
FOI, Swedish Defence Research Agency, is a mainly assignment-funded agency under the Ministry of Defence. The core activities are
research, method and technology development, as well as studies conducted in the interests of Swedish defence and the safety and
security of society. The organisation employs approximately 1000 personnel of whom about 800 are scientists. This makes FOI Sweden’s
largest research institute. FOI gives its customers access to leading-edge expertise in a large number of fields such as security policy
studies, defence and security related analyses, the assessment of various types of threat, systems for control and management of crises,
protection against and management of hazardous substances, IT security and the potential offered by new sensors.

Virtual Machines

Alf Bengtsson, Lars Westerdahl

FOI-R--2904--SE User Report	 Information Systems 	

ISSN 1650-1942 December 2009

FOI
Swedish Defence Research Agency	 Phone: +46 13 37 80 00	 www.foi.se	
Information Systems 	 Fax: +46 13 37 81 00
Box 1165
SE-581 11 Linköping

Security Qualities

Alf Bengtsson, Lars Westerdahl

Virtual Machines

Security Qualities

FOI-R--2904--SE

Titel Virtuella maskiner, säkerhetsegenskaper

Title Virtual Machines, Security Qualities

Rapportnr/Report no FOI-R--2904--SE

Rapporttyp
Report Type

Användarrapport
User Report

Månad/Month December

Utgivningsår/Year 2009

Antal sidor/Pages 36 p
 ISSN ISSN 1650-1942

Kund/Customer Försvarsmakten

Kompetenskloss 26 IT-säkerhet

Extra kompetenskloss

Projektnr/Project no E53055

Godkänd av/Approved by Magnus Jändel

FOI, Totalförsvarets Forskningsinstitut FOI, Swedish Defence Research Agency

Avdelningen för Informationssystem Information Systems

Box 1165 Box 1165

581 11 Linköping SE-581 11 Linköping

FOI-R--2904--SE

3

Sammanfattning
Huvudsyftet med projektet Objekt- och tjänstebaserad säkerhet är att klargöra
vilken säkerhetsfunktionalitet som skulle kunna finnas i form av tjänster, samt att
utreda vilken säkerhetsfunktionalitet som skulle kunna vara möjlig att knyta till
distribuerade informationsobjekt. Virtuella maskiner är relevanta för båda
delarna av projektet. Därför rapporteras en litteraturstudie som har fokuserat på
isolations- och separeringsförmågan hos en hypervisor, vilken är en minimal
monitor för virtuella maskiner. Isolations- och separeringsförmågan är central för
att uppnå assurerad säkerhet. Rapporten inleds mer allmänt om hypervisor, och
inriktas sedan på öppen källkods-hypervisorn Xen.

Studiens slutsats är att separationsförmågan i en hypervisor är av samma slag
som i en separation kernel. Till skillnad från separation kernel finns det dock
ingen säkerhetsassurerad hypervisor. Litteratur om vilken assuransnivå som
skulle kunna uppnås refereras. Likaså refereras forskningsprojekt om tvingande
åtkomstkontroll (mandatory access control) i Xen hypervisor. Det senare är ett
steg mot visionen om objektbaserad säkerhet.

Referenser till risker med virtuella maskiner ingår också.

Nyckelord: virtuella maskiner, hypervisor, Xen, separation kernel, mandatory
access control, tjänstebaserad säkerhet, objektbaserad säkerhet

FOI-R--2904--SE

4

Summary
The main goal of the project Object- and Service-Based Security is to clarify
which security functionality could be transformed into services, and to consider
which security functionality that potentially could be bound to distributed infor-
mation objects. Virtual machines are relevant for both parts of the project. There-
fore, a literature study is reported, concentrating on the isolation and separation
capabilities of hypervisors, which are minimal virtual machine monitors. The
isolation and separation capabilities are central to achieve assured security. The
report starts with general hypervisors, and then focuses on the open source
hypervisor Xen.

The conclusions of the study are that the separation capability of a hypervisor is
of the same kind as that of a separation kernel. However, unlike separation kernel
there is no authoritatively security evaluated hypervisor. Some literature, on what
assurance level that could be achieved, is referred to. Likewise, research projects
on mandatory access control in the Xen hypervisor are referred. This is a step
towards the vision of object-based security.

References on risks with virtual machines are also included.

Keywords: virtual machines, hypervisor, Xen, separation kernel, mandatory
access control, service-based security, object-based security

FOI-R--2904--SE

5

Table of Contents
1 Introduction 7
1.1 Motivation ..7
1.2 Topics of interest ...7
1.3 Report layout ...8

2 Background 9

3 Virtual Machines 13
3.1 General architecture of Virtual Machines ..14
3.2 Risks with virtual machines ...20

4 Xen 23

5 XSM, Xen Security Modules 27
5.1 XSM Flask ...27
5.2 XSM ACM/sHype ..28

6 Conclusions 31

References 33

FOI-R--2904--SE

6

 FOI-R--2904--SE

7

1 Introduction

1.1 Motivation
The main goal of the project Object- and Service-Based Security is to clarify
what security functionality could be transformed into services, complementing
the functionality that is traditionally enforced locally in each unit of the total
system. The quest for service orientation is primarily due to better flexibility and
management. Additionally, it has potential to promote object-based security. The
latter term refers to a vision to bind security attributes to each individual infor-
mation object and have mandatory control of the object, even across system
boundaries.

We realized early that virtual machines are relevant for both parts of the project.
Virtual machines can be configured and distributed from a central service. They
can also be stripped down to minimal complexity, which should promote
mandatory control. Accordingly, we decided to carry out a theoretic study of
publicly available literature on security qualities of virtual machines.

1.2 Topics of interest
This theoretic study shall focus on topics relevant to the two parts of the project.
The topics of interest in the study have been, in order of interest:

1. Separation capability. It is absolutely essential that virtual machines,
running on the same physical machine, are independent of each other.
There must be no data leakage between virtual machines.

2. Configuration. It shall be possible to configure each virtual machine to
only contain components that are necessary for the application running
in the virtual machine.

