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Sammanfattning 
Flygburen laserskanning är sedan ett tiotal år en operativ teknik för mätning av 
bottendjup. Ett av de operativa systemen för djupsondering är Hawk Eye II-systemet. I 
denna rapport undersöks möjligheter att klassificera vegetation och substrat genom att 
experimentellt studera separerbarhet i laserdata från olika bottentyper. Vi studerar ett 
antal variabler ur data från Hawk Eye II-systemet, vilka har potential att beskriva 
bottnens reflektivitet och ojämnhet. Dessa variabler extraheras ur pulssvaret, även 
kallat vågformen, som mottagits efter att laserns puls reflekterats av vattenvolym och 
botten. I rapporten beskrivs även metoder för att korrigera variablerna för djup, vattnets 
grumlighet och ett antal lasersystemberoende parametrar. 

De korrigerade variablerna studeras över fältytor som inventerats med 
undervattensvideofilmning. Variablerna undersöks separat, samt kombineras med 
varandra och med djupdata från lasersystemet för testklassificering av de fyra olika 
bottentyperna Sand, Låg vegetation (Zostera marina), Hög vegetation (Potamogeton 
perfoliatus) och Block. Med den bästa kombinationen av vågformsvariabler och 
variabler skattade från djupdata uppnåddes en klassificeringsnoggrannhet på ca 70 % 
mellan dessa bottentyper. Resultaten visar att vågformsvariablerna har en stor potential 
att förbättra klassningen av substrat och vegetation jämfört med att enbart använda 
djupdata. 

Denna rapport beskriver det inledande arbetet inom EMMA-programmet 
(Environmental Mapping and Monitoring with Airborne laser and digital images). De 
preliminära metoderna och resultaten i detta arbete kommer att vidareutvecklas och 
undersökas med laser- och fältdata från flera platser. 

 

Nyckelord: Laserskanning, lidar, klassificering, vegetation, vågform 
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Summary 
During the last decade, airborne laser scanning has developed into an operational 
technique for bathymetric mapping. One of the operational systems for depth sounding 
is the Hawk Eye II system. In this report, we examine the possibilities for classification 
of bottom vegetation and substrates by experimental evaluation of the separability in 
laser data between different bottom types. We study a number of data variables from 
the Hawk Eye II system, which have the potential to describe the reflectivity and the 
roughness of the sea bottom. These variables are extracted from the pulse response, 
also denoted the waveform, of the emitted and reflected laser pulse from the water 
volume and the sea bottom. We also describe methods for correction of the waveform 
variables for depth, water turbidity, and laser system parameters. 

The corrected variables are studied over field patches which were documented by 
underwater video. The variables are evaluated separately, in combination with each 
other, and combined with laser depth data for test classification of the four bottom 
types Sand, Low Vegetation (Zostera marina), High Vegetation (Potamogeton 
perfoliatus) and Boulders. With the best combination of waveform variables and 
variables calculated from depth data, a total classification accuracy of about 70 % was 
obtained between these bottom types. Our results show that the waveform variables 
have a potential for significant improvement of the classification accuracy compared to 
when only depth data is used for classification of bottom substrates and vegetation. 

This report describes the initial work in the EMMA programme (Environmental 
Mapping and Monitoring with Airborne laser and digital images). The preliminary 
methods and results presented in this report will be further evaluated and developed 
using laser data and field data from several sites. 

 

Keywords: Laser scanning, lidar, classification, vegetation, waveform 
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1 Introduction 
During the last decade, airborne laser scanning has developed into an operational 
technique. Several national, regional and local administrations are planning laser surveys 
of shallow waters for generation of depth data. One of the operational systems is the 
Swedish Hawk Eye II, which operates in both green (for water depth) and NIR 
wavelengths (for land/coastal topography). The full waveform of the retrieved laser signal 
is captured and aerial digital images are simultaneously recorded by the system. There is 
thus the potential to retrieve information about bottom vegetation as well, but this 
information is currently not interpreted. The lack of such data is fundamental in the marine 
systems. Here, both good bottom topography maps as well as estimates of the areal 
distribution of plant (and animal) communities is totally lacking, except for a few sites that 
have been covered by divers’ investigations, video-mapping or attempts to interpret aerial 
photography taken over the most shallow areas.  

Laser scanning for characterisation of marine environments is increasingly gaining 
interest. In the intertidal zone, topographic features mapped with lidar (e.g. elevation, 
slope and aspect) have been used to map seabed substratum types1 and vegetation.2, 3 
Chust et al.3 demonstrated that adding reflectivity of the lidar signal improved the 
accuracy of the habitat classification, compared to using only the topographic information. 
Less work has been done to map habitats or vegetation in the subtidal. Here, an additional 
challenge is to account for the effect of water column above the seabed on the lidar signal. 
Tuell et al.4, 5 have demonstrated the potential to produce estimates of green laser 
reflectance and optical properties of the water column by analyzing laser waveforms; this 
in turn provides for the fusion of laser, multi- and hyper-spectral digital imaging for 
classification of sea floor vegetation. Wang and Philpot6 managed to produce a map of 
sand, continuous seagrass, and discontinuous seagrass using waveform variables. 
Vegetation classification from laser bathymetry waveform data in less clear coastal waters 
was made by Tulldahl et al.,7, 8 where an overall classification accuracy of greater than 
80%7 was obtained compared to field data for eelgrass, sand, and dark algae.  

Compared to earlier work, we have in this report examined a larger number of different 
features extracted from the bottom echo of the lidar waveform. These features include 
information about both the bottom roughness and reflectivity. To our knowledge, earlier 
work has only attempted to extract reflectivity data from the waveform, with the exception 
of Refs. 7, 8. Our work also includes the use of field data of bottom substrates and 
vegetation which is rare in earlier work published in the subject of bottom classification 
from airborne lidar data. 

We have used laser data from a survey made in 2007 with the Hawk Eye II system, 
together with field data from underwater video, geo-referenced using conventional GPS. 
The video data was captured on two occasions, the first occasion the same day as the lidar 
survey and the second two years later. The video data was recorded over randomly chosen 
transects distributed over the lidar survey site. By manual interpretation of the video data 
we generated observation patches which each included estimations of substrates and 
species cover. Also, the patch size was estimated over which the cover conditions were 
similar within the patch. From the interpreted video data a set of 18 patches were chosen 
for studies of variables from the laser data. The bottom depths in these patches were 
between 3 and 11 m. We have studied several variables extracted from the lidar waveform 
or calculated from the lidar depth data. These variables describe either the bottom 
reflectivity, roughness, or a mix of both. For analysis of separability a subset of 9 patches, 
within the depth interval 3 m - 7 m, was chosen which had high coverage of one single 
vegetation or substrate. The analysis included four bottom types; Sand, Low Vegetation, 
High Vegetation and Boulders. The separability analysis was performed with classification 
tests, where the classification accuracy was evaluated for different combinations of 
classification variables. The classification was made with a multivariate method using 
averages and covariance matrices of the variables studied.  
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One purpose with this report is to obtain preliminary results of species and substrate 
separability using airborne bathymetric laser data, where not only depth data is used but 
also information from the full lidar waveform. A second purpose is to define a basic set of 
lidar waveform features and to develop accurate methods for correction of these features.  

This report is a part of the work in the EMMA programme (Environmental Mapping and 
Monitoring with Airborne laser and digital images). The preliminary results and methods 
in this report will be used in our continued work where the methods will be further 
evaluated and developed using lidar and field data from several sites. Our future work will 
also include development of classification methods for combined use of lidar and aerial 
imagery data. 

In the following sections we present the field data (Section 2), the Hawk Eye II lidar 
system (Section 3) and the waveform variables (Section 4). In Section 5 the classification 
method and results are presented and discussed. Several factors such as the water surface 
and the water volume between the sensor and the sea floor require that accurate 
corrections of the extracted waveform features are applied. These correction methods are 
presented in Appendix A of the report. 

 

 8 



  FOI-R--2961--SE 

2 Test Site and Field Inventory Data 
The study was performed in the Arkö Archipelago in the Baltic Sea Proper (Fig. 1). The 
Baltic Sea is a large area of brackish water with constantly low salinity (around 7 psu in 
the study area). The study area is typical for the Swedish coast of the Baltic Sea, with an 
archipelago of islands and skerries. The bottom substrate is a complex mixture of bedrock 
and glacial and postglacial deposits. Typically, bedrock, stones and boulders dominates in 
areas where sediment is washed away, i.e. in shallow areas exposed to waves or currents 
and where the bottom is steep. Fine sediment (sand and mud) is accumulated in deep and 
sheltered areas.  

The vegetation consists of a mosaic of macroalgal communities on hard substrates and 
phanerogams and stoneworts on soft substrates. The macroalgal vegetation is dominated 
by small species. The largest species, bladder wrack (Fucus vesiculosus), only 
occasionally reaches a size of 1 m. Large kelp species are lacking due to the low salinity. 
The vegetation is usually dense, covering all available hard substrate. The vegetation on 
soft substrate include a large diversity of species with different morphology and varies 
from very dense to sparse and from low (e.g. stoneworts) to several meters height (most 
notably Potamogeton perfoliatus).  

