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Sammanfattning

En beräkningsmetod som vi benämner ”Semi Random Finite Element Method” (SR- 
FEM), har tagits fram av FOI. Metoden har utvecklats för att kunna prediktera 
strukturrespons och ljudtransmission från icke deterministiska dynamiska laster på ett 
effektivt sätt. Föreliggande rapport beskriver metoden och finns också sammanfattad i 
konferensbidrag, AIAA 2010-3952, till ” 16th AIAA/CEAS Aeroacoustics Conference” 
som hölls i Stockholm 7-9 juni 2010.

Finita element (FE) baserade metoder för att beräkna strukturrespons och 
ljudtransmission från tidsberoende, slumpmässiga, stationära laster, som t.ex. från ett 
turbulent gränsskikt, har tidigare varit starkt begränsande vad gäller modellstorlek. 
Redan med relativt små FE modeller, räknat i antalet frihetsgrader, når man tidigt en 
övre gräns med dagens datorresurser. Med den presenterade metoden förflyttas denna 
gräns i modellstorlek kraftigt uppåt. Detta medför t.ex. att man, i motsats till tidigare 
kända modala FE ansatser, ges möjligheten att studera hela flygplanssektioner i 
frekvensområden upp till flera kHz. Detta svarar bl.a. mot behovet vid beräkningar på 
flygplanskabiner exeiterade av turbulenta gränsskikt.

SR-FEM bygger på en slumpmässig sampling i ingående systemmatriser innan 
matrismultiplikationer för lösning av struktur- och ljudtransmissionsrespons 
genomförs. Metoden är generell i den meningen att en godtycklig ”stationary random - 
last ” kan appliceras. Till skillnad mot en klassisk modal FE lösning, där de 
matrismultiplikationer som följer på egenvärdeslösningen kräver avsevärt fler 
operationer/CPU-tid än egenvärdeslösningen i sig, tenderar dessa båda steg att vara av 
samma storleksordning med SR-FEM.

Metoden medför en viss begränsning i frekvensupplösning jämfört med en klassisk FE- 
lösning. För att samtidigt uppnå en avsevärd tidsbesparing (CPU-tid) och "tillräcklig” 
noggrannhet med SR-FEM, bör man typiskt studera frekvensresponser i tersband. 
Något som i de flesta sammanhang är fullt acceptabelt. Eftersom SR-FEM är baserad 
på grundläggande statistiska lagar har man per automatik tillgång till etablerade 
verktyg för feluppskattning. Detta kan detta t.ex. utnyttjas genom att beräkningar 
avslutas vid en viss uppnådd noggrannhet.

Nyckelord:

FEM, stationary random, turbulent boundary layer. sound transmission, Monte Carlo Method, sampling, random 
response, dynamic response, frequency response, FRF

3



FOI-R-3027-SE

Summary

A method called ’Semi Random Finite Element Method' (SR-FEM) have been 
developed by FOI. The aim with the SR-FEM has been to extend the capability of 
classical finite element approaches for responses from stationary random excitations. 
The following report describe this method , which is summarized in a conference 
paper, AIAA 2010-3952, given at the ” 16th AIAA/CEAS Aeroacoustics Conference”, 
Stockholm 7-9th of June 2010.

Finite element (FE) based methods have previously been found quite limited 
concerning upper model size for computation of structural response and sound 
transmission from stationary random loads, such as from a turbulent boundary layer. It 
is well known that when solving a dynamic response problem for deterministic loads, 
introducing a modal base, the eigenvalue solution is by far the most CPU-time 
consuming part of the solution process. For a stationary random excitation though, in 
contrary, the matrix multiplications, following upon the modal base establishment, 
becomes significantly more costly than the eigenvalue solution. This is when applying 
a classic modal-FE approach. With the presented SR-FEM instead the CPU-time for 
this complete set of matrix multiplications tends to be of the same order as the CPU- 
time for the eigenvalue solution. With this follows that the upper limit in model size 
could be moved considerably upwards. This enables response studies for example of 
complete aircraft cabin sections in the frequency range of some kHz, which 
corresponds to the needs for a typical turbulent boundary layer excitation.

SR-FEM is based on a random sampling among elements within the system matrices 
established for the computation of structural- or sound transmission response, and is 
general in the sense that any distributed stationary random load might be applied. The 
method limits the frequency resolution in relation to a classic FE-solution. In order to 
achieve a significant CPU-time gain, and at the same time a “sufficient” accuracy, one 
should typically stay to third octave band representations of the response. In other 
words, a frequency resolution which can be considered as sufficient in most 
applications. Since SR-FEM is based on fundamental laws of statistics, means for error 
estimates is automatically at hand. These error estimates might be used when applying 
termination criteria for computations. The examples given show an accuracy of around 

1 dB per 1/3-octave band compared with a full “classic” modal/FE-approach.

