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Sammanfattning 
I denna rapport sammanfattas resultaten av det signalbehandlingsarbete som bedrivits 
inom projektet Multi-optisk minspaning (MOMS). Ett antal metoder för och aspekter 
av bl a dataregistrering, anomalidetektion, egenskapsextraktion, datafusion och 
igenkänning av minor beskrivs och diskuteras. Ett antal särskilt intressanta metoder har 
testats och utvärderats på sensordata från olika scener, för att möjliggöra analys av 
respektive metods för- och nackdelar under olika förutsättningar. Slutsatser från 
experimenten presenteras och diskuteras, med särskild tonvikt på aspekter som rör 
signalbehandling i ett sensorsystemperspektiv. 

Ett flertal olika elektrooptiska sensorer, såväl passiva som aktiva, har beaktats inom 
MOMS. I rapporten presenteras en metod för sensoroptimering som ger verktyg för att 
utforma en förhållandevis enkel elektrooptisk sensor som ändå är adekvat för 
uppgiften. Detta kan åstadkommas med hjälp av en informationsteoretisk dataanalys i 
vilken spektralband definieras utifrån mängden information de innehåller.  

För att data från flera sensorer ska kunna samutnyttjas måste data transformeras till ett 
gemensamt koordinatsystem. Kvaliteten på positionsbestämningen avgör på vilken 
nivå man kan fusionera data; ideal registrering möjliggör fusion ner på pixel- eller 
signalnivå. I ett distribuerat sensorsystem där, säg, data insamlade med en flygande 
plattform ska kombineras med data från en markbunden sensor, blir sannolikt 
pixelfusion av dessa data mycket svår att uppnå utan fusion måste då ske på en högre 
nivå, t ex beslutsnivå. Från ett signalbehandlingsperspektiv är det önskvärt att 
sensorerna sitter väldigt nära varandra, helst t o m med en gemensam optik eller 
detektor så att registreringen kan göras så noggrant som möjligt. 

Bland de undersökta signalanalysmetoderna framstår anomalidetektion som en 
nyckelkomponent i ett systemkoncept. Denna metod syftar till att detektera sådant som 
avviker från det normala i scenen (bakgrunden) och ger därför en första indikation på 
var ev. minor kan finnas. Dessutom kan denna metod potentiellt användas för detektion 
av andra objekt än minor, t.ex. IEDer.   

De detekterade anomalierna analyseras sedan genom att olika antaganden om 
målobjekten utnyttjas, bl a beträffande deras storlek. Detta leder till att minlika objekt 
kan detekteras. Om man dessutom har tillgång till detaljerad information om vissa 
måltyper, t ex i form av CAD-modeller eller bilder, erhållen innan eller insamlad under 
uppdraget, kan de detekterade objekten gå vidare till ett igenkänningssteg. Där 
undersöks de detekterade objektens likhet med ett antal måltyper.  

 

Nyckelord: mindetektion, elektrooptiska sensorer, signalbehandling, datafusion
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Summary 
This report summarizes the signal processing work carried out within the project Multi-
optical mine detection (MOMS). A number of methods for and aspects of data 
registration, anomaly detection, feature extraction, data fusion and mine recognition are 
described and discussed. A number of especially interesting methods have been tested 
and evaluated with sensor data from different scenes, in order to allow for analysis of 
pros and cons under certain conditions. Conclusions from the experiments are 
presented and discussed, with focus on aspects concerning signal processing in a sensor 
system perspective. 

A number of electro-optical sensors, passive as well as active have been considered 
within MOMS. In this report, a method for optimized sensor design is presented, that 
provides a tool for designing a relatively simple sensor that still is adequate for the 
task. This can be achieved through analysis based on information theory, in which the 
spectral characteristics of the sensor are defined based on the information they contain. 

In order for data from several sensors to be combined, the data has to been registered, 
i.e., transformed into a common coordinate system. The quality of the registration 
strongly influences the level at which data can be combined; ideal registration allows 
for fusion on the lowest level (pixel- or signal-level). In a distributed sensor system 
where, say, data from an airborne system shall be combined with data from a ground-
based sensor, pixel-level fusion will probably be difficult to use. From a signal 
processing perspective, it is desirable that the sensors are mounted close to each other, 
preferably with common optics and/or detector array, so that the registration can be as 
accurate as possible. 

Among the signal processing techniques considered, anomaly detection emerges as a 
key component in a system concept. This method detects things that are different from 
what is expected (the background) and thus gives a first indication of possible mines. 
In addition, this technique can potentially be used for detection of other objects, e.g. 
IED’s. 

The detected anomalies are then analyzed further, by using certain assumptions 
concerning the targets, e.g. their expected size. This leads to the detection of mine-like 
objects. If available detailed data about certain targets, e.g. CAD models or images, 
given before or collected during the mission, can be used for mine recognition, in 
which the similarity between detected objects and these targets is investigated. 

 

Keywords: mine detection, electro-optical sensors, signal processing, data fusion  
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1 Executive summary 
This report describes the signal processing work carried out within the MOMS project. 
The main purpose of this work is to provide knowledge about what results could be 
expected in terms of mine detection using certain sensors.  

More specifically, the report contains the following:  

• a proposal for a signal processing framework for mine detection and recognition 

• a description of the relevant signal processing techniques involved  

• performance assessments of signal processing techniques in terms of detection 
and false alarms based on real sensor data acquired within the project  

• conclusions and discussion, with focus on aspects related to a realization of a 
system for mine detection  

Figure 1 shows the main structure of the signal processing framework outlined in this 
report, illustrating the order in which different processing tasks are generally performed. 
Starting with a certain scene, the goal is to detect and, if possible, recognize any mines in 
the scene. Information about possible mines can then be handed over to an operator for 
further analysis and/or decision-making. 

 
Figure 1. Description of the mine detection and recognition process developed in MOMS. 

The first, and very important step, is to use an efficient sensor. Without a sensor that is 
able to capture the necessary information, it does not matter what kind of signal processing 
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is applied afterwards. In this report, we show that by using measures from information 
theory, techniques for finding the optimal sensor can be formulated (Section 4).  

The data from the respective sensors typically have to be subject to some individual 
processing before the actual analysis can take place. This is referred to as sensor data pre-
processing. Generally this includes very sensor-specific processing, such as radiometric 
calibration, geometric correction, laser radar pulse detection, etc., and thus falls outside the 
scope of this report.  

After having acquired data from the different sensors, the different data sets have to be 
transformed into a common coordinate system, so that we can combine the information 
from the sensors. This is known as data registration (Section 5).  

The next step is typically to extract relevant features from the data, features that 
discriminate expected targets from the background. Section 6 briefly discusses some 
approaches investigated within MOMS for such feature extraction, e.g. detection of 3D 
surfaces, convexity, temperature contrast, etc.  

In many cases, the mines manifest themselves as being different from what is expected to 
be found in the scene. To discriminate objects that are different from the scene can be 
formulated as a task called anomaly detection (Section 7). In practice, one often makes use 
of the assumption that mines are relatively rare and implicitly that the vast majority of the 
data corresponds to the background. This technique is often quite appealing, as it does not 
involve any explicit information about particular characteristics of the targets.  

Although the detected anomalies often do correspond to any mines in the scene, various 
clutter in the scene is also detected, as a result of the fact that the anomalies correspond to 
anything that is not background. The next step is then to refine the results further and to 
detect mine-like objects (Section 8). For example, the detected anomalies could be judged 
in terms of spatial and spectral characteristics. Or we may want to ignore anomalies that 
correspond to too small or too large objects that cannot possibly be mines. We can also 
analyze the similarities between them and remove those who appear too frequently in the 
scene. Several sources of information could also be combined by performing data fusion, 
in order to refine the results further.  

The idea in mine recognition (addressed in Section 9) is to take a detected mine-like object 
and determine what type of mine it actually is, using a database with previously stored 
information about what characterizes the respective mine type. For example, such a 
database could consist of CAD models, high-resolution images, or certain spectral 
characteristics of the respective target. This step often requires high-resolution data about 
the sought-after objects.  

The main conclusions can be summarized as follows: 

• Most tested approaches can meet real-time or near real-time demands. 

• Occlusion causes difficult problems when detecting small ground objects.  

• Combinations of (broad band) spectral and spatial techniques have shown to be 
relatively robust. 

• Fusion on the signal/pixel level requires very accurate data registration. Such 
accuracy is difficult to obtain with a distributed sensor system, and will probably 
require a common detector array or arrays situated very close to each other. 
Fusion on the decision-level copes considerably better with a less accurate 
registration, as the different sensor data streams are processed individually and 
only the final outputs are combined. 

• Anomaly detection is a very useful tool for detecting possible mines. The real 
benefit is that the anomaly detector only has to be trained with background data, 
not with targets. 
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• Spatial feature extraction is attractive but somewhat difficult, as it requires good 
object/background separation. It is attractive from a computational viewpoint as 
the spatial feature extraction often is convolution-based and the amount of 
numerical operations per frame needed to compute the desired features is known 
beforehand. This makes spatial features suitable for hardware implementations 
close to the sensor. 

• Mine detection based solely on supervised classification cannot be recommended; 
it is risky to rely on that our target database is kept up-to-date and contains 
information about all the possible threats the system may encounter. Nevertheless, 
such a technique can run in parallel with anomaly-based detection and report 
whenever the system encounters an object that is very similar to a target with 
which it was trained. 

• The spatial resolution of the sensor must allow for having several pixels on the 
target. For detection the pixels should correspond to a resolution on the target of 
maybe about 2-3 cm, to enable the removal of small, irrelevant objects. For mine 
recognition based on spatial properties, the sensor resolution should be 
significantly better than 2 cm, probably around 5 mm or below. Even at that 
resolution, it may be difficult to determine object type. 

• A system for detection of small ground objects, like land mines, would benefit 
from including both passive and active imaging sensors, preferably operating at a 
broader range of wavelengths. This will provide 24h capabilities and could reduce 
problems caused by uneven and unpredictable illumination of the scene (e.g. 
shadows). Stable illumination is favorable from a signal processing point of view. 

• The training-based algorithms, i.e., the anomaly detection and the supervised 
approaches, have a benefit in that they can be updated under a mission, to adapt to 
the current conditions in the area of interest. Through an extra training phase, 
supervised by a skilled operator, the algorithms can be tuned to the new 
environment and the false alarm rate can be lowered while retaining the mine 
detection rate. 
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2 Introduction  
The tactical land mine detection problem is very challenging, as illustrated by the lack of 
operational systems with rapid surface coverage in the international arena. In order to 
improve mine detection and classification performance, the project Multi-Optical Mine 
Detection (MOMS) was initiated to develop and investigate new ideas for optical sensing, 
signal processing, target and background characterization (Sjökvist, et al., 2005). Within 
the project, both new enabling technologies and new system concepts are of interest.  

The MOMS project was originally formed to build a deeper knowledge of the phenomena 
and potential sensor technology to use in a future system demonstrator. The MOMS 
mission has not been to build a real system but to deliver the specification and guidelines 
for such a system. With some changes concerning the task for MOMS, the focus of the 
project is now limited to an assessment of concepts; to analyze and describe the 
possibilities and shortcomings of various sensor combinations, signal processing 
techniques and system concepts.   

Within MOMS, there have been several measurement campaigns aiming at collecting 
sensor data from realistic scenarios (e.g. see Letalick et al., 2007 and Larsson et al., 2008). 
The acquired sensor data, together with knowledge of physical properties and sensor 
characteristics, have then been used for investigating the relevance of various phenomena 
for the mine detection problem (e.g. see Letalick et al., 2006, Renhorn et al., 2008).  

From the outcome of the sensor data analysis, initial results have emerged concerning 
what sensor types and objects properties that seem reasonable to exploit in a real system. 
Moreover, internal meetings and workshops with the customer have been held to discuss 
different total concepts for MOMS, including performance and potential ways of tactical 
operation. A number of system concepts have then been formulated for further evaluation 
during 2009 (Steinvall et al., 2008). 

This scientific report is focused on the signal processing part – how to exploit the 
phenomena (e.g. spectral and spatial object properties) in order to obtain automatic mine 
detection based on sensor data. A user report will finalize the MOMS project. 

2.1 Scope of this report 
In this report we present a signal processing concept for detection of surface laid mines 
with an electro-optical system developed within the MOMS project. The report contains  

• a proposal for a signal processing framework for mine detection and recognition 

• a description of the relevant signal processing techniques  

• performance assessments of signal processing techniques in terms of detection 
and false alarms based on real sensor data acquired within the project  

• a discussion about system realization issues related to signal processing 

• conclusions and recommendations  

2.2 Limitations 
For practical reasons, this report is subject to some limitations, of which the following are 
the most significant: 

• Polarization effects, although considered within MOMS as an interesting 
phenomena candidate, have not been studied here, due to the lack of usable sensor 
data. 
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• The number of scenes and targets studied in this report are relatively limited. This 
is partly due to the difficulties associated with obtaining accurate data with the 
desired range of sensors for many different environment and many realistic 
targets, but also due to the fact that from a signal processing point of view, it was 
considered important to focus the work on certain scenes.  