The Arkö Archipelago is situated close to the outlet of Motala Ström (in Norrköping, Fig. 
1), a watercourse with a large catchment area transporting large amounts of nutrients and 
humic substances into the Baltic Sea. This is reflected by a smaller Secchi depth in this 
area compared to other archipelago areas in the region (up to 2 m smaller Secchi depths in 
August). The Secchi depths measured the same day as the lidar survey was 5-6 m 
(measured at six locations dispersed over the area covered by lidar).This is reasonably 
good in a coastal area of the Baltic Sea, but Secchi depths larger than 8 m has been 
recorded in adjacent archipelago areas in August 
(www.motalastrom.org/arsrapporter/2008/alcontrol/PDFer/StoraMSV2008.pdf). The 
attenuation coefficient c at wavelength 532 nm was between 0.75 m-1 and 0.85 m-1 
(measured with a c-Beta instrument from HobiLabs Inc. on the same day and locations as 
the Secchi depths). 

Field data for training and validation of the classification model was collected with 
underwater video. The main part of the data was collected on October 18 2007, the same 
day as the lidar survey. Data was recorded in 52 patches dispersed over the test site. The 
patches varied in size from 2x3 to 6x3 m. In addition, we used data from investigations in 
August 2008 and 2009, where randomly chosen patches (5x5 m) were investigated using 
similar video equipment. This added another 13 patches (6 from 2008 and 7 from 2009) 
that were within the area covered by the lidar survey. Including data from different time 
periods potentially introduces an error in the analyses since the vegetation can change both 
between years and seasons. In this case, we expect the main vegetation that was found in 
the patches from 2008 and 2009 to be relatively stable between years. 

In each patch, the degree cover of each species was estimated using a 7-grade scale (1, 5, 
10, 25, 50, 75 and 100 % cover). In addition, bottom substratum (cover of rock, boulders, 
stones, pebbles, sand and soft substratum) was estimated using the same 7-grade scale.  

Of the total 65 patches from 2007, 2008, and 2009, a subset of patches was chosen based 
on the following criteria: the degree cover of species and substratum could be done 
reliably; the number of different substrates and species should be limited; the bottom depth 
should be less than 12 m which was the approximate maximum depth limit for the lidar 
data; and the bottom slope angle within the patch should be less than 20 degrees. The 
remaining subset matching the criteria contained 18 patches which are listed in Table 1. Of 
these patches, only those with a homogenous substrate and vegetation were included in the 
multivariate analyses of separability. We further excluded the patches with homogenous 
mud from these analyses since they are at the limit of the maximum lidar depth range (see 
Subsection 5.1). The remaining patches were grouped according to substrate and  
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Fig. 1. Overview of the location of the test site. The lidar survey area, approximately 7 km 
by 0.5 km, is marked with a black line.  

vegetation into the classes Sand, High Vegetation, Low Vegetation, and Boulders, as 
shown in the right part of Table 1. All 18 patches in Table 1 are used in visualisation of 
single classification variables extracted from lidar data. The bottom depth within each 
patch, taken from lidar data, is shown in Fig. 2.  

One limitation of the field data is that in most cases, patches with a certain bottom 
substratum and vegetation are situated more closely together than to patches with a 
different substratum and vegetation. Further, the depth within the patches is more similar 
within than between bottom types (Fig. 2) and one of the vegetation types in the 
separability analyses (Low Vegetation) was only found in patches surveyed in 2009. This 
limits the generality of the conclusions that can be drawn from the present study. This 
study should therefore be seen as very preliminary and the results should be confirmed 
using a larger and better designed set of field data. 

One experience from this study is that the way the data is collected is a key to the success 
of the subsequent lidar classification. There are a number of criteria that should be met for 
a patch to be included in the analyses. One solution is to collect a very large dataset and 
accept that a large part of the data will not be suitable for the analyses (only 9 of the 65 
patches was used in the present separability study). An alternative solution is to choose 
field patches carefully and only include patches with a slope less than some critical value 
and patches that have a large spatial extent of homogenous substrate and vegetation. The 
patches of all bottom types should further be distributed well spatially and across depth 
categories. 
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Table 1. Field patches used in the analyses.  

ID Label Year Substrate 
Vegetation, animals and 
detritus 

Separabilility 
analysis 

          Label ExtVal 

22 Ssand,det50,1 2007 100% sand 50% detritus Sand train 

24 Ssand,det50,2 2007 100% sand 50% detritus Sand val 

910 Ssand,zost75 2009 100% sand,  
1% stones 

75% Zostera marina, 5% 
Potamogeton pectinatus, 5% 
Mytilus sp., 1% Chorda filum 

LowVeg train 

911 Ssand,zost75,ppec25 2009 100% sand 75% Zostera marina, 25% 
Potamogeton pectinatus, 5% 
Mytilus sp. 

LowVeg val 

912 Ssand,myt25,zan25,fil10 2009 100% sand,  
1% stones 

25% Mytilus sp., 25% 
Zannichellia marina, 10% 
filamentous algae 

  

38 Ssand,pper75,1 2007 100% sand 75% Potamogeton perfoliatus HighVeg train 

39 Ssand,pper75,2 2007 100% sand 75% Potamogeton perfoliatus HighVeg train 

40 Ssand,pper75,3 2007 100% sand 75% Potamogeton perfoliatus HighVeg val 

42 Ssand,pper25,fuc10 2007 100% sand, 
10% stone 

25% Potamogeton perfoliatus, 
10% Fucus vesiculosus 

  

43 Ssand,pper25,fuc10,ppec10 2007 100% sand, 
10% stone 

25% Potamogeton perfoliatus, 
10% Potamogeton pectinatus, 
10% Fucus vesiculosus 

  

11 Sboul,fil50,myt10 2007 100% boulders 50% filamentous algae, 10% 
Mytilus sp. 

Boulders train 

12 Sboul,fil50,myt50 2007 100% boulders 50% filamentous algae, 50% 
Mytilus sp. 

Boulders val 

913 Ssto50,boul25,gru25,myt25,fil25 2009 50% stones, 
25% boulders, 
25% gravel 

25% Mytilus sp, 25% 
filamentous algae, 5% 
Furcellaria fastigiata 

  

2 Smud,1 2007 100% mud -   

6 Smud,2 2007 100% mud -   

7 Smud,3 2007 100% mud -   

921 Smud,myt25,det10 2009 100% mud 25% Mytilus sp., 10% detritus   

922 Smud50,sand50,det50 2009 50% mud, 50% 
sand, 1% stone

50% detritus, 5% Mytilus sp., 
1% Chorda filum 
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Fig. 2. Depth distribution of the field data patches. For each patch the average and 
standard deviation of the depth within a radius of 3 m from the centre of the patch is 
shown.  
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3 Hawk Eye II System and Lidar Data 
The results presented in this report are based on lidar data from a survey with the 
HawkEye II system in October 18, 2007. The HawkEye II – Airborne coastal survey 
system, by Airborne Hydrography AB (AHAB), Sweden, consists of the latest advances 
within airborne bathymetric and topographic lidar technologies 
(www.airbornehydro.com). The system surveys both land and sea floor simultaneously. 
Hence, a HawkEye II survey delivers a seamless transition between land and sea-floor 
from one single survey. The system is operated by one single operator when airborne. 
Beside the operator, the crew consists of the pilot and a co-pilot who also acts as a spotter 
supporting the survey. The ground support consists of survey planning, data post 
processing and quality control. All data and the mission planning are saved on portable 
devices.  

The Hawk Eye II system has a total system weight of less than 180 kg (including wiring) 
and has a power consumption of less than 1.4 kW. The system is designed for easy 
installation into most small to medium sized rotary or fixed wing aircraft. The time 
required for installation in the aircraft is less than an hour. The interfaces necessary from 
the aircraft are a 28 V power supply, a GPS antenna connection, a mechanical attachment 
plate, and a photogrammetric window. 

The system uses a pulsed, infrared (1064 nm) and green (532 nm) laser for the bathymetric 
sounding. The infrared pulses are reflected at the water surface whereas the green pulses 
proceed into the water volume. The laser light backscattered from the sea surface, the 
water volume and the sea floor is collected in multiple, high-sensitivity receivers. The 
received waveforms are digitized for further processing and the depth is determined by the 
time lapse between surface and the bottom echoes. The integrated differential GPS enables 
positioning of surface, sea floor, and objects in the water column in 3 dimensions in WGS 
84 coordinates. The Hawk Eye II system is equipped with a two axis, servo-controlled, 
scanner mirror to space the sounding spots evenly on the surface. This feature also 
compensates for flight deviations in yaw, pitch, roll, side slip, speed and altitude. The 
nominal system optical axis incidence angle from the vertical is 15°-20°. The Hawk Eye II 
system simultaneously collects 4 kHz bathymetric, 64 kHz topographic lidar soundings 
and one digital image per second. The sounding spot density for bathymetric data is 
programmable from 0.5 m x 0.5 m to 3 m x 3 m depending on survey requirements. The 
flight altitude is between 200 m and 450 m. The swath width of the system is typically 0.2-
0.6 times the altitude and the aircraft speed typically 120-180 knots. The area coverage per 
hour is dependent of parameters such as the turn around time between different flight 
lines, geometrical shape of the survey area, and requirements of survey accuracy. The 
Hawk Eye II high laser sounding frequency and the programmable spot density allows 
high area coverage combined with accurate survey data collection. The system 
compensations for flight deviations allow for minimized overlap between adjacent flight 
lines. Since the system simultaneously collects data both above and below the surface only 
a single mission is required also in complex shallow coastal areas.  

The Hawk Eye II system Operator Console software is used both for survey planning and 
for airborne operation. The software is installed in a portable laptop which is easily 
connected to the system when airborne. All system parameters can be modified and 
supervised during the survey via the Operator Console. The software includes an extensive 
range of tools such as: coverage plots, real time 3-D views of the surveyed area, flight line 
plan, background map, system parameters, laser pulse responses, and depth ranges. Many 
attributes are stored for each sounding as a basis for further analysis, post processing, and 
quality control. The data is stored on hard disks transported from the aircraft for further 
post processing. In brief, the post processing consists of: 

 Refinement of position data with use of navigation post processing software and data 
from reference stations.  

