
FOI, Swedish Defence Research Agency, is a mainly assignment-funded agency under the Ministry of Defence. The core activities are
research, method and technology development, as well as studies conducted in the interests of Swedish defence and the safety and
security of society. The organisation employs approximately 1000 personnel of whom about 800 are scientists. This makes FOI Sweden’s
largest research institute. FOI gives its customers access to leading-edge expertise in a large number of fields such as security policy
studies, defence and security related analyses, the assessment of various types of threat, systems for control and management of crises,
protection against and management of hazardous substances, IT security and the potential offered by new sensors.

Introduction to Technologies and
Methods for Semantic Information

Management
x
HIRAD ASADI, MARIANELA GARCIA LOZANO, ANDREAS HORNDAHL,
EDWARD TJÖRNHAMMAR, KTH - KATHARINA RASCH

FOI-R--2858--SE User report	 Information Systems	

ISSN 1650-1942 November 2009

FOI
Swedish Defence Research Agency	 Phone: +46 13 37 80 00	 www.foi.se	
InformationSystems	 Fax: +46 13 37 81 00
P.O. Box 1165
SE-581 11 LINKÖPING

Introduction to Technologies and
Methods for Semantic Information

Management
HIRAD ASADI, MARIANELA GARCÍA LOZANO, ANDREAS HORNDAHL,
EDWARD TJÖRNHAMMAR, KTH - KATHARINA RASCH

FOI-R--2858--SE

ISSN-1650-1942 November 2009

Information SystemsUser report

Introduction to Technologies and Methods for
Semantic Information Management

The Figure on the front page was made with a tag cloud tool made
by Chris Done et.al. A tag cloud is a cloud of words that have a
size and position according to the frequency with wich they appear
in a text. This cloud is the result of the text found in this report.

Introduction to Technologies and
Methods for Semantic Information
Management

Hirad Asadi, Marianela Garcı́a Lozano, Andreas Horndahl,
Edward Tjörnhammar, KTH - Katharina Rasch

FOI-R--2858--SE

Titel

Title

Rapportnummer / Report no

Rapporttyp / Report type

Utgivningsår / Year

Antal sidor / Pages

Kund / Customer

Forskningsområde

Research area

Delområde

Sub area code

Projektnummer / Project no

Godkänd av / Approved by

ISSN

FOI Swedish Defence Research Agency

Information Systems

P.O. Box 1165

SE-581 11 LINKÖPING

Introduktion till teknologier och metoder för informationshantering

Introduction to Technologies and Methods for Semantic Information Man-
agement

FOI-R--2858--SE

Användarrapport / User report

2009

90

2. Operationsanalys, modellering och simulering

2. Operational Research, Modelling and Simulation

21. Modellering och simulering

21. Modelling and Simulation

E53079

Martin Rantzer
Head, Information Systems

ISSN-1650-1942

5

FOI-R--2858--SE

Abstract

Keywords

Data stored in different information systems can easily grow to a large quantity
over a period of time. Information management, such as retrieving the relevant
data, quickly becomes a complex and tedious task. Hence, we want to be aided
by the inherent structure of our data through automation. However, computer
aided information management gives rise to many questions, e.g., where and
how the information is stored, how the information is structured and clustered,
how we retrieve the information and can algorithms help us gain any new
knowledge from the current information.
In this report we bring up semantic technologies as a way to interpret infor-
mation, we also give concrete examples. We will also talk about the challenges
that occur when using the semantic information and how they could be dealt
with. The report is intended for an audience with an interest in technologies
and methods for information management. It could be used as a reference for
the reader who wishes to learn more on the subject.

information management, knowledge representation, semantic web, language
stack, ontology, reasoning, storage, logic, querying

7

FOI-R--2858--SE

Sammanfattning

Nyckelord

Den mängd information som lagras i informationssystem växer sig ofta stor
efter en tid och informationshantering, s̊a som att hitta relevant information,
kan snabbt bli en komplicerad och tidsödande uppgift. Därför vill vi ta hjälp
av datorer. Emellertid ger datorstödd informationshantering upphov till många
fr̊agor, s̊a som t.ex. var och hur man kan lagra informationen, hur informatio-
nen bör struktureras och grupperas, hur vi hittar relevant information och om
algoritmer kan hjälpa oss att finna ny kunskap baserat p̊a det vi redan vet.
I denna rapport diskuterar vi semantiska tekniker och metoder. Vi kommer att
diskutera ämnen s̊a som informationssökning, strukturering av information, on-
tologier, spr̊akformalismer för kunskapsrepresentation, inferens och inferensmo-
torer och slutligen tekniker för lagring samt fr̊agespr̊ak. Vi kommer även att ta
upp vilka utmaningar man st̊ar inför om man vill utnyttja dessa tekniker och
hur dessa kan hanteras. Rapporten är avsedd för läsare med intresse för tekni-
ker och metoder för informationshantering och kan användas som utg̊angspunkt
för den som vill lära sig mer om ämnet.

information management, knowledge representation, semantic web, language
stack, ontology, reasoning, storage, logic, querying

8

FOI-R--2858--SE

Executive Summary

This report is meant to be a reference manual for a reader that is interested
in learning more about technologies and methods for semantic information
management. Even though some chapters may require previous knowledge to
understand all details, we believe that the reader lacking this knowledge still
can get at least a general understanding of the topics. After each chapter in this
report, except the last two, we give a short summary of the highlights found
in each chapter. We, the authors, hope that the reader enjoys this report and
find it a rewarding experience.

In the first chapter we introduce the report and describe the vision of in-
formation systems we have had when writing this report. Here the scope and
reading instructions are also given.

In the second chapter we begin from the end user’s perspective and dis-
cuss what happens when querying for information. We describe information
retrieval metrics, nomenclature and the fundamental structuring methods used
when indexing and recollecting unstructured information. MapReduce is also
introduced to the reader as it is one of the more successful and widely deployed
information retrieval algorithms of today.

Since it is difficult to manually retrieve information from vast amounts of
documents, we would like to employ the help of computers. This requires
some kind of structuring (at least syntactical) of the information. In the third
chapter we thus discuss structured languages, their impact on the semantic web
and their internal hierarchy. The main languages presented in this chapter are;
XML, RDF and OWL.

However, syntactical structuring is often not enough, and more semantic
information is needed. Ontologies describe concepts that exist in a domain
and how these relate to each other. This is the topic of the fourth chapter. In
an ontology all concepts have a formal definition to make them interpretable
by computer software. This makes it also easier to exchange information, reuse
domain knowledge and even perhaps make it possible to infer new facts.

In the fifth chapter we go further in the discussion on how to represent
knowledge in a way that it can be used to draw new conclusions i.e. reason
about it. One of the more widely used formalisms for knowledge representation
languages is Description Logics (DL). It is, for example, the basis of OWL. DL
is actually a family of languages with different levels of expressiveness. Related
to this, and also discussed in the chapter, is the knowledge base which is the
collection of rules and statements that we wish to use for reasoning.

A language’s reasoning capabilities is decided by its expressiveness i.e. the
types of concepts, instances, relationships and restrictions that can be modeled
with it. In the sixth chapter we discuss reasoning engines and algorithms. The
aim of the chapter is to give the reader an understanding of what reasoning is,
what a reasoner engine does, and what its defining features are. The supported
levels of logic expressiveness decides whether the reasoner can guarantee decid-
ability and termination. Decidability means whether an arbitrary statement

9

FOI-R--2858--SE

can be said to be true in the context of a particular knowledge base and termi-
nation refers to whether this answer is possible to obtain in finite time or not.
We will also briefly discuss two of the most popular reasoning algorithms, i.e.
Tableau and RETE, as well as present a reasoner comparison of some of the
more popular reasoners, e.g., Pellet and JESS.

A knowledge base is another word for information repository. In the sev-
enth chapter we focus on semantic data storage and querying. Three different
approaches for efficiently storing semantic data are introduced: the triple store
approach, modeling to relational database systems and vertical partitioning. A
comparison of these three approaches shows, that their performance is largely
dependent on the type of queries that are asked, i.e. if we have a need for
explicit or implicit information. SPARQL has been identified as the de-facto
standard for querying RDF data. The chapter finishes with a short introduc-
tion to different semantic storage software packages, such as, Jena, Sesame,
Mulgara and Oracle.

Throughout the chapters we give indications that semantic techniques are
not always purely beneficial and therefore, in chapter eight, these challenges
are discussed in more detail. It is important that developers are aware of those
problems and that they consciously decide whether their applications or parts
of their applications need semantic support. For example, for high performance
applications it is generally advisable to use established systems like relational
databases instead. A good thing to remember is that the technologies and
methods mentioned in this chapter are still in development and some are not
yet as mature as established ones. Also, no critical mass of users has adopted
them yet. It is to be expected that, when more people start to use semantic
technologies some of the challenges presented in the report will be resolved.

In the final chapter we present the project that has sponsored this report.
We discuss its focus and conclude with some of the research challenges that
the project aims to tackle in future. The reader that would like to contact us
is welcome to do so at infoMoS [at] foi.se

10

FOI-R--2858--SE

Contents

1 Introduction 15
1.1 Vision . 15
1.2 Scope . 16
1.3 Reading Instructions . 17

2 Information Retrieval 19
2.1 Nomenclature . 19
2.2 Metrics . 20
2.3 Indexing Models . 22

2.3.1 Boolean . 22
2.3.2 Inverted Index . 23
2.3.3 Vector . 24

2.4 MapReduce . 26
2.5 Summary . 27

3 Structural Languages 29
3.1 Language Stack . 29
3.2 XML - eXtensible Markup Language 29
3.3 XML Schema . 31
3.4 XSLT - The eXtensible Stylesheet Language Family Transfor-

mations . 32
3.5 RDF - Resource Description Framework 32
3.6 RDF Schema and OWL - Web Ontology Language 33
3.7 SWRL - Semantic Web Rule Language 34
3.8 Summary . 36

4 Ontologies 39
4.1 What is an Ontology? . 39
4.2 Classifying Ontologies . 41
4.3 Why Develop an Ontology? . 43

4.3.1 Reuse of Knowledge and Information Sharing 44
4.3.2 Moving from Unstructured to Structured Data 44
4.3.3 Improved Search . 44
4.3.4 Revealing Implicit Facts 45

4.4 Methodologies for creating an evaluating Ontologies 46
4.4.1 Motivating Scenarios . 47

11

FOI-R--2858--SE

4.4.2 Identifying Terms and Concepts 47
4.4.3 Evaluation . 48

4.5 Ontology Editors . 48
4.6 Summary . 51

5 Knowledge representation and Reasoning Languages 53
5.1 Knowledge Representation Formalism 53
5.2 Knowledge Representation Languages 55

5.2.1 Semantic Networks . 55
5.2.2 Frame Language . 56
5.2.3 Description Logic . 57
5.2.4 Reasoning Languages for the Semantic Web (OWL) . . 58

5.3 Summary . 59

6 Reasoning Engines and Algorithms 61
6.1 Knowledge Base . 61
6.2 Reasoning Engines . 61
6.3 Reasoning Algorithms . 63

6.3.1 Tableau . 63
6.3.2 RETE . 63

6.4 Reasoner Comparison . 64
6.5 Summary . 67

7 Semantic Data Storage and Querying 69
7.1 Storing RDF Data . 69

7.1.1 Triple Store . 69
7.1.2 Mapping onto Relational Database 70
7.1.3 Vertical Partitioning . 71
7.1.4 Performance Comparison 72

7.2 Semantic Query Languages . 72
7.2.1 Introduction to Query Languages 72
7.2.2 XPath . 74
7.2.3 SPARQL . 74
7.2.4 SeRQL . 76

7.3 Overview of RDF Storage Solutions 76
7.3.1 Jena . 77
7.3.2 Sesame . 77
7.3.3 Mulgara . 77
7.3.4 Oracle Spatial 11g . 77

12

FOI-R--2858--SE

7.4 Summary . 78

8 Challenges 79
8.1 Structuring Information . 79
8.2 Data Overhead . 79
8.3 Ontology Building and Using 80
8.4 Storage . 80
8.5 Reasoning . 81
8.6 Final Thoughts . 81

9 Research Project 83
9.1 InfoM&S Project Description and Research Goals 83

Bibliography 85

13

FOI-R--2858--SE

1 Introduction
Most organizations collect vast amounts of data over time, and they usually
store it in an unstructured form such as text documents, power point presen-
tations, excel files, etc. To manually search though this kind of information is
usually not very efficient and therefore we try to use the aid of computers for
information management. Computer software can be used to help us navigate,
search and even reason about what we know. But, if we want machines to be
able to help us, we need to encode our knowledge in a structured and formal
way.

The knowledge within documents, often available as natural language text,
is normally not available in a formally structured form, thus making it hard
for machines to understand the meaning. Therefore they have a limited ability
to do anything useful with the information.

Popular search tools like Google can execute a search query very fast but it
is not always the case that the search result contains what you are looking for.
Furthermore, the result set may not be presented in the most suitable format.
Traditionally, the search result for a query like “Which countries are members
of the European Union and have a population greater than 10 million” would
be a result set of documents that hopefully contains the answer. To get the
final result further processing of the documents is required.

If this type of knowledge (i.e. the answer to the question) is structured and
formally encoded, a search engine may answer the question with a list of coun-
tries directly. Normally this information is explicitly stored (e.g. in a relational
database), but what happens if we wish to retrieve implicit information? For
example, if two persons have the same father and mother, then we would like
to know that they are siblings without having to explicitly state this fact.

Today, information and content management systems often use a relational
database as storage. Relational databases rely on a “static” schema (one that
does not change easily) which needs to be updated when a new type of docu-
ment is introduced or a new attribute is added. We need to find technologies
that let us expand our information model with our new data, a so called dy-
namic model.

1.1 Vision

We believe that new technologies and methods, such as semantic technologies,
can be used to realise our vision of a future information system. Our vision is
that an information system should contain the following features:

• It should be easy for both man and machine to find relevant information.
The result of a search should be able to be presented in a suitable form
such as graphs, tables, timelines, diagrams etc. where applicable.

15

FOI-R--2858--SE

• It should be easy to find related information.

• The system should be able to infer new facts and reveal complex rela-
tionships.

• The system should be adaptive to changes so that a new type of document
or a new concept can easily be introduced.

• Data, information and knowledge should be stored in a formal way so
that it can be understood by both man and machine.

• The system should be scalable.

• The system should promote collaboration.

• The system should utilize new information about how the users actually
use the system.