3. Policies. It shall be possible to have security policies which authorize
how virtual machines interact.

4. Assurance. To allow sensitive information in virtual machines, they
must conform to the proper assurance level.

5. Usability and deployment are important, although hard to assess in a
theoretical study.

FOI-R--2904--SE

8

1.3 Report layout
The report is organized as follows. Section 2 gives a background to why virtual
machine monitors have relevant security qualities. The main quality discussed is
that of a separation kernel. Section 3 is a general description of virtual machines,
ending in the concept of a minimal hypervisor. Risks with virtual machines are
also included. In Section 4 the open source hypervisor Xen is described. Section
5 describes two security extensions to Xen, packaged as Xen Security Modules.
Finally, conclusions are presented in Section 6.

 FOI-R--2904--SE

9

2 Background
It is a well known “old truth” that modularity and minimalism are good from a
security point of view. Rather than having a big monolith, a system should
consist of smaller modules, easier to grasp. Likewise, controlling directives like
access control policies should be partitioned into smaller building blocks. The
reason is of course that it is easier, and less expensive, to assure and verify small
modules than big ones. However, the modules must be totally separated and
independent of each other, otherwise the total system effectively will be a
monolith, hard to assure. One way to achieve separation would be to use separate
hardware for each module. This, however, is in most cases impossible, for
practical and economical reasons. Instead, the alternative is to have a secure way
to separate software modules inside a host machine. Some terms, used in this
context, and later discussed:

− SK, Separation Kernel. Mechanisms whose primary function is to
isolate and separate partitions and control information flow between
these partitions.

− VM, Virtual Machine. A relatively large partition, which emulates a
whole physical machine.

− VMM, Virtual Machine Monitor, running in the hosting physical
machine. The software needed to establish and control the guest virtual
machines.

− Hypervisor. A class of VMMs, running directly on the hardware in the
host machine. A hypervisor is akin to “a minimal operating system”.

The concept of “separation kernel” was first coined in 1981 in a seminal paper of
Rushby [1]. Quoted from this paper:

“However, the type of kernel which I am proposing differs from a VMM in
that there is no requirement for it to provide VMs which are exact copies of
the base hardware (or even for all the VMs to be alike)—but there is a
requirement for it to provide communications channels between some of its
VMs. In order to avoid confusion with established terminology, I shall call
this new type of security kernel a ‘separation kernel’.”

In his paper Rushby observes that an SK in many ways is identical to a VMM,
Virtual Machine Monitor, which was a known concept. The differences are that
the VMM controls whole machines, larger than an SK-module, and that a VMM
does not enforce a communications policy.

Rushby argues in his paper that it is possible to build a small SK, which
completely isolates modules (processes) from each other. Completely isolated
modules, not communicating or sharing anything, are of course of limited use.

FOI-R--2904--SE

10

But Rushby also argues that the SK can include a function for communications
control. A module shall have a communication port and it should be the only, and
verifiable, way to send/receive any data. The SK shall be capable to control each
connection between the ports of two modules. And each connection can have a
separate policy for allowed communication.

Rushby argues that partitioning the overall policy makes it substantially easier to
endorse and assure. The then prevailing way was one system where the operating
system had a small security kernel1, a reference monitor. The function of a
reference monitor is to examine all security sensitive accesses. When a policy is
implemented, e. g. MLS, Multi Level Security, it must be effective in the whole
system and enforced by the security kernel. It was learned that this was hard to
achieve, unless there were some trusted processes that overruled the policy,
which meant that the security was hard to assure.

At a “Classic Papers” track at ACSAC 2007 [2] Rushby summarizes his -81
paper and what has happened since. He pointed out that the former RSRE (Royal
Signals and Radar Establishment, Rushby is English) showed interest and started
to make three communication systems, based on SK. However, in 1994 this was
abandoned. Quote Rushby: “we tend to attribute the problems to technical
limitations of the time”. From around mid -90s SK has had renewed interest,
notably from NSA2 in USA. NSA has compiled a Protection Profile, compliant
with Common Criteria: “U.S. Government Protection Profile for Separation
Kernels in Environments Requiring High Robustness” [3]. One product [4]
matching this Protection Profile has been evaluated.

The Common Criteria for Information Technology Security Evaluation [5], CC,
is the internationally recognized standard for security evaluation of IT products.
A Protection Profile, PP, is an evaluated collection of implementation
independent security requirements for a class of target products. Each imple-
mented and realized product can then be evaluated and assured to comply with
the PP. The CC defines six building blocks for a PP, including security
functional requirements and security assurance requirements. With respect to the
latter, seven Evaluation Assurance Levels, EALs, are defined from EAL1
(lowest) to EAL7 (highest). Although the CC is internationally accepted, not all
nations follow all of it.

1 The terminology is confusing, separation kernel vs security kernel. The foremost property of a

separation kernel is its isolation capability. The isolation is not a property in a conventional
security kernel

2 nowadays NSA/CSS, National Security Agency/Central Security Service

 FOI-R--2904--SE

11

NSA/CSS is in charge of information security for National Security Systems3 in
the USA. They do not use EAL5-EAL7 for the highest assurance levels. Instead
NSA has defined three robustness levels – basic, medium and high. How a
robustness level relates to the requirements (both security functional and security
assurance) and levels in CC is described in the Consistency Instruction Manuals,
for instance [6]. To protect information of high security classification high
robustness is required, combined with physical protection and other restrictions
(one example is [7]).

