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Sammanfattning 
Huvudsyftet med projektet Objekt- och tjänstebaserad säkerhet är att klargöra 
vilken säkerhetsfunktionalitet som skulle kunna finnas i form av tjänster, samt att 
utreda vilken säkerhetsfunktionalitet som skulle kunna vara möjlig att knyta till 
distribuerade informationsobjekt. Virtuella maskiner är relevanta för båda 
delarna av projektet. Därför rapporteras en litteraturstudie som har fokuserat på 
isolations- och separeringsförmågan hos en hypervisor, vilken är en minimal 
monitor för virtuella maskiner. Isolations- och separeringsförmågan är central för 
att uppnå assurerad säkerhet. Rapporten inleds mer allmänt om hypervisor, och 
inriktas sedan på öppen källkods-hypervisorn Xen. 

Studiens slutsats är att separationsförmågan i en hypervisor är av samma slag 
som i en separation kernel. Till skillnad från separation kernel finns det dock 
ingen säkerhetsassurerad hypervisor. Litteratur om vilken assuransnivå som 
skulle kunna uppnås refereras. Likaså refereras forskningsprojekt om tvingande 
åtkomstkontroll (mandatory access control) i Xen hypervisor. Det senare är ett 
steg mot visionen om objektbaserad säkerhet. 

Referenser till risker med virtuella maskiner ingår också. 

 

 

Nyckelord: virtuella maskiner, hypervisor, Xen, separation kernel, mandatory 
access control, tjänstebaserad säkerhet, objektbaserad säkerhet  
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Summary 
The main goal of the project Object- and Service-Based Security is to clarify 
which security functionality could be transformed into services, and to consider 
which security functionality that potentially could be bound to distributed infor-
mation objects. Virtual machines are relevant for both parts of the project. There-
fore, a literature study is reported, concentrating on the isolation and separation 
capabilities of hypervisors, which are minimal virtual machine monitors. The 
isolation and separation capabilities are central to achieve assured security. The 
report starts with general hypervisors, and then focuses on the open source 
hypervisor Xen. 

The conclusions of the study are that the separation capability of a hypervisor is 
of the same kind as that of a separation kernel. However, unlike separation kernel 
there is no authoritatively security evaluated hypervisor. Some literature, on what 
assurance level that could be achieved, is referred to. Likewise, research projects 
on mandatory access control in the Xen hypervisor are referred. This is a step 
towards the vision of object-based security. 

References on risks with virtual machines are also included. 

 

 

Keywords: virtual machines, hypervisor, Xen, separation kernel, mandatory 
access control, service-based security, object-based security  
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1 Introduction   

1.1 Motivation 
The main goal of the project Object- and Service-Based Security is to clarify 
what security functionality could be transformed into services, complementing 
the functionality that is traditionally enforced locally in each unit of the total 
system. The quest for service orientation is primarily due to better flexibility and 
management. Additionally, it has potential to promote object-based security. The 
latter term refers to a vision to bind security attributes to each individual infor-
mation object and have mandatory control of the object, even across system 
boundaries. 

We realized early that virtual machines are relevant for both parts of the project. 
Virtual machines can be configured and distributed from a central service. They 
can also be stripped down to minimal complexity, which should promote 
mandatory control. Accordingly, we decided to carry out a theoretic study of 
publicly available literature on security qualities of virtual machines. 

1.2 Topics of interest 
This theoretic study shall focus on topics relevant to the two parts of the project. 
The topics of interest in the study have been, in order of interest:  

1. Separation capability. It is absolutely essential that virtual machines, 
running on the same physical machine, are independent of each other. 
There must be no data leakage between virtual machines. 

2. Configuration. It shall be possible to configure each virtual machine to 
only contain components that are necessary for the application running 
in the virtual machine.  

3. Policies. It shall be possible to have security policies which authorize 
how virtual machines interact. 

4. Assurance. To allow sensitive information in virtual machines, they 
must conform to the proper assurance level. 

5. Usability and deployment are important, although hard to assess in a 
theoretical study.  
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1.3 Report layout 
The report is organized as follows. Section 2 gives a background to why virtual 
machine monitors have relevant security qualities. The main quality discussed is 
that of a separation kernel. Section 3 is a general description of virtual machines, 
ending in the concept of a minimal hypervisor. Risks with virtual machines are 
also included. In Section 4 the open source hypervisor Xen is described. Section 
5 describes two security extensions to Xen, packaged as Xen Security Modules. 
Finally, conclusions are presented in Section 6. 
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2 Background 
It is a well known “old truth” that modularity and minimalism are good from a 
security point of view. Rather than having a big monolith, a system should 
consist of smaller modules, easier to grasp. Likewise, controlling directives like 
access control policies should be partitioned into smaller building blocks. The 
reason is of course that it is easier, and less expensive, to assure and verify small 
modules than big ones. However, the modules must be totally separated and 
independent of each other, otherwise the total system effectively will be a 
monolith, hard to assure. One way to achieve separation would be to use separate 
hardware for each module. This, however, is in most cases impossible, for 
practical and economical reasons. Instead, the alternative is to have a secure way 
to separate software modules inside a host machine. Some terms, used in this 
context, and later discussed: 

− SK, Separation Kernel. Mechanisms whose primary function is to 
isolate and separate partitions and control information flow between 
these partitions.  