To build systems that have all the features described in the vision, many
technologies from different areas needs to be used. Ideas and technologies from
research areas such as Semantic Web, Information Retrieval, Knowledge Man-
agement, Text Mining, Database Management may be suitable. No technique
alone can solve the problem.

1.2 Scope

In this report we describe some of the key technologies that the next generation
systems are likely to be based upon. We also point out some of the challenges
that arise. The scope of this report is to give an introduction to information
management methods and technologies. We will talk about the semantic web
and its enabling technologies. Later we will discuss the general concept of
ontologies and semantic data storage as well as querying semantic data. We
will also talk about reasoning and information retrieval.

The report aims to answer the following questions:

• Why do we structure information?

• How can we structure information?

• How do we store the structured information?

• How do we reason using the stored information?

• When should we reason about the information?

• How do we retrieve the needed information?

• What are the challenges with semantic technologies?

16

FOI-R--2858--SE

1.3 Reading Instructions

The report aims at giving an introduction to information system technolo-
gies and methods for semantic information management. Intended readers
are people interested in learning about information management methods and
technologies. The report requires

The structuring of the report should allow a reader to read each chapter
individually in no special order. However it is recommended to start reading
from the first chapter to the end chapter since we sometimes refer back to
earlier chapters. At the end of each chapter, except Chapters 1, 8 & 9, there
is an individual summary describing the chapter and the main issues raised in
it. This is a good starting point for the reader who does not have the time to
read the entire chapter.

Chapter 2 (Information Retrieval): Describes methods for clustering and
retrieving unstructured information. It is a good starting point since it
gives an introduction to efficiency measures used when evaluating infor-
mation systems.

Chapter 3 (Structural Languages): Describes what the Semantic Web is,
which languages are involved and how it evolved.

Chapter 4 (Ontologies): Describes the ontology concept, methodologies and
practical tools for ontology building.

Chapter 5 (Knowledge representation and Reasoning Languages):
Describes knowledge representation formalisms and languages. It gives
an introduction to the expressiveness of different language classes and
their respective computational issues.

Chapter 6 (Reasoning Engines and Algorithms): Gives a glance at dif-
ferent reasoning technologies, that is, how we can draw logical conclusions
from given facts. The chapter also compares the implementations of dif-
ferent reasoning engines.

Chapter 7 (Semantic Data Storage and Querying): Describes how se-
mantic data can be stored and talks about scalability concerns when
building large semantic information systems. It also describes different
semantic query languages.

Chapter 8 (Challenges): Describes challenges that can occur when using
semantic systems and discusses some possible solutions.

Chapter 9 (Research Project): Presents the research project behind this
report, its focus and the research challenges that will be investigated in
future.

17

FOI-R--2858--SE

For the interested reader; the bibliography at the end of this report gives
pointers for where to find more information about the discussed technologies
and methods.

18

FOI-R--2858--SE

“slaughter or murder and breed”. Using the above section of the data model
would yield [The Bible] whereas the query “struggle or survival” would yield
[The Bible, On the Origin of Species]. We denote a list of items with square
brackets, i.e. [List Item0, List Item1, . . .].

The evaluation is performed using boolean algebra, since we have a bit
vector for each term. Constructing the query “murder or struggle and not
development” would be performed by joining the bit vectors for murder and
struggle, complementing the vector for development and joining the result, i.e.

10 | 11 & !01 = 10 [The Bible]

One problem with this model is that a document is either in or out of a
query set. What we are looking for is a system which can tell us the difference,
or rather, a metric distance between competing documents.

2.3.2 Inverted Index

Looking at the data model above, one realizes that there is typically some
skewness in the distribution of terms. Cursory inspection would suggest that
“The Bible” contains far more violence than “On the Origin of Species”. Other
works are likely to show the same behaviour, i.e. a medical text will contain
terms not typically found in a motorcycle manual and vice versa, since these
belong to different domains and cultures. The incidence matrix will therefore
become inherently sparse as more documents enter the collection. As such the
matrix is not very space efficient, as implied earlier, and it is also a tedious
task to increase and expand it.

Instead it is common to store references to occurring terms mainly by keep-
ing an ordered list of documents for each occurring term. A typical record is
denoted by:

Record :: Term -> [DocumentID]

An inverted index consists of a dictionary, the set of all unique words, and
a postings list [55]. This data structure is faster, since we can look directly at a
terms postings list and it does not require us to maintain long bit vectors when
we locate new terms or add new documents. This is exemplified in Table 2.1

We still have a problem with this model: we can’t relate query results so
we have no way to exclude uninteresting results from the set. Since we cannot
relate results it may very well be that, perhaps in a result set of a hundred thou-
sand documents, the most relevant result is presented last. Browsing through
such a collection is not an alternative. If there was a rank for each hit, relative
to the query, we could present only the relevant hits.

23

FOI-R--2858--SE

Dictionary Postings Lists

breed → 0 1 2 . . .
destroy → 0 1 . . .

development → 1 2 . . .
...

Table 2.1: A typical inverted index. Where 0 =“The Bible”, 1 = “On the
Origin of Species” and 2 =“Horse Breeding”.

2.3.3 Vector

An even better method, than inverted index, to relate query results with would
be to record each term encounter in the postings list. In this way we could
count the number of times a term frequents a document [60]. This time the
representation for a record is given as:

Record :: Term -> [(DocumentID,TermIndex)]

Where each term collects a list of document, term index tuples. The term
index is the position of the term in the document, or corpus. This is exemplified
in Table 2.2

Dictionary Postings Lists

breed → (0,77) (0,2344) (1,135) (1,140) . . .
destroy → (0,65) (0,67) . . . (1,564) (1,567) . . .

development → (1,42) (1,64) (1,68) (1,78) (1,79) . . .
...

Table 2.2: We can now order documents after their relevance to a query. A
query for “breed or development” will rank “On the Origin of Species” higher
than “The Bible” since it contains far more breeding and development than
the latter.

2.3.3.1 Term Frequency

A document’s term frequency, tfi,j , is the number of times a term, ti, occurs
in a document, Dj [59]. At a first glance one might assume that a high term
frequency would indicate a more relevant document. It is, however, the case

24

FOI-R--2858--SE

that a document which contains a hundred occurrences of a term whereas
another only one, does not necessarily indicate that the first document is a
hundred times more relevant.

In order to remedy this, the tfi,j is normalized to the number of other term
occurrences within a document. For any given term ti and any given docu-
ment dj , the normalized term frequency, TFi,j , is defined as the number of
that occurrence, i.e. tfi,j , divided by the sum of the total number, k, of term

occurrences within the document, i.e.
|Dj |∑
k=1

tfk,j .

TFi,j =
tfi,j

|Dj |∑
k=1

tfk,j

Normalization is sometimes done by only taking the sum of the most fre-
quent terms. It should be clear that when we refer to term frequency we refer
to the normalized TF .

2.3.3.2 Inverse Document Frequency

A problem however, is that many languages contain words which occur quite
often and are likely to be irrelevant to a query, e.g., in English the words
“the, and, is,” etc. An inverse document frequency (IDF) [60] is added as a
weight to differentiate interesting keywords from those which occur often and
are non relevant, like the term “the”. As such it is effectively used to measure
the importance of a single term. IDF can be defined as some weight which
suppresses frequently used terms.

Formally, IDF is defined as the logarithm of the number of documents in a
collection divided by the number of documents which contain the term.

IDFi = log
N

ni

So if a term occurs in all 10 documents in a collection we get a weight of 0
effectively eliminating the term from further evaluation3. If the term instead
only occurs in one document we get amplification of that term4. For a more
in-depth analysis of IDF see [37].

2.3.3.3 Winning combination?

The combined weight given from multiplying TF with IDF filters out many non-
relevant terms. Since the weight for a given term is maximized by obtaining a

3since log 10/10 = log 1 = 0.
4since log 10/1 ' 2.3.

25

FOI-R--2858--SE

high term frequency within a document while not being present in many other
documents. This is commonly referred to as tf − idf or TF*IDF.

2.4 MapReduce

MapReduce is an algorithm for indexing and recollecting documents in large
sets of data. The algorithm was recently popularized by Google [11].

The baseline for MapReduce is an inverted index, as described earlier, of
terms mapping to documents on which the algorithm is run. As such it strictly
operates on key-value pairs. Despite its name MapReduce consists of three
major operations, Map-Group-Reduce. We will ignore Group and assume that
Map is combined with Group. The programming model then becomes:

Map takes data from one domain structured in a key-value pair, i.e. a tuple
(key, value), and Map:s it to a new pair in another domain consisting of
a key and a list of values:

Map :: (k1,v1) -> (k2,[v2])

Reduce takes the output of Map and groups the newly found pairs with the
same key and Reduce:s that result into a single value for each unique
key:

Reduce :: (k2,[v2]) -> (k2,v3)

Both need to be implemented by the user for any specific purpose. One of
the benefits of deploying a MapReduce is that both functions are required to be
pure and as such may be parallelized and distributed [25]. This means that it
scales well on an increasing number of nodes.

In order to be more concrete consider the task of counting the number of
times each term is encountered in a collection of documents. For this instance
we get:

Map processes the documents in the collection, produces a list and groups the
document identifiers belonging to each term. This produces:

[(Term,DocumentID)] -> [(Term,[DocumentID])]

Reduce groups all document identifiers for a specific term and then Reduce:s
the list to a word count:

[(Term,[DocumentID])] -> [(Term,WordCount)]

The strength of the MapReduce algorithm resides not from the fact that the
combination of Map and Reduce is beneficial, but in the fact that both functions
are purely functional [11].

26

FOI-R--2858--SE

2.5 Summary

This chapter discusses fundamental structuring methods when indexing and
recollecting unstructured information. It is focused on introducing the reader
to IR in order to give a better understanding of involved issues when devel-
oping scalable information systems and when querying for information in un-
structured documents.

The chapter describes a basic nomenclature and the different units and met-
rics commonly used in Information Retrieval (IR). Examples of simple mea-
surement metrics used in evaluation of queries are “Precision” and “Recall”.
The first indicates how relevant a query result set is i.e. if many irrelevant
documents were returned the result set has not been very precise. The second
term indicates how good a search has been, i.e. how many of the relevant
documents a query recollects.

Then we discuss how basic retrieval models are created and how to reason
about their operation. The inefficiencies of the boolean indexing model, both in
terms of an exhaustive query result set but also in its in-memory representation,
are presented. We also discuss the benefits of the vector based indexing model.
This model tries to rate documents in relation to some quality measurement,
e.g. the frequency of interesting words.

Further, we introduce the reader to one of the more successful and deployed
IR algorithms as of today i.e. MapReduce. It is an algorithm used in large sets
of data for indexing and recollecting documents.

27

FOI-R--2858--SE

3 Structural Languages
In the previous chapter we saw how indexing and querying is handled when
we have unstructured data. If we wish to become more efficient and be able
to retrieve richer and more precise information we need to start pre-processing
the information.

In recent years the World Wide Web has started to evolve from a source of
plain facts to an intelligent information source. This development is driven by
the vision of a “Semantic Web” [26], where not only humans but also machines
can understand and process the information presented in the Web. For realizing
this vision, new technologies are being developed that facilitate the structuring,
presentation and interpretation of information. In this chapter we will present
the essential technologies that the Semantic Web is built upon, including for
example XML, RDF and OWL. The knowledge presented in this chapter is a
basis for the understanding of the rest of this document.

3.1 Language Stack

The advancement of the Semantic Web is steered by the World Wide Web
Consortium [51] (W3C). The W3C is responsible for the standardization of
matured Semantic Web technologies, but also gives recommendations for the
usage of promising new technologies.

Figure 3.1 shows the Semantic Web Language stack [66]. It can be seen,
that the technologies of the Semantic Web form a hierarchy; technologies from
the upper layers build upon the basic, lower-layer technologies. The stack is
still evolving and the top layers contain some technologies that have not yet
been standardized and some which are only ideas. The bottom layers contain
technologies (URI, Unicode, XML) that are used in the classical hypertext
web1. The middle layer technologies (RDF, RDFS, OWL, SPARQL) are stan-
dardized technologies used for enabling Semantic Web applications.

3.2 XML - eXtensible Markup Language

XML is a language for structuring data2. It is widely used on the World Wide
Web and has been considered a standard for many years [68]. Because of the
wide adoption of XML, parsers and libraries for manipulating XML data are
available for most programming languages and platforms. As can be seen in
Figure 3.1, XML is the basic foundation of the Semantic Web and all other
technologies build on it.

1Note that the Semantic Web works as an extension of the classical hypertext web, not
a replacement.

2Data structuring does not imply logical structuring.

29

FOI-R--2858--SE

Figure 3.1: Semantic Web Language stack.

XML divides information into markup and content. Markup is the means to
add structure to the data, by annotating the actual content with hints on how to
process and interpret it. Figure 3.2 shows an example XML document. Markup
is encoded in XML in so-called elements3 enclosing the actual content, for
example <”book”>. . . content . . .<”/book”>. Attributes like “currency=SEK”
can be used to further specify the content. In order to uniquely name the
entities an XML namespace, “xmlns=“http://www.example.org/bookShop”, is
used. This is done in order to avoid ambiguity between identically named
elements or attributes in different XML documents [69].

<?xml ve r s i o n =”1.0” encoding =’UTF−8’?>
<book xmlns=”http ://www. example . org /bookShop”>

<t i t l e >On the Orig in o f Spec ie s </ t i t l e >
<author>Char les Darwin</author>
<p r i c e currency=”SEK”>95</pr i ce >

</book>

Figure 3.2: XML example.

The main advantage of XML is the division between markup and content,
that allows to present information without having to care about how it is
actually processed in an application. Further advantages are that it allows
hierarchical structuring of data and is easy to validate. Forward and backward

3Elements are also called tags.

30

FOI-R--2858--SE

compatibility between different XML versions is easy to achieve [68]. XML
is also platform independent. The major disadvantage of XML is its data
redundancy. It can be seen in Figure 3.2, that the content only makes up
about half of the document, while the rest is markup. This problem will be
picked up again later on in Chapter 7, when we talk about the efficient storage
of semantic data, and in Chapter 8, where we discuss some open challenges.

3.3 XML Schema

While XML is used to structure information, an XML schema is a description
of the structure of an XML document. The schema specifies for example which
type of elements the document contains, how many of them and their data
types [71]. The parser/validator uses the XML schema to check if syntax and
other constraints are fulfilled in the XML document. If two documents use
the same schema, then this implies that they must “play by the same rules”.
There are different languages available to express XML schemas, e.g. DTD
(Document Type Definition), RELAX NG, XML Schema, the two latter being
more expressive [71]. XML Schema is a W3C recommendation and currently
the most commonly used XML schema language.