The “Protection Profile for Separation Kernels in Environments Requiring High
Robustness” [3], is the requirements for the minimal inner kernel, not for a
complete system. Quoted from [3]:

A TOE4 includes the following security features:

− Information flow control that enforces strict partition isolation, with
the exception of explicit interactions specified by the configuration
data

− Cryptographic mechanisms that provide functions to verify the
integrity of TSF5 code and data during trusted delivery

− Trusted initialization and recovery functions

− Detection and response to security function failures

− Generation of audit data

Among the features not required are:

− User interfaces during an execution session or initialization

− Identification and Authentication which mandates authorized users
to be uniquely identified and authenticated by the TSF5

− Discretionary Access Control (DAC) which restricts access to
objects based on the identity of subjects and/or groups to which
they belong, and allows authorized users to specify protection for
objects that they control

3 ”National Security Systems are systems that contain classified information or involve intelligence

activities, involve cryptologic activities related to national security, involve command and control
of military forces, involve equipment that is an integral part of a weapon or weapon system, or
involve equipment that is critical to the direct fulfillment of military or intelligence missions”,
originally defined in Clinger-Cohen Act 1996

4 TOE – Target of Evaluation, viz. the Security Kernel
5 TSF – TOE Security Functions

FOI-R--2904--SE

12

− Cryptographic services for applications to encrypt, decrypt, hash,
and digitally sign data as it resides within the system and as it is
transmitted to other systems

− Complete physical protection mechanisms

These features are assumed to be outside the SK.

As already mentioned, an SK is not identical to a hypervisor, but there are many
similarities. For instance, according to GreenHills’ web page [8], their evaluated
separation kernel [4] can act as a hypervisor.

Another indication of the similarities between SK and hypervisor is the Open
Trusted Computing consortium (OpenTC) [9]. It is a research project, financed
by the European Commission, aiming to develop openly available modules for
trusted computing. Much concern is taken to use Trusted Platform Module (see
Figure 5), TPM, to sign and verify data and software modules. But the need of
isolation and separation is also emphasized. Quoted from OpenTC [10]: ”A core
idea of OpenTC is to combine security properties of TC-hardware and isolation
properties of virtualisation in order to build trusted platforms. At the lowest level,
TC mechanisms are provided by hardware (by the Trusted Computing Module
and state of the art CPUs).” For separation they have used both the microkernel
L4 [11] and the hypervisor Xen [12]. A microkernel is a minimal operating
system, where things like device drivers and file systems run in an unprivileged
mode, outside the kernel.

The conclusion of this background discussion is that the desired security proper-
ties in a separation kernel also exist in a hypervisor. Consequently, it is
appropriate to discuss security qualities of hypervisors. A hypervisor has some
advantages over security kernels. The full virtual machine, controlled by a
hypervisor, is more well-known and well-tested than an untried partition
controlled by a separation kernel.

 FOI-R--2904--SE

13

3 Virtual Machines

Virtual Machines, VM, is the term used when one host machine emulates many
guest machines. The Virtual Machine Monitor, VMM, on the host could be a full
fledged operating system, like Linux or MS Windows. Alternatively, it could be
a much smaller, by a factor 100-1000, special operating system, often called
hypervisor. The guest machines, running as applications above the VMM, can
also be for example ordinary MS Windows, or it could be, for example, a much
stripped Linux, only meant to support a single application. The smaller size, both
hypervisor and (stripped) VM, is a good thing from security point of view.

VM is an old concept. It was used in the 70s as a cost-effective way to use
expensive hardware, by allowing many machines to run at the same time on the
same hardware. When the price of hardware declined, the need for VM also
declined. Today there is a reborned interest in VM, due to other types of
economy, like footprint area, energy consumption, administration, configuration
etc. In addition, as mentioned, VMs are very relevant from security point of
view.

FOI-R--2904--SE

14

3.1 General architecture of Virtual Machines

VMM

VMk VMn

Environment

VM1

Figure 1 Schematic figure of Virtual Machines.

Figure 1 is very schematic, just meant to illustrate the concept, Virtual Machines
controlled by a Virtual Machine Monitor. The VMM can be of very varying size
and complexity. Some varieties:

− The VMM could be an operating system, like MS Windows or Linux,
plus a run time system, like Java VM. In this case the VMs in figure 1
rather should be called VAs, Virtual Applications. The main advantage
is the emulation. The VMM emulates everything underneath the appli-
cations. The applications can therefore be written independently of the
environment where they will be executed. But there also exist security
qualities in this high level approach of VMM. By adding flow control
modules to the Java VM (for example Trishul [13]), it is possible to
achieve usage control. This means that the access control, normally

 FOI-R--2904--SE

15

provided by the OS, is enhanced by control inside the VM of how
information flows between applications. The usage control is very
attractive for applications like Digital Rights Management, DRM. It is
also a very relevant component in the quest for object based security.

− The VMM could be a middleware running on top of a regular operating
system, like MS Windows or Linux. In this case the VMs are complete
machines, including an ordinary operating system. Today this is
frequently used at regular service centers, to rapidly reconfigure services
in response to changing conditions, even without interrupting execu-
tions. This also means that it should be possible to configure distributed
services from a central point, and to reconfigure in response to changing
security conditions. (The reconfiguration possibility is also true for the
virtual applications outlined above). Another security quality is that
each VM can be stripped to a minimal configuration, just enough to
support one delivered service for each VM.

− The VMM could be a minimal kernel, named hypervisor, running
directly on the hardware. In effect, it is a minimal basic OS. In this case,
the surpassing security quality is the isolation property. The VMs are
machines, including an operating system (preferably stripped to a mini-
mum), running on top of the hypervisor.

From now on the focus in this paper will be the minimal VMM, i.e. hypervisor.

VM means that it is possible to build, and configure, several independent and
mutually isolated machines inside a single host. And independence and isolation
are good security, cf. separation kernel, SK. Note, however, that a system
consisting of many independent physical machines, will not be more secure if
they are realized as VMs. The challenge to have a correct access control policy
will be the same.

It is tempting to add different kinds of functionality to hypervisors, but a hyper-
visor overloaded with functionality might be nearly as complex as an ordinary
OS. One attractive functionality is for example efficient communication between
VMs, hosted in the host machine. This can be much more efficient by using
shared memory. However, that may sacrifice the isolation property.

IEEE Security & Privacy has a special issue Sep/Oct 2008, “Virtualization and
Security: Back to the Future” [14]. The title alludes to the fact that virtualization
is an old concept. The Figures 2, 3, 4, 5 and 8 of VMs are copied from [14],
through the courtesy of IEEE.