Keywords:

FEM. stationary random, turbulent boundary layer, sound transmission, Monte Carlo Method, sampling, random 
response, dynamic response, frequency response, FRF
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Abbreviations

CFD Computerised Fluid Dynamics
dof degrees of freedom
FEM Finite Element Method
SEA Statistical Energy Analysis
SR-FEM Semi Random FEM
TBL Turbulent Boundary Layer

Denotations

Aj, Ak areas of finite element j,k
CS Cross Spectrum
dNR correction factor for finite population of FE:s
f force vector
H transfer function matrix
Im confidence interval
Iz sound intensity in direction normal to surface
k wavenumber in air
K stiffness matrix
me mean value
M panel mass
M mass matrix
NlooP Number of outer loop iterations in SR-FEM
NOPExact Number of Operations with a standard Modal/FE approach
p sound pressure
P sound power
r space vector to field point in air
r0 space vector to field point on a vibrating surface
So surface of vibrating area
Spp pressure cross-spectrum
Sff force cross-spectrum
SVjk plate velocity cross-spectrum
ta/2 t-distribution
TP
t/c
U
Z
®pp 
rjk

n
CO 
co„
Vn 
<Pn
Q
P

normalised transmitted soundpower
convection velocity
displacement vector
vector of modal displacements
pressure autospectrum
pressure CS between midpoints of finite element (exteriör surface) j and k
spatial separation in 1- and 2-dir.
structural damping factor
frequency in radians per second
eigen frequency in rad. per second
eigenvector n
mass normalised eigenvector n
modal receptance matrix
air density
1/3-octave level sample standard deviation
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1 Introduction

Good interiör cabin noise comfort is a central design goal for modern aircraft. Effective 
noise reduction on today turbofan engines, a development mainly driven by dcmands 
on lower external noise around airports, has improved this comfort substantially. 
Typically, noise in the cockpit and first half of the cabin in newer aircraft, is dominated 
by turbulent boundary laycr (TBL) noise. Though, in the design process of aircraft 
cabin wall sections, the TBL noise task has been lacking reliable and efficient tools for: 
1) modelling of the TBL wall pressure excitation and 2) the transmission of sound into 
the cabin.

In this study a method that considers point 2) is proposed, e.g. a method that constitutes 
a reliable and efficient way to estimate a structural and acoustic response from a given 
distributed stationary random excitation. This might at a first glance seem as a kind of 
case which should be possible to solve with standard finite element methods (FEM). 
This impression is in fact partly true, but only if one look at examples which are very 
limited in size. The difficulties appear first when one apply these methods to problems 
of realistic size, let us say a frame section of an aircraft, and find that even super- 
computers would have problems. This would be the situation both for a mode-based 
and a direct solution approach. In contrary to modal/FE Solutions of problems with 
deterministic loads, where the eigenvalue solution is the most costly part (in terms of 
CPU-time or number of operations), the steps following the eigenvalue analysis is by 
far the most costly part for random excitation problems with distributed loads. The 
proposed way around this obstacle of long CPU times and limiting upper model size, is 
to establish a small subset set of degrees of freedom (dof) through a random sampling 
among all the (physical) dof’s of the panel wall surface. Then letting this limited set of 
dof’s be the only ones involved in the computations towards the solution. Different 
such small sets, which are capable to produce a result with a controlled accuracy, are 
then run several times. This could be done within a much shorter CPU-time than 
running the complete set of dof’s once. The accuracy, relatively this complete set 
“exact solution", depends on both chosen computational and presentation frequency 
bandwidth. It can typically be of the order of ldB in 1/3-octave bands for a solution 
that is reached in 1/50 of the lime to compute the complete FE model solution.
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2 Background

Within ENABLE detailed measurements were carried out on TBL pressure cross- 
spectra, as well as related vibration response, on a small size panel. Theoretical work in 
this project focused mainly on two tasks, updating of (at that time) existing models for 
TBL cross-spectrum and find approaches to circumvent the Computer capacity 
problems related to a direct FE solution of the TBL-noise transmission. Some progress 
was made regarding characterisation of the TBL pressure fluctuation, but the major 
step forward were found in the transmission prediction methods. (With results at hand 
one could State that introducing CFD methods, which it was no room for within 
ENABLE, would most probably have been beneficial for the further development of 
TBL pressure models. With the resent strong development of CFD, this is even more 
emphasized today).

Given specific or more general TBL pressure models, different approaches for the 
noise transmission were studied in ENABLE. SEA, FEM and different variants of 
FEM, among them: spectral finite elements and randomised FEM. This paper 
concentrates on a method of the last type, in the following called SR-FEM, where SR 
denotes Semi-Random.