Figure 3.3 shows an example of an XML Schema document. In this docu-
ment a data structure for books is defined. If we compare this document to the
XML document in Figure 3.2, we can see that our XML document conforms
to the data structure defined in the XML Schema document.

<xsd : schema xmlns : xsd=”http ://www. w3 . org /2001/XMLSchema”
targetNamespace=”http ://www. example . org /bookShop”>

<xsd : element name=”book”>
<xsd : complexType>

<xsd : sequence>
<xsd : element name=” t i t l e ” type=”xsd : s t r i n g ”/>
<xsd : element name=”author ” type=”xsd : s t r i n g ”/>
<xsd : element>

<xsd : complexType>
<xsd : sequence>

<xsd : element name=”p r i c e ” type=”xsd : double”/>
</xsd : sequence>
<xsd : a t t r i b u t e name=”currency ” type=”xsd : s t r i n g ”/>

</xsd : complexType>
</xsd : element>

</xsd : sequence>
</xsd : complexType>

</xsd : element>

</xsd : schema>

Figure 3.3: XML Schema example.

31

FOI-R--2858--SE

Figure 3.4: The eXtensible Stylesheet Language Family Transformations.

3.4 XSLT - The eXtensible Stylesheet Language Family
Transformations

XSLT is a language for transforming XML documents. A so-called XSLT
stylesheet transforms the XML tree from the source document into an output
document in the desired output format [62]. Patterns are used for matching
different parts of the source tree, extracting those parts and storing the final
output. XSLT uses XPath [70] (see also Section 7.2.2) for selecting different
parts of an XML document for processing. The selection can of course be
conditional.

Figure 3.4 shows how XSLT can be used for creating different types of
output [52]. The input is the source XML document and an XSLT stylesheet
with parameters. The output that is produced is basically a “subset” of the
input, allowing the data to be used and expressed in other formats, e.g. SQL,
a new XML document, HTML, XHTML or plain text.

3.5 RDF - Resource Description Framework

RDF is a general method for the conceptual description or modeling of infor-
mation in the Semantic Web [65]. RDF is based on the idea to make statements
about resources. Statements are in the form of triples, consisting of subject,
predicate and object. For example, consider the following statement: “the cat
jumps on Bob”. We can break it down to its atoms, which are: “the cat” = sub-
ject, “jumps on” = predicate and “Bob” = object. By creating statements and
breaking them down to their atoms we can make human knowledge available
for machines in a formal way. If machines can understand human knowledge,
then they can e.g. process it many times faster than us. Machines can also
help us discover new knowledge from an existing data set.

32

FOI-R--2858--SE

There are different ways to express RDF statements. The most common
is through the XML notation, but there is also other ways, e.g. by using
Notation3 [65]. Because the statements can be considered as resources, RDF
uses URIs to identify them. The URIs basically provide a grouping ability for
statements, putting them in context.

RDF data is visualized through graphs. The graphs contain nodes which
represent subjects and object. The predicates among them are visualized by
lines, indicating the relationships. Figure 3.5 shows an example of RDF and
Figure 3.6 shows the graphical representation of this example. It can be seen
that the document contains a subject, the horse “Mary”, connected to an
object, the rider “John”, by the predicate “hasRider”. Further statements
are made for both “Mary” and “John”. The data in RDF documents can be
queried through different query languages, e.g. SPARQL, Versa and RDQL.
Querying semantic data will be described further in Chapter 7.

<?xml ve r s i o n =”1.0”?>
<rd f :RDF

xmlns : rd f=”http ://www. w3 . org /1999/02/22− rdf−syntax−ns#”
xmlns : ns=”http ://www. example . org / hor s e s/”>

<ns : Rider rd f : about=”http ://www. example . org/#john”>
<ns : hasAge>53</ns : hasAge>
<ns : l i v e s I n >Utah</ns : l i v e s I n >

</ns : Rider>

<ns : Horse rd f : about=”http ://www. example . org/#mary”>
<ns : hasRider rd f : r e s ou r c e=”http ://www. example . org/#john”/>
<ns : hasColor>black </ns : hasColor>

</ns : Horse>

</rd f :RDF>

Figure 3.5: RDF example.

3.6 RDF Schema and OWL - Web Ontology Language

An ontology is a formal representation of a set of concepts within a domain
and the relationships between those concepts [64]. An ontology provides the
vocabulary needed to build a domain containing different concepts and rela-
tionships [64]. In Chapter 4 we will look more deeply into the ontology concept.

RDF Schema is a basic ontology language providing the means to define
classes and the relationships between them. RDF Schema is similar to XML
Schema in the sense that it describes the constructs that can be used in an RDF
document. The RDF Schema language is not very expressive, for example it
is not possible to set cardinalities on the relationships between classes (“Each
horse can only have one rider”).

33

FOI-R--2858--SE

Figure 3.6: Graph for the RDF example.

The Web Ontology Language OWL is a more expressive ontology language,
partly based on RDF Schema. For example, it contains support for cardi-
nalities, hierarchical properties and capabilities of properties (e.g. transitive,
symmetric). OWL has three dialects, with different expressivity: OWL-Lite
for simple classifications, OWL-DL based on Description Logics (see Chapter
5) and OWL-Full with very high complexity.

Figure 3.7 shows a simple example of OWL. Here we create a class “Person”
and two subclasses of this class: “AmericanCitizen” and “SwedishCitizen”. We
also create two properties “hasPersonalNumber” (an ID number applicable only
to Swedes) and “hasSocialSecurityNumber” (an ID applicable only to Ameri-
cans). If we then create two persons: a Swede named Ola and an American
named Jennifer, we could infer that Jennifer does not have a personal number.
In Chapter 6 we will talk more about reasoning and the methods behind it.

3.7 SWRL - Semantic Web Rule Language

SWRL is a proposal for a Semantic Web rule language [47]. It is a high-level
abstract syntax for Horn-like rules [63]. The rules created are used in order to
infer information that is not explicitly stated (which is the case in a relational
database). For example, you can have a rule that says: “if person A and person
B both have mother C and father D, then they are siblings”. In a relational
database you would need explicitly to state that A and B are siblings, thus
storing more data.

SWRL combines OWL (DL + Lite) and RuleML subset (Unary and Binary
Datalog) [47]. There are different SWRL implementations available (see also
the reasoner comparison in Chapter 6), here are some examples [67]:

• SWRLTab is an extension to Protege that supports editing and execution
of SWRL rules.

• R2ML (REWERSE Rule Markup Language) supports SWRL.

• Hoolet, an implementation of an OWL-DL reasoner that uses a first order
prover supports SWRL.

34

FOI-R--2858--SE

<rd f :RDF xmlns=”http ://www. example . org / people . owl#”
xml : base=”http ://www. example . org / people . owl”
xmlns : r d f s=”http ://www. w3 . org /2000/01/ rdf−schema#”
xmlns : owl=”http ://www. w3 . org /2002/07/ owl#”
xmlns : xsd=”http ://www. w3 . org /2001/XMLSchema#”
xmlns : rd f=”http ://www. w3 . org /1999/02/22− rdf−syntax−ns#”
xmlns : people=”http ://www. example . org / people . owl#”>

<owl : Ontology rd f : about=””/>

<owl : Class rd f : about=”#Person”/>

<owl : Class rd f : about=”#AmericanCit izen”>
<r d f s : subClassOf rd f : r e s ou r c e=”#Person”/>

</owl : Class>

<owl : Class rd f : about=”#SwedishCit i zen”>
<r d f s : subClassOf rd f : r e s ou r c e=”#Person”/>

</owl : Class>

<owl : DatatypeProperty rd f : about=”#hasPersonalNumber”>
<r d f s : domain rd f : r e s ou r c e=”#SwedishCit i zen”/>
<r d f s : range rd f : r e s ou r c e=”&xsd ; s t r i n g ”/>

</owl : DatatypeProperty>

<owl : DatatypeProperty rd f : about=”#hasSocia lSecur ityNumber”>
<r d f s : domain rd f : r e s ou r c e=”#AmericanCit izen”/>
<r d f s : range rd f : r e s ou r c e=”&xsd ; s t r i n g ”/>

</owl : DatatypeProperty>
</rd f :RDF>

Figure 3.7: OWL example.

• Pellet, an open-source Java OWL DL reasoner has SWRL-support.

• KAON2 is an infrastructure for managing OWL-DL, SWRL, and F-Logic
ontologies.

• RacerPro, supports processing of rules in a SWRL-based syntax by trans-
lating them into nRQL rules.

Figure 3.8 shows an example of SWRL rules using the RDF/XML syntax.
You can see that there are three variables declared: x1, x2, x3. There are
also four different properties: “hasParent”, “hasSibling”, “hasSex” and “ha-
sUncle”. The rules create the following relationships: x1 “hasParent” x2 and
x2 “hasSibiling” x3 and x3 “hasSex” “male”. Then from this we know that
x1 “hasUncle” x3. An example would be if Peter has a parent, e.g. a father
named John. If John has a sibling (a male sibling, a brother) named Jonas,
then Peter has an uncle (Jonas).

35

FOI-R--2858--SE

<swr l : Var iab le rd f : ID=”x1”/>
<swr l : Var iab le rd f : ID=”x2”/>
<swr l : Var iab le rd f : ID=”x3”/>
<ru leml : Imp>

<ru leml : body rd f : parseType=”C o l l e c t i o n”>
<swr l : IndividualPropertyAtom>

<swr l : p rope r tyPred i ca te
rd f : r e s ou r c e=”&eg ; hasParent”/>

<swr l : argument1 rd f : r e s ou r c e=”#x1” />
<swr l : argument2 rd f : r e s ou r c e=”#x2” />

</swr l : IndividualPropertyAtom>
<swr l : IndividualPropertyAtom>

<swr l : p rope r tyPred i ca te
rd f : r e s ou r c e=”&eg ; h a s S i b l i n g ”/>

<swr l : argument1 rd f : r e s ou r c e=”#x2” />
<swr l : argument2 rd f : r e s ou r c e=”#x3” />

</swr l : IndividualPropertyAtom>
<swr l : IndividualPropertyAtom>

<swr l : p rope r tyPred i ca te
rd f : r e s ou r c e=”&eg ; hasSex”/>

<swr l : argument1 rd f : r e s ou r c e=”#x3” />
<swr l : argument2 rd f : r e s ou r c e=”#male” />

</swr l : IndividualPropertyAtom>
</ru leml : body>
<ru leml : head rd f : parseType=”C o l l e c t i o n”>

<swr l : IndividualPropertyAtom>
<swr l : p rope r tyPred i ca te

rd f : r e s ou r c e=”&eg ; hasUncle”/>
<swr l : argument1 rd f : r e s ou r c e=”#x1” />
<swr l : argument2 rd f : r e s ou r c e=”#x3” />

</swr l : IndividualPropertyAtom>
</ru leml : head>

</ru leml : Imp>

Figure 3.8: SWRL example.

3.8 Summary

In the previous chapter we saw different information retrieval techniques that
can be used when dealing with unstructured information. The problem is that
machines do not really understand the information or comprehend what is
important and what is not. Hence, if we wish to be able to retrieve richer and
more precise information we need to start pre-processing the information and
thus indicate how the information should be interpreted. In this chapter we
talked about the Semantic Web and the different technologies which work as a
foundation for it.

The “Semantic Web” is based on technologies such as XML, RDF and OWL
that help represent data in a machine readable way. This allows us to process
knowledge faster and also gain new knowledge from it. XML is an enabling
syntax technology for the Semantic Web and is also used by RDF (Resource

36

FOI-R--2858--SE

Description Framework) to describe objects, relationships and properties. With
RDF we can make statements about our world like ”Anna owns a Horse” and
”John has rider Anna”. Even though RDF is useful in many situations it is
not very expressive and does, for example, not allow expressing restrictions.

OWL is a web-based ontology language serialized mainly in the form of
RDF and XML. An ontology is a domain description providing the vocabulary
needed to build a domain containing different concepts and relationships. It is
much more expressive than RDF and comes in different expressiveness flavors.
As we are able to express more and more information it quickly becomes tedious
to state every fact and therefore we would like to be able to infer implicitly
stated information4. SWRL is a proposal for a Semantic Web rule language in
order to create rules which are used to reason around ontologies and draw new
facts.

4In Chapters 5 and 6 we will discuss inferencing and reasoners further.

37

FOI-R--2858--SE

4 Ontologies
The rapid growth of the Internet and the huge amount of information available
today has increased the need for technologies and tools that can be used to
organize and structure information. Ontologies may play an important role
when trying to address this problem. This chapter describes what an ontology
is, construction methodologies and practical tools that can be used.

4.1 What is an Ontology?

Ontologies describe knowledge about a certain domain by specifying concepts,
relations between concepts, and axioms. In [42] an ontology is defined as:

Ontologies are explicit formal specifications of a shared conceptu-
alization.

The terms are explained as follows:

Explicit: The type of concepts used, and the constraints on their use are
explicitly defined.

Formal: The ontology should be machine readable.

Shared: An ontology captures consensual knowledge, that is, it is not private
to some individual but accepted by a group.

Conceptualization: A conceptualization is an abstract model of some phe-
nomenon in the world by having identified the relevant concepts of that
phenomenon.

Another attempt to define what an ontology is resulted in

An ontology may take a variety of forms, but necessarily it will
include a vocabulary of terms and some specification of their mean-
ing. This includes definitions and an indication of how concepts are
inter-related which collectively impose a structure on the domain
and constrain the possible interpretations of terms. An ontology is
virtually always the manifestation of a shared understanding of a
domain that is agreed between a number of agents. Such agreement
facilitates accurate and effective communication of meaning, which
in turn leads to other benefits such as inter-operability, reuse and
sharing [46]

Figure 4.1 shows the relationship that may exist between two concepts,
person and pet, defined in an ontology. A person may have a dog as a pet, but

39

FOI-R--2858--SE

the opposite relation may not be valid. The example is trivial but captures
what an ontology construction is all about, namely identifying concepts and
the kind of relationships that may exist between entities.

Figure 4.1: An ontology defines which kind of relationships can exist between
two concepts. A person can have a dog as a pet, but the opposite relation may
not be valid.

According to [27] the following requirements must be fulfilled in order for
something to be considered an ontology:

• A controlled (extensible) vocabulary.

• Unambiguous interpretation of classes and term relationships.

• Strict hierarchical subclass relationships between classes.

A controlled vocabulary means that there is a finite set of terms and that ev-
ery term has an explicit definition. Formal definitions of terms make it possible
for machines to interpret the information in a correct manner. The relation-
ship between terms should also have explicit and unambiguous definitions. In
practice, this means that relationships must be defined using a formal language
interpretable by a machine.