FOI-R--2904--SE

16

Figure 2 A generic system configuration for virtualization, from [37], © 2008 IEEE.

The optional host (dotted line) in Figure 2 means that the VMM could be an
“ordinary” application running on an “ordinary” host OS. Virtualization as a
means to avoid piles of physical computers in computer centers often looks like
this. But also NetTop [15] from NSA, on top of SELinux [31] running in
VMware, looks like this. Among the drawbacks are overhead (additional layers,
VMM + OS) and security assurance. It is exceedingly expensive to assure a large
OS, and a large host OS + VMM is even more expensive.

For isolation purposes, like MILS [16], Multiple Independent Levels of Security,
it is preferable to have a small (which hopefully could be assured) hypervisor
running directly at the hardware, i. e. no big host OS. Essentially, this means that
the hypervisor is a “basic OS”, below the “application OS”. A problem is to
decide what should be included in the hypervisor, shown in Figure 3.

 FOI-R--2904--SE

17

Figure 3 Device drivers in hypervisor, from [37], © 2008 IEEE.

To be able to share hardware (e. g. radio and/or network devices) the device
driver must be moved from application OS to VMM. If too much is moved to the
hypervisor, the result would be “a new large OS”, and the security would be hard
to assure. Another problem is that some hardware (notably most legacy x86) is
not “virtualization friendly”. Some system calls in application OS are therefore
changed to special “hypervisor calls” (this is called paravirtualization), which are
executed in the hypervisor. This leads to compatibility problems.

One way to handle device sharing is to have a special “device machine”. Figure 4
depicts this.

FOI-R--2904--SE

18

Figure 4 Device drivers in privileged machine, from [37], © 2008 IEEE.

This means communication between VMs, which means some overhead. It also
means that the operating system in the guest virtual machines must be modified.
In a standard unmodified OS, like Linux or MS Windows, there are device
drivers which access the device hardware directly. These drivers are replaced by
front-end device drivers in the guest, talking to back-end drivers in the I/O
partition. Only the back-end drivers can access the hardware.

A special hardware module, desirable to share between VMs, is the Trusted
Platform Module, TPM [17]. It is a hardware module for cryptographic opera-
tions and for handling and generation of crypto keys. An important use of TPM
is to verify digital signatures of critical software and to verify hardware modules
at system startup and reconfiguration. As for other drivers, the driver for TPM
should not be inside the hypervisor, but should be in a VM of its own, in a TPM
VM. The following Figure 5 is copied from [18], where a TPM VM multiplexes
the hardware TPM.

 FOI-R--2904--SE

19

Figure 5 Trusted platform module virtualization, from [18], © 2008 IEEE.

The communication between VMs, e.g. disk sharing in Figure 4 and TPM multi-
plexing in Figure 5, is by use of so called event channels, controlled by the
hypervisor. The main security responsibility of the hypervisor is to endorse the
complete isolation of the VMs and that absolutely no information can be passed
except via the controlled event channel. An attractive quality would be to be able
to formulate a policy for how information is allowed to be passed. Such
extensions exist, as described later on. However, policy handling is too complex
to implement in a hypervisor. Therefore, it is implemented as minimal extensions
in the hypervisor, complemented with a separate VM for policy managing,
described later on.

What is just described could be expressed as having a minimal hypervisor, aided
by helper VMs. The rationale is of course that the security of the hypervisor
should be possible to assert. But a helper VM may very well include parts critical
for the security, e.g. policy managing. The TCB, Trusted Computing Base, of a
system is thus not the hypervisor alone. The TCB also includes parts from helper
VMs, which means that they shall also be kept to a minimal complexity, to be
possible to assert. Nonetheless, it is less difficult to assert a TCB module con-
tained in a stripped VM, than a module inside a large OS.

FOI-R--2904--SE

20

3.2 Risks with virtual machines
Virtual machines have been shown to have benefits when it comes to reducing
cost and space for hardware, as well as providing the possibility to segment
functionality. Apart from economic and physical benefits, VMs can improve
security as well. The foremost property for security improvement is the ability to
provide isolation.

From an attackers’ point of view, attacking a hypervisor should yield the most
benefit. The hypervisor controls the guest machines and thus a compromised
hypervisor will give access to the guest machines. However, few known attacks
have been launched against hypervisors [39]. This may be due to the fact that
hypervisors can be scaled down to only containing the minimum required
functionality, and thus becoming a purpose-built application. In combination
with being small and having limited external access, hypervisors are naturally
less exposed to attackers [38]. This is not to say that VMs, VMMs or hypervisors
are without flaws of their own. According to the National Vulnerability Database
(NVD) there are 329 known vulnerabilities for VMs, 4 for VMMs and 7 for
hypervisors [40].

Risks are a combination of threats, vulnerabilities and the ability to exploit these
vulnerabilities. In a study by Ormandy [41], six commonly available VMs were
compared. The scope of the study was to test the ability of a VM to maintain its
isolation property in a hostile environment. A hostile environment is here
considered to be a situation where untrusted code is executed or untrusted data is
being processed inside the VM.

The study was set up so that, in case of failure of maintaining isolation, the
failure of the VM could be measured gradually. Failing was categorized as:

 Total compromise: The VMM is fully compromised and can execute
arbitrary code with full privileges on the physical system.

 Partial compromise: The separation between the VMM and the physical
host fails. The VMM leaks information about the host or cannot control
hostile processes within itself.

 Abnormal termination: Unexpected terminations of the VMM (in effect
a denial of service attack) which results in the inability for the host
administrator to reach guest applications.

In the study [41] three open source VMs were tested, (Bochs6, QEMU7 and
Xen8) as well as three proprietary machines, (VMware9) and two undisclosed

6 http://bochs.sourceforge.net/ (2009-11-10)
7 http://www.qemu.org/ (2009-11-10)

 FOI-R--2904--SE

21

popular on the Macintosh platform and on the Microsoft Windows platform,
respectively.

