥ ûy,0 − Jyy(|ω2
sp − ω2

sp,d||α̃|max + 2|ζspωsp − ζsp,dωsp,d|| ˙̃α|max).

(4.76)
We remark that even though the bounds in (4.76) apply to the case where

the reference moment ûy,0 as in (4.75) is nonzero, the most interesting case
(for a missile which is symmetric with respect to mirroring in the xy-plane) to
apply the bound (4.76) on ought to be when α0 = 0 so that ûy,0 = 0.
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Figure 4.5: The resulting upper bound (top) and lower bound (bottom) for the
tail fin deflection δ of the PGMM based on the bounds (4.76) and the values
for ζsp,d, ωsp,d, |α̃|max and | ˙̃α|max in (4.77), for gravity free flight operation
around an aerodynamic equilibrium point, at the airspeed V = 125m/s and
altitude h = 1500m. The lower limit δ = −30◦ for control surface deflection is
indicated by a plane in both panels.

4.5.3 Required control effort for the PGMM

An example of the bound (4.76) for the PGMM computed with the values

ζsp,d = 0.7,
ωsp,d = 4rad/s,

|α̃|max = 0.25rad ≈ 15◦,

| ˙̃α|max = 1.5rad/s ≈ 90◦/s

(4.77)

and translated to total control surface (tail fin) deflection δ is given in Fig-
ures 4.5 and 4.6. The value for the reference moment û0 as in (4.75) is taken

from the expression (4.60) but without gravity effects (F
(g)
α = 0, Ḟ

(g)
α = 0) and

for a reference point (α0, q0) which corresponds to aerodynamic equilibrium as
in (4.43), (4.44). It is clear that the desired dynamics can be synthesized for
a large domain of values of α0, V since the required control surface deflections
δ are well within ±30◦, except for the very lowest airspeeds where the limit
δ = −30◦ is crossed.

From Figures 4.5 and 4.6 it is evident that the major contributing factor
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Figure 4.6: Same data as in Figure 4.5, but combined in one panel. The lower
limit δ = −30◦ for control surface deflection is indicated by a plane.

to large values of the required control surface moments |uy| in (4.76), and
corresponding deflections, is the low efficiency of the control surfaces at low
dynamic pressures, i.e. low airspeeds. The low damping of the (open loop)
short period dynamics at low angles of attack also requires some control effort
to remove with the dynamics synthesis, with increased requirements on the
control surface deflections as a result.

4.6 Total (Simplified) Model

We now have all the components required to assemble a simplified model of
the total missile dynamics. In the following we shall briefly discuss how this
can be done in an implementation for simulation. The total model will be
of the “2+3” degree-of-freedom form discussed in Section 1.2 with 11 or 12
states, depending on the representation of the orientation, and the base will be
the simplified (and decoupled) models for the pitch and yaw planes obtained
via the short period approximation derived and discussed in Section 4.4. The
reader is reminded that we consider only non-powered flight but the addition
of thrust to the model is straightforward (mathematically, it will have the same
effect as modifying one or several of the gravity force components in the body
equations).

4.6.1 General structure

The most fundamental part of the overall dynamical model of the missile is
Newton’s second law (4.7) for the center-of-mass in E. We know from (4.8)
that the force F in E is given by F = R(q)f , where R(q) is the rotation

matrix in (4.5), and that we can partition the force as F = F (a) + F (g) where

F (a) = R(q)f (a), F (g) = R(q)f (g), (4.78)

with aerodynamic and gravity induced components, respectively, according to

f (a) = [f (a)
x , f (a)

y , f (a)
z ]T , f (g) = [f (g)

x , f (g)
y , f (g)

z ]T .
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The force component P [v]⊥f (a) is the aerodynamic normal force (the lift force)
in B and from Section 3.3 we know that it is (primarily) dependent on the
aerodynamic angles α, β (although only the pitch plane lift force was studied
there, which we modeled to have dependence on only α). In Sections 4.3 and
4.4 we developed a simplified model of the dynamics of the missile where the
state variables are the aerodynamic angles α, β and the angular rates q, r (and,
again, we focussed on the pitch plane, relying on symmetry to obtain the cor-
responding relations for the yaw plane). In this model, the aerodynamic force

f (a), the aerodynamic moments m(a) +u and the gravitation force f (g) can be
interpreted as driving terms, and the airspeed V is a parameter. (Moreover,
we showed in Section 4.5 that the structure of the simplified model remains
after addition of a linear state feedback controller.) For the evolution of V we
have the basic relation (4.17).