Strict hierarchical subclass relationships are necessary for type deduction.
If A is a superclass of B then the relationship between A and B is said to be
strictly hierarchical if an instance x of type B entails that instance x is also of
type A. A hierarchy where elements do not follow this kind of ”is-a” structure
can consequently not be said to have a strict hierarchical subclass relationship
between classes. A book about Physics might be placed in a category named
Science. It is wrong to say that a book about Physics is a Science, consequently
is not a strict is-a hierarchy. The hierarchy is a valid is-a hierarchy if the
category changed named to ”Science book”.

Figure 4.2 shows an example class hierarchy from the PROTON ontology
developed by Ontotext [33]. The ontology is used in many applications such as
the KIM semantic annotation platform [2]. A screenshot showing the relations
available for persons is available in Figure 4.3.

40

FOI-R--2858--SE

Ontologies can be classified based on their generality [18] as shown in Fig-
ure 4.5.

Top-level ontology: Describes very general concept like space, time, matter,
object, event, action etc. Independent of a particular problem or domain.

Domain & Task ontology: Describe the vocabulary related to a generic do-
main (medicine, cars) or a activity (selling).

Application ontology: Depends on both domain and task ontologies. These
concepts often correspond to roles played by domain entities while per-
forming a certain activity.

In order for an application to be useful in practice, an ontology must cover
the terms of the specific domain/problem to be solved. A too general ontology
might not cover all concepts needed but can act as candidate to use as a top-
level ontology.

Figure 4.5: Ontology classifications according to Guarino [18].

4.3 Why Develop an Ontology?

The benefits of using ontologies can be summarized as follows:

• It provides a shared understanding about concepts in a domain by formal
definitions.

• It provides a way to reuse knowledge about the domain.

• It provides a way to encode knowledge in a way that is understandable
by both man and machine.

A shared understanding about concepts and formal definitions makes it
easier to exchange information and reuse domain knowledge. Both man and

43

FOI-R--2858--SE

machine benefits from this. By encoding knowledge, machines may get a better
understanding of how the information can be used and may even be able to
infer new facts. Potential benefits of using ontologies are explained in further
detail in the following subsections.

4.3.1 Reuse of Knowledge and Information Sharing

Ontologies can improve information exchange by reducing the possibility of
misinterpretation. Axioms and rules defined in an ontology can be used to
find contradicting information. However, it is not always necessary to agree on
and share all the details of an ontology in order to benefit from it. It is often
enough to agree on some top-level concepts to be able to exchange informa-
tion. By agreeing on the structure of information among people and software,
information can more easily be extracted and aggregated from different sources.

Ontologies does not only make it easier to exchange information, it may also
be easier to reuse knowledge. If a public ontology already exist which covers
the concepts needed it can be reused with ease. One example of concepts that
can be reused is time and space since there is often a need to be able to make
statements about time-intervals and points in space.

A goal when developing an ontology might be to make domain assumptions
explicit. If domain assumptions hard coded in a programming language are
moved to an ontology, the assumptions become more clear and manageable [32].

The formal specifications of terms in an ontology makes it easier to analyze
domain knowledge. A formal description of terms also is of great help if you
want to find out if you can reuse existing ontologies [27].

4.3.2 Moving from Unstructured to Structured Data

Ontologies can be used to transform unstructured information to structured
information in various ways. It can be used to add valuable metadata both
on document and content level. The latter is known as semantic annotation.
Another possible application where an ontology can be used is in relation ex-
traction from text. If an entity extraction algorithm is able to find names
of persons and locations an ontology can be used to give suggestions of what
relationship may exist between the entities.

4.3.3 Improved Search

An ontology can be used t, improve search capabilites by find equivalent words
describing the same concept in a search query and hopefully by exploiting this
get more search hits. This is known as parallelism. Ontologies can also be used
to generalize search terms. A result set for a search on boats can include both
sailing boats and motorboats since both of the terms are more specific variants
of boats.

Since each term has a specific meaning, an ontology based information

44

FOI-R--2858--SE

system may answer very precise search queries. In theory, an ontology based
information system would be able to answer a search query like “How many
people live in Sweden” with the actual number instead of links to documents.

4.3.4 Revealing Implicit Facts

The formal specification of terms and relationships can be used to infer new
statements. Consider the following example.

The following is specified in an ontology:

• The relation sonOf is defined as a sub-relation to the more general
bloodRelativeTo.

• The relation fatherTo is defined as a sub-relation to the more general
bloodRelativeTo.

• The relation bloodRelativeTo is specified to be transitive1.

• The bloodRelative relation is only valid between humans. In other words,
we set the domain and range of the relation to be a class Human.

The two following statements are added:

• John is sonOf Edward.

• Edward is fatherTo Lisa.

By utilizing the formal definitions of terms and relationships defined in the
ontology the following facts can be inferred:

• John and Lisa are blood relatives since bloodRelativeTo is a transitive
relation.

• Lisa and John are humans since the relation are only valid between in-
stances of Human.

Figure 4.6 provides a graphical representation of the example. As seen in
the example, new facts can be inferred that must be true based on the new
information and the rules defined in the ontology. Principally, if one or more
facts are added to the knowledge base, it is likely that this information can be
used to infer new facts. In the example, two facts were added and we got two
for free. The fundamental problem that ontologies can be used to solve is how
to make the most use of the available information. The example shows that
ontologies can not only be used to improve the structure of information, they
can also be used to reveal implicit facts.

1A “transitive” property asserts that if the property P exists between instances x and y,
and between y and z, then the property also exists between x and z.

45

FOI-R--2858--SE

Figure 4.6: New facts can be inberred based on a transitive relationships.
Implicit facts are represented as dashed lines.

4.4 Methodologies for creating an evaluating Ontologies

Several methodologies for evaluating existing ontologies. These are [10, 14, 32,
23]. One thing that they all have in common, is that they all point out the
importance of defining what the ontology should be used for. They also point
out that before one starts to build an ontology one should consider reusing
the work of others. There are many public ontologies that can be extended in
order to match the requirements of a specific domain or context.

The methodologies provide guidelines on how to identify concepts and re-
lations. However, before identifying concepts and relations, we need to know
what kind of problem that the ontology is supposed to solve. Does the ap-
plication, let’s say a movie recommendation system, require a definition of a
car? Most of the methodologies also provide guidelines on how to validate
the ontology. In [14] the authors point out that a methodology for creating
ontologies should not only provide guidelines for how to identify concepts and
relations, it should also take the life cycle into consideration. In most cases, an
ontology should be seen as a natural part of the system that it is used in and
be documented as such. As an software engineering, it is hard to get it right
the first time. Even if a lot of research has been done in beforehand, it is hard
to cover all things from start.

Regardless of which approach is chosen, one should keep the following fun-
damental rules in mind [32]:

1. There is no single correct way to model a domain.

2. Ontology development is an iterative process.

3. Concepts in the ontology should be close to objects (physical or logical)
and relationships in your domain of interest. They are most likely to be
nouns (objects) or verbs (relationships) in sentences that describe your
domain.

46

FOI-R--2858--SE

4.4.1 Motivating Scenarios

Many well-known methodologies agree that it is important to motivate the
existence of the ontology and provide scenarios and/or use-cases where the
ontology is needed.

Common questions to answer when determining the role of an ontology in
an application are:

• Why do we need it?

• Why not use existing ontologies?

• How will it be used?

• Who are the targeted users?

A useful technique introduced by [17] and adopted by other methodologies
are the use of so called competency questions. A competency questions is a
question that a system, by utilizing the ontology, should be able to answer. In
a movie recommendation system a competency question might be formulated
as: Which action movies have won an Oscar. Competency questions can be
grouped by importance. Some may be a requirement and some just nice to
have.

4.4.2 Identifying Terms and Concepts

The next step, after having motivated the need for an ontology, is to think
about what concepts need to be introduced and what kind of relationships
that may exist. The first step is often to organize and structure the knowledge
about the domain. The following steps are suggested by [14]:

1. Create a glossary of terms; natural language definition, synonyms, acronyms.

2. Create a taxonomy; identify classes and subclasses.

3. Create a concept dictionary; specify relations that can be used.

4. Specify rules; specify rules that can be used for inference.

Different methodologies propose different strategies how to identify and
specify how concepts relate to each other.

A bottom up approach starts with defining the most specific classes. The
next step is to find more general terms. An ontology built with a bottom up
approach may result in a very high level of detail, which may increase overall
effort. Using this approach it may be difficult to spot commonalities between
related concepts which can increase the risk of inconsistency [45].

A top-down approach starts with the definition of the most general concepts
in the domain and subsequent specialization of the concepts. Consider a Wine

47

FOI-R--2858--SE

ontology. In a top down approach one would start with creating the Wine
and Food classes, then you specialize the wine class by creating some of its
subclasses like White wine, Red wine etc.

A combined approach starts with important concepts first, and then tries
to find more general and specialized concepts. [45] argues that a combined
strategy produces an ontology with the best balance in terms of the level of
detail.

Finally, the following rule of thumb can be helpful when deciding if the
ontology definition is complete.

The ontology should not contain all the possible information about
the domain: you do not need to specialize (or generalize) more
than you need for your application (at most one extra level each
way). [32].

4.4.3 Evaluation

An important step when creating an ontology is to find out if the ontology meets
the specified requirements. Important things to consider when evaluating an
ontology is:

Consistency: Can any contradictory knowledge be inferred?

Completeness: Is all that is supposed to be in the ontology explicitly stated
or can it be inferred?

Conciseness: Does it include unnecessary definitions?

Finally, if one adopts the idea of competency questions, the system should
be able to answer these.

4.5 Ontology Editors

There are many tools available today which can be used for creating, visu-
alizating and manipulating ontologies. Most of them can visualize ontology
information like the class/relationship hierarchy. An important feature sup-
ported by many tools is the possibility to use a reasoner in order to infer
statements.

The most widely used open-source ontology developing tool is Protégé.
Protégé has a large set of available plugins. Protégé can be used with Pellet,
FACT++ and any DIG compliant reasoner. A reasoner is a piece of software
that is able to infer new facts from a set of know facts or axioms. A screenshot
of Protégé is shown in Figure 4.7.

Another application, originally developed by MIND lab at University of
Maryland, is SWOOP. It is at current date available as an open-source project.

48

FOI-R--2858--SE

4.6 Summary

An ontology describes concepts that exist in a domain and how these relate to
each other. Each concept have a formal definition which makes it interpretable
by computer software. A shared understanding of concepts and formal defi-
nitions makes it easier to exchange information and reuse domain knowledge.
Both man and machine benefit from this. By encoding knowledge, machines
can get a better understanding on how the information can be used and may
even be able to infer new facts.

Ontology construction is a research area of its own and several methodolo-
gies exist. It is recommended that you follow a well established methodology
since the chances of missing some important aspect decreases. The most im-
portant thing is perhaps to involve domain experts and end-users during the
construction phase. One good practice is to formulate scenarios and/or use-
cases where the ontology is needed. Another useful technique that can be
utilized when developing an ontology is to formulate competency questions.
A competency question is a question that a system, by utilizing the ontology,
should be able to answer.

51

FOI-R--2858--SE

5 Knowledge representation and
Reasoning Languages
In order to achieve intelligent behavior in a system it needs to have knowledge,
a way to represent it and reason about it. In essence, the goal of knowledge
representation is to represent knowledge in a way so it can be used to draw
new conclusions. This chapter presents the formalisms that outline the ex-
pressiveness of a language and some of the more commonly used reasoning
languages. By formalism we mean a way to abstract the information using
different symbols and rules previously defined and therefore known.

5.1 Knowledge Representation Formalism

To represent knowledge we need a language that not only consists of a syntax,
with which to model knowledge, but that also can be used to reason with. The
reasoning capability is decided by its expressiveness, i.e. the types of concepts,
relationships and restrictions that can be modeled. Let’s take a look at these
modeling building blocks.

Classes: “Classes” (or “concepts”) are interpreted as sets that contain indi-
viduals and they may be organized into a superclass-subclass hierarchy (a
taxonomy). Subclasses specialize (“are subsumed by”) their superclasses.

Individuals: “Individuals” (or “instances”) can be referred to as being “in-
stances of classes”.

Properties: “Properties” are binary relations on individuals. Properties are
also known as slots (in Protégé/Frames), as roles in description logics and
relations in UML and other object oriented notions. In other formalisms
they are called attributes. Properties can also be organized in hierarchies
where a property can be a more specialized variant of another property.

Properties are usually divided into three different types: data, object and
annotation properties.

• Data type properties link an individual to an XML-Schema data
type value or an RDF literal, Figure 5.1 shows an example of a data
property.

• Object type properties link an individual to an individual and can
be called a binary relationship.

• Annotation properties can be used to add metadata to classes, in-
dividuals and object/data type properties.

53

FOI-R--2858--SE

<owl : DatatypeProperty rd f : ID=”currency”>
<r d f s : domain rd f : r e s ou r c e=”#Money”/>
<r d f s : range
rd f : r e s ou r c e=”http ://www. w3 . org /2001/XMLSchema#s t r i n g ”/>

</owl : DatatypeProperty>

Figure 5.1: Data type property example

Object properties can be further classified into different types; functional,
inverse functional, transitive and symmetric.

• A “functional” property is a property that can have only one (unique)
value i for each instance x, i.e. there cannot be two distinct values
i1 and i2 such that the pairs (x, i1) and (x, i2) are both instances
of this property. For example, lets have the concept person that
can have a functional property called “sex” with the value male or
female. We thus do not allow a person x to have both the property
value i1 male and i2 female.

• An “inverse functional” property asserts that a property value i
can only have the value for a single instance x, i.e. there cannot
be two distinct instances x1 and x2 such that both pairs (x1, i) and
(x2, i) exist. For example, in Sweden each person is given a personal
identity number with a unique value i. There cannot be two persons
that have the same personal identity number. For those who have
knowledge in relational databases, an inverse-functional property
resembles the notion of a unique key in a table.

• A “transitive” property asserts that if the property P exists between
instances x and y, and between y and z, then the property also exists
between x and z. For example, let’s say that we have the property
ancestor. If x is an ancestorOf(y), and y is an ancestorOf(z),
then x will also be an ancestorOf(z).

• A “symmetric” property is a property that if the pair (x, y) is true,
then the pair (y, x) is also true. For example, lets assume that x has
the property isSiblingOf(y), then y will thus also have the property
isSiblingOf(x).

Properties are used to create restrictions on the individuals that belong
to a class. Restrictions can be of three main types: quantifier, cardinality
and value.