 13 
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 Analysis of Hydrographic and Topographic elevation data by the AHAB Coastal 
Survey Studio (CSS) software. The CSS tool includes several advanced algorithms for 
sub-surface objects detection and identification, quality checks of data, estimates of 
water and sea floor parameters and decision support to the data cleaning process and 
interfaces to third party software. 

 A cleaning process which includes quality check of the data and removal of faulty data 
points. 

 Further post processing by third party commercially available software or the Coastal 
Survey Studio depending on the end user requirements for visualization. 

 

The accuracy of the lidar system is very good both for topographic and bathymetric 
measurements lidar. To reach the best possible absolute accuracy, the dataset is calibrated 
by data from reference stations and by accurate absolute measurement on specific spots in 
the survey area. By usage of such reference positions, absolute errors can be reduced from 
the lidar dataset such that only statistical errors remain. Such procedures result in a very 
high absolute accuracy of the lidar dataset. In a validation measurement of the statistical 
accuracy of the Hawk Eye II system a repeatability survey study was performed on the 
Norwegian coast. A several square kilometres area was surveyed. The survey area 
included some small islands and a seabed with depths down to 30 meters. The area was 
surveyed twice on two different days in January 2006. The two datasets were then 
compared in order to conclude the accuracy of the HawkEye II bathymetric lidar data. The 
average depth differences between the datasets in these tests were below 5 cm for all 
depths down to 30 meters. The average position error of the data from the Hawk Eye II 
system can be as low as one metre under good conditions, and depends on the quality of 
the data from the reference stations and environmental factors.    

In this study we have used data from a Hawk Eye II survey performed by Blom Aerofilms 
Ltd (http://www.blom.no/aerofilms/en, http://www.topeye.com/sweden/en) in the Arkö 
Archipelago in the Baltic Sea Proper in October 18, 2007. The depth data used were post 
processed and quality checked by Blom Aerofilms Ltd. In our additional post-processing 
we explore further use of information from the time-resolved waveform.  
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4 Classification Variables from Laser Data 
Sea floor classification algorithms can use characteristics from the received lidar 
waveform and other information obtained from the lidar data such as the bottom slope 
angle. An example of a waveform from the HawkEye II system is shown in Fig. 3 (a). We 
calculate the waveform characteristics of the bottom echo pulse from the difference wave 
(Fig. 3 (b)-(c)), which is calculated as the difference between the waveform, in linear 
scale, and an interpolated volume backscatter wave under the bottom echo according to 
Refs. 9 and 10. The basic principle for estimation of the bottom depth is by measuring the 
time lapse between the surface echo and the 50% level on the leading edge of the bottom 
echo, see in Fig. 3 (d). An example of a waveform feature that can be used for bottom 
classification is the width of the bottom echo pulse. From earlier experiments8, 11 and 
simulations 10, 12 we have experienced that small objects on the sea bottom can be detected 
by an increase in the reflected bottom pulse width. The bottom pulse width can also be 
used for indication of elevated vegetation on the sea floor.  

In Fig. 4 we show schematic descriptions of a basic set of bottom echo features. These 
features are extracted from the bottom echo difference wave. A necessary step is to correct 
these features to classification variables that can be used for classification of the sea floor. 
The water volume and water surface between the sensor and the sea floor require that 
accurate corrections are applied. Using simulated waveform data, we have made 
correction models for each of the waveform features. The correction models include 
effects from e.g. the water turbidity, the bottom depth and the flight altitude. The purpose 
of the models is to remove effects from the water volume and water surface to obtain pulse 
data which mainly are influenced by the bottom type or vegetation. A description of the 
correction models is given in Appendix 1. In Fig. 5 the notation for our corrected 
classification variables is described. In this notation: 

 Variables VS and VD refer to corrected waveform variables from the HawkEye II 
shallow and deep channels respectively.  

 Variables VB refer to variables derived from the bottom depth data in the vicinity of a 
specific geographic position. 

 The subscripts refl, rough or mix refer to waveform variables that can be physically 
connected to bottom substrate or vegetation reflectance, roughness, or a mix of both.  

 The subscripts res and rat refer to whether the correction is of residual or ratio type 
(Appendix A).  

 The subscript N denotes that the variable was normalised with respect to the standard 
deviation of the corresponding correction model (Appendix A).  
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(a)   (b) 

 
(c)   (d) 

Fig. 3. Example of a lidar waveform at bottom depth 6.1 m. Parts of the waveform (a), 
interpolated volume backscatter (b), difference wave of the bottom echo pulse (c), and an 
example of 50 % and 100 % level of the bottom echo pulse (d). 
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(a)   (b) 

 
(c)   (d) 

 
(e) 

Fig. 4. Examples of bottom echo waveform features extracted from the difference wave.  
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Fig. 5. Notation for the corrected classification variables from laser data. 
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5 Evaluation of Separability 
We have used the field data together with the lidar data for a preliminary evaluation of the 
possibility to separate the different substrates and species using the corrected classification 
variables described in Section 4. In this section we examine the different classification 
variables and chose a preliminary set of variables based on classification tests. In 
Subsection 5.1 we visualise examples of classification variables for the different patches. 
In Subsection 5.3 different combinations of classification variables are evaluated using a 
multivariate classification method described in Subsection 5.2. In Subsection 5.4 we 
present and discuss the results for the best combination of variables.   

 
The classification variables and corresponding correction models were evaluated using a 
number of different measures of accuracy:13 

 Overall accuracy: The percentage of records of all bottom types that were classified 
correctly by the model. 

 Producer’s accuracy: The percentage of records of a certain bottom type that was 
classified correctly by the model. Producer’s accuracy for a certain bottom type should 
be maximised if it is important that all records of the type are shown in the map. 

 User’s accuracy: The percentage classifications to a certain bottom type that was 
correct, i.e. showing the probability that a record classified to a bottom type actually 
represents that bottom type in the field.  

 Confusion matrix of observed versus classified bottom types: The confusion matrix 
give a detailed picture of which bottom type classes are most difficult to separate from 
each other and where most misclassifications occur. 

 

We performed both internal and external evaluation. For the internal validation, the model 
was built using all records of a certain bottom type and tested on the same records. This 
evaluation shows the degree of overlap between bottom types in the laser parameters 
(causing misclassification error). However, the internal validation gives little information 
of the predictive power of the model, i.e. how well it can be used to predict bottom type 
outside the field recordings. This was instead evaluated with external validation, where the 
model was built on the records from one or two patches of a certain bottom type and 
validated on records from another patch of the same bottom type. 

5.1 Single Variable Examples 
In Fig. 6 - Fig. 10 we show examples of corrected classification variables for the species 
and substrates taken from lidar data within a radius of 3 m from the centre of each field 
data patch listed in Table 1. For each field patch the number of lidar soundings is shown 
within parenthesis. Only the classification variables having valid values are taken into 
account. The valid variable ranges are checked both at the extraction stage of the 
waveform feature and at the correction of the feature into a classification variable. For 
example, a non-valid pulse width value can occur when the bottom echo peak power is low 
in relation to the waveform noise, see Fig. 3 (c). Another example is when an estimation of 
the bottom slope angle is missing, and thus a correction of the classification variable is not 
possible (the bottom slope angle is used for correction of the waveform features, see 
Appendix A). 

Examples of variables related to bottom reflectivity from the shallow and deep receiver 
channels are shown in Fig. 6 and Fig. 7 respectively. In general, the loss (of non-valid) 
sounding values is larger for the shallow channel due to the lower signal level in the 
shallow channel (see Appendix A). We can also note the slightly larger variation (standard 
deviation) in the variables from the shallow channel in Fig. 6 compared to the values from 
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the deep channel in Fig. 7. Both the shallow and deep channel data can give uncertain 
values close the maximum depth limit of the lidar survey which is illustrated by the field 
patches ID2, ID6, and ID7, where the reflectivity values between these patches have quite 
large differences although taken from similar bottom type (mud). The bottom depth at 
these patches are about 10.5 m (Fig. 2) which is close, or on the limit of the maximum 
lidar depth range (11 m -12 m) at this survey. Accurate extraction and correction of 
variables close to the maximum lidar depth range is difficult because of the low signal-to-
noise ratio at these depths. The corrections (Appendix A) for large bottom depths may 
need further attention. In this report we will only comment on this and make our 
preliminary analysis on data from shallower depths.   

Examples of variable results related to the bottom roughness from the deep receiver 
channel are shown in Fig. 8 (roughness variable VDrough,W20,res,N). Despite the large 
standard deviations of data within each patch, we note slightly higher average values from 
patches with attached macro vegetation (e.g. Zostera marina ID910, ID911 and 
Potamogeton perfoliatus ID38, ID40, ID42) than for patches from bare bottom partly 
covered with detritus (e.g. ID22, ID24, ID922). Note however the contradictory result 
from Potamogeton perfoliatus ID39, where the average is considerably lower than for the 
other patches with similar vegetation (ID38, ID40, ID42). This could be due to a 
positioning error between the lidar and field data, resulting in that the lidar data is taken 
from the edge or outside the monitored field patch. However, it can also reflect a real 
variability in the roughness signal from vegetation. 