The simulation of TBL induced cabin noise remains important, perhaps even more 
today than before, due to the increasing use of composite materials in aircraft, for 
which engineers and designers do not have the same experience as for standard 
aluminium structures.

8
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3 The TBL excitation

A turbulent boundary flow can be characterised as a principal motion, U|, outside a 
structural boundary, upon which a random velocity vector, [ui, u2, u3], random in 
direction and size, is added. Due to the fluid viscosity there is no relative motion 
between the fluid and the structure at the intcrmediate surface. When going outwards 
from the structural surface the relative velocity goes continuously from zero until it 
reaches the free stream velocity, (7». The boundary layer thickness, ö, is usually 
defined as the distance outside the wall where the flow velocity, (7,(x3), reaches
0.99(7» , i.e. Ui(x3=b) = 0.99(7». This region, with the strong mean velocity gradient 
outside the surface, is called the boundary layer. The flow induced pressures within the 
TBL causes vibrations in the structural boundary surface, which in tum radiates sound 
on both sides. For the sound radiated on the side opposite to the TBL, sound pressure 
spectra Spp(rw, r) in Figure 1, we can speak of TBL sound transmission.

Figure 1. Schematic view of a TBL with some parameters noted together 
with the sound radiation on the inside of a panel.

In this paper the wall pressure CS, induced by the TBL, is described with 
the Corcos model [2], By curve fit from measured spatial correlation 
between wall pressures Corcos got the following expression for the pressure 
spectral density in a spatially homogenous TBL:

(1)

where: 0/;/) pressure auto spectrum
£1. spatial separation in 1- and 2-direction, fr = X]k- Xjj, £2 = x2k- x2j 

(1 denotes flow-direction and 2 cross-flow direction ,
j, k represents wall points j and k respectively) 

(7C convection velocity (characterises the translational speed of the 
main structures of the turbulence, i.e. the velocity for which the 
velocity distribution of the turbulence peaks)

»1, Oh constants or ru-dependent functions related to the spatial 
correlation of he wall pressure spectrum

Several modified variants of this, or other more fundamentally different TBL pressure 
models can be found in the literature. In the FE/Modal approach outlined in the 
following, and behind presented results, the Corcos model given in equation (1) has 
been applied. However, the proposed approach is not limited to the Corcos model, it 
could easily be replaced by practically any other TBL pressure CS model. For example 
modifications of equation (1) to non homogenous TBL:s or 2-point cross-spectra 
established directly from CFD analysis.
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4 The TBL response

4.1 Direct FE approach

The starting point here is the assumption that for a discrete structural model the 
dynamic displacement response of a structure exposed to a deterministic load can be 
expressed as:

u(co) = H(co)f (co) (2)
where: u(to) is the Nxl displacement response vector 

given by the finite fourier transform of u(t)
f(co) is the Nxl force vector, finite fourier transform of f(t)
H(to) is the NxN transfer function matrix
N is the number of discrete excitation/response variables

of
(could in the case of a FE model correspond to the number 

nodal degrees of freedom)

By employing the relationships between the spectral density function of a stationary 
random process and the finite fourier transform of this, the displacement response 
cross-spectral density matrix can be set up outgoing from equation (2) according to [3]

(I) assume the force cross-spectrum matrix to be given as:

(3)

(II) the displacement response cross-spectrum and the force cross-spectrum between 
degrees of freedom j and k, can be written:

(4)

5 fjh (co) = c e[// co )f*( co)] (5)

respectively.

where: E denotes an ensemble average over time records 
* complex conjugate and
c implies a finite time record of length T such as:

cE[ f( co )g*( co)] = 1 E[f(co, T )g*( co,T)]

(III) taking the complex conjugate transpose of (2) and post-multiply (2) with this 
gives: 

u( co )uH( co ) = H( co )f( co )fH (co )HW( co) (6)

where H denotes complex conjugate transpose (Hermitian transpose)
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(IV) taking the expected valuc of both sides in eq.(6):

(^)ce[u( a> )u" (ry)] = H( tu )cE[f( ty )fH( co )]hw( ty)

shows then that the displacement response cross-spectrum matrix may be written:

S„„(ty)=H(ty)S#('ty)H(ty/ (8)

The transfer function matriees in equation (8) could in principle be derived from a 
direct FE analysis. As this is a very costly process (see table 1) instead a FE/modal 
approach will be chosen later.

4.2 Force cross-spectrum matrix

The force CS-matrix (3) can be reached by applying Corcos (1) or some other 
expression for the TBL pressure CS.. For the sake of computational cost the 
simplifying alternative of finite element midpoint based force CS matrix , SIT, was 
chosen in this work. (instead of consistent node related force CS matrix by applying the 
finite element shape funetions). The matrix terms might then be written: 

where: Aj, Ak
(9)

areas of finite element j,k
TBL pressure CS between midpoints of finite element j and k

The size of Sff becomes then NExNE, where NE = number of TBL exeited finite 
elements.