• Quantifier (or “Value”) restrictions, see Figure 5.2 for an example.

– The existential quantifier ∃ can be read as “at least one”, or
“some”.

54

FOI-R--2858--SE

<owl : Re s t r i c t i on >
<owl : onProperty rd f : r e s ou r c e=”#hasParent ” />
<owl : hasValue rd f : r e s ou r c e=”#Clinton ” />

</owl : Re s t r i c t i on >

Figure 5.2: Value restriction example.

– The universal quantifier ∀ can be read as “all values from”.

• Cardinality restrictions. The number of relationships that an indi-
vidual may participate in for a given property. Figure 5.3 shows an
example of this.

– Minimum cardinality restrictions (≤).
– Maximum cardinality restrictions (≥).
– Cardinality restrictions(=).

<owl : Re s t r i c t i on >
<owl : onProperty rd f : r e s ou r c e=”#hasParent ” />
<owl : minCardina l i ty rd f : datatype=”&xsd ; nonNegat iveInteger”>2
</owl : minCardinal i ty>

</owl : Re s t r i c t i on >

Figure 5.3: Cardinality restriction example.

5.2 Knowledge Representation Languages

In this section we will present some of the more common knowledge repre-
sentation languages and give a short historical overview. We will pay special
attention to description logics since it is the foundation for semantic web rea-
soning.

5.2.1 Semantic Networks

In the 1950’s “Semantic Nets” for computers were introduced by Richard H.
Richens. They were meant to be used as an “interlingua” for machine trans-
lation of natural languages.

A semantic network is a network that represents semantic relations between
concepts. It can be viewed as a directed or undirected graph consisting of
vertices, representing concepts, and edges representing relations, see Figure 5.4.
It is often used as a form of knowledge representation but cannot really be called
a knowledge representation language since it is not ruled based.

An example of a semantic network is Wordnet [72]. It is a large, lexi-
cal database that groups English words into sets of synonyms, provides short

55

FOI-R--2858--SE

Figure 5.4: Example of a semantic network from [57].

general definitions and records the various semantic relations between these
sets. Some of the most common semantic relations defined are meronymy1,
holonymy2, hyponymy3, hypernymy4, synonymy5 and antonymy6.

5.2.2 Frame Language

A frame is a data structure used for knowledge representation. It was intro-
duced by Marvin Minsky in the 1970:s when working in the field of Artificial
intelligence [28].

Frames can be viewed as chunks of information, which usually contain prop-
erties called attributes or slots. Each frame has several kinds of information
attached to it.

Some of this information is about how to use the frame. Some is
about what one can expect to happen next. Some is about what
to do if these expectations are not confirmed. We can think of a
frame as a network of nodes and relations. The “top levels” of a
frame are fixed, and represent things that are always true about the
supposed situation. The lower levels have many terminals - “slots”
that must be filled by specific instances or data. Each terminal can
specify conditions its assignments must meet. (The assignments
themselves are usually smaller “sub-frames.”) [28]

Thus the frames usually contain data and object type properties (called
attributes or slots) together with different types of restrictions.

Two well known examples of frame- or frame-based- languages are OIL and
F-logic.

1Meronymy: A is part of B.
2Holonymy: B is part of A.
3Hyponymy: A is subordinate of B.
4Hypernymy: A is superordinate of B.
5Synonym: A denotes the same as B.
6Antonym: A denotes the opposite of B.

56

FOI-R--2858--SE

5.2.3 Description Logic

Description logic (DL) was designed as an extension to semantic networks and
frames (which were not equipped with formal logic-based semantics) and got
its name in the 1980’s (previously it was called “terminological systems”, and
“concept languages”). DL is not only a knowledge representation language but
a family of them, where each has different levels of expressiveness. They have
many application areas but are perhaps best known as the basis for commonly
used ontology languages such as OIL7, DAML+OIL and OWL [19].

A DL language has formal semantics and is a decidable fragment of first-
order logic (FOL) with reasonable expressive power.

5.2.3.1 DL Operators and Expressivity

Each description logic language has a label, e.g. SHIQ, that follows an in-
formal naming convention8. The label roughly describes the allowed operators
and the expressivity of the language. Here follows a list of them [61] (for ex-
planations of the meaning of the formalisms, see Section 5.1). Note that the
purpose of this section is only to give the reader an orientation in the terms.
These DL operator terms are of interest when we discuss the expressivity of
reasoners in Chapter 6:

• F Functional properties.

• E Full existential quantification (Existential restrictions that have fillers
other than owl : thing).

• U Concept union.

• C Complex concept negation.

• S An abbreviation for ALC9 with transitive roles.

• H Role hierarchy (subproperties - rdfs : subPropertyOf).

• R Limited complex role inclusion axioms; reflexivity and irreflexivity;
role disjointness.

7OIL has its basis in both Frame Languages and DL.
8The naming conventions aren’t fully systematic. The letters might be permuted so that

the logic ALCOIN can also be referred to as ALCNIO or SNIO.
9The base language is AL (attributive language). Which allows:

– Atomic negation (negation of concepts that do not appear on the left hand side of
axioms).

– Concept intersection.

– Universal restrictions.

– Limited existential quantification.

ALC is AL but with negation of any concept allowed, not just atomic concepts. ALC is also
the equivalent of ALUE but is used much more often.

57

FOI-R--2858--SE

• O Nominals. (Enumerated classes of object value restrictions - owl :
oneOf , owl : hasV alue).

• I Inverse properties.

• N Cardinality restrictions (owl : Cardinality, owl : MaxCardinality).

• Q Qualified cardinality restrictions (available in OWL 1.1, cardinality
restrictions that have fillers other than owl : thing).

• (D) Use of data type properties, data values or data types.

5.2.4 Reasoning Languages for the Semantic Web (OWL)

In Chapter 3 we reviewed the language stack and discussed OWL. We saw that
there are three flavors, Lite, DL and Full, but we didn’t really discuss what
it means. The three are sublanguages of each other where each successively
obtains more and more expressive powers.

• OWL Lite is suitable for situations where only a simple class hierarchy
and simple constraints are needed e.g. thesauri. OWL-Lite is based on
SHIF (D).

• OWL DL is as the name suggests based on DL. Since it is based on
SHOIN (D) it is suitable for automated reasoning. It is possible to auto-
matically compute the classification hierarchy (subsumption) and check
for inconsistencies in an ontology that conforms to OWL-DL10.

• OWL Full is not actually a sublanguage [50]. OWL Full contains all the
OWL language constructs and provides free, unconstrained use of RDF
constructs. It is used where very high expressiveness is more important
than being able to guarantee the decidability or computational complete-
ness of the language. It is not possible to perform automated reasoning
on OWL Full ontologies since it contains all the OWL language constructs
and provides free, unconstrained use of RDF constructs. For example, in
OWL Full the resource owl : Class is equivalent to rdfs : Class, which
is different from OWL DL and OWL Lite, where owl : Class is a proper
subclass of rdfs : Class11.

5.2.4.1 OWL 2

At the time of writing W3C has produced a new OWL recommendation called
OWL 2 has more formal syntax and semantics [48]. The primary exchange
syntax for OWL 2 is RDF/XML and the semantics resemble that of DL as

10The popular ontology editor Protege supports SHOIN (D).
11This implies that not all RDF classes are OWL classes in OWL DL and OWL Lite.

58

FOI-R--2858--SE

OWL 2 provides the expressiveness of SROIQ(D). It has three “profiles” i.e.
sublanguages (EL, QL and RL [49]), which somewhat resemble the intended
purposes of OWL Lite, DL and Full.

• OWL 2 EL is intended for ontologies that contain very large numbers of
properties and/or classes. The EL acronym reflects the profile’s basis in
the EL Description Logics family12.

• OWL 2 QL is aimed at applications that use very large volumes of in-
stance data, and where query answering is the most important reasoning
task. The QL acronym reflects the fact that query answering in this pro-
file can be implemented by rewriting queries into a standard relational
Query Language e.g. SQL.

• OWL 2 RL is aimed at scalable reasoning without sacrificing too much
expressive power. OWL 2 RL reasoning systems can be implemented
using rule-based reasoning engines13. The RL acronym reflects the fact
that reasoning in this profile can be implemented using a standard Rule
Language e.g. SWRL.

5.3 Summary

In this chapter we have discussed different languages used for reasoning and
formalisms for knowledge representation. A formalism is a structured set of
rules with wich we can explain a domain. One of the goals of knowledge
representation is to represent knowledge in such a way that it can be used to
draw new conclusions i.e. reason about it. To be able to do this the language we
use needs to have a formal syntax and semantics. The reasoning capabilities of
a language is decided by its expressiveness i.e. the types of concepts, instances,
relationships and restrictions that can be modeled with it.

We also discussed some of the more common knowledge representation lan-
guages like Description Logics (DL) and the reasoning Languages for the Se-
mantic Web i.e. OWL. DL has its roots in Semantic nets and Frames and is a
decidable fragment of First Order Logic. DL is actually a family of languages
with a varying degree of expressive power.

W3C has produced a new OWL recommendation called OWL 2 that is
more formal. The semantics remind of DL and it has three profiles (sublan-
guages with different expressive powers) that are aimed at different types of
applications with different requirements.

12EL provides intersection and full existential quantification.
13For more information on reasoning and reasoning engines, see Chapter 6.

59

FOI-R--2858--SE

6 Reasoning Engines and Algorithms
Reasoning is the operation that we perform when we draw logical conclusions
from given facts (i.e. deductive reasoning). Nowadays there are a multitude
of software that help us reason when we have large numbers of facts gathered
in knowledge bases. In this chapter we will first see what a knowledge base
is and then review some of the currently available reasoning engines, compare
them and look more closely at the more common reasoning algorithms and the
advantages and disadvantages of each.

6.1 Knowledge Base

A (machine readable) knowledge base is an information repository, usually
denoted by KB or ∆. The information is stored for the purpose of having
automated deductive reasoning applied to it and thus it has to be structured
in a logically consistent manner. An ontology can define that structure and its
statements are divided into two groups TBox and ABox.

A bit simplified a TBox stands for “terminological box” and contains the
statements that describe the classes and properties. ABox is an “assertional
box” and contains the statements associated with instances of the TBox state-
ments. Using a database analogy, the TBox contain the schema and the ABox
the data.

ABox statements typically have the form: “A is an instance of B” or “Mary
is an Officer”. While TBox statements are typically of the form: “All Officers
are Persons” or “There are two types of Persons: Privates and Officers”.

Usually, when talking about DL and reasoners there is sometimes also a
mention of the RBox, “role” or “property” box. It “exists” in any DL that has
property axioms e.g. “subPropertyOf”, “transitive”, “functional”, etc.

Together all of these statements (ABox, TBox, RBox) make up a knowledge
base.

6.2 Reasoning Engines

A reasoner’s task is to check the consistency of the knowledge base. Most of
the more widely used reasoner engines of today use variations of description
logic as a base.

Depending on the algorithm or the type of data in the KB a reasoner
processes the KB Boxes separately. This is a way to optimize the reasoning
work since certain key inference problems are related to one but not the other
ones. For example the “classification” task is related to the TBox and the
“instance checking” task to the ABox. Since consistency and satisfiability
checking is done against the TBox its language compliance and structure can
greatly affect the performance of these procedures.

61

FOI-R--2858--SE

A crucial issue when choosing a reasoner is whether one is guaranteed decid-
ability (in logics called satisfiability) or termination in finite time. Depends on
the choice of knowledge representation language and its expressiveness. Decid-
ability is whether an arbitrary statement can be said to be true in the context
of a particular KB and termination refers to whether this answer is possible
to obtain in reasonable time or not. For example First Order Logic is not de-
cidable in general and therefore Description Logics (which is a subset) is used
instead.

Reasoning or inferencing commonly proceeds by forward chaining (modus
ponens, data-driven) and backward chaining (goal-driven). Modus ponens
(MP) is a simple argument form sometimes referred to as “affirming the an-
tecedent” or “the law of detachment”. It has the form of “If P then Q” meaning
that if P is true then so is Q (also called a true-false statement). Backward
chaining starts with a goal and works backwards from the consequent to the
antecedent to see if there is data available that will support any of the conse-
quents. For example, lets have the goal to decide which color Napoleon’s pet
has, giving it whinnies and eats grass, and that the knowledge base contains
the following rules:

1. If X whinnies and eats grass Then X is a horse.

2. If X chirps and sings Then X is a canary.

3. If X is a horse Then X is white.

4. If X is a canary Then X is yellow.

This KB would be searched and the third and fourth rules would be selected,
because their consequents (Then X is green, Then X is yellow) match the goal
(to determine the pet’s color). It is not yet known that the pet is a horse, so
both the antecedents (If X is a horse, If X is a canary) are added to the goal
list. The KB is searched again and this time the first two rules are selected,
because their consequents (Then X is a horse, Then X is a canary) match the
new goals that were just added to the list. The antecedent (If X whinnies and
eats grass) is known to be true and therefore it can be concluded that X is a
horse, and not a canary, and thus it is white.

In the following sections a description of the more common reasoning algo-
rithms are given.

Recently there have also begun to appear probabilistic reasoners1 which
can reason over KBs containing uncertain knowledge. For example they can
process statements like “After rain comes sunshine with a probability greater
than 80%”. To express these kinds of statements Bayesian networks are used.

1Examples of probabilistic reasoners: Pei Wang’s non-axiomatic reasoning system, No-
vamente’s probabilistic logic network, Pronto - probabilistic Description logic reasoner.

62

FOI-R--2858--SE

Many reasoners are commercial, open source or available as both but with
different levels of functionality or support. There are many synonyms to “rea-
soning engine” such as “inference engine”, “rule engine”, “semantic reasoners”
or simply “reasoner”. The differences are due to the algorithms or the types of
data they reason about, but the main functionality is still the same i.e. drawing
new logical conclusions from provided data.

In the Section 6.4 a comparison of currently available reasoner implemen-
tations is made.

6.3 Reasoning Algorithms

The two most often used reasoning algorithms in today’s reasoners are Tableau
and RETE, but there are a number of other algorithms in use.

6.3.1 Tableau

The tableau methodology was invented in the 1950’s by Beth and Hintikka. It
was later perfected by Smullyan and Fitting, and is today one of the most pop-
ular proof theoretical methodologies. By the end of 1980 Schmidt-Schaußand
Smolka described the first complete tableau-based subsumption2 algorithm for
a non-trivial DL i.e. ALC.