2.3 Assumptions  
In order to provide a starting point for the signal processing, some assumptions have to be 
made about the targets and their relation to the scene. The main assumptions used in this 
work are:  

• The mines are surface-laid.  
This follows from the directions given for the MOMS project (Sjökvist et al., 
2005, Sections 1.3–1.5) 

• There are a number (>1) of measurement samples, e.g. pixels and 3D points, on 
the target.  
This assumption is actually a direct consequence of two other assumptions: 

o The spatial resolution of the sensors is such that targets are spatially 
resolved at the viewing distance. 
This implies that each target, when projected onto the sensor arrays, 
corresponds to several data samples (pixels, 3D points).  

o A part of the target is visible for the sensors.  
This basically means that the targets should not be occluded to a degree 
where only one or very few measurement samples are available. In the 
extreme case, a perfectly occluded object, e.g. hidden behind a tree, 
would not be detectable at all with the range of considered sensors. Still, 
however, this does not mean that there are no perfectly occluded objects 
in the data sets, but that such objects cannot be detected by any signal 
processing technique.  

• Mines are relatively rare, compared to the background.  
We can thus detect possible mines by finding pixels and objects that are unusual 
compared to what is expected to be found in the scene. 

2.4 Outline of the report 
The remainder of the report is organized as follows. Section 3 gives an overview of the 
signal processing concept used within MOMS and a short summary of each of the signal 
processing stages involved. Sections 4 through 9 contain a deeper description of each data 
analysis step, from techniques for optimal sensor design to approaches for mine 
recognition. Section 10 is devoted to a description of data and tools for performance 
assessment, involving a short description of the sensors and the scenes considered as well 
as an introduction to the Receiver Operating Characteristics (ROC) analysis used for 
quantifying performance. In Section 11 the results of applying a set of selected algorithms 
to the sensor data are shown and discussed. Section 12 contains conclusions and a 
discussion about signal processing issues in a system context. In Section 13, references to 
related work are given and finally, in Appendix A some additional results are included. 

The more system-oriented reader could focus primarily on Sections 1, 2, 3, 11 and 12, and 
if desired refer to Sections 4 through 10 for technical details.  
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3 Signal processing framework for mine 
detection and recognition 

In the MOMS project, a signal processing framework has been developed for detection 
and recognition of surface-laid mines. In this section, a condensed description of the 
framework will be given, and the interested reader is referred to following sections for 
more detailed descriptions and discussions about each separate set of functions.  

The goal of the signal processing work has been to design a framework that could help 
an operator detect and recognize potential threats (mines). In order to succeed with this, 
efficient signal processing techniques should be used that detect or high-light true targets 
while ignoring irrelevant objects and the background. Figure 2 shows a simplified 
schematic diagram of the main stages involved in the data processing. For simplicity, the 
graph emphasizes the conceptual signal processing layout and hence dependencies on 
other information than sensor data have been excluded from the diagram. Examples of 
such information are a priori information about expected target size and estimated target 
density, target model libraries, etc. that are still necessary for the signal processing. 

 
Figure 2. Schematic description of the mine detection and recognition process developed within 
MOMS.  

It should be pointed out that the scheme aims at explaining the framework on a conceptual 
level, showing how the information about the scene gradually evolves as the processing 
goes on. In practice, the order in which the different tasks are carried out may vary. For 
example, it could be that the computational resources needed for feature detection are 
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preferably applied only to certain especially interesting regions, e.g. after the anomaly 
detection. Some tasks may even be left out completely. For example, an explicit feature 
detection step is not required if the spectral data associated with the image pixels (already 
spectral features in themselves!) is enough to solve the task at hand. And obviously data 
registration is needed only when several sources of information are to be combined.  

3.1 The framework 
An initial, and critical step, is to use an efficient – preferably the optimal – sensor. Ideally, 
one would like to have a sensor that could measure “everything” very accurately and very 
quickly. In practice the problem is to find the best balance between obtaining good results 
in terms of detection and false alarm rates, and having sensors that meet operational 
requirements. In Section 4, a framework for finding the optimal sensor characteristics is 
described, based on information theory. More specifically, an approach for finding the 
near-optimal sensor configuration in terms of spectral bands and dynamic range is 
outlined. 

The data from the each sensor typically have to be subject to some individual processing 
before the actual analysis can take place. This is referred to as sensor data pre-processing. 
It is beyond the scope of this report to describe techniques for such low-level data 
processing. Instead, the reader is referred to other work for reading more about typical pre-
processing techniques, such as geometric corrections to the images due to known system 
imperfections, performing radiometric calibration (Nelsson and Nilsson, 1999), extracting 
3D data from laser waveform signals (Tolt and Larsson, 2007), enhancing image contrasts 
(Rahman et al., 2005), etc.  

Then, in order to be able to compare or combine data obtained from different 
measurements, the different data sets have to be transformed into a common coordinate 
system, so that we know the relationship between the data elements (pixels, 3D points) for 
all the sensors. This is known as data registration (Section 5).  

An important part of the signal processing concept for land-mine detection is the ability to 
extract relevant features that are (more or less) discriminative to the targets. These 
features are often spatial in nature, meaning that information from several neighbouring 
pixels is combined to form more high-level information related to shape, structure, local 
similarities, etc. Section 6 contains a brief discussion about some approaches investigated 
within MOMS for such feature extraction, e.g. detection of 3D surfaces, convexity, 
temperature contrast, etc.  

In many cases, it is quite difficult to extract all the relevant mine features that would help 
discriminate between mines and the background. Among other things, this is due to the 
great variations in object appearance and background characteristics, as well as limitations 
due to sensor noise. However, even if we are not able to extract features that are similar to 
those of the targets, we can use the fact that targets often manifest themselves in the sensor 
data by being dissimilar to the background, i.e., different from what is expected to be 
found in the scene. This can be formulated as a task called anomaly detection (Section 7). 
Its goal is to detect regions that are considered to be different compared to the background. 
A key here is hence to obtain, and maintain, an accurate model of the background as well 
as defining metrics for measuring quantifying the dissimilarity. In practice, one often 
makes use of the assumption that mines are relatively rare and implicitly that the vast 
majority of the data corresponds to background.  

In the anomaly detection step we typically do not use explicit information about particular 
characteristics of the targets; it is only the dissimilarity to the background that is measured. 
Thus, an anomaly can correspond to any type of object or structure that is different from 
the background model, be it a true target, clutter, natural objects or shadows, etc. And the 
features detected (surfaces, convex regions, etc) is typically not enough to actually make a 
decision about the existence of a mine, as it primarily gives indications. However, by 
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combining results, using more sophisticated algorithms and using more information about 
the expected nature of the target, we move on to detection of mine-like objects (Section 8). 
For example, the detected anomalies could be judged in terms of spatial and spectral 
characteristics (Section 8.1 and 8.2, respectively). For example, following the assumptions 
outlined in Section 2.3, we could ignore anomalies that correspond to single pixels. We 
could also remove anomalies that appear too frequently in the scene and thus are likely to 
be natural objects not captured by the current background model. Several sources of 
information could also be combined by performing data fusion (Section 3.2), for example 
using the EM-MML-based unsupervised clustering approach described in Section 8.3 or 
via supervised classification (Section 8.4). 

In Section 9, we describe some approaches for mine recognition. The idea here is to take 
the mine-like object (Section 8), and determine what type of mine it actually is, using a 
database with previously stored information about what characterizes the respective mine 
type. For example, such a database could consist of CAD models, high-resolution images, 
and detailed spectral characteristics of the respective target. Now, a universal and 
complete database covering the whole range of existing mine types will be very 
challenging to obtain and maintain, not to mention the difficulties of processing a huge 
object database for a real-time system. However, if there is a priori information available 
about certain expected targets, the mine recognition module could be trained to detect 
those targets, operating in parallel with the anomaly detection-based detection. Stated 
differently, we could have a top-down, or hypothesis testing, approach (“Is there any 
TMM-1 mine anywhere in this scene?) working side by side with a bottom-up approach 
(“Is there any mines in this scene, and in case there are, which kind?”).   

3.2 Data fusion 
It could well be that no single sensor alone carries enough information about the scene to 
provide reliable results, but that data obtained from several sensors correlates in a way that 
the sought-after objects can be found with greater success. This is the underlying idea in 
data fusion. Broadly speaking, the term fusion only refers to that different sources of 
information have been combined; in itself it does not specify how the information has been 
treated. Often one distinguishes between fusion performed on different levels, from signal-
level, via feature-level to decision-level. Different aspects and interpretations of these 
terms may exist (and indeed be perfectly natural) depending on the purpose of the fusion. 
In this section, we describe the data fusion perspective used within MOMS and give a 
couple of examples of it in practice. 

Signal-level fusion can be considered analogous to the hyper-spectral analysis described in 
Section 7, where the spectral bands can actually be seen as individual “sensors” whose 
data are stacked to form a multi-dimension data cube. The principle is basically the same 
for stacking data from different sensors although many other problems may then occur 
(registration, occlusion, etc).  

In signal-level fusion, no feature extraction for the individual sensors has taken place prior 
to the stage where the data from the different sensors are actually combined. Often, 
however, data from all or some of the participating sensors are pre-processed to yield more 
specific pieces of information, features. The underlying idea is simply to make the best 
possible use of each sensor. For example, “raw” laser radar data (3D points) data may be 
used to find surfaces (Section 6.1), thermal images may be used to find interesting spatial 
characteristics (Section 6.2), etc, and the results for each sensor can then be combined in a 
feature-level framework. Theoretically, feature fusion should give the best result as it 
allows for combining the features in a way that best solves the problem at hand.  

Data fusion can also be applied to the decisions made from processing data from each 
sensor individually. This is known as decision-level fusion and it leaves the option for 
making decisions based on different (possibly stand-alone) classifiers. This makes it very 
easy to include more, or other, classifiers and combine in the existing framework. 
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Decision-level fusion is also generally more attractive from a computational viewpoint 
since it does not require access to, or processing of, features from all the sensors at the 
same time. The fact that each sensor data stream is processed separately and only the final 
results for each sensor need to be communicated is advantageous for a distributed system.  

To summarize, the different types of fusion differ from each other by the level of 
processing applied prior to the stage where the data from the sensors are used together; if 
all data are considered directly it is signal-level fusion, if the data from all sensors are 
treated separately and only the results are combined it is decision-level fusion, with 
feature-level fusion somewhere in-between. In practice, the applied fusion procedure is 
often a combination of the different levels.   
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4 Optimal sensor configuration 
The goal is to design a system that conveys as much information as possible about the 
number of targets in the scene and their positions and appearances. The number of targets 
and their specific appearances are unknown. Also the terrain is previously unseen. It is 
necessary to make assumptions about the size and density of the targets. In our examples 
we assume that the targets are from centimetres to a few decimetres across the top. They 
are usually square or round but other shapes are possible. The densities of targets that are 
expected can be divided into three groups: there are no targets at all in the scene, there are 
a few targets in the scene and there are many equal or similar targets in the scene with 
distance between them ranging from metres to tenth of meters. The targets are the only 
man made objects in the scene except for a few objects which may be mistaken for targets. 

The goal of the system is to for each measurement (pixel) determine if there is a target or 
not. The goal can also be formulated as to determine the number of targets in the scene and 
their positions. If the probability of a target in each pixel is known then it is possible to 
make a probabilistic decision about whether there is target or not. The optimal decisions 
can be made if the conditional probability )|( yxp  of the presence of a target given the 
sensor data is known. 

In this section we will describe how some of the parameters of the sensor can be optimized 
using the mutual information and the ROC curve. 

4.1 An information theoretic approach 
Target discrimination has similarities with communication though in the target 
discrimination case the deployer of the targets does not wish that the positions of the 
targets be known to the discriminator. However the positions of the targets are information 
that is disclosed by emitted and reflected radiation.  

Information theory is about theoretical limits to communication where the system is 
described by stochastic models. Entropy is a measure of the amount of information coming 
from a stochastic source and the entropy has direct implications on the number of bits 
needed to encode the information. Mutual information is a measure of the mutual relation 
between two stochastic variables. The mutual information is interesting when there is 
some dependence between the two stochastic variables. The mutual information between 
two variables can be interpreted as the amount of information that one of them convey 
about the other. In this context it may be appropriate to remind that the measure is 
statistical and the information in a certain context may have a different value and which 
will affect the decision. For example, in the mine discrimination case it usually has much 
more severe consequences to miss a mine than to make false detection of a mine. The 
consequences are often called costs. Hence to make the decision that will minimize the 
costs these has to be known together with the probabilities of making erroneous and 
correct decision. In this work will only consider the probabilities of correct and erroneous 
decision because when these probabilities are known it is possible to weigh them with the 
costs to get the decision that minimize the average expected cost. 