− VM, Virtual Machine. A relatively large partition, which emulates a 
whole physical machine. 

− VMM, Virtual Machine Monitor, running in the hosting physical 
machine. The software needed to establish and control the guest virtual 
machines. 

− Hypervisor. A class of VMMs, running directly on the hardware in the 
host machine. A hypervisor is akin to “a minimal operating system”. 

The concept of “separation kernel” was first coined in 1981 in a seminal paper of 
Rushby [1]. Quoted from this paper:  

“However, the type of kernel which I am proposing differs from a VMM in 
that there is no requirement for it to provide VMs which are exact copies of 
the base hardware (or even for all the VMs to be alike)—but there is a 
requirement for it to provide communications channels between some of its 
VMs. In order to avoid confusion with established terminology, I shall call 
this new type of security kernel a ‘separation kernel’.” 

In his paper Rushby observes that an SK in many ways is identical to a VMM, 
Virtual Machine Monitor, which was a known concept. The differences are that 
the VMM controls whole machines, larger than an SK-module, and that a VMM 
does not enforce a communications policy. 

Rushby argues in his paper that it is possible to build a small SK, which 
completely isolates modules (processes) from each other. Completely isolated 
modules, not communicating or sharing anything, are of course of limited use. 
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But Rushby also argues that the SK can include a function for communications 
control. A module shall have a communication port and it should be the only, and 
verifiable, way to send/receive any data. The SK shall be capable to control each 
connection between the ports of two modules. And each connection can have a 
separate policy for allowed communication.  

Rushby argues that partitioning the overall policy makes it substantially easier to 
endorse and assure. The then prevailing way was one system where the operating 
system had a small security kernel1, a reference monitor. The function of a 
reference monitor is to examine all security sensitive accesses. When a policy is 
implemented, e. g. MLS, Multi Level Security, it must be effective in the whole 
system and enforced by the security kernel. It was learned that this was hard to 
achieve, unless there were some trusted processes that overruled the policy, 
which meant that the security was hard to assure. 

At a “Classic Papers” track at ACSAC 2007 [2] Rushby summarizes his -81 
paper and what has happened since. He pointed out that the former RSRE (Royal 
Signals and Radar Establishment, Rushby is English) showed interest and started 
to make three communication systems, based on SK. However, in 1994 this was 
abandoned. Quote Rushby: “we tend to attribute the problems to technical 
limitations of the time”. From around mid -90s SK has had renewed interest, 
notably from NSA2 in USA. NSA has compiled a Protection Profile, compliant 
with Common Criteria: “U.S. Government Protection Profile for Separation 
Kernels in Environments Requiring High Robustness” [3]. One product [4] 
matching this Protection Profile has been evaluated. 

The Common Criteria for Information Technology Security Evaluation [5], CC, 
is the internationally recognized standard for security evaluation of IT products. 
A Protection Profile, PP, is an evaluated collection of implementation 
independent security requirements for a class of target products. Each imple-
mented and realized product can then be evaluated and assured to comply with 
the PP. The CC defines six building blocks for a PP, including security 
functional requirements and security assurance requirements. With respect to the 
latter, seven Evaluation Assurance Levels, EALs, are defined from EAL1 
(lowest) to EAL7 (highest). Although the CC is internationally accepted, not all 
nations follow all of it.  

                                                 
1 The terminology is confusing, separation kernel vs security kernel. The foremost property of a 

separation kernel is its isolation capability. The isolation is not a property in a conventional 
security kernel 

2 nowadays NSA/CSS, National Security Agency/Central Security Service 
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NSA/CSS is in charge of information security for National Security Systems3 in 
the USA. They do not use EAL5-EAL7 for the highest assurance levels. Instead 
NSA has defined three robustness levels – basic, medium and high. How a 
robustness level relates to the requirements (both security functional and security 
assurance) and levels in CC is described in the Consistency Instruction Manuals, 
for instance [6]. To protect information of high security classification high 
robustness is required, combined with physical protection and other restrictions 
(one example is [7]).  