4.3 Modal approach

The transfer function matrix (or frequency response function matrix, FRF-matrix), 
H((o) introduced in expression (2), can be reached by an inversion of the dynamic 
system matrix, given by the cquations of motion for a discretisized strueture:

((1 + irj )K - cy2M )u( a>) = f( a>) (10)

(11)H( m ) = ((1 + iij )K - <y2M ) 1

where: K is the system stiffness matrix and M the mass matrix, both with 
the size NdofxNdof, Ndof = number of degrees of freedom 
q is the struetural damping faetor
co frequency in radians per second

The inversion in (11), or equivalently the solution of (10) with Ndof right side f-vectors 
forming a NdofxNdof diagonal unitary matrix, needs the order of wNdof2 operations (w = 
bandwidth) at each studied frequency. An alternative to this direct method is the modal 
method. In this latter case a modal base is ereated by the solution of the reduced 
eigenproblcm without damping [4]:
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(K-cy„2M)v|/„ =0 (12)

To each eigenfrequency, co„, is related an eigenvector, \|/n, n =l,2...Ndof. The complete 
set of eigenvectors (or modes) compose the full NdofxNdof modal matrix: T, with the 
modes as column vectors. These eigenvectors are orthogonal with respect to K and M- 
matrices, i.e.

— 0 and t|/^Mi|/zzz = 0 whenn^m (13)

The amplitude of the modes arising from (12) is arbitrary. A common way of scaling 
the eigenmodes is a mass normalization, i.e.

^M^=l then ^(Pn=CO2n (14)

These mass normalized modes sets up the NdofxNM modal matrix where the number 
of included modes: NM < Ndof and typically NM « Ndof after the choosen truncation.

and <DK<I> =
0

0
(15)

Due to the orthogonallity of the modal base the displacement vector, u(to), can be 
expressed as:

u(co) = 4>z(to) (16)
where: <I> is the truncated modal matrix 

z is a NMxl vector of modal displacements 
(also called: mode amplitude or 
generalized coordinates or normal coordinates)

Insertion of (16) in (10) and premultiplication with O1 gives:

((1 + z'7 - ty2<I>rM<I> )z(cd) = cd) (17)

and when inserting (15):

(\+irj )cd2-cd2

0

0

(l + zZ7)ty2M
z( CD) = <J>rf( CD ) (18)

Equation (18) express NM uncoupled equations of motion that can be inverted directly:

l( cd) =
(1+z/y )(tf-CD2

0

£1( CD )

0

(1 + ij))cd2Nm

(-1)

^>Tf(CD) (21)

and yielding, with equation (2) and (16), <I>z( cd ) = H( CD )f( co), where the transfer 
function matrix (or receptance matrix), H(co), can be identified as:
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H( co) = <DQ( CO )<!>' (22)

or alternatively, component wise as a summation:

Hjk(w) =
nm
z

(1 + in )<o2 - CO2
(23)

The diagonal matrix Q(ö>) in eq. (21) and (22) might be called the modal receptance 
matrix.

We can now tum to a stationary random excitation. By applying (22) in expression (8), 
the displacement response CS matrix from modal superposition gets:

S„„( ®) = H(co )S ff (co )H( co )H = <I>fl( co )<t>TS{f( co)(<D£2( co )<&' )" =

= S 0>r (24>
modal force CS matrix

or the displacement response CS terms between nodes (or elements) j, k as a 
summation:

Ndof doi

r=l v=l

_Vyyy_________ ______________________ 5 (25)
Zf “f((1 + bl )co; -co2 )((1- irj )co2m - co2 ) f'/r

The modal force matrix is identified in (24) as:

Sfmfn((D) = ^rSff(co)^ (26)

Equation (24) has been applied in this work to reach a panel TBL response.

4.4 Sound transmission

The sound transmission through a TBL exeited panel has in the following been 
simplified by the expression for sound radiation from a vibrating baffled planar source 
into free space. This makes it possible to apply the Reighley’s integral formula which 
is a special case of Helmolz integral equation. While staying to finite element midpoint 
variables the diseretisation of Reyleigh’s formula becomes quite simple and effeetive 
regarding computational cost. The analysis has been assumed to be uncoupled in the 
sense that the air load and radiation will not influence the panel vibrations.