Examples of variables calculated directly from the depth data are shown in Fig. 9 (bottom 
slope angle VBslope,3m) and Fig. 10 (bottom depth standard deviation VBsdev,3m). We use 
them in combination with other variables for sea floor classification. In addition, we use 
the variable VBslope,3m for correction of the extracted waveform features (see Appendix A). 
The variable VBsdev,3m is the standard deviation of bottom depths within 3 m radius from 
the patch centre (see Appendix A). It may also be considered as a variable describing the 
roughness of the bottom, but on a slightly larger scale compared to the roughness-
variables extracted from the waveform data. The variables extracted from waveform data 
can include information from objects, on a slightly smaller scale, within the laser beam 
footprint which has a diameter of about 3 m -5 m at shallow depths (Appendix A and Ref. 
9). Another difference between waveform variables and variables derived from bottom 
depth data is that the latter depend on the method used in the bottom depth extractor. Often 
the 50%-level of the leading edge is used for bottom depth extraction. Small objects have 
been shown be more easily detected at lower levels, e.g. at 20 %, of the bottom pulse peak 
power.14 In Fig. 10 we note that ID39 (Potamogeton perfoliatus vegetation) has a 
relatively high depth standard deviation (roughness) compared to ID38, ID40 and ID42 
with a similar vegetation. This can be compared to the waveform-derived roughness 
variable (VDrough,W20,res,N) that was lower for ID39 compared to ID38, 40 and ID42. This 
indicates that for patch ID39, the roughness is better captured by the standard deviation of 
depth (VBsdev,3m) than by the waveform-derived variable. This points out that a 
combination of several variables may be useful for classification of bottom features.     
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Fig. 6. Mean and standard deviation of the shallow channel bottom pulse area at 20 % of 
maximum (ratio-corrected, normalised) VDrefl,A20,rat,N (according to Appendix A) for the field 
patches described in Table 1. For each patch the number of lidar soundings is shown 
within parenthesis.  

 

Fig. 7. Mean and standard deviation of the deep channel bottom pulse area at 20 % of 
maximum (ratio-corrected, normalised) VSrefl,A20,rat,N (according to Appendix A) for the field 
patches described in Table 1. For each patch the number of lidar soundings is shown 
within parenthesis. 
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Fig. 8. Mean and standard deviation of the deep channel bottom pulse width at 20 % of 
maximum (residual-corrected, normalised) VDrough,W20,res,N (according to Appendix A) for the 
field patches described in Table 1. 

 
Fig. 9. Mean and standard deviation of bottom slope angle (in radians) VBslope,3m (estimated 
according to Appendix A) for the field patches described in Table 1. For each patch the 
number of lidar soundings is shown within parenthesis. 
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Fig. 10. Mean and standard deviation of bottom slope standard deviation (metres) VBsdev,3m 
(estimated according to Appendix A) for the field patches described in Table 1. For each 
patch the number of lidar soundings is shown within parenthesis. 

5.2 Multivariate Classification Method 
We have made separability tests using a multivariate classification method, where class 
models for selected species and substrates are created with training data and evaluated 
with evaluation data. We define the class model for a substrate or species class i from a 
training data set with its mean vector 
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where m ,...,, 21 are the means each of the classification variables in the training data 

set.  The diagonal elements of contain the variances for each variable while the off-

diagonal elements contain the covariances between variables.  
iΣ

For a set of m variables V the probability Pi that the lidar sounding belongs to class i is 
calculated with   
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The classification of a lidar sounding from the evaluation data set (Table 1) is made by 
calculating probabilities for all classes P1, P2, ..., Pn ,  and choosing the class i with 
maximum probability Pi . 

For the internal validation, the model was trained using all records of a certain class and 
evaluated on the same records. For the external validation two different sets for each class 
was arranged, where one was used for training and the other for evaluation. In our 
separability analysis we have used the four classes Sand, High Vegetation, Low 
Vegetation, and Boulders listed in the right part of Table 1. 

5.3 Evaluation of all Variables  
In order to evaluate which combinations of the classification variables that could best 
separate between the bottom types, we tested the separability using a large number of 
combinations of two or three variables with multivariate classification. The total accuracy 
using both internal and external validation was used to compare models including different 
combinations of variables. These tests revealed that: 

 Using the deep channel variables in general gave better results (higher total accuracy) 
than using variables from the shallow channel.  

 The reflectivity variable VDrefl,A30 gave better results than VDrefl,A20 and VDrefl,P .  
 The roughness variables VDrough,R2050 gave slightly better results than VDrough,W20. This 

is reasonable because the shallowest part in the laser beam footprint mainly affects the 
leading edge of the bottom echo pulse. 

 The roughness variable VDrough,W20 gave slightly better results than VDrough,W50 and 
significantly better results than VDrough,W80.This result is consistent with our earlier 
results14 where we experienced that small objects are more easily detected by pulse 
width measurements on a low level (e.g. 20%) than on the 50%-level of the pulse 
maximum height.  

 The roughness variable VDrough,R2050 gave slightly better results than VDrough,R2080 . 
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 The ratio-corrected and residual-corrected variables gave almost similar results for the 
roughness variables. The residual-corrected variable was used in the following analysis 
because it has a physical explanation for roughness in that the unit of the residual is 
nanoseconds which can be transformed to height (e.g. for vegetation above the 
bottom), see Appendix A. 

 Including the bottom slope angle VBslope,3m in the classification gave better results than 
if it was not included.  

 Un-normalised variables gave slightly better results than normalised variables. E.g. 
VDrough,R2080,res  gave better slightly better result than VDrough,R2080,res,N. In the following 
analysis we however used the normalised variables because these have a larger 
potential to work for data sets with large variations in depth. 

 The ratio-corrected reflectivity variables gave slightly better results for the reflectivity 
variables than the residual-corrected. The ratio-corrected variable was used in the 
following analysis also because it has a potential for calculation of calibrated 
reflectance of bottom substrates (Appendix A).  

 The leading edge derivative variables (e.g VDmix,D30,res ) give almost similar results as 
the rise time variables (e.g. VDrough,R2080,res ). In the following analysis we use the rise 
time variable VDrough,R2080,res. It should however be noted that the leading edge 
derivative variables may give higher sensitivity for weak pulses when the 50% level is 
more clearly defined than the 20% level. On the other hand, the leading edge derivative 
variables may be less sensitive for strong echoes with extended leading edges because 
the start point of the pulse may occur >3 ns before the 50%-level of the bottom echo. 

5.4 Separability Analysis with the Best Variables 
Based on the results from the initial evaluation of classification variables described in 
Subsection 5.3 we identified VDrefl,A30,rat,N and VDrough,R2050,res,N as the best variables for 
reflectivity and roughness, respectively. Bottom slope VBslope,3m and bottom depth standard 
deviation VBslope,3m were also identified as important contributors to the classification. In 
the following analysis we used a combination of these four variables in order to explore to 
what extent the different bottom types can be separated using these variables and which 
types are more difficult to separate. It should be noted that other variables and 
combinations of variables may be useful depending on the specific conditions in the 
survey data. It may also be of benefit to include more variables than four. For example, the 
shallow channel data could be used as it is a separate and independent measurement from 
the deep channel. Although the shallow channel data exhibits more noise than the data 
from the deep channel, shallow data may be useful e.g. at shallow depths. Due to the 
limited amount of field data patches, we have however restricted the following analysis to 
a maximum of four variables of which two are derived from waveform data. 

The model including only reflectivity and roughness had a low overall accuracy, only 
around 50% in both internal and external validation (Table 2). Comparison of accuracy for 
the different bottom types shows that producer’s accuracy (PA) was low for all types 
(Table 4). The model was slightly better in classifying sand and boulders compared to the 
other types, but the accuracy was still <60 % in the external evaluation for these types. The 
low accuracy is not surprising given that the variation in reflectivity and roughness was 
large for many bottom types (Fig. 6 - Fig. 8). 

Including the slope and depth standard deviation in the model improved the overall 
accuracy both according to internal and external validation (Table 3). The external 
validation indicates that the depth standard deviation contributed more to improve the 
model, but the best overall accuracy was achieved with the model including all four 
variables (70.9 % accuracy in external validation). This illustrates that when combined 
with depth-derived variables (in this case slope and depth standard deviation), the 
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waveform variables has the potential to substantially improve classification accuracy of 
substrates and vegetation. 

Comparison of accuracy for the different bottom types shows that the depth standard 
deviation mainly improved the PA for low vegetation, high vegetation and boulders. As 
discussed in Subsection 5.1, this variable reflects topographic roughness at a slightly larger 
scale than the waveform derived roughness and can be expected to differ with height of 
vegetation and between a smooth sand surface and a boulder field. Including slope mainly 
improved the PA for boulders and low vegetation. In the present study, the slope was 
higher in the boulder patches compared to patches with sand (Fig. 9). This may be a 
common pattern, since boulders often dominate in areas with steeper slopes where the 
accumulation of fine sediment is low. However, the difference in slope between sand and 
boulders was rather small and patches with sand and vegetation had in many cases a 
higher slope than the boulder patches. This shows that in the present study the difference 
in slope may be driven as much by the fact that patches of a certain vegetation type are 
often close in space as by general differences between bottom types. The importance of 
slope should therefore be further evaluated using a larger set of field data.  

The best model, including both the slope and the depth standard deviation, showed a high 
producer’s accuracy for all bottom types except sand (Table 4). The confusion matrix 
shows that sand is often erroneously classified as high vegetation by the model. The 
prediction of sand is conservative, less than half of the sand records are classified correctly 
but all records classified as sand are correct (100% user’s accuracy). The misclassification 
of sand to high vegetation when the depth standard deviation was included can be 
attributed to the large variation in this variable for high vegetation, while the variation for 
sand is very small (Fig. 10). This example illustrates how a difference in variation between 
bottom types can affect producer’s and user’s accuracy in different directions.  