The “Protection Profile for Separation Kernels in Environments Requiring High 
Robustness” [3], is the requirements for the minimal inner kernel, not for a 
complete system. Quoted from [3]: 

A TOE4 includes the following security features: 

− Information flow control that enforces strict partition isolation, with 
the exception of explicit interactions specified by the configuration 
data 

− Cryptographic mechanisms that provide functions to verify the 
integrity of TSF5 code and data during trusted delivery 

− Trusted initialization and recovery functions 

− Detection and response to security function failures 

− Generation of audit data 

Among the features not required are: 

− User interfaces during an execution session or initialization 

− Identification and Authentication which mandates authorized users 
to be uniquely identified and authenticated by the TSF5 

− Discretionary Access Control (DAC) which restricts access to 
objects based on the identity of subjects and/or groups to which 
they belong, and allows authorized users to specify protection for 
objects that they control 

                                                 
3 ”National Security Systems are systems that contain classified information or involve intelligence 

activities, involve cryptologic activities related to national security, involve command and control 
of military forces, involve equipment that is an integral part of a weapon or weapon system, or 
involve equipment that is critical to the direct fulfillment of military or intelligence missions”, 
originally defined in Clinger-Cohen Act 1996 

4 TOE – Target of Evaluation, viz. the Security Kernel 
5 TSF – TOE Security Functions 
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− Cryptographic services for applications to encrypt, decrypt, hash, 
and digitally sign data as it resides within the system and as it is 
transmitted to other systems 

− Complete physical protection mechanisms 

These features are assumed to be outside the SK. 

As already mentioned, an SK is not identical to a hypervisor, but there are many 
similarities. For instance, according to GreenHills’ web page [8], their evaluated 
separation kernel [4] can act as a hypervisor. 

Another indication of the similarities between SK and hypervisor is the Open 
Trusted Computing consortium (OpenTC) [9]. It is a research project, financed 
by the European Commission, aiming to develop openly available modules for 
trusted computing. Much concern is taken to use Trusted Platform Module (see 
Figure 5), TPM, to sign and verify data and software modules. But the need of 
isolation and separation is also emphasized. Quoted from OpenTC [10]: ”A core 
idea of OpenTC is to combine security properties of TC-hardware and isolation 
properties of virtualisation in order to build trusted platforms. At the lowest level, 
TC mechanisms are provided by hardware (by the Trusted Computing Module 
and state of the art CPUs).” For separation they have used both the microkernel 
L4 [11] and the hypervisor Xen [12]. A microkernel is a minimal operating 
system, where things like device drivers and file systems run in an unprivileged 
mode, outside the kernel. 

The conclusion of this background discussion is that the desired security proper-
ties in a separation kernel also exist in a hypervisor. Consequently, it is 
appropriate to discuss security qualities of hypervisors. A hypervisor has some 
advantages over security kernels. The full virtual machine, controlled by a 
hypervisor, is more well-known and well-tested than an untried partition 
controlled by a separation kernel. 
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3 Virtual Machines 
 

Virtual Machines, VM, is the term used when one host machine emulates many 
guest machines. The Virtual Machine Monitor, VMM, on the host could be a full 
fledged operating system, like Linux or MS Windows. Alternatively, it could be 
a much smaller, by a factor 100-1000, special operating system, often called 
hypervisor. The guest machines, running as applications above the VMM, can 
also be for example ordinary MS Windows, or it could be, for example, a much 
stripped Linux, only meant to support a single application. The smaller size, both 
hypervisor and (stripped) VM, is a good thing from security point of view. 

VM is an old concept. It was used in the 70s as a cost-effective way to use 
expensive hardware, by allowing many machines to run at the same time on the 
same hardware. When the price of hardware declined, the need for VM also 
declined. Today there is a reborned interest in VM, due to other types of 
economy, like footprint area, energy consumption, administration, configuration 
etc. In addition, as mentioned, VMs are very relevant from security point of 
view. 
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3.1 General architecture of Virtual Machines 
 

VMM

VMk VMn

Environment

VM1

Figure 1 Schematic figure of Virtual Machines. 

Figure 1 is very schematic, just meant to illustrate the concept, Virtual Machines 
controlled by a Virtual Machine Monitor. The VMM can be of very varying size 
and complexity. Some varieties: 

− The VMM could be an operating system, like MS Windows or Linux, 
plus a run time system, like Java VM. In this case the VMs in figure 1 
rather should be called VAs, Virtual Applications. The main advantage 
is the emulation. The VMM emulates everything underneath the appli-
cations. The applications can therefore be written independently of the 
environment where they will be executed. But there also exist security 
qualities in this high level approach of VMM. By adding flow control 
modules to the Java VM (for example Trishul [13]), it is possible to 
achieve usage control. This means that the access control, normally 



  FOI-R--2904--SE 

15 

provided by the OS, is enhanced by control inside the VM of how 
information flows between applications. The usage control is very 
attractive for applications like Digital Rights Management, DRM. It is 
also a very relevant component in the quest for object based security. 