Figure 3 shows a model of target discrimination from an information theoretic point of 
view. The targets are deployed at specific positions in the scene which may have been 
chosen deterministically or stochastically. In the model (Figure 3) the positions are 
represented by the stochastic variable X . The targets are deployed in an environment 
which emits electro-optical signals represented in the model by the stochastic variable Z . 
The sensor measures the radiation and gives some values as output. In the model the 
measurements are represented by the stochastic variable Y . The detector is a function that 
estimates the presence or absence of a target at a given position based on the sensor output 
and possibly previous sensor data. The estimated presence or absence of a target or the 
positions of the targets are represented by the stochastic variable X

~
. The challenge is to 
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construct a system where the estimated positions X
~

 are as close as possible to the true 
positions X . It is also interesting to find out any theoretical limits to how much 
information X

~
 may give about the true positions X . 

 
Figure 3. An information theoretic model of target discrimination. 

The occurrence of a target and the sensor data in a specific pixel is unknown before the 
measurement. However it is likely that some statistical knowledge is available. Thus the 
parts in the system will be modelled with probability distributions. Let X  be a stochastic 
variable with two outcomes 0 for background and 1 for target and with the probability 
distribution )(xp . The sensor and the environment can be described by a conditional 
probability distribution )|( xyp . The detector is a deterministic system that is best 
described by a function. Y  is a stochastic variable describing the sensor output which in 
the case of hyperspectral images has many dimensions. In our case the instrument presents 
integer valued measurements. The outcome is described by the probability distribution 

)(yp . However it is difficult to estimate )(yp  because the space is too large compared to 
the number of possible values. We have used Gaussian mixture models which have fewer 
variables and are possible to estimate with the available number of data points. 

A similar model which we have not used is to let X  describe the position of the targets 
instead of binary variable describing the presence or absence of a target for each pixel.  

The entropy )(XH  is the a priori uncertainty if the point is a target or background. The 
mutual information how much information the sensor data Y  gives about the presence of a 
target and ),()()|( YXIXHYXH −=  which is the remaining uncertainty after the sensor 
data has been considered. The remaining uncertainty )|( YXH  tells how many bits will 
be needed to encode the presence of a target given that the sensor data is known. The 
conditional entropy )|( YXH  can also be interpreted as the number of possible decisions 
that cannot excluded.  

Mutual information is defined as 

∑=
),(

2 )
)()(

),(
(log),(),(

yx
ypxp

yxp
yxpYXI  

and can be written as )|()(),( YXHXHYXI −=  which should be interpreted as the 

difference between the amount of information in X  and the information in X  given that 
the sensor data Y  is known. The amount of information is the least number of bits needed 
to encode the data so that it can be reconstructed with an arbitrarily small probability of 
error. The amount of information is the average limit when long sequences of data are 

coded jointly. If each data is assigned a code word with the length ))((log2 xp−  then these 

code words will give a mean code word length. The chosen sequences will roughly have 
equal probability. In the case of mutual information for target detection the mutual 
information show how many bits of information that the sensor data convey about the 
presence of a target. Assume that there is a target in a sensor image with 1000×500 pixels 
corresponding to 10x5 meters on the ground. Also assume that the location of the target 
needs to be determined by decimetre precision. Then there are 100x50 possible positions 
and they all have the same probability then around 12 bits of data is needed to describe the 
position. The information of primary interest is very limited. However, probably sensor 
data need to be used by the operator to determine if an indication is a target or not. Thus it 
is not possible to keep the amount of data down to this lower limit. 

Deployment Sensor Detector 

X YZ X
~

Environment 

)|( xzp )|( zyp )(yg
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Mutual information can be used when it is possible to estimate the probability distributions 
and when it is possible to compute the value. We have used the measure to evaluate 
different set ups and different parameter values. We have not found any ways to estimate 
parameters that maximizes the mutual information. 

The ROC curve can also be used to compare different configurations. The curve shows the 
probability of detection and the probability of false alarm as a function of a decision 
parameter. If the decision variable has a natural order then the probabilities can be 
obtained by choosing the decision level.  

If the sensor variable does not have a natural order than the decision function may be too 
complex to be realised. If the decision for each sensor value is completely different from 
other values then the description of the decision function may be too complicated to be 
realised.  

We show two examples to illustrate the relation between the mutual information between 
two variables and the optimal decision based on each sample independently from other 
samples. In the first example it is optimal to guess that there is no target present no matter 
what the sensor data Y is and in the second example it is optimal to guess different for the 
two Y values.  

Table 1. Example 1: A joint probability distribution ),( yxp  

Y   ),( yxp  
0 1  

0 0.75 0.05 0.8 X  
1 0.16 0.04 0.2 

  0.91 0.09  
 

In example 1 the X variable describes the occurrence of a target or not and the Y variable 
describe the sensor output which in this case only has two values. Table 1 shows the joint 
probability distribution between the two variables. In Example 1 the mutual information 
I(X, Y) = 0.0223. The grey cells show the decision for each sensor output with the largest 
probability of being correct. The probability of error pe = 0.25. Taking decisions pixel by 
pixel will not give any information since the decision will always be 0. 

Table 2. Example 2: A joint probability distribution ),( yxp . 

Y  p(x,y) 
0 1  

0 0.76 0.04 0.8 X 
1 0.15 0.05 0.2 

  0.91 0.09  
 

In Example 2 the mutual information 0451.0),( =YXI . The grey cells show the decision 
for each sensor output with the largest probability of being correct. The probability of 
error 19.0=ep . In this case the decision will give some information since the decisions 
are different.  

Even if there is mutual information between sensor data and data source it is not always 
the case that this information can be retrieved. However it is possible to get information 
out of the situation in Example 1 by making simultaneous decisions. Consider a block of n 
pixels. For each block of sensor pixels the most likely decision will have a small 
probability. However there will be a relatively small set of possibilities that will have a 
probability that is close to one. There are many possible decisions that can be ruled out.  

The situation can be illustrated by a binary variable with probabilities 9.0)0( ==xp  and 
1.0)1( ==Xp . Each variable is drawn independently from the others. Consider the 

probability of blocks of 10=n  values. The probability of the most probable block is 
0.910=0.35 and decrease as n increases. However the eleven most likely blocks will have 
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the probability 0.910 + 10×0.99×0.1 = 0.74 and yet only 11/1024 = 0.011 of the total 
number of blocks. 

The mutual information may not be enough to point out a certain position as a possible 
target with high probability of being correct but many positions may be ruled out as 
having a target with high probability of being a correct decision. It may be relevant to rule 
out positions if there are only a few remaining positions that possible could have a target.  
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5 Sensor data registration 
In order to be able to benefit from using data acquired with multiple sensors and/or from 
different positions, the data have to be brought from each sensor’s own coordinate system 
into a common coordinate system. This is called data registration. Ideally, we would like 
to arrive at a situation where we know exactly, for each sensor, on what pixel a certain 
position in the real world is mapped. That would allow us to basically overlay the data and 
have all individual sensors effectively function as one. Then we would know that data 
from all the different sensors would coincide even for the smallest mine. In reality, 
however, such a situation rarely occurs. The sensors are placed at a certain, albeit small, 
distance from each other and unless the scene under consideration is planar, the sensors 
will not observe exactly the same thing; what is perfectly visible from the position of one 
sensor, may be occluded in another sensor’s view. Now, even if the sensors would view 
exactly the same part of the scene, irregularities and distortion in the image forming 
elements (lenses, detector array etc) add to the complexity of the problem. Obviously, the 
ideal sensor in this respect would be one where the same optical aperture is used for all 
sensor modes and where there is no, or at least known, distortion.  

In MOMS, a couple of registration techniques have been considered and tested. One 
option is to use the laser data as reference data and project it onto the image planes of the 
respective sensors (Chan, 2006). In that way, since the laser gives us 3D information (x,y,z 
in meters), the problem with different perspectives due to the scene deviating from a plane 
is reduced. However, it requires a complete set of high-resolution, accurate 3D scene data, 
which is difficult to obtain in practice. This is due to a number of factors. First, laser points 
may be missing (dropouts) in regions where the laser beam hits mirror-like (e.g. wet) 
surfaces or surfaces with very low reflectance. Second, the range resolution of most laser 
radar systems is very uncertain in cluttered regions (e.g. bushes, grass, and sprigs) and 
around object edges. Another aspect is that registration requiring high-density and accurate 
3D laser data for large areas may not be feasible in a practice for a reconnaissance system, 
due to the amount of data and calculations.  

Another, more straightforward and realistic, approach to the registration problem is to 
apply standard 2D image transformations between images. This approach is quite suitable 
for planar scenes, an obvious shortcoming being that it cannot handle occlusion 
phenomena correctly. For most of the scenes studied within MOMS the planar 
approximation often made sense, as most of the upright objects, which causes significant 
occlusion problems, were reference targets, trees and some laboratory equipment. Whether 
those objects are perfectly overlaid in the different sensor images and hence whether or not 
they can be analyzed on a signal-level was not critical, as they are no interesting targets 
per se. The important thing to notice is that a projective transform was often good enough 
to produce significant overlap of the target objects (mines) between the sensors. The 
projective transform is defined as: 
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where ],[ yx  and ]ˆ,ˆ[ yx  are the original and new image coordinates, respectively, and the 
shi '  are the transformation parameters, estimated in Matlab through optimization given a 

number of control point pairs. In this work, the control point pairs were selected manually 
to ensure that the points were placed in the right locations. See Figure 4 for an example of 
applying a projective transformation. 

For most objects, the registration was adequate in the sense that after transformation, data 
from the different sensors overlapped significantly on most targets. A brief inspection of 
the registration result was often satisfactory to determine for which, if any, objects in the 
scene data fusion attempts would not be possible.  
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Figure 4. Top row: Original images, multi-spectral (left) and IR (right). Bottom row: Transformed IR 
image (left) and a pseudo-colored image showing the original and transformed images overlaid 
(right). 

In MOMS, the sensors used for data collection were often kept fixed relative to each other 
and the range to the scene is measured with a laser, in order to facilitate the registration. In 
a system, however, with distributed sensors and/or asynchronous data collection, it would 
obviously be a bit problematic to rely on human involvement in the registration step. 
Methods for automatic control point detection and registration quality assessment will 
probably be needed. See (Svensson et al., 2008) for a discussion.  
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6 Feature extraction 
In this section we describe some techniques investigated within MOMS to extract certain, 
primarily spatial, features from the data. The idea is to process the raw sensor data to more 
robust features that are easier to use in detection and classification algorithms. 

6.1 3D surfaces in laser radar data 
In environments with lots of irregular structures (e.g. bushes, grass and sprigs) human-
made objects, such as mines, are often among the most regular and smooth structures in 
the scene. Typically these objects tend to be more “surface-like” than the background. 3D 
data, e.g. acquired with ladar sensors, can be used to enhance these surfaces. Surface 
detection can be performed in many different ways. The technique presented in 
(Andersson and Tolt, 2007) was originally designed for detecting vehicles in forest 
environments but could in principle be used for detecting land-mines. The method is based 
on partitioning the point data set into a set of voxels in which the degree of surfaceness is 
found through Principal Components Analysis (PCA). This approach is quite fast, which is 
clearly advantageous for object detection in large areas. Another surface detection option 
is local surface-fitting (Westberg et al., 2008), which is more accurate but considerably 
more computationally demanding. Therefore such a technique is likely to be more suited 
for detailed analysis of already identified suspicious regions (e.g. anomalies). See an 
example in Figure 5.  

Common for all 3D surface detection techniques is that the performance is governed by 
the noise level relative to the size of the sought-after objects. If the noise is comparable to 
the size of the object (as is the case with some of the mines measured with the ILRIS 
sensor), 3D surface matching and shape detection will be more difficult.  

   

Figure 5. This mine is difficult to detect directly in the laser intensity domain (left), but by computing a 
surface score in 3D, it suddenly stands out clearly from the background (right). 

6.2 Spatial features in IR images 
Within MOMS a number of spatial operators aiming at capturing certain object 
characteristics have been tested on thermal IR images.  

- The curvature operator responds strongly to circular and elliptical objects. 

- The convexity operator is designed to find convex shaped objects. If the grayscale 
values in the IR image are viewed as range estimates, objects that are cooler 
around the edge appear convex. 

- The blob detector finds segments of roughly uniform temperature. 

- The Laplace operator detects regions of a certain size corresponding to local 
temperature extrema. 
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Some examples are shown in Figure 6. The principal advantage of using this kind of 
operators is that they allow for finding objects based on shape, rather than the magnitude 
of the difference in (apparent) temperature. On the other hand, a common problem with 
such operators is that they often fail to produce satisfactory results in complex 
environments. Many objects, typically smaller ones, are often very difficult to detect due 
to the fact that there are often natural variations in the background that are 
indistinguishable from those of mines. Refer to (Sjökvist et al., 2005 and Letalick et al., 
2006) for more discussions and examples of this kind of operators. 