The result of the study was that no virtual machine was immune to compromise.
By the use of two simple tools (Crashme10 and iofuzz) known vulnerabilities
where identified and exploited. It is important to note that all VMs could not be
scrutinized to their full potential. Xen, for instance, a VM with a good security
design utilizes hardware support that was unavailable to the author at time of the
study. It is also worth to note that the study was performed in 2007, which means
that vulnerabilities in the tested VMs may have been dealt with later.

As shown above, there are still many known flaws in available VMs, VMMs and
hypervisors. However, known vulnerabilities are most often due to
implementation errors and as such can be dealt with. The Xen platform is most
interesting to explore further with regards to hardware support that was
unavailable for the above study.

8 http://xen.org (2009-11-10)
9 http://www.vmware.com (2009-11-10)
10 http://www.codeplex.com/crashme/ (2009-11-10)

FOI-R--2904--SE

22

 FOI-R--2904--SE

23

4 Xen
There are many proprietary VMMs, of the hypervisor category, aimed at virtual-
izing a particular type of hardware. The prevailing open source hypervisor, for
general use, is Xen [12]. The University of Cambridge has for many years had a
lead in the Xen development [19]. The following overview figures are inspired
by Xen architecture overview in [20].

Xen essentially consists of two parts; the minimal hypervisor and the controlling
machine, called Domain 0. They are both started when the system is booted. The
Domain 0 is a dedicated VM, running a special version of Linux as a guest
machine. Vital modules, like device drivers and control modules are usually
included in Domain 0. It is therefore essential to protect Domain 0 from
unauthorized access. External communication with Domain 0 shall be restricted
to configuration files and to special messages. No ordinary communication, like
logging in, is allowed. Domain 0 is part of TCB, which shall be as small as
possible. Proposals to reduce the size of Domain 0 are elaborated later on.

Figure 6 Basic organization of Xen.

Each application guest machine runs in a Domain U (U for User). A Domain U is
built, started, stopped and controlled from Domain 0. The system can be
sketched as Figure 6. The guests can be of two kinds, paravirtualized, PV, and

FOI-R--2904--SE

24

fully virtualized, HVM11, respectively. Before version Xen 3.0 only PVs could
be built.

Xen hypervisor

PV drivers in Domain 0

Network Backend

Block Backend

PV drivers in Domain U
Paravirtualized Guest

Network Frontend

Block Frontend

Network Disk MemoryCPUs

Figure 7 A paravirtualized guest in domain U.

Figure 7 depicts a PV Guest, controlled by Domain 0. Paravirtualization, PV,
means that the guest is not fully virtualized; it has been modified in various
ways. This is because in some hardware architectures there are instructions
which may have side effects. In a PV guest operating system these instructions
are replaced by hypercalls, which are trapped and handled by Xen hypervisor.

External devices, like network and disk adapters, are other parts hard to virtual-
ize. The Xen hypervisor provides a bus abstraction for communication between
domains, called XenBus. This is used to construct paravirtualized split-drivers
for network and disks. The hypervisor monitors the addresses used for access to
physical disk/network. The accesses are allowed only from a privileged driver
domain, usually domain 0, where backend drivers are run. The hypervisor sets up
two XenBuses between the driver domain and each PV guest. These channels are
used by frontend drivers in the guest. Thus, conventional I/O drivers in the guests
are replaced by frontend drivers, written for each type of guest OS. A XenBus is
essentially a buffer in shared memory, synchronized via an event channel. This
results in a very efficient communication. The memory sharing is monitored by

11 The surprising acronym HVM comes from Hardware Virtualized Machine

 FOI-R--2904--SE

25

the hypervisor. It is also possible to set up channels between two PV guests,
provided that the guests have proper drivers for the communication at issue.

The Xen hypervisor can virtualize different architectures; notably x86 types from
Intel and AMD, but also other processors like PowerPC and ARM for mobile
platforms. The older types of x86 processors are hard to virtualize, and the modi-
fications with hypercalls in guest operating systems are rather extensive. There-
fore, there are no paravirtualized versions of proprietary OSs, like MS Windows,
at least not openly available. PV guests are available for most Linuxes and
Unixes. However, recent versions of x86 have extensions which make them more
virtualization friendly. Intel’s new hardware is called Intel VT [21], and AMD’s
is called AMD-V [22]. Xen version 3.0 can virtualize these processors, without
the need of special hypercalls. The need for paravirtualized split-drivers can be
circumvented by use of device emulation, for a restricted set of drivers, by use of
the package QEMU [23]. The backend driver in Domain 0 is replaced by qemu-
dm, “qemu device manager”. The device emulation comes at the price of lower
performance, however. But altogether, this means that Xen version 3.0 can run
fully virtualized guests, HVM in Figure 6, also for MS Windows.

The security qualities of Xen can be sectioned into two groups, the separation
capability and the Trusted Computing Base, respectively. The separation capa-
bility means that the hypervisor acts as a separation kernel in that any guest VM
runs entirely independent of any other VMs and that there is no uncontrolled way
to pass information between VMs. As was sketched in Figure 7, the hypervisor
controls allocation of memory and CPUs. The hypervisor is responsible for
sanitizing these resources when they are reallocated between VMs. The only way
to pass information between two VMs is via the previously described event
channel and shared memory. These used to be statically configured in configura-
tion files. However, Xen 3.0 has included extensions, which facilitate policy
controlled communication between VMs. One extension, named sHype,
originated from IBM. Xen 3/sHype is described in Section 5. It could be
mentioned that it is possible to communicate between VMs in the same way as
between physical machines, e. g. via TCP-sockets. The policy for this lies outside
Xen, however. It is up to the VMs to decide.

The TCB, Trusted Computing Base, is the hypervisor itself, plus Doman 0.
According to [24] Xen 3/sHype meets the criteria for level EAL 4, Common
Criteria Protection Profile CAPP [25], which is the same level as for some evalu-
ated Linuxes and some MS Windows. No product has been evaluated, however.