The Rcighley’s integral formula for a planar sound radiator [5]:

p( r,co) = ^~ Pj------- rv,( r0,co)dS0
l lr"ro|

(27)

where: p(r,ry) sound pressure in an air point
r space vector to field point in air
r0 space vector to field point on vibrating surface

13
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So surface of vibrating area
vz surface velocity normal to panel
k wavenumber in air
p air density

In the following the TBL sound transmission will be dealt with by means of the sound 
power radiated from the panel (face opposite to the TBL).

Sound intensity, mcan value in z-direction (normal to plate), Iz(r), [14]:

(28)

alternatively, in the frequency plane (with notations introduced above):

7. (r, <y) = c£/7?e{p(r,ry)v* (r, co)}] = (r, ry)} (29)

where: Spv (r,ry) = pressure velocity CS in space point r

apply Rayleigh’s formula,(27), in (29) to express the surface intensity:

C
(30)

The sound power radiated from a baffled plate, P(a>), may then be written:

where: So = plate surface
S'rro = plate velocity CS (where also r is on the plate surface) 
Re{} denotes real part

0

|r“ro

p((y)= f/;(r,<y)JS = /(30)/ = Re- 
s

2/r c c

W r r 

ssa

HcosIk r - r() ) r v / \1 
---- i—!1—- Imp \G))fiSodS vanish since the argument is anti- 

s sQ lr - ro|
symmetric)

14
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Or alternatively in the discrete case, as a summation over finite element midpoints:

where: k = wave number (in air)
Ne = total number of finite elements
j, k = finite element indices (related to S and So respectively) 
Aj, Ak = finite element areas
S'k ((0) = plate velocity cross-spectrum between FE number n and m 

p = air density

Diagonal (singularity) - terms has to be treated separately in the discrete case as seen in 
(32). All presented results are given by equation (32), with Sjk(CO) from (24).

4.5 Normalised transmitted sound power

Presented results from analyses of transmitted sound power, TP(co), are in the 
following normalised regarding to the TBL pressure auto spectrum like:

TP( (o) =
comP( a))

Ar,,P(

where: P radiated sound power, see eq.(32) 
rpp pressure auto spectrum, see eq.( 1) 
m is the panel mass/area (=ph)
A is the panel area

By applying this normalisation narrow band and wide band results can be compared 
against the same y-axis level and we can leave out the question of TBL pressure auto 
spectrum model.

(33)
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5 Needed number of operations

5.1 Straight forward approach

With the chosen basic equalions stated above we may take a look at the computational 
cosl in order to reach the transmitted sound power from a TBL. The computational cost 
is given in Table 1 below in terms of the needed number of operations in each 
calculation step, for the direct FE and the FE/Modal approach respectively. The 
number of operations given represents the clearly dominating part of the cost. For steps 
3 and 6, force CS and transmitted sound power: ‘one operation’ involves some function 
evaluations while for other steps ‘one operation’ = one multiplication + one addition.

w = half bandwidth (bandwidth=2w+1)
Ne = number of finite elements
Nm = number of included modes

Table 1. Needed number of operations in FE-based TBL response analysis

ANALYSIS
STEP

Eq.no. NUMBER OF OPERATIONS

Direct FE Modal DIRECT FE FE/MODAL

1. Eigenvalue
Analysis

- - (not needed) w2NdOf+80wNdofNM 
+84NdofNM2

Creation of: below: at each frequency step

2. FRF-matrix, H(o>) 11 (22) w2Ndof
+ wNdof2

(H(co) creation implicit 
in step 4+5)

From step 3 and on: finite element n 
a

lidpoint based variables and expressions 
pplied

3. Force CS matrix 9 9 Ne2 Ne2

4. Modal force
CS matrix

- 26 (not needed) nmne2+nm2ne

5. Panel CS-resp. 
matrix

8 24 2Ne3 NmNe2 +Nm2(Ne+2)

6. Radiated
Power

32 32 Ne2 Ne2

Where: Ndof = number of degrees of freedom

The cost for the eigenvalue solver is taken from [6] and is valid for a blocked Lanzos 
algorithm. This number can be slightly differenl depending on codc and input 
parameters but is believed to give a good estimate in this context. Comparing the given 
cost for the eigenvalue analysis, which has to be carried out only once, with the cost for 
FRF-matrix inversion in the Direct FE approach (step 2) shows that the costs are about 
the same order. The FRF-matrix inversion though has to be made at each frequency 
step. In a typical TBL analysis one would have to cover hundred or thousands 
frequencies, which would of course make step 2 much more costly. Looking furthcr 
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down in the calculation process we find that step 5, for the Direct FE approach, might 
be even more costly than step 2 (depending on bandwidth and order of FE-elements) 
with 2NE3 operations. In the case of a Modal approach these most costly steps becomes 
significantly reduced while we can expect: NM « NE . The most important conclusions 
from Table 1 are:

A Modal/FE approach can be expected to be by far more effective than a direct FE 
approach in terms of computational cost.