  
(a) (b) 

  
(c) (d) 

Figure 6. Examples of Thermal IR (LWIR) image analysis. The scene contains a gravel road on which 
a number of mines were put (the small bright blobs). (a) The result after applying the convexity 
operator. (b) A blob detector followed by segmentation and boundary tracing applied to the TIR 
image. “Hot” areas (white) represent the mines and other warm areas. Cold areas (black) are mostly 
shadows but may also represent other cold spots on the ground. Note that a shadow near a hot area 
also indicates the presence of a three-dimensional object, not only a cold area on the ground. (c) The 
result of applying a Laplace operator. (b) The result after having applied a curvature operator  

Even in the quite uncluttered scene in Figure 6 (mines placed in the open on a gravel 
road), efficient detection with a low false alarm rate is difficult. In this example, the 
Laplace operator (that basically finds local temperature extremes) performs best but still 
misses a couple of objects even after careful parameter tuning. In more cluttered 
environments, the task is of course more difficult. Robust extraction of this kind of 
features requires that the contrast between the target and the background is significant 
compared to the natural variations. Thus, in order to be able to judge whether a particular 
feature is expected to be useful for helping discriminate between target and background, 
we must gather knowledge about the background. Figure 7 shows an example where IR 
images have been collected regularly (one image per minute) during several hours. It 
illustrates that some objects stand out from the background more or less regardless of the 
time of the day at which the image was acquired. This implies that applying a hot spot 
detector, such as a Laplace operator (of adequate size) would be very likely to pick out 
that target. It can generally be noticed that the possibility to detect other objects typically 
depends strongly on when the measurement was taken. Hence, such contrast statistics 
serve as a useful tool for estimating what performance could be obtained for a certain 
combination of target, scene and weather conditions. It should be pointed out that even if 
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the operators cannot be used for detection of suspicious-looking objects, they could still 
potentially be used for characterization of already detected objects.   

 

 

 

Figure 7. LWIR contrast measurements. The figure shows an example scene containing a number of 
mines and other objects. Images were taken with a LWIR camera once every minute, from about 9 
am to about 2:30 pm. Each of the four plots shows the results for a particular object. Images were first 
manually segmented into object and background masks. The green curve shows the contrast 
between the object and the background pixels around it. The red curves correspond to mean contrast 
±1 standard deviation in the background (computed with the same masks as the object) and thus 
depict the natural contrast variations in the background. The blue curves show the maximum and 
minimum contrast in the background region, respectively. 
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7 Anomaly detection  
Following the assumptions discussed in Section 2.3, we expect mines to be different in 
some respect from the rest of the scene and also quite rare. The purpose of anomaly 
detection is to identify those objects (samples, pixels) that differ significantly from the 
background, without actually using a priori explicit knowledge about the signature or 
characteristics of the sought-after targets, other than it constitutes only a small portion of 
the dataset. The role of the anomaly detector is thus to identify “hot spots” on which 
subsequent analysis can be performed. 

The background can be described by the probability distribution )0|( =xyp  and the 
targets can be described by )1|( =xyp . To be able to evaluate the system also )0( =xp  
or )1( =xp  has to be known or assumed. Anomaly detection implies that )0|( =xyp  is 
known while )1|( =xyp  is unknown. The probability distribution )0|( =xyp  describing 
the background is estimated from measurements or in some cases it may be known from 
other sources.  

The decision limit has to be drawn based on this conditional probability distribution only. 
The system will be evaluated with some examples which hopefully are typical otherwise 
the limit has to be drawn based on the acceptable rate of false alarms.  

7.1 Choosing background model  
First, a background model has to be created. Depending on the amount of knowledge we 
have of the expected characteristics of the scene, some models are more appropriate than 
others. The models themselves can then be chosen to be global or local. A global model 
means that one model is created for the entire scene, whereas a local model means that 
different models are defined for different regions in the image, possibly creating a new 
model for every pixel under consideration. Both approaches have their own merits and 
disadvantages in terms of performance on different kinds of scenes, computational 
complexity, etc.  

There are many models that can be used to describe the background. In this work we have 
considered Gaussian mixture model. The parameters to be decided are the number of 
components and the number of iterations. When modelling hyperspectral data which are 
multidimensional there are many parameters in the model which means that many pixels 
are needed to estimate the parameters. Thus we have used an entire image as background, 
excluding manually segmented targets, and other objects that do no belong in the scene. 
We have chosen to have 15 components and 25 iterations which is enough for parameters 
to converge. Thus it qualifies as a global model. A local model would only consider a 
small neighbourhood around the each pixel.  

If the hyperspectral data has too many dimensions it seems that the model does not 
converge in reasonable number of iterations. Thus we have restricted the tests to 30 bands 
instead of the 240 available bands from our sensor. With only thirty bands the model 
converges in 25 iterations and the model describes the background well enough so that 
many of the targets appear as anomalies.  

A possible problem is that if a target that is different from the background is in the training 
data it seems that the model adapt to include the target and thus the target will not appear 
as an anomaly as expected. However measurement of the mutual information between the 
classification of the image by the closest component of the Gaussian mixture of each pixel 
and the target mask reveal that there is information about the targets in the model. 
However at this point we have no way of dealing with this information. Thus we have 
restricted out tests to cases where the model is adapted only to background data without 
targets. 
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7.2 Anomaly detection using thermal history  
Since the IR signature of the target relies on the thermal history, the results are very 
weather dependent, as discussed in Section 6.2, which makes it very difficult to detect 
mines using only a single image. However, if the thermal history is recorded, improved 
detection probabilities can be obtained. This type of temporal analysis requires that the 
scene is measured a number of times with a certain time in between (typically at least 
several minutes). An example of using a scene sequence is shown below. In Figure 8, a 
sequence of three recordings is pseudo-colour coded. Differences in colour are a 
manifestation of differences in thermal history. The 25 largest anomalies detected in 
Figure 8 are detected. These anomalies are clustered according to the thermal variations, 
shown in Figure 9 using colour coded labels.  

1

2 3 4 5

1

2 3 4 5

 

Figure 8. Three images from three different times are used in order to illustrate the thermal variation. 
For visualization purposes the images have been combined into a pseudo-colored RGB image.  

 

Figure 9. Detection of 25 objects in the thermal sequence illustrated in Figure 8. Detection results 
have subsequently been clustered to show spectral similarities between objects. 

As the typical mine detection scenarios mainly considered within MOMS have not 
included repeated measurements over a particular region, this type of analysis has not been 
a major focus in this work. Instead, for results and discussions on temporal analysis for 
mine detection using IR data, refer to (Linderhed et al., 2005).  
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8 Detection of mine-like objects 
So far, we have discussed techniques for finding indications of there being some kind of 
unexpected object in the scene, e.g. by looking for spectral anomalies. In this section, we 
describe a number of methods for going a step further in the processing chain, to analyze 
each of the anomalies and to obtain detections of mine-like objects. Typically this involves 
using more knowledge or assumptions about the expected objects, e.g. size, shape and 
spectral properties, as well as about system properties, e.g. sensor resolution and viewing 
distance. 

In the process of determining which of the anomaly pixels that can be grouped to mine-
like objects, two different approaches are used. The first concerns spatial and spectral 
processing of the anomaly detections, to detect groups of co-located pixels that form an 
object. In the other approach, the anomaly detections are used to cue fusion-based analysis 
methods. Both feature- and decision-level fusion has been investigated. 

8.1 Spatial post-processing of anomalies 
The anomaly detection (Section 7) will return pixels that are anomalous. Some of the 
pixels are placed close to other anomalous pixels, while other is more or less solitary. In 
this analysis, all pixels are analyzed spatially; pixels that are close to other pixels are 
considered a pixel set. If the pixel set is of the correct dimensions, compared to objects 
that are we are looking for, it will be saved. Singular pixels and pixel sets that are too 
small or too large to possibly be a mine-like are disregarded. By this post-processing a lot 
of false detections can be removed.  

8.2 Spectral post-processing of anomalies 
The anomaly detection discussed in Section 7 results in a number of pixels that are 
anomalous, according to the background model and the particular distance measure used. 
However, the fact that a pixel is non-background obviously does not necessarily make it a 
target. In (Renhorn et al., 2008) some approaches for spectral analysis of detected 
anomalies were presented and exemplified. It was demonstrated that the detected 
anomalies can be clustered into groups of similar spectral characteristics. In this section, 
this idea is discussed and developed further.   

To illustrate the approach, consider the example shown in Figure 10. Here, the 
measurements of mines in backgrounds were performed under quite unfavourable 
conditions, with low light levels and substantial shadowing effects. A hyperspectral 
anomaly detection was first carried out. Then, by identifying anomalies having very 
similar spectral properties (spectrum distribution), groups of similar objects can be 
defined. This information gives an estimate of the frequency with which each object type 
appears in the terrain. Based on assumptions or a priori knowledge about the expected 
target density in the area, the chances of making the correct decisions are likely to 
increase. Anomalies that are considered irrelevant after such considerations can be fed 
back into the background model.  
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Figure 10. Top: An example scene. Bottom: Detected anomalies. The colour corresponds to the 
estimated spectral similarity between anomalies. Note that most of the mines are found to belong to 
the same cluster, i.e. have similar spectral characteristics (“colour”). The difference in perspective 
between the images is due to different positions and orientations of the visual and hyperspectral 
sensor during the measurements. 

8.3 Feature-level fusion with the EM-MML algorithm  
This technique has been developed at FOI (Westberg et al., 2008). The purpose is to 
segment the sensor data into background and possible targets, i.e. mine-like objects. This 
is done by fusing data from the available sensors and then modelling the data as a number 
of Gaussian components, resulting in a so called Gaussian Mixture Model (GMM). Some 
GMM will describe the mine-like targets and some will describe the background. The 
method uses the EM algorithm to automatically find the optimal GMM with respect to the 
Minimum Message Length (MML) criterion. The purpose of the MML criterion is to 
prevent an over-fitting of the model to the available data. The method also involves a 
number of measures for comparing the segmentation results obtained with different feature 
sets, as well as for determining whether the extracted segments are mine-like objects (e.g. 
have adequate physical size).  

The data consists of features extracted from different sensor data, and so far ladar and IR 
have been combined with quite promising results. The features are first ranked according a 
performance criterion using the various clustering measures mentioned above, and then 
added (in this order) to the EM-MML framework one by one, as long as the clustering 
quality keeps improving. The method has been tested on a dataset in which target objects 
have been manually segmented, and thus provides a way of judging the performance 
quantitatively. The initial results obtained with this method can be summarized as follows: 

• Blind segmentation of data works rather well, not only in the sense that the quality is 
good when judged by the eye, but also when compared to ground truth. 
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• An efficient criterion for computer aided selection is needed; the most natural choice 
of true class could probably be based on analyzing segments with respect to number of 
samples, shape and size, e.g. using a spatial scatter measure. 

 
The approach have been tested on 14 scenes, where 8 contained a mine, an IED or a 
ammunition box and 6 contained a rock, branches or just ground. All mines were 
segmented, but not always into one single segment and the false objects were not detected. 
An post-processing of the segments have to added, to get clear segments of mine-like 
objects. 

The processing framework is iterative in that the solution gradually converges to the final 
state, and is thus quite computationally demanding. This makes it feasible primarily for 
relatively small datasets, e.g. as a tool for more in-depth analysis of already detected re-
gions of interest (anomalies). Moreover, the method is designed to combine data from 
different sensors, and hence requires well-registered sensor data. 

 

Figure 11. An illustration of the GMM data segmentation. The two images in the upper-left corner 
show the mine (visual camera data and ladar intensity, respectively). The plot below illustrates the 
clustering in the feature space that, in this example, resulted in four clusters. The ladar data points 
belonging to each of these clusters are shown in the plots to the right.  

8.4 Feature-level fusion with an SVM classifier 
In this section, we describe a technique for combining information from different sensors 
through supervised classification based on a Support Vector Machine (SVM). We start 
with a short summary of the SVM. More information on this subject can be found in 
(Cristianini and Shawe-Taylor, 2000). 

The SVM is one among many types of classifiers that represents the classification library 
by a compact model (decision boundaries). A useful property of the SVM is that it 
maximizes the margin between classes, which leads to increased robustness against 
changes in the features. This, in turn, leads to a system with robust and generic properties. 
In practice, the SVM has means to adapt to the variations in data that are due to different 
appearance, such as aspect angle, slight changes in illumination, etc. This adaptation is 
facilitated by kernel functions that map input data (or features) to a new feature space. In 
this feature space, nonlinear decision boundaries are represented by simple hyper planes.  

The optimal set of support vectors can take some time to compute, particularly for large 
libraries in high dimensions. Once the support vectors are computed, however, the classi-
fication is relatively easy to obtain. When the data is classified, also the classification 
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probability needed for efficient data fusion is estimated. These class posterior probabili-
ties Pp(Xi) are assumed available as an output of the classification program (SVM) – one 
per class, p = 1, 2, …, q (number of classes). A confident classification requires that one 
class posterior probability is significantly larger than all others.  