 

Table 2. Total accuracy (TA) in internal and external validation of models including different 
combinations of the laser variables VDrefl,A30,ratN (Refl), VDrough,R2050,resN (Rough),.bottom 
slope (Slope) and Bottom depth std dev (Stdev). The number of data points used to 
validate the model (n) differs because data for some of the variables were missing from a 
few data points.  

  Intern. Eval Extern. Eval 

  TA (%) n TA (%) n 

Refl Rough 50.9 114 50.0 58 

Refl Rough Slope 71.4 105 54.5 55 

Refl Rough Stdev 73.7 114 65.5 58 

Refl Rough Slope Stdev 87.6 105 70.9 55 

Slope 48.2 110 34.5 58 

Stdev 49.6 121 34.4 61 

Slope Stdev 78.2 110 51.7 58 
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Table 3. Producer’s accuracy (PA) and User’s accuracy (UA) for the four bottom types with 
models including different combinations of the laser variables VDrefl,A30,ratN (Refl), 
VDrough,R2050,resN (Rough),.bottom slope (Slope) and Bottom depth std dev (Stdev). 

    Sand LowVeg HighVeg Boulders 

Refl Rough PA 52.9 50.0 36.4 56.3 

 UA 52.9 46.7 50.0 50.0 

Refl Rough Slope PA 41.2 61.5 44.4 68.8 

 UA 100.0 50.0 40.0 50.0 

Refl Rough Stdev PA 41.2 64.3 90.9 75.0 

 UA 100.0 64.3 40.0 100.0 

Refl Rough Slope Stdev PA 41.2 92.3 88.9 75.0 

 UA 100.0 63.2 47.1 100.0 

Slope PA 47.1 0.0 44.4 44.4 

 UA 88.9 0.0 13.8 44.4 

Stdev PA 23.5 26.7 90.9 16.7 

 UA 80.0 100.0 20.4 100.0 

Slope Stdev PA 11.8 64.3 88.9 61.1 

  UA 66.7 56.3 28.6 100.0 

 

Table 4. Confusion matrices of the models including the laser variables VDrefl,A30,ratN (Refl), 
VDrough,R2050,resN (Rough) (A) and all four variables (B) for the external validation data, 
including producer’s accuracy (PA) and user’s accuracy (UA).  

A. Refl Rough      

Obs\Class Sand LowVeg HighVeg Boulders Total PA (%) 

Sand 9 3 0 5 17 52.9 

LowVeg 1 7 3 3 14 50.0 

HighVeg 5 1 4 1 11 36.4 

Boulders 2 4 1 9 16 56.3 

Total 17 15 8 18 58  

UA (%) 52.9 46.7 50.0 50.0  50.0 

       
B. Refl Rough Slope Stdev     

Obs\Class Sand LowVeg HighVeg Boulders Total PA (%) 

Sand 7 2 8 0 17 41.2 

LowVeg 0 12 1 0 13 92.3 

HighVeg 0 1 8 0 9 88.9 

Boulders 0 4 0 12 16 75.0 

Total 7 19 17 12 55  

UA (%) 100.0 63.2 47.1 100.0  70.9 
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6 Conclusions 
We have studied the possibilities to separate different bottom substrates and vegetation 
using variables derived from airborne lidar data. The variables were either derived from 
depth data (bottom slope and depth standard deviation), or extracted from the lidar 
waveform.  

The extracted waveform variables can be related to the bottom substrate or vegetation 
reflectance, roughness, or a mix of both. Correction models for the extracted waveform 
features were applied producing a set of classification variables. The corrections models 
include corrections for e.g. water turbidity, bottom depth, and the flight altitude.  

The evaluation of separability between different substrates and vegetation was performed 
with laser data taken from patches identified by interpreted underwater video data.  

We studied the classification variables as single variables and performed separability tests 
using a multivariate classification method. Based on evaluation of a large number of 
waveform-derived classification variables we chose a preliminary set of four variables. 
With the preliminary set of variables we obtained a total classification accuracy of about 
70% between the four bottom types Sand, Low Vegetation, High Vegetation and Boulders. 
This illustrates that when combined with depth-derived variables (in this case slope and 
depth standard deviation), the waveform variables have the potential to substantially 
improve classification accuracy of substrates and vegetation. 

Waveform classification variables from the Hawk Eye II shallow and deep receiver 
channels were evaluated. We have noted better classification results (higher total 
accuracy) with variables extracted from the deep channel compared to variables from the 
shallow channel. The larger misclassification for the shallow channel variables may be 
caused by lower signal-to-noise ratio for bottom echoes in the shallow channel waveform. 
Both the shallow and deep channel waveform variables gave uncertain values close the 
maximum depth limit of the lidar survey (11 m -12 m). Accurate extraction and correction 
of variables close to the maximum lidar depth range is difficult because of the low signal-
to-noise ratio at these depths and the variable corrections for large bottom depths may 
need further development than obtained in this report. 

We found that a combination of several variables can be appropriate for separation of 
different bottom types and vegetation. For example, the bottom roughness can be captured 
either by a waveform variable such as the bottom echo pulse rise time, or the standard 
deviation of depths in the vicinity of a lidar sounding. These two variables both indicate 
roughness but on slightly different scales.  
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Appendix A. Correction Models for Laser 
Waveform Variables 
 

A1 Introduction 
The following correction scheme concerns lidar data from the HawkEye II – Airborne 
coastal survey system, by Airborne Hydrography AB (AHAB), Sweden 
(http://www.airbornehydro.com). The Hawk Eye II system surveys both land and sea floor 
simultaneously. Our work concerns the bathymetric data from the system. The system uses 
a pulsed, infrared (1064 nm) and green (532 nm) laser for the bathymetric sounding. The 
infrared pulses are reflected at the water surface whereas the green pulses proceed into the 
water volume. The laser light backscattered from the sea surface, the water volume and the 
sea floor is collected in multiple, high-sensitivity receivers. Hawk Eye II produces 
measurements in photoelectrons at the photocathode of each returned laser pulse in 1-ns 
time bins. When shown as a time series, the collection of all measurements for a single 
pulse is called a waveform. The received laser light is divided into two separate channels 
using a beam splitter. The first is a shallow-water channel which receives about 30 % of 
the light, and the second a deep-water channel which receives about 70 % of the light. The 
shallow and deep channels have FOV:s of approximately 25 mrad and 50 mrad 
respectively. The deep channel allows for more efficient collection of photons 
backscattered from larger depths. The shallow and deep channels each have a quad-pixel 
detector. Thus, from one single emitted laser pulse, four waveforms are received in both 
the shallow and deep channels.  

The received waveforms are digitized for further processing and the depth is determined 
by the time lapse between surface and the bottom echoes. The integrated differential GPS 
enables positioning of surface, sea floor, and objects in the water column in 3 dimensions 
in WGS 84 coordinates. The Hawk Eye II system is equipped with a two axis, servo-
controlled, scanner mirror to space the sounding spots evenly on the surface. The nominal 
system optical axis incidence angle from the vertical is 15°-20°.  

The Hawk Eye II system simultaneously collects 4000 bathymetric lidar soundings per 
second. The sounding spot density for bathymetric data is programmable from 0.5 m x 0.5 
m to 3 m x 3 m depending on survey requirements. The flight altitude is approximately 
between 200 m and 500 m. The swath width of the system is typically 0.2-0.6 times the 
altitude and the aircraft speed typically 120-180 knots. The Hawk Eye II high laser 
sounding frequency and the programmable spot density allows high area coverage 
combined with accurate survey data collection. The system compensations for flight 
deviations allow for minimized overlap between adjacent flight lines. The Hawk Eye II 
system Operator Console software includes an extensive range of tools such as: coverage 
plots, real time 3-D views of the surveyed area, flight line plan, background map, system 
parameters, laser pulse responses, and depth ranges. Many attributes are stored for each 
sounding as a basis for further analysis, post processing, and quality control. The data is 
stored on hard disks transported from the aircraft for further post processing. In brief, the 
post processing consists of: 

 Refinement of position data with use of navigation post processing software and data 
from reference stations.  

 Analysis of Hydrographic and Topographic elevation data by the AHAB Coastal 
Survey Studio (CSS) software. The CSS tool includes several advanced algorithms for 
sub-surface objects detection and identification, quality checks of data, estimates of 
water and sea floor parameters and decision support to the data cleaning process and 
interfaces to third party software. 
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 A cleaning process which includes quality check of the data and removal of faulty data 
points. 

 Further post processing by third party commercially available software or the Coastal 
Survey Studio depending on the end user requirements for visualization. 

 

In our additional post-processing we explore further use of the time-resolved lidar 
waveform. Specifically, our purpose is to extract features from the waveform and to 
correct these into variables that can be used for studying the possibility of classification of 
the sea floor.  

A2 The Lidar System Parameters  
A schematic illustration of the lidar system is shown in Fig. 11. The water depth D is 
calculated from the time interval between the surface echo and the bottom echo, and each 
sounding is appropriately corrected for wave height. For a more detailed presentation of 
how depth estimations are made from the sensor signals we refer to Refs. 15-17. The 
significant system parameters are the green laser output pulse energy E0, the FWHM laser 
pulse length t0, laser beam divergence B (defined as the full angle between the two points 
on a Gaussian irradiance distribution that are  e-1/2 = 0.607 times the maximum value), 
flight altitude H, system optical efficiency , and incident beam off-nadir angle 0. The 
distance in air between the lidar and the water surface along the optical axis is referred to 
as the slant range H/cos(0). The receiver parameters are the one-dimensional field of 
view (FOV) and the receiver aperture area AR. For a flat water surface, the off-nadir angle 
in water is , where nw = c0/cw, and c0 and cw are the velocities 

of light in air and water, respectively. The lidar system and environmental parameters are 
summarized in 

}/)θ(arcsin{sinθ 0 ww n

Table 5. The typical parameter values shown in Table 5 are used in the 
following simulations unless otherwise is stated.  