Together this outlines a fairly complete model; what remains is dynamic
relations for the orientation angles of B relative to E (which are needed to

determine f (g)) and relations to translate the velocities (4.10)–(4.12) in B into
velocities in E, and eventually, locations in E. In the following we shall de-
scribe how this model can be completed, and comment on some implementation
aspects and the choices related to it.

4.6.2 Pitch plane

The aerodynamic normal force P [v]⊥f (a) is, when projected onto the xz-plane,
approximately (for small α, β) equal to the pitch plane lift force fL. From
Section 3.3 we know that fL is roughly proportional to the angle of attack α.
In Section 4.4 we have developed linear dynamic relations (the short period
approximation etc.) for how α (and q) evolves over time, where the pitch plane
representations of the aerodynamic forces and gravity act as driving terms and
the airspeed V is a parameter. In these relations, the drag force fD does not
enter but fD is necessary to know in order to determine the evolution of V .

From Section 3.4 we know that the drag fD is quadratic in α (with no
linear term), where the second degree term fDi of fD is essentially linear in fL.
Put together this results in a pitch plane model where, in terms of deviation
variables, the commanded angle of attack (or, equivalently, the aerodynamic
normal force) defines an input to a second order linear dynamic system in the
variable α̃ = α − α0 with outputs f̃L = fL − fL0

and q̃ = q − q0, and the drag
component fD is obtained as a nonlinear function of α̃ (since fD is quadratic
in α = α̃ + α0 where α0 can be regarded as a parameter). A block diagram
over this dynamic system is given in Figure 4.7.

4.6.3 Pitch and yaw planes

We know that by complementing the pitch plane model described above for the
dynamics of α, q with an analogous model for the dynamics of β, r we obtain a
linearized model for the longitudinal and lateral dynamics in body coordinates
(where the assumption p = 0 is implicit). We also have a dynamical relation
for how the airspeed V is evolving over in (4.17), where the driving term FV

is the component of the force f (a) + f (g) in B which lies in [v]. To employ the
relation (4.17) for V correctly we have to exercise some care, however, since the

the drag in B, which is given by the term P [v]f
(a), has a quadratic dependence

on both α, β (cf. Section 3.4), i.e. total angle of attack αt must be used. Hence,
when calculating the evolution of V in a full model we must use data from the
pitch and yaw planes simultaneously.
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Figure 4.7: Block diagram over the structure in the simplified missile dynamics
in the pitch plane based on linearization and slowly changing gravity contribu-
tion. Deviation variables are used; the reference values α0, q0, U0 correspond
to aerodynamic force and moment equilibrium (4.43), (4.44), and the value for
the corresponding lift force fL0

is taken from a table, such as e.g. Figure 3.3.
The deviation in lift force f̃L is linear in α̃ and the drag fD is quadratic in α,
where one part is constant and one part is linear in f̃L; also these parts are
taken from tables such as Figure 4.4. In the overall model there is moreover a
parametric dependence on the reference value α0, the airspeed (which is mod-
eled separately, cf. (4.15), (4.17)) and the orientation of the missile and the
altitude. If the drag fD is not of interest (and therefore can be disregarded)

the gravity term F
(g)
α can be set to zero here and gravity is added separately

via F (g) in E instead (since the map (F
(g)
α , Ũ) 7→ (f̃L, q̃) is linear).