8.5 Decision-level fusion  
Decision-level fusion can be done in many ways, following a number of different 
frameworks, e.g. probabilistic (Bayesian approach), fuzzy or Dempster-Shafer fusion. 
Within MOMS, we have investigated a Bayesian approach. Starting with a set of class 
posterior probabilities P(p|Xik) of having class p given data Xik from object i and sensor k, 
we may combine this information in a number of  ways, forming for example weighted 
mean, median or product over all sensors, then decide for the class with greatest resulting 
P. The weighted mean approach offers a way to express the degree to which we should 
trust the results for each sensor.  The weights could then contain the estimated probability 
that a mine has been detected, as well as factors corresponding to the estimated reliability 
of each sensor under the particular circumstances. For example, referring to the IR contrast 
measurements in Section 6.2, a priori information or estimates concerning the expected 
background variations at a particular time of the day could be taken into account in this 
manner. Having many sensors, the median, resembling a voting rule, should be most 
robust against accidental sensor failures. The product rule, relating to Bayes’ formula on 
conditional probability, is most sensitive to variations in participating probabilities and 
should therefore be constrained by adding a safe lower limit to the factors, like P+0.1. 

Figure 12 shows the results of an initial test of the decision-level fusion concept, obtained 
with data from a scene containing 26 mines as test objects. For each of the four available 
sensors an SVM-based classification was performed, thus resulting in four individual 
classification outputs. A number of different ways of combining the respective outputs 
were tested (e.g. product and median operators) and the results, although very limited, 
indicate that decision-level fusion can improve the quality in the final detection result, 
compared to using the sensors individually. More work on decision-level fusion aspects is 
planned for the remainder of the MOMS project. 

 

Figure 12. ROC curve for binary (mine) detection using decision-level fusion of results obtained 
through SVM-based classification of data from four different sensors. Here very limited attention 
should be paid to the actual values for the false alarm rate; they were computed using a ground truth 
mask that did not cover the entire objects. Hence detected pixels outside this mask were interpreted 
as false alarms, even though they were really on the target. The reason for this is that the masks 
were used for training the classifiers and thus were made small to assure that no background was 
included. 
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9 Mine recognition  
Up to this point, we have mostly focused on techniques for judging whether there is 
probable mine present or not. Now we turn to the problem of analyzing each detected mine 
(-like object) in order to try to identify what kind of mine it actually is. 

9.1 Model-based 3D recognition   
The goal in model-based 3D recognition is to determine whether one (or several) of a 
given number of target models are present in the scene. Some approaches use local shape 
descriptors. Such approaches have an advantage in that only small parts of the object may 
suffice to perform a successful recognition. In cluttered environment this is indeed a 
desirable property. However, for noisy or sparse data such techniques may have problems 
as the robustness of the estimated shape features deteriorates. A popular technique is the 
so-called Spin Image approach (Johnson, 1997). 

There are also techniques that use the entire shape of the object in the matching process. 
One advantage is that no local shape descriptors have to be computed, which makes them 
more suitable for noisy data. The Data-Aligned Rigidity-Constrained Exhaustive Search 
(DARCES) technique (Chen, 1999) is based on an exhaustive search among the possible 
positions and orientations of a particular object in the scene. In theory, the exhaustive 
search should make it possible to find a particular target even if parts of it are occluded. 
The search space is limited by imposing spatial constraints in the matching process but it 
still is a very time-consuming technique.  

In MOMS it has been found that reliable land-mine matching based on techniques like the 
ones mentioned above will need 3D measurements with accuracy beyond what is possible 
to obtain today with most operational systems. Instead, a 3D target recognition technique 
developed at FOI and originally intended for vehicle recognition (Grönwall et al., 2006) 
was considered the most successful. It involves estimating the size and orientation of a 
segmented object through simple geometrical assumptions and partitioning of the object 
into geometrical primitives (rectangles). The size and orientation estimates are then used 
to initialize a Least-Squares fitting procedure with a CAD model. This technique is 
different in nature from those discussed above in that it requires that the scene is 
segmented into object and background before the matching can be performed. While 
target/background segmentation directly in noisy 3D data from cluttered scenes is quite 
error-prone, we should use the fact that there are other sensors that can be used to detect 
possible targets, i.e., provide the first steps of target/background segmentation. This means 
that 3D-matching could then be applied to those segments. Figure 13 and Figure 14 
illustrate the techniques. The first step is to estimate the dimensions of the object, Figure 
13, by fitting a rectangle to the object data. The dimension estimates are used to select 
library models of corresponding dimensions. This means that only library models of 
relevant size are selected for CAD model matching, this reduces the number of matches 
that needs to be performed. In the second step the object data are fitted to the CAD model 
by iterative Least-Squares fitting. Examples of matching results are shown in Figure 14. 
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Figure 13. Image of a TMRP6 mine (left) and result of dimension estimation of the detected mine 
(right). Axes in meters. 
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Figure 14. Example of match with CAD models of AT-2 (left), TMRP-6 (middle) and AT-47b (right). 
Axes in meters. 

9.2 LBP  
The LBP (Local Binary Pattern) operator was introduced in (Ojala, 1996) as a technique 
for capturing local shape in 2D images. The local binary pattern at a certain pixel is 
obtained by comparing the intensity of this pixel with those of its neighbours. 
Representing every pair-wise comparison between a certain pixel and a neighbour with 
one bit means that we can represent the shape within a 3×3 pixel neighbourhood with eight 
bits (eight pair-wise comparisons), which then can be stored as a 8-bit integer value (0-
255). See Figure 15 for an example.  
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Figure 15. Top row: Example of an LBP calculation. Bottom row:  Example of texture primitives 
detected by LBP, (white circles represent ones and black circles zeros). 
 

By computing the LBP at a large number of (possibly all) pixels corresponding to the 
object under study, we can create a histogram for all those 8-bit LBP integers with each 
bin in the histogram corresponding to a particular spatial pattern, a micro-pattern. Hence, 
the shape of the histogram (i.e., the number of times each micro-pattern occurs) carries 
information about the texture of the object. Recognition of a certain object is then typically 
performed in a nearest-neighbour fashion by finding the stored prototype LBP 
representation that is most similar to the object under study. In order to increase the 
robustness against occlusion, noise, etc, the object is typically divided into smaller pieces, 
each with its own LPB histogram. Since its introduction, the LPB concept has been 
extended, for example to consider different neighbourhood sizes (Ojala et al., 2002). An 
example is shown in Figure 16. 

 
Figure 16. Histogram of LBP features. Top-left: Landmine”41/47”, Top-right: histogram over LBP 
features of “41/47”. Bottom-left: Landmine”TMM-1”, Bottom-right: histogram over LBP features of 
“TMM-1”. 

9.3 SIFT  
The Scale-Invariant Feature Transform (SIFT) was introduced in (Lowe 1999). The idea 
behind SIFT is to describe local shape with localized image gradient histograms. Since 
SIFT is only applied locally, it is inherently designed for robustness against occlusion, 
which is indeed a relevant aspect when detecting mines in cluttered environments.  

First, a set of key points is detected by smoothing the image on different scales and finding 
local maxima in the derivative of the image with respect to scale and position. The 
gradients within a number of regions within the neighbourhood of each key point are 
computed and stored as a gradient histogram. This captures the intensity variations (the 
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pattern) at the key point. At each key point, the dominant direction is estimated, that 
allows for normalizing the features according to orientation, thus producing orientation 
invariance. A normalization of the magnitude of the histogram bins also provides intensity 
invariance. 

Again, retrieving the correct match from a database of prototype objects is performed 
through nearest-neighbour matching, where the object under study is tested to each of the 
objects in the database. In this comparison, pair-wise correspondences between SIFT 
features are first established. Since some of these correspondence pairs may be wrong, 
only those matching pairs that display geometrical consistency are kept and used for 
identifying the object.  

9.4 Shape contexts  
Assume that we have a set of points located on prominent features of the object, e.g., 
edges, corners or other types of interest points. The shape context (Belongie et al., 2002) 
at a particular point captures the distribution of the remaining points relative to it. The 
rationale is that two similar shapes will have similar shape contexts. By solving an optimal 
point-to-point assignment problem, a transformation is estimated that aligns the two 
similar shapes. A dissimilarity measure between the shapes is then computed. As with 
LBP above, recognition is performed by finding the stored prototype object whose 
descriptor is most similar to the object under study (nearest neighbour). 

9.5 Data fusion for mine recognition 
Analogous to the mine detection problem we can combine different sources of information 
in order to increase the chance of recognizing the mine type.  

9.5.1 Feature-level fusion with a SVM classifier 

The SVM-based mine recognition applied within MOMS is very similar to the SVM-
based mine detection discussed in Section 8.4. The difference is that before, we had a two-
class problem (mine/not mine) whereas we now have a multi-class problem, where each 
class corresponds to a particular type of mine. Where one hyper plane was enough for the 
two-class problem, a whole set of hyper planes is now needed in the multi-class case, for 
dividing the feature space into, say, r regions. In practice, this can be done by using a 
single hyper plane for every distinct class pair, together with a strategy to combine them 
into a classification rule. The class library is thus represented by r(r-1)/2 support vectors 
of the same dimension as the data plus equally many scalar bias terms. Alternatively, a 
number of classifiers can be constructed, each of which separates one particular class from 
the union of all other classes.  
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10  Performance assessment 
In this section we briefly describe the data used for performance assessment and the 
sensors used for obtaining the data. Moreover we give a short explanation of two common 
ways of presenting the performance: the Receiver Operator Characteristics (ROC) and the 
confusion matrix. 

10.1 Sensor data for assessment 
In order to acquire real sensor data of mines in different terrain types, a number of 
experiments have been carried out within MOMS. Data have been collected for a number 
of scenarios, during different seasons, at different times of the day and using different 
sensors to obtain an adequate data set for developing and evaluating mine detection 
methods. The results presented in this report mainly stem from four environments 

1. Forest 

2. Road and road embankment 

3. Clear-cut area of forest 

4. Grass field 

The data acquisition experiments for the first three environments were all set up in the 
facilities of the Swedish Demining Center (SWEDEC) and were carried out during 
different seasons. The grass field experiments were carried out in a temporary test site at 
FOI of about 15×15 m2 in which several dummy mines and clutter objects were deployed. 
From the available data, a number of assessment data sets were defined, see Table 3 
below. 

Table 3. Short description of the datasets used for evaluation.  

Dataset Season Time of day Type of scene Note 

A Apr Morning Sprigs, forest  

B Apr Afternoon Sprigs, forest Same scene as A, but 
changed view 

C Apr Noon Clear-cut forest  

D Apr Afternoon Clear-cut forest Same scene as C, but 
changed view 

E Apr Noon Road and 
embankment 

 

F Oct Afternoon Clear-cut forest  

G Oct Afternoon Road and 
embankment 

 

H Mar Morning Grass field  

I Mar Noon Grass field   
 

10.1.1 Ground truth – object masks and annotation 

In order to enable quantitative performance analysis, object masks were created for the 
sensor images in the datasets. Wherever possible, the masks marked the visible portion of 
each object in the scene. In some cases, the exact location of some objects could not be 
determined – they were simply not discernable – which then only allowed for marking 
their approximate location. Instead of being simple binary masks, each blob 
(corresponding to an object) was assigned a unique number so that particular objects could 
be easily identified and extracted.  
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10.2 Sensors used for the data acquisition 
This section contains a short description of each of the sensors used for collecting the data. 
More information, e.g. technical specifications, for the sensors can be found in (Letalick et 
al., 2007 and Larsson et al., 2007). The sensors are: 

1. Thermal camera (LWIR) – SC3000 
The ThermaCam3000 (SC3000) Quantum Well Infrared Photo detector (QWIP) 
system is a Long-wave IR (LWIR) sensor. The SC3000 operates in the 8-9 μm 
wavelength band and contains a FPA of quantum well type with 320×240 pixel 
resolution.  

2. Multi-spectral camera (VIS-NIR) – Redlake 
Redlake MS3100 is a multi-spectral high resolution 3-chip digital camera. The 
camera is based on a colour separating prism with different coatings and filters. 
Three CCD sensors are used to acquire images with three spectral bands: 525-575 
nm (green), 640-690 nm (red) and 770-830 nm (NIR). The spatial resolution of 
the sensor is 1392×1040 pixels.  

3. Multi-spectral camera (SWIR-MWIR) – MultiMIR 
The Multimir is a multi-spectral sensor using a spinning filter wheel containing 
four optical band pass filters. Two of the transmission bands are in the short-wave 
IR (SWIR) domain (1.5-1.8 μm and 2.1-2.5 μm), while the other two reside in the 
mid-wave IR (MWIR) domain (3.5-4.1 μm and 4.5-5.2 μm). The spatial 
resolution of the sensor is 384×288 pixels.  

4. Hyper-spectral camera (VIS-NIR) – Imspec 
The Imspec sensor is a hyperspectral camera for visible to NIR (396-961 nm) 
with 240 spectral bands. The spatial resolution is 1024×1024 pixels. The system 
consists of three main parts; a CCD camera (for detection), Imspector (the 
dispersive element) and a scanning mirror for forming images from several line 
scans. 

5. Imaging 3D laser radar (SWIR) – Optech ILRIS-3D 
The ILRIS is a laser scanner operating in the Short-wave IR (SWIR) domain at 
1541 nm. Although the minimum spot step of the mirrors is quite low (26.6 μrad) 
the effective resolution is limited by the laser footprint (about 1.3 cm at distance 
of 30 m). 