The limiting steps towards a prediction of TBL induced transmitted sound power 
with a Modal/FE approach can be expected to be the creations of modal force CS 
matrix and panel response CS matrix respectively.

Both these two steps have to be focused on when searching for better 
computational efficiency in the FE/Modal approach.

5.2 Standard ways to reduce the number of 

operations in a Modal/FE approach

One usual way to reduce the computational cost is to assume that modal cross terms in 
(24, 25) can be excluded for lightly damped systems. Equation (25) then goes to: 

(34)

Instead of a NM x NM sized modal force CS matrix (eq.26) we now get a NM x 1 modal 
force CS vector. The gain in computational cost related to the introduced simplification 
is rather small though, since the dominating NMNE2 operations for the <X>Sfl 
multiplication is needed whether modal cross-terms are included or not. The needed 
number of operations for step 4 and 5 in Table 1 reduces only from NMNE2+NM2NE 
(+2Nm2) to NmNe2 +NmNe (+2Nm) when excluding modal cross terms.
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6 Basic principles and implementationof 

the Semi-Random FE/Modal approach

Knowing that the matrix multiplications following the eigenvaluanalysis represents the 
“bottle neck” in the path from a FE/Modal model to a transmitted sound power 
prediction, these steps where examined with the aim to find more cost effective 
techniques. An approach found to be cost effective, and at the same time capable to 
produce results with sufficient and controllable accuracy, is outlined in the following. 
The approach is herein called Semi-Random FEM approach or SR-FEM. The 
fundamental characteristics of this approach are:

a. Only a limited subset of all the finite element field variables composing the FE- 
model are involved in the summations (matrix multiplications) following the 
eigenvalue analysis

b. A new subset offield variables are created at eachfrequency of the analysis by a 
random sampling among the full set of(TBL excited/radiating) finite elements

c. The accuracy is poor (for a relatively low number ofsampled elements) at each 
specific frequency, but after summation into 1/3-octave bands the accuracy can be 
kept around IdB within each band, dependent of underlying frequency 
discretisation and material damping.

d. The CPU time gain, compared with “full ” matrix multiplications, could be several 
hundred times and possibly more ifan accuracy of ca 1.5dB is found acceptable

e. Based on basic probability theory well established means for error estimation can 
be applied

The procedure with the SR approach is in short as follows:

At each frequency:

(1) Two independent random vectors of finite element numbers, ai and b| are 
generated. The length of vectors a, and bj is NR, NR«NE (finite element 
midpoint related variables assumed). An advantage is reached here if finite 
element numbers are sampled without replacement.

(2) Then, when creating the modal force CS (eq.26), instead of the full 
representation of the TBL force CS matrix (eq.9) and the modal base matrix 
(eq.15,16), corresponding reduced size matrices, and defined by the 
finite element sets a, and b, are applied. I.e. two independent modal base 
matrices reduced from size NE NM to NR-NM, and a force CS matrix reduced 
from Ne-Ne to NR-NR. After a scaling related to the reduced number of 
summation terms, we now get an approximate to the modal force CS matrix,

(3) In the next step, two new independent random NR-vectors of finite element 
numbers, a2 and b2, are generated. These two vectors are used to constitute two 
new reduced modal base matrices. These two matrices gives now the 
approximate panel response CS, together with the modal receptance matrix, 
Q(to), and the approximated modal force CS matrix Sf ( (O) the same way 
as seen in equation 24 for the “Exact” or full matrix approach. The

18



FOI-R-3027-SE

approximate panel response CS matrix, S^(/(G)), becomes reduced in size, 

Nr-Nr instead of the full NE-NE size.

(4) This reduced size panel response CS matrix is then applied to form the 
approximate sound power radiation from the panel for the frequency of 
concern. See equation (32). Also here a scaling related to the reduced number 
of summation terms is needed.

After frequency loop:

(5) These narrow band estimates of sound power are summed into 1/3-octave band 
levels. By using new mutually independent a,, bE a2, and b2 vectors at each 
frequency, in steps (2)-(4), we also get estimates of radiated sound power 
independent between frequencies.

(6) The steps outlined above are then looped a number of times (Nump) in order to 
get final 1/3-octave mean value estimates, plus an estimation of the variance of 
these mean values.