 

Table 5. Lidar System and Environmental Parameters 

Parameter Value range Typical value  Unit 

Pulse energy ( = 532 nm) (E0)  3 mJ 

Beam off-nadir angle (0)  15-20 20  

Flight altitude (H)  200-500 200 m 

Beam divergence, full angle at the e-1/2 -level of 
maximum from a Gaussian  distribution (B)  

8-12 10  mrad 

Pulse length (FWHM) (t0)   3 ns 

Optical system efficiency ( ) η    

Aperture area (AR)  0.025  m2  

Field of view, full angle (FOV)  25 (shallow) 
50 (deep) 

mrad 

Two-way atmospheric loss (Tatm
2)  0.9  

Bottom depth (D)   m 

Bottom reflectivity (532)     

Bottom slope angle  0 (flat, horizontal 
bottom) 

 
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Fig. 11. Schematic illustration of the depth sounding lidar system. 

A3 The Waveform 
Sea floor classification algorithms can use characteristics from the received lidar 
waveform and other information obtained from the lidar data such as the bottom slope 
angle. Basic processing of the waveform includes linearization of the received and 
digitised waveform. In the Hawk Eye II system, the measured waveforms pass through the 
system: Detector - Amplifier - Digitiser. Before further processing, we convert the 
measured waveforms to linear scale using instantaneous amplifier gain values accessible 
from the survey data disk. The linearization is made for each individual sounding. In the 
linearized waveform we can measure the received power at an instant in a waveform and 
relate this value, on the same scale, to other values in the same waveform. With a 
linearized waveform, we can compare measured values with those generated from simple 
lidar equations or more advanced simulation models. The lidar equations and simulation 
models are used for development of accurate corrections of waveform data which will be 
outlined in the following sections. It should be noted that the linearization is not 100 % 
exact as the gain values used for linearization is a model of the actual gain.   

An example of a linearized waveform from the HawkEye II system is shown in Fig. 3 (a). 
The main signals in the waveform are the water surface echo, the water volume 
backscatter, and the bottom echo pulse. In addition, the waveform contains noise which is 
a combined effect from environmental background light and noise generated in the optical 
detector and receiver electronics. In our following extraction of sea bottom characteristics 
from the waveform, we calculate the waveform characteristics of the bottom echo pulse 
from the difference wave (Fig. 3 (b)-(c)). The difference wave is calculated as the 
difference between the waveform, in linear scale, and an interpolated volume backscatter 
wave under the bottom echo pulse.9, 10 The basic principle for estimation of the bottom 
depth is by measuring the time lapse between the surface echo and the 50% level on the 
leading edge of the bottom echo, see Fig. 3 (d).  
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A4 Features Extracted from the Lidar 
Waveform 

We aim at the extraction of two fundamental characteristics of the sea bottom namely its 
reflectivity (at wavelength 532 nm) and its roughness. An example of a waveform feature 
that can be used for sea floor roughness estimation is the width of the bottom echo pulse. 
From earlier experiments8, 11 and simulations 10, 12 we have experienced that small objects 
on the sea bottom can be detected by an increase in the reflected bottom pulse width. The 
bottom pulse width can also be used for indication of elevated vegetation on the sea floor. 
Another example of a waveform feature is the peak power of the bottom echo which can 
be can be used to estimate the sea floor reflectance. The estimation of reflectance involves 
corrections of the bottom pulse peak power in the waveform for several influencing factors 
such as the water turbidity, water depth, and flight altitude. The correction process is 
sometimes referred to as an inversion of the lidar equation.4 The lidar equation can 
actually contain several equations depending on its complexity for description of different 
phenomena in the waveform related to lidar system and environmental parameters.  

Reflectivity and roughness parameters can be extracted from the bottom echo pulse in 
many different ways. We have defined a basic set of such parameters and corresponding 
correction schemes for further use in classification studies. In Fig. 4 we show schematic 
descriptions of a basic set of bottom echo features. In Fig. 5 a description of classification 
variables and corresponding notation for the corrected variables is given. The features are 
extracted from the bottom echo difference wave. A necessary step is to correct these 
features to classification variables that can be used for classification of the sea floor. 
Using simulated waveform data, we will make correction models for each of the waveform 
features. The correction models include effects from e.g. the water turbidity, the bottom 
depth and the flight altitude. The purpose of the correction models is to remove effects 
from the lidar system and water volume to obtain pulse data which mainly are influenced 
by the bottom type or vegetation.  

A5 Estimation of Bottom Slopes and 
Depth Standard Deviation 

We use the depth data for estimation of bottom slope angle and bottom depth standard 
deviation within small regions around each sounding position. Two different sizes of 
regions are used; a radius of 2 m and 3 m around each sounding, respectively. For 
estimation of bottom slope angle, a plane is fitted to a collection of lidar soundings in a 
least squares sense. In tested data set, the depth data consists of a randomly spaced point 
cloud with average point density of approximately 0.8 soundings per m2. At positions 
where flight lines are overlapping the point density is higher and at positions where e.g. 
the depth is close to the maximum lidar bottom range the point density is lower. For 
calculation of both bottom slope angle and bottom depth standard deviation, a minimum 
number of three soundings is required, we otherwise mark the values as non-existing. 

Both the bottom slope angle and bottom depth standard deviation can be used as inputs for 
bottom classification algorithms. In addition we will, in the following sections, use the 
estimated bottom plane as input for the correction of variables extracted from the lidar 
waveform. For the corrections, we will use the cosine of the angle between bottom 
downward normal  and the in-water lidar optical axis unit vector , calculated as the 

dot product  between the unit ray vectors, see 

bn̂

l

ln̂

b nn ˆˆ  Fig. 12. 
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Fig. 12. Illustration of the estimated bottom plane B, its normal  and the in-water lidar 

unit vector .  
bn̂

ln̂

A6 Estimation of Water Optical Turbidity 
Our correction methods use an estimate of the local water turbidity around each specific 
sounding position. The turbidity is quantified as the lidar attenuation coefficient Klidar.

9 
The lidar attenuation coefficient is estimated from the decay in the volume backscatter 
curve (see Fig. 3 (a)). The decay is measured in the interval from 3 m to 5 m depth below 
the sea surface. The shallow limit at 3 m is used to avoid interference from the water 
surface echo pulse. The deeper depth limit conveys that turbidity estimates from the 
volume backscatter curve only can be made at bottom depths larger than 5 m. In our 
implementation we have applied a minimum depth requirement of 6 m for estimation of 
Klidar to avoid interference from the bottom echo.  

In addition to water turbidity, the Klidar parameter also includes effects from the lidar 
system FOV. The FOV-effect on Klidar is caused by the reduction of backscattered power 
due to a limited FOV.9 Thus, for our correction methods, two separate estimates of Klidar 
are calculated for the shallow and deep receiver channels respectively. The Klidar estimates 
form each individual sounding contain noise which can be related to the noise in the 
backscatter signal (see Fig. 3 (a)). Therefore, we apply a smoothed average of the Klidar -
estimates averaged from adjacent soundings within a 15 m radius from each individual 
sounding.  

To handle the survey areas with missing Klidar estimates, shallower bottom depth than 6m, 
we have used a nearest neighbour algorithm in two steps. In the first step a missing Klidar-
value is assigned the Klidar-value from the nearest sounding within 100 m radius, where 
only neighbours from the same flight line are used. If missing Klidar-values exist after the 
first step, the nearest neighbour value is used regardless of distance from the actual 
sounding position and flight line. We have chosen this two-step scheme because it favours 
nearest neighbour interpolation from the same flight line because turbidity can vary 
between flight line data collection if the time between flight line surveys differ. One 
example of such a scenario would be if a large area is surveyed over several days.  
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A7 Simulation Model 
A simple form of the lidar equation for returned bottom pulse peak power can be written 
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where P0 is the transmitted pulse peak power, s the Fresnel reflection coefficient of the 
air-water interface, and Fstretch a reduction factor (between 0 and 1) of the returned peak 
power which is caused by propagation-induced pulse stretching and pulse stretching 
caused by the receiver detector and electronics. Other parameters in Eq. (5) are accordin
to the previous sections an

R
s




    (5) 

g 
d to Table 5. Our correction methods are based on more detailed 
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ted in 
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 noise is a shot noise model with Gaussian distribution with zero 
e 

A8 ation Variables and Pulse 

extracted waveform features, shown in Fig. 4. Based on 

modelling than Eq. (5). However, Eq. (5) gives a general idea of the relations between 
important parameters.  