The tableau method is used to determine the satisfiability of finite sets of
formulas of various logics in our case statements in a KB. It works by transform-
ing a formula into subformulas until all constraints are satisfied or an obvious
contradiction is detected. The transformation is done by following tableau
calculus rules. All ABox assertions3 are viewed as constraints.

6.3.2 RETE

The RETE algorithm was developed by Charles Forgy in the late 1970:s and is
designed to sacrifice memory for increased speed. Expert systems like JESS [21]
and SOAR use the algorithm today. The name is taken from the latin word
for “net”.

In a Rete-based system a network is built where each node (except the root)
corresponds to a pattern occurring in the left-hand-side (the condition part) of
a rule. Remember the statement we made earlier “If P then Q”. The path from
the root node to a leaf node defines a complete left-hand-side rule. Each node
has a memory of facts (i.e. ABox assertions) which satisfy that pattern. When
new facts are asserted or modified, they propagate to the nodes that match the
pattern and are annotated accordingly. For a given rule to be triggered a fact
or combination of facts must cause all of the patterns for the given rule to be

2Subsumption is the action of deciding whether a concept is a subclass of something else.
For example, if mammal is a subclass of animal, then mammal is considered to be an animal.

3An assertion is a true-false statement that is viewed as true, thus is a fact.

63

FOI-R--2858--SE

satisfied. This also implies that a leaf node is reached.

6.4 Reasoner Comparison

When choosing which reasoners to compare we have chosen those that have
had some form of development since 2008. The reasoner list is in no way
exhaustive. The information in the tables come from the reasoners own pages.
The Tables 6.1 and 6.2 compare the reasoners from a functionality and a feature
perspective respectivly.

Here follows an explanation of the columns in the reasoner comparison
table:

Reasoner: This is the name of the reasoner.

OWL-DL Entailment: This tells whether the reasoner can infer new OWL
assertions from the given data in the knowledge base.

Reasoning expressiveness: This was explained in chapter 5.

Reasoning algorithm: These have been previously explained in this chapter.

Query language support: This tells whether the reasoner supports a query
language.

Consistency checking: Tells whether the OWL data are consistent to avoid
contradictory data.

Interface Support: The types of interfaces the reasoner supports.

Rule Support: Tells whether the reasoner supports reasoning with rules.

Programming language: The programming language the reasoner has been
developed in.

Version: The current reasoner version.

License: The reasoner’s license type.

64

FOI-R--2858--SE

Table 6.1: Reasoner comparison; language support.

Reasoner OWL-DL
Entail-
ment

Supported
expres-
sivity for
reasoning

Reasoning al-
gorithm

Query lan-
guage sup-
port

Consis-
tency
checking

CEL[4] Yes EL+ Tableau Unknown Yes

FaCT++[44] Yes SROIQ(D) Tableau Unknown Yes

FuzzyDL[41] Fuzzy SHIF tableau +
Mixed Inte-
ger Linear
Programming
Optimization

Own syntax

HermiT[29] Yes SHIQ with
description
graphs

Hypertableau Unknown Yes

Hoolet[5] Yes Unknown First-order
prover

Unknown Unknown

Jena[43] No com-
plete rea-
soner in-
cluded with
standard
distribution

varies by
reasoner
(incom-
plete for
nontrivial
description
logics)

Rule-based SPARQL Incomplete
for OWL
DL

Jess[21] No Horn clause RETE Horn clause Yes

KAON2 [30] Yes SHIQ(D) Resolution &
Datalog

SPARQL4 Unknown

OWLIM[34] No R-
entailment

Rule-based SPARQL No

Pellet[8] Yes SROIQ(D) Tableau SPARQL Yes

RacerPro[24] Yes SHIQ(D) Tableau nRQL,
OWL-QL

Yes

SweetRules[16] No Unknown Rule-based Unknown No

4queries with variables at predicate positions are currently not supported

65

FOI-R--2858--SE

Table 6.2: Reasoner comparison; development aspects.

Reasoner Interface
Support

Rule Sup-
port

Programming
language

Version License

CEL DIG,OWL-
API

No Lisp 1.1.2 Free/ open-
source

FaCT++ DIG, OWL-
API, Lisp-
API

No C++ 1.3.0 Free/ open-
source

FuzzyDL No Java/C++ Unknown Free/ open-
source

HermiT KAON2-
API

No Java 1.0 Free/ open-
source

Hoolet Yes
(SWRL)

Unknown Free/ open-
source

Jena DIG Yes (Own
rule format)

Java 2.5.7 Free/ open-
source

Jess Yes (Own
rule format)

Prolog-like 7 Non-Free/
closed-source

KAON2 DIG Yes (SWRL
– DL Safe
Rules)

Java Unknown Free/ closed-
source

OWLIM Yes (Own
format)

2.x/3.x Free/ open-
source &
Non-Free/
closed-source

Pellet DIG, OWL-
API, Jena

Yes (SWRL
– DL Safe
Rules)

Java 2.0 RC7 Free/ open-
source &
Non-Free/
closed-source

RacerPro DIG, Java-
Api, OWL-
API, Lisp-
API

Yes (SWRL
– not fully
support
SWRL)

Lisp 1.9.2 Non-Free/
closed-source

SweetRules Yes (SWRL,
RuleML,
Jess)

2.1 Free/ open-
source

66

FOI-R--2858--SE

6.5 Summary

In this chapter we have discussed reasoning engines and algorithms. The aim
of the chapter is to give the reader an understanding of what reasoning is, what
a reasoner engine does and what its defining features are.

Reasoning is the process of drawing logical conclusions from a set of given
facts. This process is also called inference. The facts are stored in a knowledge
base and the reasoning engine’s task is to check its consistency. A reasoner uses
some variation of logic (Description logic, Horn clause logic, etc) as a knowledge
management basis. The expressiveness of the used logic decides whether the
reasoner can guarantee decidability and termination. Decidability is whether
an arbitrary statement can be said to be true in the context of a particular
knowledge base and termination refers to whether this answer is possible to
obtain in reasonable time or not.

Two of the most popular reasoning algorithms are Tableau and RETE. Of
today’s available reasoning engine implementations two good examples of the
repective algorithms are Pellet and Jess.

67

FOI-R--2858--SE

7 Semantic Data Storage and Querying
The vision of a semantic web also entails having to deal with a huge amount
of semantic data. Possibly millions or even billions of RDF (see Chapter 3)
triples need to be stored in semantic data stores on multiple sites. Such a
data store should of course provide an efficient access to the data. And all of
this should be fitted to the specifics of semantic data, for example to enable
semantic querying and integrated reasoning. This chapter will try to present an
overview of problems and solutions for semantic data storages. In Section 7.1,
different approaches to efficient storage of RDF data are presented. Section 7.2
deals with the semantic querying of such data storages and different semantic
query languages are introduced. An overview of existing solutions for RDF
storages follows in Section 7.3. This chapter requires basic knowledge about
database management system. An introduction to this area is given in [9].

7.1 Storing RDF Data

In the following different approaches to storing semantic data, or more specif-
ically RDF data, will be presented. Important to remember here is that basic
RDF data, especially when compared to typical relational data, is rather un-
structured data consisting simply of a collection of triples. This lack of struc-
ture is imposed by the very nature of the semantic web: data coming from
multiple resources produced by many different people can not be expected to
have a common, agreed-upon structure. For higher-level applications of course
a need for at least some structure arises and RDF-Schema and OWL are power-
ful languages to describe the underlying concepts of the semantic data. While
any improvements drawn from using such schema knowledge are of course nice
to have, the minimal requirement for a successful RDF storage solution is the
efficient storage of basic RDF data triples.

7.1.1 Triple Store

triples
subject predicate object
book1 writtenBy author1
book1 publishedBy publisher1
book2 writtenBy author2
book2 publishedIn 2001

Table 7.1: Database table for RDF triple store.

69

FOI-R--2858--SE

triples
subject predicate object
1 2 3
1 4 5
6 2 7
6 8 9

dictionary
id literal
1 book1
2 writtenBy
3 author1
4 publishedBy
5 publisher1
6 book2
7 author2
8 publishedIn
9 2001

Table 7.2: Database tables for RDF triple store with dictionary.

The straightforward approach to RDF storing is creating a single triples ta-
ble in a relational database management system. This table has three columns,
one each for subject, predicate and object (see Table 7.1). An additional dic-
tionary table can be used to store the literal values for subjects, predicates and
objects (see Table 7.2). The triples table must then only store references to the
dictionary table, avoiding the possible duplicate storage of long literal values.

While the triple store approach offers a very simple and intuitive storing
of RDF data, potential performance issues can easily be seen. Even simple
queries like “Give me all books written by author1 in 2001” involve joining the
triples table with itself (see Figure 7.1). Each entry needs to be paired with
each of the other entries and each pair must then be tested for whether it fits
the query. And more complicated queries will need even more such self-joins.
If the triples table is very large, queries like this can put a huge strain on the
query processor and especially on the main memory.

SELECT t1 . su b j e c t FROM t r i p l e s AS t1
WHERE t1 . p r e d i c a t e =’writtenBy ’ AND t1 . ob j e c t =’author1 ’
INNER JOIN t r i p l e s AS t2 ON t1 . su b j e c t=t2 . s u b j e c t
WHERE t2 . p r e d i c a t e =’ publ i shedIn ’ AND t2 . ob j e c t = ’2001 ’

Figure 7.1: Self joins in RDF triple table.

7.1.2 Mapping onto Relational Database

Another straightforward approach would be to directly model the RDF data
into a relational database schema. This could for example mean to model each
class in an RDFS schema as a table in the relational database and the rela-
tionships between classes as foreign keys between these tables (see Figure 7.2).
This approach requires the data to be very structured, as pointed out before,

70

FOI-R--2858--SE

this can not be assumed for RDF data. In fact, if one has structured data, a
“normal” relational database approach should be preferable to store such data.
This solution does not fit for typical RDF data.

<r d f s : Class rd f : ID=”author”>
<r d f s : subClassOf rd f : r e s ou r c e=”#Thing”/>

</r d f s : Class>
<r d f s : Class rd f : ID=”book”>
<r d f s : subClassOf rd f : r e s ou r c e=”#Thing”/>

</r d f s : Class>
. . .
<rd f : Property rd f : ID=”writtenBy”>
<r d f s : domain rd f : r e s ou r c e=”#book”/>
<r d f s : range rd f : r e s ou r c e=”#L i t e r a l ”/>

</rd f : Property>

book
id name writtenBy
1 book1 1
2 book2 2

author
id name
1 author1
2 author2

Figure 7.2: Modeling RDFS to relational database.

7.1.3 Vertical Partitioning

Vertical partitioning has been proposed as another approach for storing RDF
data [1]. This approach is inspired by the research of vertical fragmentation
of data which has been a recent topic in database research and has been im-
plemented for example in MonetDB [20]. For RDF data it means that for
each predicate in the datastore, a table consisting of two columns for subject
and object is set up (see Table 7.3). These tables contain all subject-object
pairs linked through the respective predicate. The data is thereby much more
distributed than in the triple store approach, leading to smaller tables and
therefore less performance issues when joining over the tables. However this
statement only holds when the predicate is known for a query. If it is a pred-
icate that is queried for a subject/object pair, a join over all predicate tables
in the system may be necessary.

71

FOI-R--2858--SE

writtenBy
subject object
book1 author1
book2 author2

publishedBy
subject object
book1 publisher1

publishedIn
subject object
book2 2001

Table 7.3: Database tables for vertical partitioning.

7.1.4 Performance Comparison

In [38] the triple store and the vertical partitioning approaches are benchmarked
and compared with modeling the data in a traditional relational database sys-
tem (non RDF). The benchmark uses a set of queries specifically chosen to
show the weaknesses and strong sides of the different approaches. The authors
show that the traditional approach outperforms both forms of RDF stores in
orders of magnitudes, e.g. queries taking 1s in the relational database usually
take 100 to 1000 seconds in the RDF stores. When comparing the triple store
with the vertical partitioning, it can be seen that both approaches produce very
similar results on average. The triple store has slightly better results for some
queries, the vertical partitioning for other queries. Because of these perfor-
mance issues of RDF storages, it is important during the application design to
carefully consider, whether the interoperability and openness of semantic data
stores are really needed, or if a conventional relational database design would
be a better fit. One thing can be noted from this test though, and that is, that
querying for implicit information is not possible in the traditional solutions.
When this is a requirement a semantic data store has to be the choice1.

7.2 Semantic Query Languages

This section introduces different approaches for querying semantic data. First
a short overview of query languages will be given. Since many of the proposed
semantic query languages are built upon the design principles and syntax of
SQL, this section will focus mainly on giving a short introduction to SQL.
Afterwards different semantic query languages will be described, including ex-
amples showing how to use these languages practically.

7.2.1 Introduction to Query Languages

Relational database management systems have been present since the 1970s and
are today one of the most widely used approaches to database management.
Relational database managemant systems present data in relations, meaning
collections of tables. An in-depth presentation of database management sys-
tems is out of scope of this document, interested readers are pointed to read

1We have a proposal for a scalable RDF store based on MapReduce at FOI called SDR[15].

72

FOI-R--2858--SE

further, for example in [13].
SQL (Structured Query Language) is the standard query language for re-

lational databases, based on the relational algebra. The relational algebra
provides a subset of the expressiveness of first-order logic. At its center, six
operators are defined (examples are given based on the table structure of Fig-
ure 7.2):

The selection operator: σc(R) selects tuples from a relation R for which the
condition C holds, e.g. σname=′book1′(book).

The projection operator: Πa1...an
(R) selects attributes a1 . . . an from a re-

lation R, e.g. ΠwrittenBy(book).

The Cartesian product: R× S is the direct product of the relations R and
S, e.g. Book ×Author.

Set union: R ∪ S is the union of two set-compatible relations R and S, e.g.
bookTable1 ∪ bookTable2.

Set difference: R\S is the difference of two set-compatible relations R ∧ S,
e.g. bookTable1\booktable2.

Rename: p a
b
(R) is used to avoid duplicate attribute names in the result set,

e.g. pname/authorname(author).

With these six operators, all other query operators, for example joins, can
be expressed. The following expression retrieves the names of books and the
authors that wrote them in one single table with two columns aname (author-
name) and bname (bookname):

Πaname,bname(σaname=bname((pname/anameauthor) x (pname/bnamebook)))

The SQL language defines keywords for phrasing database queries using
these operators. Figure 7.3 gives an exemplary SQL query for the above ex-
pression. It is important to note that every SQL query always returns the
result in a relation, allowing nesting subqueries in SQL. Also it should not
be forgotten that the SQL standard does not only define data manipulation
(query and updating) functionality, but also a Data Definition Language to
set up database schema and a Data Control Language to control the access
to data. However only the data manipulation sublanguage is relevant for the
following sections.