− The VMM could be a middleware running on top of a regular operating 
system, like MS Windows or Linux. In this case the VMs are complete 
machines, including an ordinary operating system. Today this is 
frequently used at regular service centers, to rapidly reconfigure services 
in response to changing conditions, even without interrupting execu-
tions. This also means that it should be possible to configure distributed 
services from a central point, and to reconfigure in response to changing 
security conditions. (The reconfiguration possibility is also true for the  
virtual applications outlined above).  Another security quality is that 
each VM can be stripped to a minimal configuration, just enough to 
support one delivered service for each VM. 

− The VMM could be a minimal kernel, named hypervisor, running 
directly on the hardware. In effect, it is a minimal basic OS. In this case, 
the surpassing security quality is the isolation property. The VMs are 
machines, including an operating system (preferably stripped to a mini-
mum), running on top of the hypervisor. 

 

From now on the focus in this paper will be the minimal VMM, i.e. hypervisor. 

VM means that it is possible to build, and configure, several independent and 
mutually isolated machines inside a single host. And independence and isolation 
are good security, cf. separation kernel, SK. Note, however, that a system 
consisting of many independent physical machines, will not be more secure if 
they are realized as VMs. The challenge to have a correct access control policy 
will be the same. 

It is tempting to add different kinds of functionality to hypervisors, but a hyper-
visor overloaded with functionality might be nearly as complex as an ordinary 
OS. One attractive functionality is for example efficient communication between 
VMs, hosted in the host machine. This can be much more efficient by using 
shared memory. However, that may sacrifice the isolation property.  

IEEE Security & Privacy has a special issue Sep/Oct 2008, “Virtualization and 
Security: Back to the Future” [14]. The title alludes to the fact that virtualization 
is an old concept. The Figures 2, 3, 4, 5 and 8 of VMs are copied from [14], 
through the courtesy of IEEE. 
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Figure 2 A generic system configuration for virtualization, from [37], © 2008 IEEE. 

The optional host (dotted line) in Figure 2 means that the VMM could be an 
“ordinary” application running on an “ordinary” host OS. Virtualization as a 
means to avoid piles of physical computers in computer centers often looks like 
this. But also NetTop [15] from NSA, on top of SELinux [31] running in 
VMware, looks like this. Among the drawbacks are overhead (additional layers, 
VMM + OS) and security assurance. It is exceedingly expensive to assure a large 
OS, and a large host OS + VMM is even more expensive. 

For isolation purposes, like MILS [16], Multiple Independent Levels of Security, 
it is preferable to have a small (which hopefully could be assured) hypervisor 
running directly at the hardware, i. e. no big host OS. Essentially, this means that 
the hypervisor is a “basic OS”, below the “application OS”. A problem is to 
decide what should be included in the hypervisor, shown in Figure 3. 
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Figure 3 Device drivers in hypervisor, from [37], © 2008 IEEE. 

To be able to share hardware (e. g. radio and/or network devices) the device 
driver must be moved from application OS to VMM. If too much is moved to the 
hypervisor, the result would be “a new large OS”, and the security would be hard 
to assure. Another problem is that some hardware (notably most legacy x86) is 
not “virtualization friendly”. Some system calls in application OS are therefore 
changed to special “hypervisor calls” (this is called paravirtualization), which are 
executed in the hypervisor. This leads to compatibility problems. 

One way to handle device sharing is to have a special “device machine”. Figure 4 
depicts this. 
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Figure 4 Device drivers in privileged machine, from [37], © 2008 IEEE. 

This means communication between VMs, which means some overhead. It also 
means that the operating system in the guest virtual machines must be modified. 
In a standard unmodified OS, like Linux or MS Windows, there are device 
drivers which access the device hardware directly. These drivers are replaced by 
front-end device drivers in the guest, talking to back-end drivers in the I/O 
partition. Only the back-end drivers can access the hardware. 

A special hardware module, desirable to share between VMs, is the Trusted 
Platform Module, TPM [17]. It is a hardware module for cryptographic opera-
tions and for handling and generation of crypto keys. An important use of TPM 
is to verify digital signatures of critical software and to verify hardware modules 
at system startup and reconfiguration. As for other drivers, the driver for TPM 
should not be inside the hypervisor, but should be in a VM of its own, in a TPM 
VM. The following Figure 5 is copied from [18], where a TPM VM multiplexes 
the hardware TPM. 
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Figure 5 Trusted platform module virtualization, from [18], © 2008 IEEE. 

The communication between VMs, e.g. disk sharing in Figure 4 and TPM multi-
plexing in Figure 5, is by use of so called event channels, controlled by the 
hypervisor. The main security responsibility of the hypervisor is to endorse the 
complete isolation of the VMs and that absolutely no information can be passed 
except via the controlled event channel. An attractive quality would be to be able 
to formulate a policy for how information is allowed to be passed. Such 
extensions exist, as described later on. However, policy handling is too complex 
to implement in a hypervisor. Therefore, it is implemented as minimal extensions 
in the hypervisor, complemented with a separate VM for policy managing, 
described later on. 