6. Nikon D200 (VIS) 
The Nikon D200 is a Digital SLR camera hosting a CCD detector of 10.2 
Mpixels. The D200 was mostly used as a reference sensor, to enable masking and 
object annotation of the sensor data. 

10.3 Receiver Operating Characteristics (ROC) 
Assume that a particular algorithm, say, a mine detector, produces a value representing the 
degree to which a particular object is believed to be a mine. In order to produce a crisp 
(binary) decision about whether this object should, or should not, be classified as a mine, 
this value has to be thresholded. If the value is above the threshold, the decision is, say, 
positive (“mine detected”) and if the value falls below the threshold, the decision is 
negative (“no mine detected”). A particular choice of threshold will result in probabilities 
of making a correct and erroneous decision, respectively. By varying the detection 
threshold and measuring how the detection and false alarm rates vary, we capture the so 
called Receiver Operating Characteristics (ROC) of the detector. In other words, the ROC 
illustrates the trade-off between correct decisions and erroneous decisions that a particular 
threshold implies.  
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What we would like to see is a distinct separation between the two classes (mine/not 
mine), so that the system would be able to make correct decisions without a very careful 
choice of threshold value. In practice, however, the problem is often more complicated. 
This is illustrated in Figure 17 below. The success with which the target can be 
discriminated depends on the separation between the two distributions as well as the size 
of the variance. The ROC curve corresponding to this detection example is shown in 
Figure 18. Refer to (Renhorn et al., 2008) for more theory and discussion about ROC 
analysis. 

 

Figure 17. Probability distribution for a normal distributed signal without and with the target present. 
The blue shaded area represents the area above the threshold. 
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Figure 18. Receiver operating characteristic curve (ROC) for the detection example in Figure 17. 

10.4 Confusion matrix 
In the case of object recognition, the goal is to recognize which class, if any, a particular 
object belongs to. The results from such a study is often represented in terms of a 
confusion matrix that shows into what class (if any) a particular object has been classified. 
In the confusion matrix we define the recognition results as true-positive (TP), true-
negative (TN), false-positive (FP) and false-negative (FN) recognitions, see Table 4. In 
fact, the TP (True-Positive) cell contains the amount of mines in test data which are 
correctly recognized; or FP (False-Positive) is the amount of non-mines which are 
classified as mines. In an ideal situation, all results should be determined to be true-
positive or true-negative recognitions. 

xth 
ω0 ω1 
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Table 4: The relationships between predicted target class and true class. This is a confusion matrix 
for target classification. 

 Target Class 

True Class Yes No 

Yes True-Positive(TP) False-Negative(FN) 

No False-Positive(FP) True-Negative(TN) 

 

If the recognition algorithm can determine the mine type, the true positive results can be 
studied further. In Table 5 the confusion matrix for a part of Test case 4 is presented. The 
training set consisted of 6 mines from dataset C and 9 unknown objects from dataset D 
were used for testing. This confusion matrix shows how good the algorithm can 
discriminate land mines that it has seen before. 

Table 5. Example of a part of a confusion matrix for target type recognition. Four recognition 
algorithms are tested (LBP, SC, SIFT and SIFT*). 
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11  Results 
In this section we present signal processing results obtained with a number of selected 
methods aiming at solving a particular signal processing task, according to the framework 
in Section 3. The considered algorithms are the following: 

• Optimal sensor design 
• Anomaly detection 
• Detection of mine-like objects 
• Mine recognition 

11.1 Optimal sensor configuration 
In this section we show an example of how the mutual information can be used to find the 
spectral bands that convey most information about the presence or absence of a target. 
There are some bands that have very small mutual information and thus convey little 
information about the presence or absence of a target and other bands with more mutual 
information. 

Figure 19 shows the scene used in this example. Figure 20 shows the manually segmented 
target and background mask. The spectral values from the sensor are 16 bit integers but 
only a smaller range of values actually occur in image in this example, see the histogram 
in Figure 21. 

 

Figure 19. An image of the scene from which hyperspectral is collected for this example. 

 

Figure 20. The target/background of the current example. 

Figure 22 shows the mutual information between each of the thirty bands and the target 
mask. There are a few bands (5-8 and 27, 28) which convey significantly more 
information about the presence of a target that most other bands.  
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Figure 21. A histogram of all the spectral values in the image. The values are integers. 

 

Figure 22. The mutual information between each of the thirty bands and the target mask. There are 
some bands with considerable higher mutual information then than other bands. 

We will also show how the mutual information can be used to find the quantisation level 
where the quantised data will have the largest mutual information with the target mask. To 
be able to estimate the needed probability distributions the set of values for the stochastic 
variables must not be too large. Hence we only consider two quantisation levels in this 
example. It is possible to consider several levels simultaneously. Figure 23 shows the 
mutual information between the quantised sensor data and the target mask. In this example 
there is a range of quantisation levels (200-400) that give roughly the same mutual 
information. Figure 24 shows the values of spectral band six quantised to convey 
maximum information about the targets. The target mask is overlaid on the quantised 
sensor data. The image shows that even though the band conveys some information, it is 
not enough to discriminate the targets from the background by it self. Figure 25 shows the 
image for band 24.  
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Figure 23. The mutual information between the target mask and the pixels where each spectral value 
has been quantised into two levels. Every band has the same quantisation level. There is a wide span 
of quantisation levels that give roughly that same mutual information. 

 

Figure 24. The data in band six with binary quantisation and the void/background/target classification 
overlaid. 

 

Figure 25. The data in band 24 with binary quantisation and the void/background/target classification 
overlaid. 

11.2 Anomaly detection 
In this section we show three examples of anomaly detection using hyperspectral data. For 
each of the images a Gaussian mixture model with 15 components has been adapted to the 
image. Then we have determined the decision limit on the anomaly values giving 
maximum mutual information. The optimal decision limit is compared with a limit giving 
a small percentage of the most unlikely values. In these three examples these two limits 
are similar. Thus anomaly detection based only on the background data without any 
specific knowledge about the targets used in these examples give about the same amount 
of information as a decision where the limit has been optimised for the specific targets 
used in these examples.  
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For all three scenes in this section there are some targets that are clearly anomalous with 
respect to the Gaussian mixture model and other targets that can not be discriminated from 
the background without too many false alarms. However the ROC curve showing the first 
detected pixel on each target shows that all targets in these examples have at least one 
anomalous pixel. 

The examples are datasets A, D and H described in Section 10. 

Dataset A 

 

Figure 26. Dataset A, Nikon image. 

 

Figure 27. Dataset A, Target/Background mask. Green – background, red targets and blue – void. 

 

Figure 28. Dataset A. The Imspec image classified into the fifteen components of a Gaussian mixture 
model. 



  FOI-R--2777--SE 

 43 

 

Figure 29. Dataset A The anomaly values obtained by comparison with a Gaussian mixture model. 

 

Figure 30. Dataset A. The ROC curve for each target separately. There are some targets that partly 
can be detected without false alarm while some other targets cannot be detected without many false 
alarms.  

The ROC curve shows that some of the objects can be detected without any false alarms 
while most will have at least some false alarms and some objects have many false alarms.  

Figure 32 shows that a decision limit around 146 gives maximum mutual information. 
There is also an anomaly limit around the same limit. There are only few pixels with larger 
distance than this limit to the background.  
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Figure 31. Dataset A. ROC curve for first pixel on each target (upper curve) and for all targets 
combined (lower curve) 

 

Figure 32. Dataset A Comparing how the mutual information (rightmost curve) varies with anomaly 
value and how the anomaly probability (middle curve) varies with the anomaly value. 
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Dataset D with the same figures. 

 

Figure 33. Dataset D, Nikon image. 

 

Figure 34. Dataset D, Target/Background mask. Green – background, red –targets and blue – void. 

 

Figure 35. Dataset D. The classification of the Imspec image into the fifteen classes of the Gaussian 
mixture model. 

 

Figure 36. Data set D, anomaly values. 
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Figure 37. Data set D, ROC curve with first pixel on each target (upper curve) and all target pixels 
combined (lower curve). 

 

Figure 38. Dataset D, The ROC curve for each object separately. 
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Figure 39. Dataset D, Comparing how the mutual information (rightmost curve) varies with the 
anomaly value and how the probability (middle curve) for anomaly varies with the anomaly value. 

Dataset H  

 

Figure 40. Data set H, Nikon image. 

 

Figure 41. Data set H, Target/Background mask. 
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Figure 42. Data set H, The classification into the fifteen components of the Gaussian mixture model. 

 
Figure 43. Data set H, The anomaly value obtained by comparison with the Gaussian mixture model. 

 
Figure 44. Data set H, The ROC curve with the first pixel on each target (upper curve) and with all 
target pixels combined (lower curve). 
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Figure 45. Data set H, The ROC curve with each target separately. 

 
Figure 46. Data set H, Comparing how the mutual information (rightmost curve) varies with the 
anomaly value and how the probability of anomaly (middle curve) varies with the anomaly value. 

Table 6 shows the decision limit giving maximum mutual information. The table also 
shows the limit where a given high percentage of the background values are below the 
limit. The values with larger distance than the limit are considered anomalies. The table 
also shows the mutual information between target mask and anomaly value, component 
number and with both of them together.  

In other examples where the background data have contained some targets the background 
model has adapted to include the targets even though the targets are different from the rest 
of the background. Thus the anomalies are no longer anomalies but rather belong to one of 
the components. This is clear because the component number has much higher mutual 
information with the target mask then in the case described above where the background 
model is adapted to pure background. It seems that the model still has the information that 
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the anomalies are anomalies but encoded as a part of the model. If it is possible to detect 
which component contain the anomalies then it would probably not be a problem to have 
the targets as part of the background model. 

Table 6. A comparison of the mutual information for the three data sets A, D, and H. 

 Data set A Data set D Data set H 

max mut info 0.0228 0.0281 0.0347 

index for max mut info 146 120 131 

p = 0.90 127 109 119 

p = 0.95 130 110 121 

p = 0.99 138 115 126 

p = 0.999 152 121 136 

mut info anom value  0.0299 0.0326 0.0443 

mut info component nr 0.0174 0.0102 0.0367 

mut info anom+comp. 0.0341 0.0351 0.0611 

p = 0.90 0.0125 0.0148 0.0202 

p = 0.95 0.0149 0.0166 0.0243 

p = 0.99 0.0209 0.0247 0.0331 

p = 0.999 0.0221 0.0277 0.0330 

 

In the next example we have measured the mutual information between the target mask 
and each of the sensor bands separately. Figure 47 shows a visual image of the scene and 
Figure 48 shows the true target/background mask. A Gaussian mixture model with 15 
components was adapted to the background pixels of the scene. Figure 52 shows the mean 
spectrum and Figure 53 shows the covariance matrix of each of the 15 components. In 
Figure 49 and Figure 50 the corresponding ROC curves are presented. Some targets are 
anomalous without any false alarms while some other targets only can be detected with a 
significant amount of false alarms.   

 

Figure 47. A visual image of the scene. 

Figure 56 and Figure 57 show an example of selecting bands where the bands are selected 
by a selection from the Gaussian mixture model instead of selecting bands from the data 
and then estimating the background model. This approach will not lead to better 
approximation but the actual result using the fewer selected bands could be worse because 
the model with all bands can benefit from the bands that are later removed. 
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Figure 48. The target/background mask for the scene shown in Figure 47. Blue – void, red – 
background, dark red – targets, yellow – guard.  

 
Figure 49. The image shows the classification of the image into the fifteen components of the 
Gaussian mixture model. Above are the pixels in each of the fifteen components displayed separately 
(red – void, blue – background, green – the pixels classified as the component). A component with 
few pixels gathered in few positions may be objects while components with many pixels spread all 
over the image probably belong to the background. 
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Figure 50. The ROC curve with each target separately. 

 

Figure 51. The ROC curve for the first pixel on each target (upper curve) and for all target combined 
(lower curve). 
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Figure 52. Left: The mean spectrum for each of the fifteen components. Right: A histogram of all 
spectral values in the image. 

 
Figure 53. The figure shows the covariance matrices of the Gaussian mixture model. 
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Figure 54. An example with successively increasing and decreasing the number of bands. 
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Figure 55. The ROC curve for the example. 
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Figure 56. The difference between the estimated coding length of the nine targets and the estimated 
entropy of the background for each of the sixty bands separately. There are a few bands in which the 
targets appear as anomalous. 
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Figure 57. The difference between the estimated coding length of the nine targets and the estimated 
entropy of the background for each pair of two bands (blue low values, red – high values). There are 
a few pairs of bands in which the targets of this example appear as anomalies.  
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Figure 58. The component that each pixel is closest to. 

11.2.1 From detected pixels to detected targets 

The anomaly image together with some given limit on the anomaly value will give a set of 
detected pixels. If one consider every connected set of detected pixels as a potential 
objects there are still many detections in every image. Some of these groups of detections 
can be discarded because of their size. They are either too small or too large to be a 
reasonable target and can thus be discarded.  