In order to reduce the TCB, and purportedly reach higher evaluation levels, there
are projects to restructure Domain 0. Domain 0 (configuration management,
communication policy,…) runs in privileged mode, which means that it is in the
TCB. One project to restructure Domain 0, to make it easier to assure is [26].
Quoted from their report: “In this paper, we introduce our work to disaggregate
the management virtual machine in a Xen-based system.”

FOI-R--2904--SE

26

As was earlier mentioned, open source Xen can purportedly be assured to
Common Criteria assurance level EAL4. NRL, Naval Research Laboratory, in
the US, has analyzed what should be done to make Xen compliant with EAL5.
They call such a modified Xen for Xenon [27] [28]. Quoted from their report
[27]:

“This paper explains the Xenon project’s approach to re-engineering
Xen’s internal structure into a higher-assurance form. If conventional
open source software cannot be brought into this form with moderate
amounts of re-engineering then higher-assurance open source software
is probably not practical. Our results indicate that moderate amounts of
re-engineering will be sufficient for all but a small part of the code.
The remaining code is small enough to be addressed in a reasonable
time, even though more effort is required”.

Xenon’s primary concern is to act as a high assurance separation kernel, SK.
Xenon was realized by restricting a stable version of Xen. Among the restrictions
are support for one architecture (x86_64) only, and support for paravirtualization
only.

 FOI-R--2904--SE

27

5 XSM, Xen Security Modules

Xen versions 1 and 2 did not have any flexible way to model the security func-
tionality. The only applicable way was to statically configure a set of VMs, as
earlier described in Section 4. However, the Xen open source development team
is building XSM, Xen Security Modules, available as an option in Xen version 3.

NSA has taken a major role in the XSM development. George Coker, NSA, has
made two presentations on XSM, [29] and [30], at two “Xen Summit meetings”.
Some conclusions from the presentations:

− The rational for XSM is that new usage models for Xen have different
security goals. Therefore, there should not be a “hardwired” security
model. Xen should rather be capable of supporting many models
through configuration, without changes to Xen mechanisms. Examples
of new usage models could be decomposing of privileged domain 0, cf.
earlier mentioned [26]. Another new usage model could be to isolate,
mediate access to, and guarantee invocation of services (e. g.
encryption).

− The XSM implementation is derived from Linux Security Modules
(LSM), included in Linux kernel 2.6.13.4, which is the basis of Xen. In
this Linux kernel there are hooks inserted in places relevant for access
control. This essentially means that it is possible to make hooks in the
Xen hypervisor which call external modules for access control. These
external modules implement the desired policy, e. g. MLS. The rules in
the policy are thus concentrated to a few modules, which are more easily
configured than the Xen system itself. According to the NSA presenta-
tions [29][30], there was no performance degradation due to the hooks in
the hypervisor.

In the Xen 3 distribution three security modules are included – Flask developed
by NSA, ACM/sHype developed by IBM, and Dummy. The latter is what it says,
a dummy module meaning no added security policy.

5.1 XSM Flask
Flask [34], Flux Advanced Security Kernel, was a research project conducted by
the Flux group at University of Utah, supported by NSA. It ended around year
2000, and then NSA implemented it as SELinux [31]. Many modern Linuxes
can, by using the recently mentioned LSM, be configured into an SELinux.

Two pillars in the Flask architecture are separation between policy enforce-
ment/decision, and type label matching, respectively. In SELinux the enforce-

FOI-R--2904--SE

28

ment is done at the LSM access hooks, which call a separate decision service.
The calls include type labels. The calling subject has type labels bound to it, and
so has the requested object. These labels are matched in the decision service.
Different policies have been implemented, including RBAC, Role Based Access
Control and MLS, Multi Level Security.

This is, not surprisingly, the same approach as in XSM, and NSA accordingly
has supported XSM Flask. Quoted from NSA [31]: “The Xen Security Modules
(XSM) framework and the Xen Flask security module is an application of the
Flask architecture to the Xen hypervisor. This work has been upstreamed to Xen
as of Xen 3.2.”.

The policy handling in XSM Flask has been reported to be less complex than in
SELinux, which has a reputation of being hard to use. However, not many
detailed descriptions of XSM Flask have been found. An up to date description
of the advancements in SELinux is in [32], where also XSM Flask is briefly
mentioned.

5.2 XSM ACM/sHype
IBM has for a long time, ever since their mainframes VM360 and VM370 in the
1970s, been a leading actor regarding research on virtualization. Their research
hypervisor, called rHype, was made open source and has been migrated into Xen
for support of IBMs Power PC architecture. An extension to rHype, called
sHype, for mandatory access control is now included in Xen as XSM
ACM/sHype. The basic architecture of XSM Flask and XSM ACM/sHype seems
to be the same, but very few detailed papers on XSM Flask have been found.

A paper on sHype is [33]. Three major decisions are the basis of sHype:

1. Build on the existing isolation properties of the hypervisor, which for
one thing means minimal code changes in the hypervisor.

2. Use bind-time authorization, to achieve minimal performance overhead.
This is implemented as first time access is authorized and the access
decision is then cached for use at later accesses.

3. Enforcing formal security policies. Two such policies are implemented
in Xen, Chinese Wall and Type Enforcement, respectively.

Both policies are enforced by matching labels bound to the subject (which is
requiring the access) and labels bound to the object (which grants/rejects the
access). The Chinese Wall policy sets relations between pairs of VMs saying that
the two VMs must not run at the same time at the same hardware. This is a

 FOI-R--2904--SE

29

means to mitigate the classical covert channel12, which is a thorny problem.
Thus, the policy specifies which combinations that are forbidden. The
combinations not specified are allowed. The Type Enforcement policy is the
other way around. It specifies “coalitions”, which are sets of VMs meant to
cooperate. Two VMs may share a virtual resource only if they participate in at
least one common coalition. Sharing between other combinations of VMs is
forbidden.