As has been already addressed at the beginning of this section, other ap-
proaches to database management systems often provide a query language very
similar to SQL. Object orientend database management, for example, repre-
sents information as objects, basically extending an object-oriented program-
ming language with, amongst others, persistency and query functionalities.
The Object Query Language (OQL) is an attempt to define a query language

73

FOI-R--2858--SE

SELECT author . name AS aname , book . name AS bname
FROM author , name
WHERE author . name=book . name

Figure 7.3: Simple SQL query.

very similar to SQL for accessing object oriented databases; opposed to the
native access based on the pointers between the objects. A reason for the need
to define such a query language can probably be found in the huge success of
SQL and the programmers’ familiarity with it.

The following sections will now define query languages developed specifically
for handling semantic data. Much of the concepts and syntax presented of SQL
in this section will be seen again there.

7.2.2 XPath

RDF files can be serialized for example as XML documents. A naive approach
to semantic data querying would be to simply employ XML query languages
to query the XML tree describing RDF data. XPath is a W3C standard lan-
guage for selecting nodes from an XML tree. In [12] XPath is described in
detail. One exemplary XPath query to select the name from a book could be
“//book//name”. This query selects all nodes ’name’ that are descendants of
nodes ’book’. It can easily be seen that using XPath to query RDF documents
implies that a specific serialization into a specific XML tree is necessary. How-
ever one RDF document could have many possible serialization. The obvious
conclusion is that XPath querying is not the right solution for semantic data.

7.2.3 SPARQL

As was pointed out in the previous section, the syntactic level querying of
XPath should not be used for semantic data. Instead, structure level querying
seems more promising. Instead of using the actual document (or rather serial-
ization), structure level querying is based on the graph representation of RDF
triples, whatever their serialization. This approach is in fact used by most of
the currently common RDF query languages. Two sub-approaches can be iden-
tified here, an SQL-based approach that is employed by SPARQL (SPARQL
Protocol And RDF Query Language) to be described in this section and the
XPath approached employed by Versa described in the following one.

SPARQL is the official W3C recommendation for RDF querying ([39]). Its
syntax is very similar to SQL. Just as in SQL, the results of a SPARQL query
can be modeled as relations. SPARQL has emerged as a de-facto standard
for RDF querying and is supported by all major semantic database solutions.
Further work to extend the capabilities of SPARQL is ongoing.

74

FOI-R--2858--SE

PREFIX l i t : <http :// ex . org / l i t e r a t u r e >
SELECT ?book , ? author
WHERE { ?book l i t : writtenBy ? author .

?book l i t : pub l i shedIn ”2001” }

Result
book author
book2 author2

Figure 7.4: SPARQL query for books published in 2001 and their authors.

Figure 7.4 shows a SPARQL query for the names and authors of books
published in 2001. The result of this query is a table with two columns for
book and author name and rows for the fitting values. The SPARQL query
begins with setting the correct namespace for the RDF file. In the SELECT
clause, the attributes to be selected are specified. When instead of the SELECT
keyword, the CONSTRUCT keyword is used, the result is returned as an RDF
graph, thereby allowing nesting subqueries. The WHERE clause gives the
conditions that the result should conform to. In the example, the first line of
the where clause defines as interesting triples those that link a subject book
with an object author by the predicate writtenBy. The second line further
specifies the condition by saying that the desired subject book should also have
a predicate publishedIn with the object 2001. Querying for a predicate is not
shown in this example but also possible in SPARQL.

PREFIX l i t : <http :// ex . org / l i t e r a t u r e >
SELECT ?book , ? year
WHERE {? book l i t : writtenBy ? author .

OPTIONAL {? book l i t : pub l i shedIn ? year } .
FILTER regex (? author , ”ˆ auth .∗”)}

Result
book year
book1
book2 2001

Figure 7.5: SPARQL query for authors with optional publishing year.

Figure 7.5 shows two other functionalities possible with SPARQL. The first
line of the WHERE clause selects all book-writtenBy-author triples from the
RDF graph. The second line defines the optional retrieval of the publishing
year of the book. If this optional query is not successful, the respective cell
of the resulting table is simply left empty. In the third line of the WHERE
clause, the result is additionally filtered according to a regular expression such
that the name of the author has to start with ’auth’. Since that is true for all
two books in our RDF graph, the result contains both books. The publishing
year is only given for book2, because there is none defined for book1.

75

FOI-R--2858--SE

7.2.4 SeRQL

Another interesting development is SeRQL [7] for the Sesame application which
will be presented later in Section 7.3.2. Like SPARQL it uses a syntax very
similar to SQL. While not officially endorsed by the W3C like SPARQL is,
it nonetheless comes with some very interesting features currently missing in
SPARQL. One of those is the language’s awareness of the underlying schema
of an RDF document, as defined for example in an RDF schema. While infer-
encing of new information based on an ontology (see Chapter 4) is supported
by many semantic storage solutions, it is an actual requirement for solutions
wanting to implement SeRQL. SeRQL also defines specific schema-aware con-
structions, for example direct-SubClassOf, which is only true for classes that
are a direct subclass of a given class.

Figure 7.6 shows an example of a SeRQL query for all books published
in 2001 and their authors. Here the keyword SELECT is used, so the query
would return the same result as the SPARQL query in Figure 7.4. If instead
CONSTRUCT was used, the query would return an RDF graph containing
only the nodes matching the query. In the first line of the query, the attributes
to be selected are defined. Unlike SPARQL, the SeRQL query then describes
the set of nodes to be selected in the FROM clause. All names in curly brackets
refer to nodes in the graph, the others to predicates. In the WHERE clause
the result is then restricted to match only books written in 2001. The USING
NAMESPACE clause is similar to the PREFIX in SPARQL. Optional path
expressions and of course subclauses are also defined in the SeRQL language.

SELECT DISTINCT book , author
FROM ({ book} l i t : writtenBy { author } ,

{book} l i t : pub l i shedIn {year })
WHERE year =2001
USING NAMESPACE l i t=<http :// ex . org / l i t e r a t u r e >

Figure 7.6: SeRQL query for books published in 2001 and their authors.

7.3 Overview of RDF Storage Solutions

This section will try to give a quick overview of some available RDF storages.
The selection is restricted to applications that are still being actively devel-
oped. This list is by no means conclusive. Readers interested in using one of
these applications are encouraged to further investigate details of the different
solutions to find the one best fitting their needs.

76

FOI-R--2858--SE

7.3.1 Jena

Jena [43] is one of the most well known semantic web frameworks. Using Jena,
data can be written to and queried from RDF graphs. The data can come
from files, databases, URLs or a combination of them. Data queries to Jena
are made with the SPARQL query language. Jena provides internal reasoners
but also has an interface for plugging in external and more powerful reasoners,
e.g. OWL reasoners. Please see Chapter 6 for an introduction to semantic rea-
soners. For storing RDF graphs, Jena uses a triple store and different database
management systems are supported e.g. MySQL and PostgreSQL. Jena is
released under a Hewlett-Packard specific open-source license.

7.3.2 Sesame

Sesame [40] is an RDF framework with support for RDF Schema inferencing
and querying. Like in Jena, the data can come from different data sources,
for example files or relational databases. Sesame supports SPARQL as an
RDF query language but also introduces SeRQL as a powerful alternative.
Sesame includes an RDF Schema reasoner and adds inferenced data to the
data store. Sesame contains an abstraction layer called SAIL, which provides
all database dependent methods to the upper layers through an API. This
means that different implementations of the actual data storing and retrieving
can easily be plugged in. Most commonly the data is stored in a triple store.
Sesame is released under a BSD-style license.

7.3.3 Mulgara

Mulgara [31] does not call itself an RDF store but a metadata store using
similar technologies as RDF. RDF data can however be imported into Mulgara.
Mulgara has its own query language called iTQL but also supports SPARQL.
Mulgara does not use a relational database system for storing the data, it does
however employ a similar technique as triple stores. Inferencing from RDF
Schema is supported. Mugabe is released under the Open Software License.

7.3.4 Oracle Spatial 11g

Oracle Spatial 11g [35] is an optional component of the Oracle 11g Enterprise
Edition. It supports RDF, RDF-S and OWL, including a native inference en-
gine. Oracle 11g does not natively support SPARQL, however full SPARQL
support can be added with a Jena plug-in. Oracle reports to have loaded 1.1
billion triples, inference performed on this triple store resulted in additional
500000 inferred triples. The three open source solutions presented before have
each been reportedly filled with maximally a few hundred thousand triples [36].
However no independent benchmarks of the different solutions have been per-
formed.

77

FOI-R--2858--SE

7.4 Summary

This chapter dealt with the storage and querying of semantic data. Three differ-
ent approaches for efficiently storing semantic data were introduced: the triple
store approach, modeling to relational database systems and vertical partition-
ing. A comparison of these three approaches showed, that their performance is
largely dependent on the type of queries that are asked, i.e. requesting explicit
or implicit information; a result which should be taken into consideration when
deciding for a semantic data storage.

This comparison was followed by a presentation of different semantic query
languages. Of those the W3C recommended language SPARQL was identified
as the de-facto standard for querying of RDF data. The chapter finished with
a short introduction to different semantic storage software packages: Jena,
Sesame, Mulgara and Oracle.

78

FOI-R--2858--SE

8 Challenges
In this chapter we will discuss the challenges that can arise when using the
technologies that were presented in the previous chapters. We will also try to
give directions how to best handle these and to point out alternatives where
possible.

8.1 Structuring Information

In order to use data efficiently it is beneficial to have a coherent data structure.
The challenge here is that the information that is being produced is often
ambiguous, subjective, contradicting and/or incomplete. Adding to this, are
the difficulties of creating sound and complete ontologies (further discussed in
Section 8.3). It can easily be seen that structuring the available information in
a satisfying way can be a very difficult task.

Choosing the correct methods and technologies for structuring information
is often the first hurdle. It is important to keep in mind how and for what
purpose the information is going to be used later on.

Some aspects to take into consideration when structuring information are:

• End purpose (how structured does the information need to be?).

• Scalability requirements (how much information is to be handled and how
responsive to queries the system must have to be).

• Quality requirements (how many types of information are to be handled
and how complex queries and result sets do we want to be able to han-
dle?).

• Model extensibility (how easy is it to modify the data model?).

• The information structuring process (e.g. how is input structuring sup-
ported?).

In Chapter 3 and 7 we discussed different standards for structuring infor-
mation (e.g. XML, RDF, OWL) and their use.

8.2 Data Overhead

XML and other XML based extensible languages offer a clearly defined data
exchange format. Such a format is crucial for the upper layers in the informa-
tion system stack, enabling communication and data exchange between het-
erogeneous components. These advantages of XML unfortunately come with
drawbacks. XML adds overhead data to the data itself. If the XML docu-
ment is not properly designed, it can become seriously inflated compared to

79

FOI-R--2858--SE

the original data. This can become a problem not only for the actual exchange
of data, for example over a network, but applications also need to serialize the
data objects they want to exchange into XML documents, which the receiving
application then needs to parse again into a data object. Therefore to avoid
performance issues, special care should be taken when defining the schema of
XML documents.

8.3 Ontology Building and Using

It may be easier for a user to find information in an information system if
the data in the system is tagged with terms defined in an ontology. Several
things must be solved in order to benefit from such a system. First, a suitable
ontology that meets the information usage requirements must be developed.
Second, the information within the knowledge base must be tagged with terms
defined in the ontology. Third, the ontology must be up to date with respect
to the users’ intentions and requirements.

Ontology construction is a research area of its own and several methodolo-
gies exist. It is recommended that you follow a well established methodology
since the chances of missing some important aspect decreases. An important
step is to involve domain experts and end-users during the construction phase.
Otherwise, there is a chance that the ontology is useless from the end user’s
point of view.

Manual semantic annotation is a time consuming activity. However, Named
Entity Recognition (NER) algorithms can be used to automatically find things
like people and places in a text. Such algorithms might be used to automate
the process of semantic annotation or, at least, be deployed in order to give
the user well-founded suggestions.

Another possible problem which needs to be addressed is change manage-
ment. Using ontologies enables the inference, or discovery, of new facts. How-
ever, by changing the ontology you change the axioms and rules that new
facts are based upon. Such a change may have a major impact on the whole
knowledge base.

8.4 Storage

Information storage brings forth many challenges, especially when storing se-
mantic information. Scalability in terms of parallel query evaluation is the
main one, this has been addressed in section 7.1. Existing storage solutions
for RDF data generally perform worse than conventional relational database
systems, because of limitations inherent to semantic query evaluation. Perfor-
mance differences often lie in the order of magnitudes. This is the drawback of
storing generically structured triples instead of data structures specific to the
data of one application.

80

FOI-R--2858--SE

Research in this area is ongoing1 and hopefully there will be a wide variety
of efficient solutions for semantic storing and query processing soon.

However, for now when developing an application storing semantic data, it
should be considered, whether the interoperability and openness of semantic
data stores outweigh their performance issues or if a conventional relational
database design would be a better choice.

8.5 Reasoning

In the semantic web stack, RDF-S and OWL provide the means to define on-
tologies and building knowledge bases in which new knowledge can be inferred
from existing information. Inference engines have been presented in this doc-
ument in Chapter 6. As mentioned there, RDF-S and OWL are subsets of
first order logic systems. Full first-order logic systems have been proven to
be computationally intractable, meaning that the time required for the worst
case grows exponentially with the size of the knowledge base. Using only a
subset of the logic system somewhat reduces the time complexity but also the
expressiveness. However reasoning with OWL ontologies still have a very high
complexity.

In [22] it is pointed out that there are two opposing demands on ontologies:

• A high fidelity description with low or no inference support without de-
cidability guarantees.

• A low fidelity description with strong inference support with decidability
guarantees.

It is therefore important to select an ontology language and a reasoner
that handle the actual demands of an application in regards to expressiveness
and time complexity. In [6] an evaluation of different reasoning algorithms is
performed, trying to give support for deciding on a specific reasoner for a given
application. In the paper the reasoners KAON2, OWLIM, Pellet and RacerPro
were benchmarked on different A-Box sizes, using RDFS, OWL-Lite, OWL-
DLB and ODL-DL as ontology languages. In the evaluation OWLIM performed
very well for ontologies with little expressiveness, regardless of the A-Box size.
For ontologies with high expressiveness, RACER can be recommended if the
A-Box is rather small, and KAON2 for bigger A-Boxes.