What is just described could be expressed as having a minimal hypervisor, aided 
by helper VMs. The rationale is of course that the security of the hypervisor 
should be possible to assert. But a helper VM may very well include parts critical 
for the security, e.g. policy managing. The TCB, Trusted Computing Base, of a 
system is thus not the hypervisor alone. The TCB also includes parts from helper 
VMs, which means that they shall also be kept to a minimal complexity, to be 
possible to assert. Nonetheless, it is less difficult to assert a TCB module con-
tained in a stripped VM, than a module inside a large OS. 
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3.2 Risks with virtual machines 
Virtual machines have been shown to have benefits when it comes to reducing 
cost and space for hardware, as well as providing the possibility to segment 
functionality. Apart from economic and physical benefits, VMs can improve 
security as well. The foremost property for security improvement is the ability to 
provide isolation. 

From an attackers’ point of view, attacking a hypervisor should yield the most 
benefit. The hypervisor controls the guest machines and thus a compromised 
hypervisor will give access to the guest machines. However, few known attacks 
have been launched against hypervisors [39]. This may be due to the fact that 
hypervisors can be scaled down to only containing the minimum required 
functionality, and thus becoming a purpose-built application. In combination 
with being small and having limited external access, hypervisors are naturally 
less exposed to attackers [38]. This is not to say that VMs, VMMs or hypervisors 
are without flaws of their own. According to the National Vulnerability Database 
(NVD) there are 329 known vulnerabilities for VMs, 4 for VMMs and 7 for 
hypervisors [40]. 

Risks are a combination of threats, vulnerabilities and the ability to exploit these 
vulnerabilities. In a study by Ormandy [41], six commonly available VMs were 
compared. The scope of the study was to test the ability of a VM to maintain its 
isolation property in a hostile environment. A hostile environment is here 
considered to be a situation where untrusted code is executed or untrusted data is 
being processed inside the VM.  

The study was set up so that, in case of failure of maintaining isolation, the 
failure of the VM could be measured gradually. Failing was categorized as: 

 Total compromise: The VMM is fully compromised and can execute 
arbitrary code with full privileges on the physical system. 

 Partial compromise: The separation between the VMM and the physical 
host fails. The VMM leaks information about the host or cannot control 
hostile processes within itself. 

 Abnormal termination: Unexpected terminations of the VMM (in effect 
a denial of service attack) which results in the inability for the host 
administrator to reach guest applications. 

 

In the study [41] three open source VMs were tested, (Bochs6, QEMU7 and 
Xen8) as well as three proprietary machines, (VMware9) and two undisclosed 

                                                 
6 http://bochs.sourceforge.net/ (2009-11-10) 
7 http://www.qemu.org/ (2009-11-10) 
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popular on the Macintosh platform and on the Microsoft Windows platform, 
respectively. 

The result of the study was that no virtual machine was immune to compromise. 
By the use of two simple tools (Crashme10 and iofuzz) known vulnerabilities 
where identified and exploited. It is important to note that all VMs could not be 
scrutinized to their full potential. Xen, for instance, a VM with a good security 
design utilizes hardware support that was unavailable to the author at time of the 
study. It is also worth to note that the study was performed in 2007, which means 
that vulnerabilities in the tested VMs may have been dealt with later. 

As shown above, there are still many known flaws in available VMs, VMMs and 
hypervisors. However, known vulnerabilities are most often due to 
implementation errors and as such can be dealt with. The Xen platform is most 
interesting to explore further with regards to hardware support that was 
unavailable for the above study. 

 

 

 

                                                                                                                    

 

 

 
8 http://xen.org (2009-11-10) 
9 http://www.vmware.com (2009-11-10) 
10 http://www.codeplex.com/crashme/ (2009-11-10) 
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4 Xen 
There are many proprietary VMMs, of the hypervisor category, aimed at virtual-
izing a particular type of hardware. The prevailing open source hypervisor, for 
general use, is Xen [12]. The University of Cambridge has for many years had a 
lead in the Xen development [19]. The following overview figures are inspired 
by Xen architecture overview in [20]. 

Xen essentially consists of two parts; the minimal hypervisor and the controlling 
machine, called Domain 0. They are both started when the system is booted. The 
Domain 0 is a dedicated VM, running a special version of Linux as a guest 
machine. Vital modules, like device drivers and control modules are usually 
included in Domain 0.  It is therefore essential to protect Domain 0 from 
unauthorized access. External communication with Domain 0 shall be restricted 
to configuration files and to special messages. No ordinary communication, like 
logging in, is allowed. Domain 0 is part of TCB, which shall be as small as 
possible. Proposals to reduce the size of Domain 0 are elaborated later on. 