The reasons to why these reduced matrices could give a “good enough” approximation 
of the searched response are believed to be:

Matrix multiplications are equivalent to specific summations

These (full) summations can be regarded as a calculation of the arithmetic mean 
value times the number of terms squared, for example the modal force CS terms 
from equation (26):

(35)
where rnmn denotes the arithmetic mean of the individual m,n terms

When one randomly pick a subset of terms from a population and sum those 
together, this is equivalent to calculate the estimated mean value of the full 
population and multiply this with the number of random terms squared,

(36)

where m^n is the estimated mean of the individual m,n terms

All summations, i.e. those in step 3 to 6 in table 1 and the summation into 1/3- 
octave bands, constitutes summations of equally distributed random variables 
which in each step produces a gauss distributed sum (Central limit theorem [8])
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7 Needed number of operations 

with the SR-FEM

We may recall the needed number of operations for a standard FE/modal approach, 
when going from a TBL CS to interiör sound pressure, approximating this number with 
the dominating step 4 and 5 (and calling this number “NOPExact”):

NOPExact« 2(NMNE2 +Nm2Ne) (37)

From the outline of the SR-FEM approach we get an approximated needed number of 
operations as for the SR-FEM approach:

NOPsr ~ 2Nloop(NmNr' +Nm“Nr) (38)

e.g. a strong reduction if NR«NE and NloOP could be kept small enough.

It should be noted that these numbers holds for the same number of frequencies 
computed. And further, that the cost for setting up the modal base (the eigenvalue 
solution) has to be carried out in both cases (+ that this number has to be added to (37) 
or (38) in order to get an estimate of the total number of operations).
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8 Test case

A straight forward FE/modal as well as a SR-FEM analysis was run.on a test case with 
the following inputs

Table 2. Input data for panel and TBL

Panel data: TBL (Corcos model data):
Length: 0.768 m 0.116
Width: 0.328 m a2: 0.7
Thickness: 1.6 mm U~: 120 and 240 m/s
Youngs modulus: 7.0E10Pa Uc- 0.8 U„
v: 0.33 Pair 1.2 kg/m3
Paf 2700 kg/m3 c: 340 m/s
r|,r|(co)=constant: 0.02 (pair and c the same on each side of panel)

Modal panel model:__________________
Number of included modes: 97
Number of finite elements: 1344
Upper frequency limit:2000 Hz
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9 Results

In Figure 2 results of normalised transmitted sound power for the given test example 
are shown, both for the standard modal/FE (called “Exact” in Figure 2) and for the SR- 
FEM approach (called “Random” in Figure 2). The number of sampled finite elements, 
Nr, was in this case 304 (out of 1344 elements in total)

Normalised emitted Sound Power of TBL excited plate. 56x24 FE-model. U =115m/s . q=0.02.

Figure 2. Example of narrowband results of transmitted sound power for 
standard and SR-FEM method
comment: Nstr denotes a kind of grouping of samples, stratified 
sampling, in this case into 8 sections of the panel

As seen in Figure 2 the SR-FEM results shows a noise-like bchaviour around the 
“exact” results. By going to wide-band results, in this case 1/3-octave bands, outgoing 
from these narrowband results we get the results shown in Figure 3 below:
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Normalised TBL Sound Power Transmission IL = 115 m/s, t)=0.02

Figure 3. Ex.1 of 1/3 octave band results of transmitted sound power 
for standard and SR-FEM method

In the l/3-octave band results we see that SR-FEM (blue line bars) approximates 
standard modal/FE (called “exact” and denoted with a black “x” in Figure 3) quite 
well. Together with estimated levels are also confidence levels estimated. Upper and 
lower levels of 95% confidence intervals are shown as red “+”-signs. In this case we 
see that all l/3-octave SR-FEM eslimates are found within these confidence intervals. 
Further the maximum bias found in any band 0.6 dB, maximum 95% confidence 
interval + 1.2/-1.8 dB and a mean 95% confidence interval found as +0.7/-0.8 dB. We 
may also note that the variation along frequency axis is found quite even, which means 
that a equidistant frequency discretisation is appropriate.

For the same case, but with a higher structural damping , T|=0.10, the variation reduces 
and we get:

Max bias=0.2 dB, maximum 95% confidence interval=+0.7/-0.9, and the mean 95% 
confidence interval to be +0.5/-0.5 dB. See Figure 4 below.

In order to get final l/3 octave levels and variance estimates of these, the complete 
frequency loop is as mcntioned earlier gone through a number of times (Nlx)op). 
Confidence intervals , Im, for achieved l/3 octave levels are then given as, [8]:

4 = (me-ta/2(v)D,mc +ta/2(v)D) (39)

where:
me is the estimated I/3 octave mean
/a/2 (v) is the t-distribution for v (i.e. a = 0.025 for 95% confidence level)
v = NLoop-1, number of samples-1 or degrees of freedom for the t-distribution 
D = d.Nf0e /, with = 1/3-octave level sample standard deviation

dNg =J(Ne-Nr )/(Ne-\) , correction factor for finite population of FE:s

Confidence intervals in decibels are then defined by: I, = \ 0log( Im /me ) (40)
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It could be emphasized here that error estimates given by (39), and exemplified in 
Figure 3 and 4, where found to agree well with expected error bounds. I.e., seen over a 
larger set of runs, for the 95% confidence interval case, 95% of the “exact” FE 1/3- 
octave band levels tend to be found within these bounds and 5% outside. These results 
are not presented in any more detail in this paper, but from the two sample results 
given in Figure 3 and 4 we see that: 1 out of in total 34 individual 95% confidence 
intervals happens to not include the “exact” FE result (80 Hz 1/3-octave in Figure 3). 
That is slightly better than the expected 1 out of 20 result that we would get in the long 
run.