8.6 Final Thoughts

In this chapter we discussed that semantic technologies are not purely benefi-
cial, they come with their own set of challenges. It is important that developers
are aware of these and that they consciously decide whether their applications
or parts of their applications need semantic support. For example, for high

1SDR[15] supports parallel execution of queries, which makes it one such scalable effort.

81

FOI-R--2858--SE

performance applications it is generally advisable to use established systems
like relational databases instead.

It also needs to be stressed that the semantic technologies are still in devel-
opment and some are not yet as mature as established ones. Also, no critical
mass of users has adopted them yet. It is to be expected that when more people
start to use semantic technologies some of the challenges presented here will
be resolved.

82

FOI-R--2858--SE

9 Research Project
In this report we have tried to give the reader an introduction to the promises
and problems with semantic information management. Naturally, all aspects
could not be covered here in this report. In this chapter we give information
about the project that has sponsored this report, i.e. “Efficient Information
Management of M&S Resources in Command and Control Systems” (InfoM&S)
and conclude with the research goals for the coming years.

9.1 InfoM&S Project Description and Research Goals

The “Efficient Information Management of M&S Resources in Command and
Control Systems” project is a three year project within the FOI Modeling and
Simulation Research and Development program. The project started in 2009
as a spin-off project from the “Semantic Distributed Repository” project [15].

When handling different types of documents (M&S models, reports, proto-
cols, simulations, etc.), it is important to be able to quickly find the correct
information1. “Correct information” means several things such as, being able
to

• Identify entities in the form of people, objects and places.

• Identify the context.

• Find links to other information.

For us humans, this is often an easy thing to do, but with increasing number
of documents, it soon becomes untenable and computers are needed2.

Computers are very capable in managing structures (syntax) but are not
as adept in understanding and managing the content (semantics)3. Thus, a
necessary component in computerized information management work is often
semantic technologies and methods.

1Preferably as quickly and with as high precision and recall as possible, (see Chapter 2).
2Together with:

• Structured languages and methods with which to express and structure the informa-
tion (see Chapters 3 and 4).

• Formalisms to express the knowledge with and draw logical conclusions from it (see
Chapters 5 and 6).

• Ways to query and store the structured information (see Chapter 7).

3There are many challenges (see Chapter 8).

83

FOI-R--2858--SE

Here are some examples of the challenges that the project will look at in
the coming years:

Entity extraction: Is necessary when you want to structure information in
order to be able to automatically identify entities such as people and
places.

Context relating of entities and relationships: Is necessary since in non-
complete data, it is sometimes difficult to determine which person or place
is being referred to.

Semantic relatedness: Often when information is received from different
parties, different terms have been used for the same things, or vice versa.
Being able to determine the semantic relatedness (are they synonyms,
antonyms, or related at all?) between terms and expressions is crucial
for the task of interconnecting information i.e. determining which entities
are related and which are not.

Semantic cleaning: When there are large amounts of data coming in from
different sources it needs to be stored in a consistent way. This storing
results in a merging of the data. Redundant, missing, ambiguous and
contradictory data, requires normalization, consolidation and cleansing
of the data. It is not always obvious how to do this.

Automatic generation of ontologies: Creating an ontology is often a very
time consuming, but unavoidable, process. When ontologies are finished
and introduced into an information management system they are also
usually quite static in nature. Automating all or parts of the process
could mean big profits in both time and money.

The project will mainly focus on supporting the construction and manage-
ment of ontologies for both the FMKE EBAONet project and the EU SM4All
project. The goal is to compare, implement and evaluate some of the available
methods for the information management issues that were previously described.
In cases where there aren’t any methods and technologies already available, the
project will develop its own. The project intends to keep an open dialog and
actively cooperate with their users and projects within the Swedish Armed
Forces and the EU, to disseminate the obtained results.

The listed challenges are those that recur in many areas and can be applied
in most domains that handle data in large quantities. For example, the sen-
sor, modeling and simulation, command and control, intelligence and business
domains.

84

FOI-R--2858--SE

Bibliography
[1] D. J. Abadi, A. Marcus, S.l R. Madden, and K. Hollenbach. Scalable

semantic web data management using vertical partitioning. In VLDB ’07:
Proceedings of the 33rd international conference on Very large data bases,
pages 411–422. VLDB Endowment, 2007.

[2] Ontotext AD. The kim platform: Semantic annotation. Last viewed 2009-
11-02. http://www.ontotext.com/kim/semanticannotation.html.

[3] V. Alexiev, M. Breu, J. Debruij, D. Fensel, Lausen R., R. Lara, and
H. Lausen. Information Integration with Ontologies. John Wiley and
Sons Ltd, March 2006.

[4] F. Baader. Cel. Last viewed 2009-11-02. http://lat.inf.tu-dresden.
de/systems/cel/.

[5] S. Bechhofer. Hoolet. Last viewed 2009-11-02. http://owl.man.ac.uk/
hoolet/.

[6] J. Bock, P. Haase, Q. Ji, and R. Volz. Benchmarking owl reasoners. June
2008.

[7] J. Broekstra. SeRQL: Sesame RDF query language. In M. Ehrig, editor,
SWAP Deliverable 3.2 Method Design, pages 55–68. 2003.

[8] LCC Clark & Parsia. Pellet: The open source owl reasoner. Last viewed
2009-11-02. http://clarkparsia.com/pellet.

[9] C.J. Date. An Introduction to Database Systems. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2003.

[10] A. De Nicola, M. Missikoff, and R. Navigli. A software engineering ap-
proach to ontology building. Inf. Syst., 34(2):258–275, 2009.

[11] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008.

[12] S. DeRose and J. Clark. XML path language (XPath) ver-
sion 1.0. W3C recommendation, W3C, November 1999.
http://www.w3.org/TR/1999/REC-xpath-19991116.

[13] R. Elmasri and S. B. Navathe. Fundamentals of Database Systems (5th
Edition). Addison Wesley, March 2006.

[14] M. Fernandex, A Asimction Gomez-Perez, and Juristo N. Methontology:
from ontological art towards ontological engineering. In Proceedings of the
AAAI97 Spring Synompsium Series on Ontological Engineering, 1995.

85

FOI-R--2858--SE

[15] M. Garćıa Lozano, F. Moradi, and E. Tjörnhammar. Slutrapport för
sdr - semantikbaserat distribuerat resursbibliotek. Användarrapport/User
Report FOI-R–2608–SE, FOI, Stockholm, 2008.

[16] B. Grosof. Racerpro. Last viewed 2009-11-02. http://sweetrules.
projects.semwebcentral.org/.

[17] M. Grunninger and M. Fox. Methodology for the design and evaluation of
ontologies. In Proceedings of the Int. Conf. AI 1995, Workshop on Basic
Ontological Issues in Knowledge Sharing, 1995.

[18] N. Guarino. Some ontological principles for designing upper-level lexical
resources. In the First International Conference on Language Resources
and Evaluation, pages 527–537, 1998.

[19] I. Horrocks, P. F. Patel-Schneider, and F. Van Harmelen. From shiq and
rdf to owl: The making of a web ontology language. Journal of Web
Semantics, 1:2003, 2003.

[20] Centrum Wiskunde & Informatica. Monetdb. Last viewed 2009-11-07.
http://monetdb.cwi.nl/.

[21] Jess. Java expert system. Last viewed 2009-11-09. http://jessrules.
com.

[22] C.M. Keet and M. Rodriguez. Comprehensiveness versus scalability:
guidelines for choosing an appropriate knowledge representation language
for bio-ontologies, 2007.

[23] M. Keshk and S. Chamblessn. Model driven ontology:a new methodology
for ontology development. In OIC 08 Proceedings, 2008.

[24] Racer Systems GmbH & Co. KG. Racerpro. Last viewed 2009-11-02.
http://www.racer-systems.com/.

[25] R. Lämmel. Google’s MapReduce Programming Model – Revisited. Ac-
cepted for publication in the Science of Computer Programming Journal;
Online since 2 January, 2006; 42 pages, 2006–2007.

[26] Berners T. Lee, J. Hendler, and O. Lassila. The semantic web. Scientific
American, May 2001.

[27] D. McGuinness. Spinning the Semantic Web: Bringing the World Wide
Web to Its Full Potential. MIT Press, March 2006.

[28] M. Minsky. A framework for representing knowledge. MIT-AI Laboratory
Memo 306, June 1974. http://web.media.mit.edu/~minsky/papers/
Frames/frames.html.

86

FOI-R--2858--SE

[29] B. Motik. Hermit reasoner. Last viewed 2009-11-02. http://
hermit-reasoner.com.

[30] B. Motik. Kaon2. Last viewed 2009-11-02, Semtemper 2009. http://
kaon2.semanticweb.org.

[31] Mulgara. Mulgara. Last viewed 2009-11-07. http://mulgara.org.

[32] N. F. Noy and D. L. McGuinness. Ontology development 101: A guide to
creating your first ontology. Technical report, 2001.

[33] Ontotext. Ontotext semantic technology lab. Last viewed 2009-11-02.
http://www.ontotext.com/kim/semanticannotation.html.

[34] Ontotext. Owlim semantic repository. Last viewed 2009-11-02. http:
//www.ontotext.com/owlim/index.html.

[35] Oracle. Oracle semantic technologies. Last viewed 2009-11-04.
http://www.oracle.com/technology/tech/semantic_technologies/
index.html.

[36] Oracle. Oracle semantic technologies presentation. Last viewed
2009-11-04. http://www.oracle.com/technology/tech/semantic_
technologies/pdf/oracle\%20db\%20semantics\%20tech\%20talk\
%2020080722.pdf.

[37] S. Robertson. Understanding inverse document frequency: On theoretical
arguments for idf. Journal of Documentation, 60:2004, 2004.

[38] M. Schmidt, T. Hornung, N. Küchlin, G. Lausen, and C. Pinkel. An
experimental comparison of rdf data management approaches in a sparql
benchmark scenario. pages 82–97. 2008.

[39] A. Seaborne and E. Prud’hommeaux. SPARQL query lan-
guage for RDF. W3C recommendation, W3C, January 2008.
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/.

[40] Aduna software. Sesame. Last viewed 2009-11-07. http://www.openrdf.
org/.

[41] U. Straccia. Fuzzy dl. Last viewed 2009-11-02, Semtemper. http://gaia.
isti.cnr.it/~straccia/software/fuzzyDL/fuzzyDL.html.

[42] R. Studer, V. Benjamins, and D. Fensel. Knowledge engineering: Princi-
ples and methods. Data and Knowledge Engineering, 25, 1998.

[43] Jena Team. Jena - a semantic web framework for java. Last viewed 2009-
11-02. http://jena.sourceforge.net/.

87

FOI-R--2858--SE

[44] D. Tsarkov. Fact++. Last viewed 2009-11-02. http://owl.man.ac.uk/
factplusplus/.

[45] M. Uschold. Ontologies: Principles,methods and application. Knowl. Eng.
Rev., 11(2), 1996.

[46] M. Uschold. Knowledge level modelling: concepts and terminology. Knowl.
Eng. Rev., 13(1):5–29, 1998.

[47] W3. SWRL. Last viewed 2009-11-02, 2009. http://www.w3.org/
Submission/SWRL/.

[48] W3C. OWL 2 overview. Last viewed 2009-11-02. http://www.w3.org/
TR/owl2-overview/.

[49] W3C. OWL 2 profiles. Last viewed 2009-11-02. http://www.w3.org/TR/
owl2-profiles/.

[50] W3C. OWL reference. Last viewed 2009-11-02. http://www.w3.org/TR/
owl-ref/.

[51] W3C. World Wide Web Consortium. Last viewed 2009-11-02. http:
//www.w3.org.

[52] Webucator. XSLT Tutorial. Last viewed 2009-11-02, 2009. http://www.
learn-xslt-tutorial.com/.

[53] Wikipedia. Index - ir. Last viewed 2009-11-02. http://en.wikipedia.
org/wiki/Index_(information_technology).

[54] Wikipedia. Information retrieval. Last viewed 2009-11-02. http://en.
wikipedia.org/wiki/Information_retrieval.

[55] Wikipedia. Inverted Index. Last viewed 2009-11-02. http://en.
wikipedia.org/wiki/Inverted_index.

[56] Wikipedia. Precision and Recall. Last viewed 2009-11-02. http://en.
wikipedia.org/wiki/Precision_and_recall.

[57] Wikipedia. Semantic Network Figure. Last viewed 2009-11-02. http:
//en.wikipedia.org/wiki/File:Semantic_Net.svg.

[58] Wikipedia. Standard Boolean Model. Last viewed 2009-11-02. http:
//en.wikipedia.org/wiki/Standard_Boolean_model.

[59] Wikipedia. Term Frequency. Last viewed 2009-11-02. http://en.
wikipedia.org/wiki/Term_frequency.

[60] Wikipedia. Vector Model. Last viewed 2009-11-02. http://en.
wikipedia.org/wiki/Vector_space_model.

88

FOI-R--2858--SE

[61] Wikipedia. Description Logics. Last viewed 2009-11-02, 2009. http:
//en.wikipedia.org/wiki/Description_logics.

[62] Wikipedia. The Extensible Stylesheet Language Family Transformations.
Last viewed 2009-11-02, 2009. http://www.w3.org/TR/xslt.

[63] Wikipedia. Horn Clause. Last viewed 2009-11-02, 2009. http://en.
wikipedia.org/wiki/Horn_clause.

[64] Wikipedia. Ontology. Last viewed 2009-11-02, 2009. http://en.
wikipedia.org/wiki/Ontology_(computer_science).

[65] Wikipedia. RDF. Last viewed 2009-11-02, 2009. http://en.wikipedia.
org/wiki/Resource_Description_Framework.

[66] Wikipedia. Semantic Web Stack. Last viewed 2009-11-02, 2009. http:
//en.wikipedia.org/wiki/Semantic_Web_Stack.

[67] Wikipedia. SWRL. Last viewed 2009-11-02, 2009. http://en.wikipedia.
org/wiki/Semantic_Web_Rule_Language.

[68] Wikipedia. XML. Last viewed 2009-11-02, 2009. http://en.wikipedia.
org/wiki/XML.

[69] Wikipedia. XML Namespace. Last viewed 2009-11-02, 2009. http://en.
wikipedia.org/wiki/XML_namespace.

[70] Wikipedia. XML Path Language. Last viewed 2009-11-02, 2009. http:
//www.w3.org/TR/xpath.

[71] Wikipedia. XML Schema. Last viewed 2009-11-02, 2009. http://en.
wikipedia.org/wiki/XML_schema.

[72] Wordnet website at princeton university. Last viewed 2009-11-02.
http://wordnet.princeton.edu/wordnet/.

89