 

Figure 6 Basic organization of Xen. 

 

Each application guest machine runs in a Domain U (U for User). A Domain U is 
built, started, stopped and controlled from Domain 0. The system can be 
sketched as Figure 6. The guests can be of two kinds, paravirtualized, PV, and 
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fully virtualized, HVM11, respectively. Before version Xen 3.0 only PVs could 
be built. 

 

Xen hypervisor

PV drivers in Domain 0

Network Backend

Block Backend

PV drivers in Domain U
Paravirtualized Guest

Network Frontend

Block Frontend

Network Disk MemoryCPUs
 

Figure 7 A paravirtualized guest in domain U. 

Figure 7 depicts a PV Guest, controlled by Domain 0. Paravirtualization, PV, 
means that the guest is not fully virtualized; it has been modified in various 
ways. This is because in some hardware architectures there are instructions 
which may have side effects. In a PV guest operating system these instructions 
are replaced by hypercalls, which are trapped and handled by Xen hypervisor.  

External devices, like network and disk adapters, are other parts hard to virtual-
ize.  The Xen hypervisor provides a bus abstraction for communication between 
domains, called XenBus. This is used to construct paravirtualized split-drivers 
for network and disks. The hypervisor monitors the addresses used for access to 
physical disk/network. The accesses are allowed only from a privileged driver 
domain, usually domain 0, where backend drivers are run. The hypervisor sets up 
two XenBuses between the driver domain and each PV guest. These channels are 
used by frontend drivers in the guest. Thus, conventional I/O drivers in the guests 
are replaced by frontend drivers, written for each type of guest OS. A XenBus is 
essentially a buffer in shared memory, synchronized via an event channel. This 
results in a very efficient communication. The memory sharing is monitored by 

                                                 
11 The surprising acronym HVM comes from Hardware Virtualized Machine   
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the hypervisor. It is also possible to set up channels between two PV guests, 
provided that the guests have proper drivers for the communication at issue. 

The Xen hypervisor can virtualize different architectures; notably x86 types from 
Intel and AMD, but also other processors like PowerPC and ARM for mobile 
platforms. The older types of x86 processors are hard to virtualize, and the modi-
fications with hypercalls in guest operating systems are rather extensive. There-
fore, there are no paravirtualized versions of proprietary OSs, like MS Windows, 
at least not openly available. PV guests are available for most Linuxes and 
Unixes. However, recent versions of x86 have extensions which make them more 
virtualization friendly. Intel’s new hardware is called Intel VT [21], and AMD’s 
is called AMD-V [22]. Xen version 3.0 can virtualize these processors, without 
the need of special hypercalls. The need for paravirtualized split-drivers can be 
circumvented by use of device emulation, for a restricted set of drivers, by use of 
the package QEMU [23]. The backend driver in Domain 0 is replaced by qemu-
dm, “qemu device manager”. The device emulation comes at the price of lower 
performance, however. But altogether, this means that Xen version 3.0 can run 
fully virtualized guests, HVM in Figure 6, also for MS Windows. 

The security qualities of Xen can be sectioned into two groups, the separation 
capability and the Trusted Computing Base, respectively. The separation capa-
bility means that the hypervisor acts as a separation kernel in that any guest VM 
runs entirely independent of any other VMs and that there is no uncontrolled way 
to pass information between VMs. As was sketched in Figure 7, the hypervisor 
controls allocation of memory and CPUs. The hypervisor is responsible for 
sanitizing these resources when they are reallocated between VMs. The only way 
to pass information between two VMs is via the previously described event 
channel and shared memory. These used to be statically configured in configura-
tion files. However, Xen 3.0 has included extensions, which facilitate policy 
controlled communication between VMs. One extension, named sHype, 
originated from IBM. Xen 3/sHype is described in Section 5. It could be 
mentioned that it is possible to communicate between VMs in the same way as 
between physical machines, e. g. via TCP-sockets. The policy for this lies outside 
Xen, however. It is up to the VMs to decide. 

The TCB, Trusted Computing Base, is the hypervisor itself, plus Doman 0. 
According to [24] Xen 3/sHype meets the criteria for level EAL 4, Common 
Criteria Protection Profile CAPP [25], which is the same level as for some evalu-
ated Linuxes and some MS Windows. No product has been evaluated, however.  

In order to reduce the TCB, and purportedly reach higher evaluation levels, there 
are projects to restructure Domain 0. Domain 0 (configuration management, 
communication policy,…) runs in privileged mode, which means that it is in the 
TCB. One project to restructure Domain 0, to make it easier to assure is [26]. 
Quoted from their report: “In this paper, we introduce our work to disaggregate 
the management virtual machine in a Xen-based system.”  