The model involves e.g. effects of pulse stretching and FOV-effects on both water volume 
backscatter and on the bottom pulse echo We have used a waveform simulation model, 
which is described in detail in Ref. 9 Here, we give a brief model description. The model 
for transfer of the optical beam through the sea surface is a two-scale model similar to the 
models proposed by Mobley18 and McLean.19 The large-scale part of the model includes a
representation of the gravity waves generated on a triangular grid that resolve the gravity 
wave components. The light incident on a gravity wave facet is transferred and reflecte
according to a capillary wave model governed by Snell's law and Fresnel's formula. The 
transfer model for the capillary waves (function of wind speed and incidence angle) is 
implemented with Monte Carlo simulations as described by Mobley.18 The lidar pulse 
response for propagation from the lidar transmitter to the sea floor and back to the receiver
is calculated as a weighted sum of individual pulse responses for each transmitted and 
received beam pairs through all pairs of gravity wave surface facets. Each individual path 
is given a weight corresponding to the power transmitted over that path. The weighting 
factor for an individual water volume pulse response for a gravity wave facet pair is the 
product of the transmitted power through the two facets. The individual responses from the 
water volume backscatter are calculated with an analytic technique developed by Katsev et 
al.,20 which allows that the source and receiver are spaced apart and their axes orien
different directions. With this terminology we thus represent one gravity wave facet as the 
source and the other as the receiver.  We use an in-water beam propagation model 
developed by McLean et al.21 which accounts for both unscattered and scattered 
propagation. A two-step energy calibration scheme is included in our model. The meth
conveys that radiometrically accurate power values are obtained for comparison between 
the volume backscatter and the sea floor return, and also that the reduction of 
backscattered power due to a limited field-of-view FOV can be examined. Our noise 
model for the waveform
mean and standard a deviation that varies with the signal level at each instant in tim
within the waveform. 

Classific
Models 

In this section we present results from simulations of the lidar and environmental 
parameter influence on the 
extracted features from the simulated waveforms, we have created a pulse model for each 
of the waveform features.  
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In our simulations the stochastic part of the results has its origin in several factors such as 
the simulated waveform noise, the effects from the wavy sea surface, and varying 
simulated flight directions over a sloping bottom. For simulations on sloping bottoms the 
lidar optical axis azimuth direction was varied in steps of 45. That is, the angle between 
the lidar optical axis azimuth and the bottom slope direction was 0, 45, 90, 135, and 
180. A wind speed of 3 m/s was used for the wind driven sea surface model. For sl
bottoms, the bottom slope angle was varied between 0 and 20 from the horizontal. With
a lidar air off-nadir angle 0=20 and a corresponding in-water off-nadir angle w of about 
15, the maximum angle between the bottom normal and the lidar optical

oping 
 

 axis was 

d 
idual (in 

 

 be 

 its 

t 
rvey data set, 

 different corrections where the first and second 
d 
r 

s an example, for the bottom pulse peak power (Fig. 4 (a) and Fig. 5), we calculate the 
residual-corrected (res) classification var

 

approximately 35. In the following figures (Fig. 13 - Fig. 33) we denote the depth D as 
the input depth, “true depth”, to the simulation model. For sloping bottoms the depth is the 
vertical depth from the lidar optical axis hit on the mean water surface.  

The purpose of the pulse model is to model the effects from the lidar system, geometry, 
bottom depth and water turbidity, and isolate those effects from the bottom reflectivity an
roughness. For example, a classification variable can be calculated e.g. as the res
our case the difference) between the extracted waveform feature and the pulse model of 
the same feature under the same conditions. The pulse models have analytic expressions
and some of the coefficients need to be estimated from real, measured data. The 
coefficients are estimated from a training data set of the measured lidar data. It should
noted that this training data set is not taken from field data positions, and thus does not 
require field data. It is rather a model representation of the whole survey including
interval of bottom depths, flight altitudes, water optical turbidity, bottom reflectance, 
slopes, roughness, and other system or environmental factors. The training data used, is a 
sparse representation of the complete data set from the survey. In our preliminary 
evaluation we have used each 37th sounding of a test set from a survey, which resulted in 
a training data set of about 70 000 soundings. The suitable reduction factor for a data se
should be a balance between several factors such as the original size of the su
variations in water turbidity, and available computing capacity. It should be noted that the 
reduction factor should be an odd number, or that the reduction of data is controlled in 
other ways, to avoid biases related to the different channels in the receiver.  

In the following we present analytic equations for the pulse models. We have developed 
these models by manual inspection and fitting of analytic models to the simulated results. 
For each waveform feature, we apply four
are residual- and ratio- corrected variables. The third and fourth corrections are normalise
versions of the two first variables. These four correction methods are generated for furthe
evaluation of the classification variables. 

A
iable with  

Prefl,Prefl,resP,refl, MFSVS  ,   (6) 

eature (F)  and the 

ulse model (M) of the pulse peak power (subscript P) in the shallow channel (S). In the 
second method we calculate the ratio-corrected (rat) variable with 

 

 

where FS  and M  respectively are the extracted waveform frefl Prefl,

p

Prefl,
ratP,refl, M

 

Prefl,FS
VS  .    (7) 
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An advantage with ratio-correction instead of residual-correction of a reflectivity variabl
is that a ratio-corrected variable has a potential for calculation of calibrated reflectance of 
the bottom. To obtain calibrated reflectance measurements of the bottom, we anticipate 

e 

rection instead of ratio-correction of a roughness variable 
anation for roughness in that 
ed to height (e.g. for 

egetation above the bottom). 

The normalised residual-corrected variable is calculated with 

 

that either accurate lidar system calibration or data from bottom patches with known 
reflectance are applied. If the correction is accurately made, then the calibrated reflectance 
can be obtained only by one multiplication factor applied to the ratio-corrected variable.  

An advantage with residual-cor
is that the residual-corrected variable has a more physical expl
the unit of the residual is nanoseconds which can be transform
v

σres,P,refl,

resP,refl,
Nres,P,refl, VS

VS
VS  ,    (8) 

and the normalised ratio-corrected variable with 

 

 

σ

 
where VS

rat,P,refl,

ratP,refl,
Nrat,P,refl, VS

VS
VS  ,    (9) 

 and are estimations of the  and  variable 

d 

ulation results and our pulse 
of the bottom echo features extracted from the linearized lidar 
 are grouped according to the examples shown in Fig. 4, and thus 

 - 
f 

 not 100 % perfect over the 
hole depth range. Individual coefficients are estimated for each of the pixels in both the 
allow and the deep channels. This is motivated by the fact that each pixel has a specific 

nd individual FOV and also a slightly different sensitivity. 

 

σres,P,refl, σrat,P,refl, resP,refl, ratP,refl,

standard deviation based on lidar soundings taken from a training data set of the measure
lidar data.  

The analytic pulse models are based on a large number of waveform simulations. In the 
remaining parts of this section we present examples of sim

VS VS VS

models created for each 
waveforms. The features
each group is assigned a separate analytic pulse model.  

Pulse Models 
Due to the influence of the water surface echo on the bottom signal we have defined two 
main depth zones for the pulse models (separated by a depth limit Dlim), one zone is close 
to the sea surface and the other is for larger depths. In addition, the pulse model 
coefficients, estimated from the training data set of the measured lidar data, are calculated 
in internal depth intervals within the two zones. This method is motivated mainly for two 
reasons. The first reason is that we estimate the Klidar from the volume backscatter at 3 m
5 m depth, and that Klidar, which attenuates the bottom echo, is actually itself a function o
depth. By using different depth intervals for estimation of the coefficients, we obtain local 
models (in depth) where the coefficients catch the possible errors in Klidar values for all 
depths. The second reason that the waveform linearization is
w
sh
a
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Pulse Peak Power   

Simulation results for the bottom echo pulse peak power are shown in Fig. 13 - Fig. 16. 
e write the pulse model for the pulse peak power as 

 

W

  Plidar2P2
0

2

5321PPrefl, ˆˆ10exp)exp(
θcos

ρ MDKC
H

CM lb  nn , (10) 

ata. It 
P1 P

spectively for the shallow and deep channels. The CP2 coefficient is set to  

CP2 = 3  for FOV 25 mrad (shallow channel), and 

CP2 = 2.5  for FOV 50 mrad (deep channel) 

lim

ater turbidity and other specific conditions in a 
dar survey. For bottom depths D < Dlim 

CP2 = 2  is used for both FOV 25 mrad and 50 mrad. 

 

 

where CP1 and MP are estimated from a training data set of the measured lidar d
should be noted that separate and different values for C  and M  are estimated 
re

 

 

 

 

 

for bottom depths D > Dlim. The depth limit D  is set to a default value of 3 m, but this 
value may be adjusted depending on the w
li
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for the shallow (a) and deep (b) channels. The bottom depth is 7m and other parameters 
are according to typical values in Table 5. 

(a)   (b) 

Fig. 13. Simulation results for echo peak po
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(a)   (b) 

Fig. 14. Simulation results for echo peak power with respect Klidar and bottom depth for the 
shallow (a) and deep (b) channels. The bottom depth range is from 5 to 12 m. Other 
simulation parameters are according to typical values in Table 5. 
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Fig. 15. Simulation results for echo peak power with respect Klidar and bottom depth for the 
shallow channel. The bottom depth range is from 1 to 4 m. Other simulation parameters 
are according to typical values in Table 5. 
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Fig. 16. Simulation results for echo peak power with respect to cosine of the angle 
between bottom normal and the in-water lidar axis unit vector lb nn ˆˆ  . The bottom slope 
angle varies between 0 and 20 from the horizontal. With an lidar air off-nadir angle 
0=20 and a corresponding in-water off-nadir angle w15, the maximum angle between 
bottom normal and lidar optical axis is approximately 35. Bottom depths 5 m, 7m, and 9 m 
(colour coded), water attenuation coefficient c = 0.8 m-1, and FOV = 25 mrad. Other 
simulation parameters are according to typical values in Table 5. 