Normalised TBL Sound Power Transmission lh = 115 m/s, r|=0.10

Figure 4. Ex.2 of 1/3 octave band results of transmitted sound power 
for standard and SR-FEM method
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10 CPU-time gain with SRD

The actual CPU-times reached on the used platform for differenl discretisations of the 
previously described panel (see Table 2) are showed in Figure 5. Il is important to note 
here that the accuracy of the SR-FEM is ca 1.5 dB within 1/3-octave bands compared 
with the “Exact” approach. And that this accuracy is defined as the maximum upper 
95% confidence limit found among 1/3-octaves. The eigenvalue analyses were carried 
out with NASTRAN [9]. In the figure ‘circle’ denotes CPU-time when applying 20- 
node quadratic solid finite elements, HEX20. And ‘square" denotes CPU-time for 4- 
node linear shell elements, QUAD4 (all previously shown spectra are reached with 
HEX20 elements). As seen in Figure 5 matrix multiplications/summations with SR- 
FEM (remember 1.5 dB accuracy) becomes less costly than the eigenvalue solution 
even when QUAD4-elements are applied. In the studied 4 kHz case the CPU-time gain 
for the complete path, eigenvalue analysis (QUAD4) + matrix 
multiplications/summations, is found to be around 50 times with SR-FEM approach 
compared with the “Exad” modal/FEM approach. The number of frequencies 
originally computed for both the “Exact" and SR-FEM are the same for each of the 
three panel models.

CPU time consumption for calc. of TBL induced emmited Sound power spectrum
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Figure 5. Comparison of CPU-times for standard and SR-FEM method

Further, in Figure 5 we could see that CPU-times for the SR-FEM solution part seem to 
follow the eigenvalue solution CPU-times with inereasing model size. For the two 
studied cases, 1344 FE’s/frnax=2kHz and 5376 FE’s/fmax=4kHz respectively, we find an 
inerease in CPU-time with around a faetor of 5 between eigenvalue solution and the 
SR-FEM step. This could be compared with the very strong CPU-time inerease of the 
‘Exact’ modal FEM with model size/upper frequency limit.
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11 Conclusions

A way to significantly reduce the computational effort for finite element based 
prediction of TBL induced sound transmission is presented. The, herein called, SR- 
FEM approach shows in given examples CPU time gains of the order of 50 times 
compared with a straight forward finite element midpoint modal approach for results 
presented in l/3-octaves.

The proposed method is based on fundamental probability theory, which brings about 
well defined means for error estimation. The SR-FEM accuracy, versus standard 
modal/FEM, is in the presented cases ca 1.5 dB within in 1/3-octave bands. A higher 
material damping, or other energy dissipation effect leading to less pronounced 
resonance peaks, gives a higher accuracy - or a possibility to smaller computational 
effort. Further, by choosing a wider presentation frequency bandwidth, e.g.. octave 
bands, gives a higher accuracy (or lower CPU-time with the same accuracy).

In contrary to a standard modal/FEM approach, where the computational effort 
following upon the eigenvalue analysis is by far the most costly part, the SR-FEM 
approach turns these two computational blocks to be about the same order of size in 
terms of CPU-time. This means that the question:

“Would a TBL sound transmission study on a large structure/FE-model at hand be 
affordable, regarding Computer time and memory?”

relay solely on weather the initial eigenvalue solution is reachable or not. If an 
eigenvalue solution is affordable, the Computer resources will also be sufficient for a 
stationary random TBL response analysis (typically in 1/3 octave bands with a 
quantified and limited error bound).
Thus we have completely new situation regarding upper limit in model size, as well as 
in judging this limit, thanks to the SR-FEM.

A logarithmic bandwidth, such as for the studied plate case, is found appropriate in 
order to give an even accuracy along the frequency axis. This is achieved while the 
number of sampled elements is kept constant across all frequencies. For other 
structures or cases, with a different distribution of resonances a frequency dependent 
sampling might be advantageous.

The SR-FEM approach could most probably also be applicable for other random 
excitations, such as diffuse sound fields. Even in these cases it is expected to give 
significant time gains compared with conventional FE/Modal methods, still with an 
error estimate based on fundamental statistics.
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