4.6.4 Representation in aerodynamic coordinates

If we use the state space representation (4.55) for the linearized pitch plane
dynamics, and a similar representation for the dynamics in the yaw plane,
then both the open and closed loop system dynamics17 for the missile together
with the orientation relation (4.6) can be written on state space form as

q̇ =
1

2
q ◦ (0,ω(x̃,θ)), (4.79)

V̇ = D(V, x̃,θ), (4.80)

˙̃x = A(V,θ)x̃ + B(ug(q, V, x̃,θ) + ũc), (4.81)

where x̃ = [α̃, ˙̃α, β̃,
˙̃
β]T , ω(x̃,θ) = [p, q, r]T (where p ≡ 0) with q, r obtained

from (4.45) and its yaw plane equivalent. (Alternatively, one can of course use
the state vector [q, α, r, β]T and (4.47), which in practice might be preferable
since (at least) the angular rates q, r are in general directly measurable via on-
board sensors.) The vector θ contains all quantities which can be regarded as

17From the discussion in Sect 4.5.1 we know that the closed loop system in the pitch and
yaw planes will have the same form as the open loop system and if the dynamics synthesis
by the controller is capable of realizing constant dynamics then the matrix A(V, θ) becomes
independent of V, θ.
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“parameters” here, such as the reference values α0, q0, β0, r0 and the altitude h,
and the equation (4.80) represents the equation (4.17) for the airspeed V . The
two two-dimensional input signals to the four-dimensional linear system (4.81)
are the vector ũc of commanded deviations from the reference values for the
moments in the pitch and yaw planes, respectively, as in (4.56), and the vector
ug(q, V, x̃,θ) which represents the corresponding gravity induced contributions
in the two planes. The 4×4-dimensional matrix A(V,θ) is block diagonal, since
the pitch and yaw channel dynamics are decoupled after linearization, and the

4×2-dimensional matrix B has a corresponding block structure. Since Ḟ
(g)

= 0
we have

ḟ
(g)

= Ṙ(q)T F (g) = Ṙ(q)T R(q)f (g) = ω(x̃,θ) × f (g).

This means that if we use the approximation (for small angles α, β and small
axial force fx, cf. Section 4.3.2)

d

dt

F
(g)
α

V
=

d

dt

f
(g)
z

mV
(4.82)

we have
d

dt

F
(g)
α

V
=

ḟ
(g)
z

mV
− f

(g)
z V̇

mV 2
=

ḟ
(g)
z

mV
− F

(g)
α D(V, x̃,θ)

V 2
,

and similarly for (d/dt)(F
(g)
β /V ), so that the components of ug(q, V, x̃, θ) can

be expressed solely with the aid of the state space variables in (4.79)–(4.81)
and the gravity vector components, as alluded to above.

The solution to the equations (4.79)–(4.81) provide the orientation of the
missile and the velocity vector in the body fixed system B, and to obtain
the location of the missile in the Earth fixed system E one needs additional
equations. A natural approach to obtain this is to simply rotate the velocity
vector components to the Earth fixed system and thus obtain a system which
after one integration gives the desired locations. One then adds the following
equations to the model,

Ẋ = R(q)v(q, V, x̃,θ). (4.83)

The total model (4.79)–(4.83) has 12, or 11 states if e.g. Euler angles are
used instead of the quaternion in (4.79) (alternatively, the redundancy in (4.79)
is exploited in some other way).18

4.6.5 Further simplifications

It is desirable to investigate what further simplifications can be made in the
total dynamics in (4.79)–(4.83). To begin with we can use the same approx-

imation as in (4.82) and neglect the dependence on α, β in F
(g)
α , F

(g)
β which

gives
ug(q, V, x̃,θ) = ug(q, V, 0,θ).

Further, during (at least moderate) maneuvering the term ug(q, V, 0,θ) can be
considerably smaller than ũc and therefore one can then approximatively set
ug(q, V, 0,θ) = 0 in (4.81). (For the PGMM this is not the case however, since
it has only small maneuvering capabilities, in the order of a few g’s.)

One can of course also substitute the state space representation (4.55) which
is part of (4.81) with (4.47), and proceed correspondingly for those parts of

18This is one more state variable than the minimal number 10 required, as described in a
footnote in the Introduction.
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(4.81) which describe the dynamics in the yaw plane. By doing so one gets rid

of the term Ḟ
(g)
α which is part of ug(q, V, 0, θ), and a corresponding term for

the yaw plane, but will then instead have the problem of expressing the closed
loop system dynamics in terms of a mix of the aerodynamic quantities which
are part of (4.47) and feedback terms, instead of only generic natural frequency
and damping terms as in (the second row in) (4.55).

4.6.6 Acceleration variables

By applying the linear transformation (4.64) to the components in the vector
x̃ the total dynamics in (4.79)–(4.81) can be obtained on acceleration form.
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