It is also possible to characterize the detected objects by their spectral distribution given 
that the spectrums are quantized and binned to a limited number of spectrums. Then it is 
possible to compare the detections and find those that are similar and those that are 
essentially different. In this way it is possible to both catalogue and let an operator classify 
the detections. It is also possible to look for similar objects with a spatial distribution that 
may indicate that they are either targets or harmless. 
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11.3 Mine recognition 
Basically, recognition can be used for producing results on different levels. One is 
retrieving those targets that are most similar to the current object (ranking), without 
making a crisp decision. In order words, we can use it to create hypotheses that could for 
example be fed to the operator for further analysis or decision-making. Another level of 
result is to define a recognition threshold, which can be used for either discarding or 
accepting the hypothesis. This would enable the system to correctly classify completely 
unknown objects as “not previously encountered”, whereas the ranking approach would 
always pick the most similar object and pass on the decision-making to the operator.  

11.3.1 Spatial object recognition 

In this section results from experimental evaluations of three recognition methods, LBP, 
SC and SIFT are presented. For fair performance evaluation of recognition process, five 
different test cases have been defined associated with Table 3, see Table 7. We present our 
results in confusion matrices, see Appendix A. The results are summarized below. 

Table 7. The test cases and reference to Table 3. 

Test case Description 

1 Train on data from gravel road (E), test on data from forest and 
grass environment (A-D). 

2 Train on data from forest and grass environment (A, C), test on 
data from gravel road, forest and grass environment (B,D,E). 

3 Same scene in training and test, forest environment. Train on data 
from one perspective (A) and test on data from another 
perspective (B). 

4 Same scene in training and test, grass environment. Train on data 
from one perspective (C) and test on data from another 
perspective (D). 

5 Train on data from gravel road, forest and grass environment (A, 
C, E), and test on data from forest and grass environment (B, D). 

 

In LBP, a thresholded chi-square distance is employed as classifier. The threshold is 
dependent on training data whereas diversity of size and shape of objects are important. 
Thus, at each test case the corresponding threshold is obtained experimentally even if the 
discrepancy of all threshold values is not strong.  

The best performance is achieved by a special sub-blocking method with respect to the 
size of the objects. Sub-blocking of small object e.g. TM-10 yields difficulties where the 
size of each cell is not big enough for having optimal block size. Since our datasets also 
contain small land-mines, e.g. TM-10 and TM-49 with insignificant visible pixels, the sub-
blocking is implemented for the cases where the image has more than a certain number of 
pixels. The image is then divided into nine sub-blocks with a small overlap; otherwise the 
LBP feature vector will be a copy of the entire image nine times, in order to keep same 
feature vector length.  

In SIFT, an interesting question was how to define a robust classifier for matching images 
from matching points; where the matching points are already extracted. The first idea was 
to count the number of matching points and select the largest set of matching points in 
trained data. But the result was not convenient due to object similarities; where different 
objects in our dataset have same shape e.g. circle or square shape likewise same edges as 
well. Therefore another criterion is needed. 
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In this work two hypothesis are investigated to classify the image matching; First the 
average of distances between matching descriptors are measured (denoted by SIFT) and 
furthermore the distance of the first matching descriptor is considered (denoted by SIFT*). 
It is also mentionable that some land mines in our datasets have too low resolution to 
extract enough key-points; this fact may cause that no matching points are obtained in 
image matching process.  

In SC, a specified number of points are collected from the edge points (100 points in this 
work). Collecting the edge points of land mines is crucial in SC algorithm. Some objects 
are too small to find 100 edge points and some objects have too large edge point sets, 
which demand sampling models to recollect 100 points. This sampling model should cover 
the entire edge information.  

The other issue in using SC in this work is execution time. Extracting SC features is fast 
but the matching algorithm includes an assignment problem, solving by Hungarian 
method, which is most time consuming. The SC algorithm is an iterative method and 
convergence is usually achieved after six iterations where each iteration needs one second 
to operate. Therefore finding a matching of an object among Nr training data and Ns test 
data will take 6×Nr seconds and 6×Nr×Ns seconds, respectively. In this test, SC is only 
used in two test cases, i.e., test case 3 and 4.  

Considering each test case; the training set includes all visible mines in the scene, while 
that test data includes all objects (including mines and non-mines). Therefore the system 
will be able to identify an ordinary detected object to any known type (trained) of mines or 
even more non-mine objects as well. For instance in Test case 4 the illumination 
conditions and the angle of view vary between the training and test scenes due to different 
data collection times (noon and afternoon). For this test case the algorithms will be able to 
recognize all mines in dataset D after seeing dataset C, but there are miss-classifications of 
non-mine objects. 

For instance LBP works better, than the other methods, for recognizing small mines (TM-
10) and this is due to the novel sub-blocking method using in this work. However no 
Grenade is recognized even if the system has seen it before in the training data, due to 
occlusion effects in the training dataset. 

To conclude, our tests indicate that it is possible to recognize small mines from low 
resolution data with various illumination conditions and view angles. Five test cases have 
been studied to evaluate the four recognition methods. We have recognized difficulties in 
threshold settings for the tested methods; therefore number of FP and FN are large. The 
thresholds can probably be defined after further tests. Another factor that has increased the 
number of FP in this test is the fact that we used all manually detected objects in the 
scenes. In an application the mine-like objects that will be recognized, will be the output 
from an anomaly detector. Our tests show that the anomaly detector will remove some of 
the FP objects from the data set that will be passed on for recognition. 

11.3.2 Spectral object recognition with SVM 

In order to investigate the potential of using spectral properties for mine recognition, some 
initial experiments with SVM-based classification (Section 8.4) were carried out on 
datasets A and B (refer to Table 3). In the experiments, the LIBSVM library for Matlab 
(Chang, 2009) was used. Three test cases were considered:  

a) Test generalization performance when lighting conditions are similar between 
training and testing. 
In practice: train on a sub-set of mine objects in one scene (dataset A), test with 
all other mine objects in the same scene 

b) Test generalization performance when lighting conditions are different between 
training and testing. 
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In practice: train on a sub-set of mine objects in one scene (dataset A), test with 
all other mine objects in another scene acquired six hours later (dataset B).  

c) Test re-identification performance in different lighting conditions  
In practice: train on a sub-set of mine objects in one scene (dataset A), test with 
the same objects but seen from another angle and under different lighting 
conditions (dataset B)  

A number of blobs each corresponding to one of five different objects – TMM-1, 41/47, TM-10, TM-49 
and PMR-2A – were selected for training. The SVM produces a recognition probability for each of the 
classes and by applying and varying a threshold, different recognition performance was obtained. For 
each particular threshold value a confusion matrix (Section 10.4) was calculated. An object was 
classified as belonging to the class to which the majority of the pixels on the target were classified. An 
example of a confusion matrix is shown in Table 8. Example of a confusion matrix for SVM-based 
mine recognition corresponding to case b) above. The results were obtained with a combination of 
hyperspectral and laser data. 

  Classification result 

  TMM-1 41/47 TM-10 TM-49 PMR-2A Unknown 
TMM-1 1     1 
41/47  1     
TM-10   1   2 
TM-49    3   T

ru
e

 
c

la
s

s
 

Other 2     2 
 

By varying the threshold and keeping track of the number of correct and erroneous 
decisions, respectively, an ROC curve is obtained (Figure 59). The recognition was tested 
with laser intensity and hyperspectral data, respectively, as well as with a combination of 
hyperspectral and laser data. In order to compensate for changes in the lighting conditions, 
each feature band was normalized. 

.  

Table 8. Example of a confusion matrix for SVM-based mine recognition corresponding to case b) 
above. The results were obtained with a combination of hyperspectral and laser data. 

  Classification result 

  TMM-1 41/47 TM-10 TM-49 PMR-2A Unknown 
TMM-1 1     1 
41/47  1     
TM-10   1   2 
TM-49    3   T

ru
e

 
c

la
s

s
 

Other 2     2 
 

By varying the threshold and keeping track of the number of correct and erroneous 
decisions, respectively, an ROC curve is obtained (Figure 59). The recognition was tested 
with laser intensity and hyperspectral data, respectively, as well as with a combination of 
hyperspectral and laser data. In order to compensate for changes in the lighting conditions, 
each feature band was normalized. 
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Figure 59. ROC examples showing the performance of SVM-based mine recognition using 
hyperspectral and laser data. Left: Case a). Right: Case b) (see explanation above). 

Although the extent of the experiment was rather limited, some interesting observations 
were made. For example, the results generally improved significantly when using a 
combination of hyperspectral and lidar information, compared to using the sensors 
separately. The majority of the objects belonging to a class for which the classifier was not 
trained usually ended up in the TMM-1 class, as the colours were quite similar. Generally, 
the classifier had difficulties recognizing the small TM-10 mines, partly because it was 
very difficult to spot them and thus very difficult to obtain an accurate ground truth mask 
for training the classifier on those objects. A conclusion is that spectral information is 
indeed useful for discriminating between objects, but that it should be combined with 
spatial information for improved robustness. After all, spectral-based recognition only 
finds similar “colours” and if the appearance of the mines changes, due to environmental 
influence (sunlight, dirt, etc) or due to somebody re-painting them, the spectral classifier 
may not recognize them.  

11.3.3 Mine recognition by CAD model matching 

Two mine candidates that were detected in the anomaly analysis have been tested for mine 
classification and mine type recognition using the model-based 3D recognition approach. 
The mine candidates were compared with the models in two different ways, first the 
dimensions are compared and second, the point cloud the target is compared with the 
faces-representation of the CAD models, see Figure 60.  

For our two candidates, only candidate 1(a TMRP-6) have a corresponding library model. 
For the other candidate, a TMA-5, a CAD model is not present. This means that the TMA-
5 cannot be recognized, we can only see how similar it is to our models. 

The mine candidates’ dimensions were first compared to the dimensions of the models. 
The first candidate’s dimensions where most similar to the TMRP-6 , followed by AT-2 
and AT-47b. This is also the most similar models in the library, with a correct 
classification of a TMRP6. The second candidate’s dimensions where most similar to the 
FRDM13, followed by PMR-2A and TMRP-6. The FRDM13 is the model that is most 
similar to a TMA5 mine. Results of dimension estimation are shown in Figure 61. 

In the CAD matching step the first candidate is correctly recognized as a TMRP-6 and the 
second candidate is matched as a FRDM13, which is the most similar library model, 
results are shown in Figure 62. 
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Figure 60. Model of the mines used for matching with target data; AT-2 (top, left), PMR-2A (top, 
middle), TMRP-6 (top, right), FRDM13 (bottom, left), AT-47b (bottom, right). Axes in meters. 

The dimension comparison is a fast table-lookup comparison that is possible to perform in 
real time (results are presented immediately in Matlab). The CAD matching is time 
consuming. First, the models cannot hade too many faces as each target sample is 
compared with each face of the model. Investigations of vehicle and mine models indicate 
that most models have enough dense representation by 200-100 faces. Today a typical 
matching takes 30 seconds in Matlab. The matching problem is possible to redesign to 
parallel computing, which will reduce the computation time dramatically. We believe that 
CAD matching is possible to perform in real time or near-real time. Also, this type of 
matching is intended for few, selected objects rather than massive testing of all objects in a 
scene. 

This approach has shown good results for vehicle recognition and these tests indicate that 
the approach can be useful also for mine recognition. For mine recognition maybe the first 
step is sufficient, after that the operator and/or a demining team perform further analysis.  
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Figure 61. Possible mines that were analyzed using the model-based 3D recognition approach. Top: 
image of the scene, right: dimension estimation of mine candidate 1 (a TMRP6), bottom: dimension 
estimation of mine candidate 2 (a TMA5). 
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Figure 62. CAD matching of mine candidate 1 (TMRP6) with TMRP6 model (left) and of mine 
candidate 2 (TMA5) with FMRD13 model. Axes in meters. 
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12  Conclusions and discussion  

12.1 Sensor design/configuration 
Information theoretic measures like entropy and mutual information are useful when 
configuring the sensor and detector system. It is possible to compare different 
configurations regarding how much information they convey about the presence or 
absence of targets in the scene. It is also possible to characterize the sensor system without 
considering a specific detection algorithm. In many cases it is possible to estimate how 
much information the sensor data convey about the scene. If there are interesting amounts 
of information one has to construct a detection algorithm that can retrieve the information. 

It seems that no sensor on its own can give enough information about the scene. Thus, it is 
necessary to be able to attribute the sensor data to specific locations in the scene so that the 
information from different sensors can be used together to improve the description of the 
scene and the objects in the scene and thus improve the possibilities to detect targets. 

Many of the described techniques detect anomalous objects by comparing the appearance 
locally in the sensor data. If signatures of interesting objects are collected to be used for 
recognition then radiometric calibration is necessary to be able to recognize the objects 
since most certainly the environment will be different.  