The policies are enforced in an extension called ACM, Access Control Module,
to the hypervisor. The ACM caches access decisions which have been decided in
the Policy Manager, PM, running in its own VM, thus outside the hypervisor.
The ACM calls PM when it lacks a cached value. This can be at the first access,
or after a request from PM to revoke a cached value. This could for instance be
an effect of a changed policy. Since the PM acts as a policy decision point and
also as a policy manager, it is crucial for the system and is a part of the TCB. In
another VM other security services, like logging and auditing, are run. The
architecture can be depicted like Figure 8, which was copied from [18]. The
TPM, see Figure 5, could be added to the architecture. The TPM is then used to
verify the integrity of policies.

Figure 8 sHype hypervisor security architecture, from [18], © 2008 IEEE.

The labels used in the access control are set by the system owner, for instance as
XML-formatted configuration files to the PM. The virtual machine, running PM,
shall be isolated from all other machines running user applications. This means
that the access control in ACM is a mandatory access control, MAC. As
described so far the access control monitors data flow and resource sharing
between entire virtual machines.

In [33] a hypervisor call for export of the labels to the VM-layer is described. In
case the VM runs a labeled MAC-OS, e. g. SELinux, the labels could be used
also in the OS access control. In [35] this is taken one step further. The labels are

12 A covert channel is an unknown channel where unauthorized information might be transmitted

FOI-R--2904--SE

30

exported to higher levels, from hypervisor to OS to application, possibly after
conversion. This results in a layered policy less complex than a monolithic policy
would be, as [33] argues.

Another suggested use of MAC-labels is described in [36]. Their objective is to
show a system for distributed MAC, where one common policy authorizes access
between VMs at different network nodes. The idea is to have a MAC VM in each
node. MAC VMs can establish IPsec tunnels between them. Such a tunnel is a
resource that can be labeled and thus controlled by the hypervisor ACM. These
labeled IPsec tunnels can be managed in a common policy. A system for distrib-
uted MAC is utterly relevant in the quest for object-based security. Note,
however, that [36] does not describe labeling of each individual information
object. Rather, a label is bound to each IPsec tunnel.

 FOI-R--2904--SE

31

6 Conclusions
The outcome of this theoretic study of publicly available literature on security
qualities of virtual machines is that virtual machines play an important role in the
undertaking to secure complex and distributed systems. The study has mainly
dealt with the open source virtual machine hypervisor Xen. As Xen is an evolv-
ing project, it lacks important characteristics like assurance and deployment.
Even so, Xen is an essential concept, attracting interest from security
organizations, like NSA and NRL in the USA.

In Section 1.2 five topics of interest for the study were listed. Some conclusions
for these topics are:

1. Separation capability. A basis for this is called a separation kernel. The
Xen hypervisor has most of the properties in such a separation kernel.
However, Xen is not evaluated to any assurance level.

2. Configuration. Xen is properly configurable. This conclusion applies to
the hypervisor plus chosen control modules. The configuration of a
guest virtual machine is essentially the same as the configuration of an
equivalent physical machine.

3. Policies. The XSM, Xen Security Modules, facilitates configuration of
mandatory security policies. The policies are coarse grained, authorizing
interactions between entire virtual machines. There exist research activi-
ties to combine virtual machine policies with more fine grained applica-
tion policies.

4. Assurance. There exists a separation kernel, which allegedly can be used
as a virtual machine hypervisor, assured at the US level “high robust-
ness”. Open source Xen is not assured but is considered to reach
Common Criteria level EAL4. A restricted Xen is considered to be able
to reach level EAL5.

5. Usability and deployment. Xen has been stated to have negligible
performance penalty when used in paravirtualized mode. The perform-
ance penalty in fully virtualized mode varies.

A final observation is that virtual machines, notably Xen, can be a building block
to realize the vision of object-based security. The main contribution in this
respect is the potential to build defined isolated and secured environments
compliant with mandatory authorization.

FOI-R--2904--SE

32

 FOI-R--2904--SE

33

References
[1] “Design and Verification of Secure Systems”, Reprint of a paper presented

at the 8th ACM Symposium on Operating System Principles, Pacific
Grove, California, 14–16 December 1981. (ACM Operating Systems
Review Vol. 15 No. 5 pp. 12-21),
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.62.1726&rep=r
ep1&type=pdf

[2] B Randell, J Rushby, ”Distributed secure systems: Then and now”,
Proceedings of the Twenty-Third Annual Computer SecurityApplications
Conference, pages 177–198, IEEE Computer Society, Miami Beach, FL,
December 2007. Invited “Classic Paper” presentation,
http://www.cs.newcastle.ac.uk/publications/trs/papers/1052.pdf

[3] Information Assurance Directorate, National Security Agency, Fort
George G. Meade, MD, 20755-6000. U.S. Government Protection Profile
for Separation Kernels in Environments Requiring High Robustness, June
2007. Version 1.03.

[4] Green Hills Software, INTEGRITY-178B Separation Kernel,
http://www.niap-ccevs.org/cc-scheme/st/vid10119/

[5] The Common Criteria Portal,
http://www.commoncriteriaportal.org/

[6] National Security Agency, Information Assurance Directorate,
Consistency Instruction Manual for development of U.S. Government
Protection Profiles for use in Medium Robustness Environments, February
2005. Release 3.0.,
http://www.niap-ccevs.org/pp/ci_manuals.cfm

[7] NATIONAL SECURITY AGENCY, “INFORMATION ASSURANCE
GUIDANCE FOR SYSTEMS BASED ON A SECURITY REAL-TIME
OPERATING SYSTEM”, SSE-100-1, December 2005
http://www.nsa.gov/ia/_files/SSE-100-1.pdf

[8] Green Hills Software Inc,
http://www.ghs.com/

[9] Open Trusted Computing (OpenTC) consortium,
http://www.opentc.net/

[10] General activities of OpenTC,
http://www.opentc.net/index.php?option=com_content&task=view&id=13
&Itemid=28

FOI-R--2904--SE

34

[11] The L4 µ-Kernel Family,
http://os.inf.tu-dresden.de/L4/

[12] Xen Hypervisor ,
http://www.xen.org/

[13] Srijith K. Nair, Patrick N.D. Simpson, Bruno Crispo, Andrew S.
Tanenbaum, “Trishul: A Policy Enforcement Architecture for Java Virtual
Machines”, http://www.few.vu.nl/~srijith/publications/techreports/Trishul-
IR-CS-45.pdf.