Pulse Area 

Simulation results for the bottom echo pulse width are shown in Fig. 17 - Fig. 20. We 
write the pulse model for the echo pulse area as 

 

Alidar2A2
0

2

5321AArefl, )ˆˆ)(exp(
θcos

ρ MDKC
H

CM lb  nn , (11) 

 

where CA2 and MA are estimated from a training data set of the measured lidar data. The 
CA2 coefficient is set to  

 

 CA2 = 2.5  for FOV 25 mrad, and 

 

 CA2 = 2  for FOV 50 mrad, 

 

for bottom depths D > Dlim. Dlim is set to a default value of 3 m, but this value may be 
adjusted depending on the water turbidity and other specific conditions in a lidar survey. 
For bottom depths D < Dlim, 

 

 CA2 = 2  is used for both FOV 25 mrad and 50 mrad. 
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(a)   (b) 

Fig. 17. Simulation results for the echo pulse area with respect to inverse squared slant 
range for bottom depth 5m (a) and 7 m (b). The FOV is 25 mrad and other parameters are 
according to typical values in Table 5. 
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(a)   (b) 

Fig. 18. Simulation results for the echo pulse area with respect Klidar and bottom depth for 
the shallow (a) and deep (b) channels. The bottom depth range is 5 m. Other simulation 
parameters are according to typical values in Table 5. 
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Fig. 19. Simulation results for the echo pulse area with respect Klidar and bottom depth for 
the shallow channel. The bottom depth range is from 1m to 4 m (colour coded). Other 
simulation parameters are according to typical values in Table 5. 
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Fig. 20. Simulation results for echo pulse area with respect to cosine of the angle between 
bottom normal and the in-water lidar axis unit vector lb nn ˆˆ  . The bottom slope angle varies 
between 0 and 20 from the horizontal. With an lidar air off-nadir angle 0=20 and a 
corresponding in-water off-nadir angle w15, the maximum angle between bottom normal 
and lidar optical axis is approximately 35. Bottom depths 5 m, 7m, and 9 m (colour 
coded), water attenuation coefficient c = 0.8 m-1, and FOV = 25 mrad. Other simulation 
parameters are according to typical values in Table 5. 

Pulse Width 

Simulation results for the bottom echo pulse width are shown in Fig. 21 - Fig. 24. We 
write the pulse model for the echo pulse width as 

 

  W5Wlidar4W3Wlidar2W
0

1WWrough, )ˆˆ(10exp
θcos

MCDKCDCKC
H

CM lb  nn

    (12) 

 

 for D > Dlim.  

 

Dlim is set to a default value of 3 m, but this value may be adjusted depending on the water 
turbidity and other specific conditions in a lidar survey. For small bottom depths, we 
remove the CW2Klidar-term and write 

 

  W5Wlidar4W3W
0

1WWrough, )ˆˆ(10exp
θcos

MCDKCDC
H

CM lb  nn  

       (13) 

  for D < Dlim.  

 

The coefficients CW1 - CW5, and MW are estimated from a training data set of the measured 
lidar data. Again, it should be noted that separate and different values for CW1 - CW5, and 
MW are estimated respectively for the shallow and deep channels, and for bottom depths 
above and below Dlim. 
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(a)   (b) 

Fig. 21. Simulation results for the echo pulse width with respect to slant range H/cos0 for 
the shallow (a) and deep (b) channels. The bottom depth is 5 m, and other parameters are 
according to typical values in Table 5. 
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Fig. 22. Simulation results for the echo pulse width with respect Klidar and bottom depth (a), 
Klidar only (b), and depth only (c). Bottom depth range is from 3 m to 9 m. The FOV is 25 
mrad and other simulation parameters are according to typical values in Table 5. 
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Fig. 23. Simulation results for the echo pulse width with respect Klidar and bottom depth (a), 
and bottom depth only (b). Bottom depth range is from 1 m to 4 m. The FOV is 25 mrad 
and other simulation parameters are according to typical values in Table 5. 
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Fig. 24. Simulation results for echo pulse width with respect to cosine of the angle between 
bottom normal and the in-water lidar axis unit vector lb nn ˆˆ  . The bottom slope angle varies 
between 0 and 20 from the horizontal. With an lidar air off-nadir angle 0=20 and a 
corresponding in-water off-nadir angle w15, the maximum angle between bottom normal 
and lidar optical axis is approximately 35. Bottom depths 5 m, 7m, and 9 m (colour 
coded), water attenuation coefficient c = 0.8 m-1, and FOV = 25 mrad. Other simulation 
parameters are according to typical values in Table 5. 

Pulse leading edge rise time 

Simulation results for the bottom pulse rise time are shown in Fig. 25 - Fig. 29. We write 
the pulse model for the bottom pulse rise time as 

 

    R4R
2

lidarR3lidar2R
0

2

2

1RRrough, )ˆˆ(10exp
θcos

MCDKCDKC
H

CM lb  nn     

(14) 

 

 for D > Dlim.  

and 
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  R4Rlidar2R
0

2

2

1RRrough, )ˆˆ(10exp)2exp(
θcos

MCDKC
H

CM lb  nn     

 (15) 

   

 for D < Dlim.  

 

Dlim is set to a default value of 3 m, but this value may be adjusted depending on the water 
turbidity and other specific conditions in a lidar survey. Separate values for CR1 - CR4, and 
MR are estimated respectively for the shallow and deep channels, and for bottom depths 
above and below Dlim. 
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Fig. 25. Simulation results for the echo pulse rise time with respect to squared slant range 
(H/cos0)2 for the shallow (a) and deep (b) channels. The bottom depth is 5 m, and other 
parameters are according to typical values in Table 5. 
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Fig. 26. Simulation results for the echo pulse rise time with respect Klidar and bottom depth 
(a), Klidar only (b), and depth only (c). Bottom depth range is from 3 m to 9 m. The FOV is 
25 mrad and other simulation parameters are according to typical values in Table 5. 
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Fig. 27. Similar to Fig. 26 but with FOV=50 mrad. Simulation results for the echo pulse rise 
time with respect Klidar and bottom depth (a), Klidar only (b), and depth only (c). Bottom 
depth range is from 3 m to 9 m. Other simulation parameters are according to typical 
values in Table 5. 

1 2 3 4
0

1

2

3

4

5

Depth (m)

E
ch

o 
pu

ls
e 

ris
e 

tim
e 

20
-5

0%
 o

f m
ax

im
um

 (n
s)

Color: Klidar (m
-1)

 

 

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 
0 0.2 0.4 0.6

0

1

2

3

4

5

exp(-2 Klidar Depth)

E
ch

o 
pu

ls
e 

ris
e 

tim
e 

20
-5

0%
 o

f m
ax

im
um

 (n
s)

Color: Depth (m)

 

 

0.5

1

1.5

2

2.5

3

3.5

4

4.5
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Fig. 28. Simulation results for the echo pulse rise time with respect to bottom depth (a), 
and exponential function of Klidar and bottom depth (b). Bottom depth range is from 1 m to 4 
m. The FOV is 25 mrad and other simulation parameters are according to typical values in 
Table 5. 
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Fig. 29. Simulation results for echo pulse rise time with respect to cosine of the angle 
between bottom normal and the in-water lidar axis unit vector lb nn ˆˆ  . The bottom slope 
angle varies between 0 and 20 from the horizontal. With an lidar air off-nadir angle 
0=20 and a corresponding in-water off-nadir angle w15, the maximum angle between 
bottom normal and lidar optical axis is approximately 35. Bottom depths 5 m, 7m, and 9 m 
(colour coded), water attenuation coefficient c = 0.8 m-1, and FOV = 25 mrad. Other 
simulation parameters are according to typical values in Table 5. 

Pulse leading edge derivative 

Simulation results for the bottom echo pulse leading edge derivative (from -3 ns to 0 ns 
relative to the 50% level) are shown in Fig. 30 - Fig. 33. We write the pulse model for the 
leading edge derivative as 

 

  Dlidar2D2
0

2

5321DDmix, ˆˆ10exp)exp(
θcos

ρ MDKC
H

CM lb  nn , 

 (16) 

 

where CD1 and MD are estimated from the training data set of the measured lidar data. The 
CD2 coefficient is set to  

 

 CD2 = 2.5  for FOV 25 mrad (shallow channel), and 

 

 CD2 = 2  for FOV 50 mrad (deep channel) 

 

for bottom depths D > Dlim. The depth limit Dlim is set to a default value of 3 m, but this 
value may be adjusted depending on the water turbidity and other specific conditions in a 
lidar survey. For bottom depths D < Dlim, 

 

 CD2 = 2  is used for both FOV 25 mrad and 50 mrad. 
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(a)   (b) 

Fig. 30. Simulation results for echo leading edge derivative with respect to inverse squared 
slant range for the shallow (a) and deep (b) channels. The bottom depth is 5 m and other 
parameters are according to typical values in Table 5. 
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Fig. 31. Simulation results for the echo leading edge derivative with respect to an 
exponential function of Klidar and bottom depth. Colour code: Klidar (a) and depth (b). Bottom 
depth range is from 5 m to 9 m. The FOV is 25 mrad and other simulation parameters are 
according to typical values in Table 5. 
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Fig. 32. Simulation results for the echo leading edge derivative with respect to an 
exponential function of Klidar (a), bottom depth (b), exponential Klidar and bottom depth (c), 
and Klidar and bottom depth (d). Bottom depth range is from 1 m to 4 m. The FOV is 25 
mrad and other simulation parameters are according to typical values in Table 5. 
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Fig. 33. Simulation results for echo leading edge derivative with respect to cosine of the 
angle between bottom normal and the in-water lidar axis unit vector lb nn ˆˆ  . The bottom 
slope angle varies between 0 and 20 from the horizontal. With an lidar air off-nadir angle 
0=20 and a corresponding in-water off-nadir angle w15, the maximum angle between 
bottom normal and lidar optical axis is approximately 35. Bottom depths 5 m, 7m, and 9 m 
(colour coded), water attenuation coefficient c = 0.8 m-1, and FOV = 25 mrad. Other 
simulation parameters are according to typical values in Table 5. 
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