FOI-R--2904--SE  

26 

As was earlier mentioned, open source Xen can purportedly be assured to 
Common Criteria assurance level EAL4. NRL, Naval Research Laboratory, in 
the US, has analyzed what should be done to make Xen compliant with EAL5. 
They call such a modified Xen for Xenon [27] [28]. Quoted from their report 
[27]:  

“This paper explains the Xenon project’s approach to re-engineering 
Xen’s internal structure into a higher-assurance form. If conventional 
open source software cannot be brought into this form with moderate 
amounts of re-engineering then higher-assurance open source software 
is probably not practical. Our results indicate that moderate amounts of 
re-engineering will be sufficient for all but a small part of the code. 
The remaining code is small enough to be addressed in a reasonable 
time, even though more effort is required”. 

Xenon’s primary concern is to act as a high assurance separation kernel, SK. 
Xenon was realized by restricting a stable version of Xen. Among the restrictions 
are support for one architecture (x86_64) only, and support for paravirtualization 
only. 
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5 XSM, Xen Security Modules 
 

Xen versions 1 and 2 did not have any flexible way to model the security func-
tionality. The only applicable way was to statically configure a set of VMs, as 
earlier described in Section 4. However, the Xen open source development team 
is building XSM, Xen Security Modules, available as an option in Xen version 3. 

NSA has taken a major role in the XSM development. George Coker, NSA, has 
made two presentations on XSM, [29] and [30], at two “Xen Summit meetings”. 
Some conclusions from the presentations: 

− The rational for XSM is that new usage models for Xen have different 
security goals. Therefore, there should not be a “hardwired” security 
model. Xen should rather be capable of supporting many models 
through configuration, without changes to Xen mechanisms. Examples 
of new usage models could be decomposing of privileged domain 0, cf. 
earlier mentioned [26]. Another new usage model could be to isolate, 
mediate access to, and guarantee invocation of services (e. g. 
encryption). 

− The XSM implementation is derived from Linux Security Modules 
(LSM), included in Linux kernel 2.6.13.4, which is the basis of Xen. In 
this Linux kernel there are hooks inserted in places relevant for access 
control. This essentially means that it is possible to make hooks in the 
Xen hypervisor which call external modules for access control. These 
external modules implement the desired policy, e. g. MLS. The rules in 
the policy are thus concentrated to a few modules, which are more easily 
configured than the Xen system itself. According to the NSA presenta-
tions [29][30], there was no performance degradation due to the hooks in 
the hypervisor. 

In the Xen 3 distribution three security modules are included – Flask developed 
by NSA, ACM/sHype developed by IBM, and Dummy. The latter is what it says, 
a dummy module meaning no added security policy. 

5.1 XSM Flask 
Flask [34], Flux Advanced Security Kernel, was a research project conducted by 
the Flux group at University of Utah, supported by NSA. It ended around year 
2000, and then NSA implemented it as SELinux [31]. Many modern Linuxes 
can, by using the recently mentioned LSM, be configured into an SELinux.  

Two pillars in the Flask architecture are separation between policy enforce-
ment/decision, and type label matching, respectively. In SELinux the enforce-
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ment is done at the LSM access hooks, which call a separate decision service. 
The calls include type labels. The calling subject has type labels bound to it, and 
so has the requested object. These labels are matched in the decision service. 
Different policies have been implemented, including RBAC, Role Based Access 
Control and MLS, Multi Level Security. 

This is, not surprisingly, the same approach as in XSM, and NSA accordingly 
has supported XSM Flask. Quoted from NSA [31]: “The Xen Security Modules 
(XSM) framework and the Xen Flask security module is an application of the 
Flask architecture to the Xen hypervisor. This work has been upstreamed to Xen 
as of Xen 3.2.”.  

The policy handling in XSM Flask has been reported to be less complex than in 
SELinux, which has a reputation of being hard to use. However, not many 
detailed descriptions of XSM Flask have been found. An up to date description 
of the advancements in SELinux is in [32], where also XSM Flask is briefly 
mentioned. 

5.2 XSM ACM/sHype 
IBM has for a long time, ever since their mainframes VM360 and VM370 in the 
1970s, been a leading actor regarding research on virtualization. Their research 
hypervisor, called rHype, was made open source and has been migrated into Xen 
for support of IBMs Power PC architecture. An extension to rHype, called 
sHype, for mandatory access control is now included in Xen as XSM 
ACM/sHype. The basic architecture of XSM Flask and XSM ACM/sHype seems 
to be the same, but very few detailed papers on XSM Flask have been found. 

A paper on sHype is [33]. Three major decisions are the basis of sHype: 

1. Build on the existing isolation properties of the hypervisor, which for 
one thing means minimal code changes in the hypervisor. 

2. Use bind-time authorization, to achieve minimal performance overhead. 
This is implemented as first time access is authorized and the access 
decision is then cached for use at later accesses. 