12.2 Occlusion effects 
Apart from choices concerning sensors and signal processing techniques, the overall 
probability of actually detecting mines in a real scene is strongly influenced by occlusion 
effects. We found that many objects often escaped detection due to the fact that they were 
heavily occluded (by grass, sprigs, leaves, etc.). Although the targets were not always 
entirely concealed by the foreground, the sensor resolution was not enough to accurately 
capture information about the objects. Several objects were in fact so occluded that they 
were impossible to discern, even though their locations within the dataset/images were 
well known. Part of the explanation for this is that for several objects the viewing angle 
was not steep enough to allow for a clear view of the object. 

Occlusion effects are usually lowest for a nadir-looking system. For practical reasons, we 
were not able to test that case. Instead we tested scene aspect angles of 35-70 degrees (90 
degrees being the nadir direction), which is a somewhat harder case. The level of 
occlusion can also be lower by collecting data from multiple views but this, on the other 
hand, demands very accurate registration. 

12.3 Data fusion and registration 
Fusion on the signal/pixel level requires very accurate data registration. From the 
experiments carried out within MOMS so far, it can be concluded that such accuracy is 
difficult to obtain with a distributed sensor system, at least for small targets (AP mines). In 
fact, pixel correspondence between sensor images will probably require a common 
detector array or arrays situated very close to each other.  

Fusion on the decision-level, on the other hand, will cope considerably better with a less 
accurate registration, as the different sensor data streams are processed individually and 
only the final outputs are combined. Further signal processing work in MOMS will focus 
more strongly on decision-level fusion. 
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12.4 Anomaly detection 
Based on the results obtained in MOMS, it can be concluded that anomaly detection is a 
very useful tool for detecting possible mines. The real benefit is that the anomaly detector 
only has to be trained with background data, not with targets, and based on a background 
model it high-lights any part of the scene that deviates from the background model. 
Obviously, not only mines are anomalous but also other man-made objects, natural clutter 
and local variations in the background may be detected. As a first indication, however, this 
is very valuable information, since processing power can then be directed towards those 
anomalies, in order to determine whether they are likely to be mines or not. The success of 
the anomaly detection hinges on always maintaining an accurate background model and 
the fact that there must be a contrast between the targets and the background. In practice 
also, the visible portion of the object should be more than a couple of pixels, in order to be 
able to remove the irrelevant anomaly pixels that will always appear.  

Creating a global Gaussian mixture model background model in Matlab, using 15 
Gaussian components, 30 spectral bands and a sensor resolution of about 0.5 Mpixels, 
takes a couple of minutes. Still, we estimate that by using fewer bands (maybe 3-5) and 
having a dedicated chip executing the algorithm, it would be fully possible to meet real-
time constraints (10-20 images/s). This also means that this processing could take place 
close to the sensor and only a limited amount of data (corresponding to a number of 
detected anomalies) need then be transmitted. Further, incremental update of the Gaussian 
mixture background model demands less execution time compared to creating the model 
from scratch.  

The proposed approach for anomaly detection can be adjusted to detect various objects 
that differ from the natural background, for example IEDs and other man-made objects. 

12.5 Spatial feature extraction  
The more information we can extract about possible targets, the better the chances to make 
correct decisions concerning the nature of these objects. Reliable extraction of different 
kinds of spatial features would be very useful in this respect. During the work within 
MOMS, it was found to be very challenging to extract such features, given the sensor data 
available. In Section 6.2, using 2-D IR imagery to estimate object properties, such as 
convexity and curvature, was discussed. The conclusion from the experiments performed 
is that it was difficult to obtain reliable feature values from other objects than relatively 
large objects in quite clutter-free neighbourhoods. From a computational viewpoint, 
however, these techniques are quite attractive as they are often convolution-based and the 
amount of numerical operations per frame needed to compute the desired features is 
known beforehand. This makes them suitable for hardware implementations close to the 
sensor, e.g. even onboard the platform carrying the sensors.  

Another option, also considered within MOMS, is to extract spatial features from 3D data 
(see Section 6.1). For example, it was concluded that finding surfaces may indeed help 
find human-made objects, but that the range noise level and range resolution limitations of 
the current sensor made it difficult to obtain consistent results. 

12.6 Supervised classification for detection and 
recognition 

The common denominator of all supervised classification techniques is that they must all 
be presented with samples of the targets they are supposed to detect. Since the scene 
conditions (contrast, light levels, shadow, occlusion, etc.) may change significantly, it is 
important that the properties used for representing the objects are stable enough so that the 
system can reliable detect them even under new conditions. A general problem in the mine 
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detection task is that the mine signatures often look very different (even signatures from 
the same mine under different conditions) and it is hence difficult to define useful and 
robust features. 

From a system perspective, a mine detection based solely on supervised classification 
cannot be recommended; it is risky to rely on that our target database is kept up-to-date 
and contains information about all the possible threats the system may encounter.  

Nevertheless, such a technique can run in parallel with the anomaly-based detection and 
report whenever the system encounters an object that is very similar to a target with which 
it was trained. Certain techniques can be implemented so that real-time demands can be 
met. Of course, this depends on the number of target models that have to be considered. 
Often the training phase is quite computationally demanding, whereas the testing phase is 
often much faster. 

12.7 Spatial resolution of the sensors 
In practice, in order to be able to extract the relevant information about potential targets in 
the scene, the sensor must have a sufficiently good spatial resolution. Again, consider 
anomaly detection that often results in a number of unwanted detection that we want to get 
rid of. Therefore, in practice, the spatial resolution of the sensor must allow for having 
several pixels on the target. For a relatively large object, e.g. an AT mine, the pixels 
should correspond to a resolution on the target of maybe about 2-3 cm, to enable the 
removal of small, irrelevant objects (Section 8.1). Also for evaluating spectral similarities 
between objects (Section 8.2), the resolution must be good so that there are enough data 
for computing sufficient statistics (histograms) for each object.  

For mine recognition based on spatial properties, the sensor resolution should be 
significantly better than 2 cm, probably around 5 mm or below. Even at that resolution, it 
may be difficult to distinguish (small) objects from each other.  

During the work with 3D data acquired with the current laser radar system, it was found 
that the range resolution capabilities of this system were too poor. Large amounts of 
erroneous ghost points appeared as a result of the sensor’s inability to resolve reflecting 
surfaces at short distances, e.g. mine behind grass. A laser radar system emitting a shorter 
pulse would improve the range resolution and subsequently the chances of detecting 
objects behind occlusion. Nevertheless, the laser radar sensor was often able to capture 
intensity contrasts between mines and background due to its active mode, then basically 
having the sensor act as a high-resolution 2D imaging device equipped with its own light 
source. Indeed, the intensity data from this sensor showed to be very useful, but it has to 
be combined with other features in order to obtain a more robust detection system. 

To summarize, the spatial resolution basically governs with what level of information 
decisions can be made (see Figure 2). From the experiments carried out within MOMS, the 
following rules of thumb could be formulated 

• low resolution (>10 cm) is likely to result in relatively poor performance, as the 
expected number of “clean” mine pixels will be quite small, thus making it 
difficult to match spectral signatures and to estimate object size 

• medium resolution (5-10 cm) gives the ability to detect anomalies and possibly to 
detect suspicious-looking pixels through matching of spectral signatures  

• high resolution (2-3 cm) enables us to clean up the detections, define objects and 
to detect mine-like objects  

• very high resolution (<0.5 cm ) is probably needed to be able to distinguish 
between different mines based on their spatial appearance.  
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12.8 Active versus passive sensing 
A system for detection of small ground objects, like land mines, would benefit from 
including an active imaging sensor, preferably operating at several wavelengths or a 
broader range of wavelengths. In addition to providing night-time capabilities, such a 
system would also probably result in reduced problems caused by uneven and 
unpredictable illumination of the scene (e.g. shadows), which would be very favorable 
from a signal processing point of view. 

12.9 Operator aspects 
The anomaly detection and the supervised approaches can be updated under a mission, to 
adapt to the current conditions in the area of interest. At the first trials in a new 
environment there is likely to be a higher level of false detections. Through an extra 
training phase, supervised by a skilled operator, the algorithms can be tuned to the new 
environment and the false alarm rate can be lowered while retaining the mine detection 
rate. 

A critical stage in any automatic data analysis system is to determine suitable thresholds 
below which objects are discarded from further analysis. Lowering the thresholds results 
more true detections/recognition, but at the prize of increasing the false alarms or 
erroneous classifications. However, an alternative to setting hard thresholds in this stage is 
to let the entire system – including hardware, software and operator – process as many 
objects as possible within a certain given time, starting with the most suspicious-looking 
one and continuing down the list of decreasingly interesting objects.  
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A Confusion matrices for spatial object 
recognition 

In the sequel we define Nr as the number of training objects and Ns as the number of test 
objects. 

A.1 Test case 1 
Training data: data set E, Nr = 13 mines. 

Test data: A, B, C, D, Ns = 43 (26 mines , 17 non-mines). 

 

Target Classification  

Landmines Not Landmines Test case 1 

 LBP SIFT SIFT* LBP SIFT SIFT* 

Known (trained) Land mines 17 15 16 9 9 13 

Unknown objects 

 

1 11 9 16 7 4 

 
Observations: 

For some small objects no matching points can be found for SIFT, therefore Ns (SIFT) = 
42. 

LBP works better for recognition of small mines (TM-10) and this is due to the novel sub-
blocking method using in this work. The number of FP and FN with LBP are less than for 
SIFT and SIFT* due to threshold selection difficulties with SIFT and SIFT*. To obtain a 
reasonable threshold for SIFT(*) was difficult. Therefore the unknown-objects which are 
often non-mines are mostly misclassified as known-mines. 

The number of “FN” is high in this test case, due to various types of environments in the 
test scenes (road, forest and clear-cut forest scenes). 
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Test case 2 
Training data: A, C, Nr = 11. 

Test data: B, D, E, Ns = 39 (24 mines, 15 non-mines). 

 

Target Classification  

Landmines Not Landmines Test case 2 

 LBP SIFT SIFT* LBP SIFT SIFT* 

Known 
(trained) 

Land mines 

19 16 17 5 6 6 

Unknown 
objects 

9 11 11 6 4 3 

 

Observations: 

LBP works better for recognition of small mines (TM-10) and this is due to the novel sub-
blocking method using in this work. The number of FP and FN with LBP are less than for 
SIFT and SIFT* due to threshold selection difficulties with SIFT and SIFT*. To obtain a 
reasonable threshold for SIFT(*) was difficult. Therefore the unknown-objects which are 
often non-mines are mostly misclassified as known-mines. 

The number of “FN” is high in this test case, due to various types of environments in the 
test scenes (road, forest and clear-cut forest scenes).  

The number of “FP” is high in this test case, due to shape similarity of different types of 
land-mines. For instance the unknown test object TMPR-6 (not in trained data) is very 
similar to TMM-1 and TMA-5, and it is often misclassified as one of those objects.  
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Test case 3 
Training data: A, Nr = 5. 

Test data: B, Ns = 14 (8 mines, 6 non-mines). 

 

Target Classification  

Landmines Not Landmines Test case 3 

 LBP SC SIFT SIFT* LBP SC SIFT SIFT* 

Known (trained) 
Land mines 

8 6 7 7 0 3 2 2 

Unknown objects 3 2 3 3 3 3 1 1 

 
Observations: 

Our expectation of Test case 3 was similar to Test case 4. But in fact the result from the 
confusion matrix is not as good as for Test case 4. The main reason is the large change of 
illumination conditions between data set A and B, which is much stronger than in Test 
case 4. Furthermore, due to similarity between unknown objects and trained objects (e.g. 
stub and TMM-1) the number of FP is larger than Test case 4.  
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A.2 Test case 4 
Train data: C, Nr = 6. 

Test data: D, Ns = 9 (7 mines, 2 non-mines). 

 

Target Classification  

Landmines Not Landmines Test case 4 

 LBP SC SIFT SIFT* LBP SC SIFT SIFT* 

Known (trained) 
Land mines 

6 4 3 4 1 3 4 3 

Unknown objects 0 0 0 0 2 2 2 2 

 

Observations: 

Based on the confusion matrix of Test case 4; six mines from dataset C and nine unknown 
objects (including two non-mines and six mines) from dataset D are trained and tested on. 
One should note that the illumination conditions and the scene aspect angle vary between 
the scenes, but the type of scene is the same (‘Clear-cut forest’). Hence due to similarity of 
type of scenes, this test case has the best result among the test cases. 
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A.3 Test case 5 
Training data: A, C, E, Nr = 23. 

Test data: B, D, Ns = 23 (17 mines, 6 non-mines)) 

 

                                           Target Classification  

Landmines Not Landmines Test case 5 

 LBP SIFT SIFT* LBP SIFT SIFT* 

Known 
(trained) Land 

mines 

13 11 11 4 5 5 

Unknown 
objects 

3 6 6 3 0 0 

 
Observations: 

The thresholding effect is obvious in this test case where the number of TN becomes zero 
for SIFT and SIFT*. LBP works better then the other methods due to using the novel sub-
blocking method and also better thresholding on the classifier. Therefore the number of FP 
and FN with LBP are less than SIFT and SIFT*. 
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