[14] Virtualization and Security: Back to the Future, IEEE Security&Privacy,
2008, volume 6, Issue 5,
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isYear=2008&isnumber=46390
07&Submit32=View+Contents

[15] NetTop, NSA,
http://www.nsa.gov/research/tech_transfer/fact_sheets/nettop.shtml

[16] J. Alves-Foss, P. W. Oman, C. Taylor, W. S. Harrison, “The MILS
architecture for high-assurance embedded systems”, International Journal
of Embedded Systems, Volume 2, Number 3-4 / 2006, pp 239-247,
http://inderscience.metapress.com/app/home/contribution.asp?referrer=par
ent&backto=issue,9,10;journal,6,9;linkingpublicationresults,1:110847,1

[17] The Trusted Computing Group,
https://www.trustedcomputinggroup.org/home

[18] R. Perez, R. Sailer, L. van Doorn, Virtualization and Hardware-Based
Security, IEEE Security&Privacy, 2008, volume 6, Issue 5, pp 24-30

[19] The Xen™ virtual machine monitor,
http://www.cl.cam.ac.uk/research/srg/netos/xen/

[20] Xen Architecture Overview,
http://wiki.xensource.com/xenwiki/XenArchitecture?action=AttachFile&d
o=get&target=Xen+Architecture_Q1+2008.pdf

[21] Virtualization technologies from Intel,
http://www.intel.com/technology/virtualization/

[22] AMD Virtualization,
http://www.amd.com/virtualization

[23] Qemu homepage,
http://www.nongnu.org/qemu/

[24] R. Sailer, T. Jaeger, E. Valdez, R. Caceres, R. Perez, S. Berger, J. L.
Griffin, L. var Doorn, “sHype: Mandatory Access Control For XEN”,

 FOI-R--2904--SE

35

http://www.docstoc.com/docs/5691508/sHype-Mandatory-Access-
Control-For-XEN

[25] CONTROLLED ACCESS PROTECTION PROFILE,
http://www.commoncriteriaportal.org/files/ppfiles/capp.pdf

[26] D. G. Murray, G. Milos, S. Hand, “Improving Xen security through
disaggregation”, Virtual execution environments ´08,
http://portal.acm.org/citation.cfm?id=1346278

[27] J. McDermott, J. Kirby, B. Montrose, T. Johnson, M. Kang, “Re-
engineering Xen internals for higher-assurance security”,
Center for High Assurance Computer Systems, Naval Research
Laboratory, USA, Information security technical report 13 (2008) 17–24,
Elsevier, available at www.sciencedirect.com

[28] J. McDermott, Naval Research Lab, “Xenon Assurance Modifications to
Xen Code”,
http://www.xen.org/files/xensummitboston08/XenSummitSpring08.pdf

[29] G. Coker, National Information Assurance Research Lab, National
Security Agency (NSA), “Xen Security Modules (slides)” - Xen Summit,
July 2006
http://xen.xensource.com/files/summit_3/coker-xsm-summit-090706.pdf,

[30] G. Coker, National Information Assurance Research Lab, National
Security Agency (NSA), “Xen Security Modules (slides)” - Xen Summit,
April 2007
http://xen.org/files/xensummit_4/xsm-summit-041707_Coker.pdf, 2007.

[31] SELinux Related Work,
http://www.nsa.gov/research/selinux/related.shtml

[32] J. Morris, Red Hat Asia Pacific Pte Ltd, “Have You Driven an SELinux
Lately?”, An Update on the Security Enhanced Linux Project,
http://kernel.org/doc/ols/2008/ols2008v2-pages-101-114.pdf

[33] R. Sailer , T. Jaeger , E. Valdez , R. Caceres , R. Perez , S. Berger , J. L.
Griffin , L. van Doorn, “Building a MAC-Based Security Architecture for
the Xen Open-Source Hypervisor”, Proceedings of the 21st Annual
Computer Security Applications Conference, p.276-285, December 05-09,
2005 [doi>10.1109/CSAC.2005.13],
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?tp=&arnumber=1565255&is
number=33214

[34] Flask: Flux Advanced Security Kernel,
http://www.cs.utah.edu/flux/fluke/html/flask.html

FOI-R--2904--SE

36

[35] B. D. Payne, R. Sailer, R. Caceres, R. Perez, W. Lee, “A Layered
Approach to Simplified Access Control in Virtualized Systems”, ACM
SIGOPS Operating Systems Review, 2007,
http://portal.acm.org/citation.cfm?id=1278905

[36] J. M. McCune, T. Jaeger, S. Berger, R. Caceres, and R. Sailer,
‘‘Shamon—A System for Distributed Mandatory Access Control,’’
Proceedings of the 22nd Annual Computer Security Applications
Conference (ACSAC), Applied Computer Security Associates, 2006, pp.
23–32

[37] P. A. Karger, D. R. Safford, I/O for Virtual Machine Monitors – Security
and Performance Issues, IEEE Security&Privacy, 2008, volume 6, Issue 5,
pp 16-23

[38] A. M. Antonopoulos, “Virtualization Risk Analysis”. Memertes Research
Group Inc., 18 March, 2008.
http://www.nemertes.com/issue_papers/virtualization_risk_analysis
(2009-11-10)

[39] N. MacDonald, “Hypervisor Attacks in the Real World”. 20 February,
2009.
http://blogs.gartner.com/neil_macdonald/2009/02/20/hypervisor-attacks-
in-the-real-world/ (2009-11-10)

[40] National Vulnerability Database. National Institute of Standards and
Technology (NIST).
http://nvd.nist.gov/ (2009-11-10)

[41] T. Ormandy, “An Empirical Study into the Security Exposure to Hosts of
Hostile Virtualized Environments”. 2007.
http://taviso.decsystem.org/virtsec.pdf (2009-11-10)