3. Enforcing formal security policies. Two such policies are implemented 
in Xen, Chinese Wall and Type Enforcement, respectively. 

Both policies are enforced by matching labels bound to the subject (which is 
requiring the access) and labels bound to the object (which grants/rejects the 
access). The Chinese Wall policy sets relations between pairs of VMs saying that 
the two VMs must not run at the same time at the same hardware. This is a 
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means to mitigate the classical covert channel12, which is a thorny problem. 
Thus, the policy specifies which combinations that are forbidden. The 
combinations not specified are allowed. The Type Enforcement policy is the 
other way around. It specifies “coalitions”, which are sets of VMs meant to 
cooperate. Two VMs may share a virtual resource only if they participate in at 
least one common coalition. Sharing between other combinations of VMs is 
forbidden. 

The policies are enforced in an extension called ACM, Access Control Module, 
to the hypervisor. The ACM caches access decisions which have been decided in 
the Policy Manager, PM, running in its own VM, thus outside the hypervisor. 
The ACM calls PM when it lacks a cached value. This can be at the first access, 
or after a request from PM to revoke a cached value. This could for instance be 
an effect of a changed policy. Since the PM acts as a policy decision point and 
also as a policy manager, it is crucial for the system and is a part of the TCB. In 
another VM other security services, like logging and auditing, are run. The 
architecture can be depicted like Figure 8, which was copied from [18]. The 
TPM, see Figure 5, could be added to the architecture. The TPM is then used to 
verify the integrity of policies. 

 

 

Figure 8 sHype hypervisor security architecture, from [18], © 2008 IEEE. 

The labels used in the access control are set by the system owner, for instance as 
XML-formatted configuration files to the PM. The virtual machine, running PM, 
shall be isolated from all other machines running user applications. This means 
that the access control in ACM is a mandatory access control, MAC. As 
described so far the access control monitors data flow and resource sharing 
between entire virtual machines.  

In [33] a hypervisor call for export of the labels to the VM-layer is described. In 
case the VM runs a labeled MAC-OS, e. g. SELinux, the labels could be used 
also in the OS access control. In [35] this is taken one step further. The labels are 

                                                 
12 A covert channel is an unknown channel where unauthorized information might be transmitted 
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exported to higher levels, from hypervisor to OS to application, possibly after 
conversion. This results in a layered policy less complex than a monolithic policy 
would be, as [33] argues.  

Another suggested use of MAC-labels is described in [36]. Their objective is to 
show a system for distributed MAC, where one common policy authorizes access 
between VMs at different network nodes. The idea is to have a MAC VM in each 
node. MAC VMs can establish IPsec tunnels between them. Such a tunnel is a 
resource that can be labeled and thus controlled by the hypervisor ACM. These 
labeled IPsec tunnels can be managed in a common policy. A system for distrib-
uted MAC is utterly relevant in the quest for object-based security. Note, 
however, that [36] does not describe labeling of each individual information 
object. Rather, a label is bound to each IPsec tunnel. 
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6 Conclusions 
The outcome of this theoretic study of publicly available literature on security 
qualities of virtual machines is that virtual machines play an important role in the 
undertaking to secure complex and distributed systems. The study has mainly 
dealt with the open source virtual machine hypervisor Xen. As Xen is an evolv-
ing project, it lacks important characteristics like assurance and deployment. 
Even so, Xen is an essential concept, attracting interest from security 
organizations, like NSA and NRL in the USA. 

In Section 1.2 five topics of interest for the study were listed. Some conclusions 
for these topics are: 

1. Separation capability. A basis for this is called a separation kernel. The 
Xen hypervisor has most of the properties in such a separation kernel. 
However, Xen is not evaluated to any assurance level. 

2. Configuration. Xen is properly configurable. This conclusion applies to 
the hypervisor plus chosen control modules. The configuration of a 
guest virtual machine is essentially the same as the configuration of an 
equivalent physical machine.  

3. Policies. The XSM, Xen Security Modules, facilitates configuration of 
mandatory security policies. The policies are coarse grained, authorizing 
interactions between entire virtual machines. There exist research activi-
ties to combine virtual machine policies with more fine grained applica-
tion policies. 

4. Assurance. There exists a separation kernel, which allegedly can be used 
as a virtual machine hypervisor, assured at the US level “high robust-
ness”. Open source Xen is not assured but is considered to reach 
Common Criteria level EAL4. A restricted Xen is considered to be able 
to reach level EAL5. 

5. Usability and deployment. Xen has been stated to have negligible 
performance penalty when used in paravirtualized mode. The perform-
ance penalty in fully virtualized mode varies. 

A final observation is that virtual machines, notably Xen, can be a building block 
to realize the vision of object-based security. The main contribution in this 
respect is the potential to build defined isolated and secured environments 
compliant with mandatory authorization. 
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