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Sammanfattning 
Rapporter om att nanomaterial kan ge upphov till negativa hälsoeffekter efterlyser mer 
systematiska studier och utveckling av nya referensmetoder för att bedöma relevanta 
egenskaper hos partiklarna och för att kunna fastställa lämpliga riktlinjer. Studier av 
upptag och cellulärt svar från nanopartiklar är viktiga och av praktiska och etiska skäl 
är relevanta in vitro-baserade analyser att föredra för en första screening. 

 

Konfokal Ramanspektroskopi är en inmärkningsfri teknik som här används för att 
studera nanopartikelexponerade lungepitelceller (A549). Tekniken ger kemiskt selektiv 
identifiering av biologiska och oorganiska föreningar med en spatial upplösning ned till 
~ 1 μm3 i levande celler. 

 

Vi rapporterar här om det cellulära svaret från titandioxid- (TiO2) och 
götitnanopartiklar (α-FeO(OH)) i A549 lungepitelceller som exponerats för partiklar 
under olika exponeringstider. Data har samlats in i flera områden av cellerna för att 
därmed skapa hyperspektrala bilder ur vilken information extraheras med hjälp av 
hyperspektral dataanalys. Möjligheten att skilja mellan molekylära vibrationer från 
DNA, proteiner och membran hos kontrollceller och partikelexponerade celler och 
kvantitativt klassificera det spektrala svaret genom hyperspektral multivariat 
dataanalys diskuteras. 

 

Nyckelord: Raman-mappning, Konfokal Ramanspektroskopi, Hyperspektral 
dataanalys, PLS-DA, Nanotoxikologi
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Summary 
Reports that new engineered nanomaterials may cause adverse health effects calls for 
more systematic studies and development of new reference methods to assess relevant 
properties and define appropriate guidelines. It is important to perform studies of 
cellular uptake and cellular response to nanoparticles. From practical and ethical 
viewpoints relevant in vitro based assays is preferable for initial screening purposes. 

 

Confocal Raman spectroscopy is a label-free technique which here is used to study 
nanoparticle exposed lung epithelial cells (A549). The technique provides chemically 
selective identification of biological and inorganic compounds and intracellular 
distributions in living cells down to ~1 µm3 spatial resolution. 

 

Here we report on cellular response to titanium dioxide (TiO2) and goethite (α-
FeO(OH)) nanoparticles in A549 cells subjected to varying times of exposures. Data is 
here collected in several parts of the cells thus forming a hyperspectral image from 
which information is extracted using hyperspectral data analysis. The possibility to 
discriminate between fundamental molecular vibrations originating from DNA, 
proteins and membranes on control cells and particle exposed cells and quantitatively 
classify the spectral response by hyperspectral multivariate data analysis is discussed.  

 

Keywords: Raman mapping, Confocal Raman spectroscopy, Hyperspectral data 
analysis, PLS-DA, Nanotoxicology 
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1 Introduction 
A popular definition of a nanoparticle is a particle with at least one dimension smaller than 
100 nm. Today it is possible to make nano-sized particles, with different shape and 
composition with great precision, which can be used in variety of applications, including 
biology and medicine. The reason why nanoparticles are so useful is the small size, which 
gives the particles unusual properties such as high surface area, modifications of surface 
structure, shape, solubility, aggregation and electronic properties, which is relevant in the 
present context (quantum effects). The small size is however not wholly positive, since the 
particles easily may be taken up by humans and penetrate into cells and give rise to 
adverse health effects (Nel et al. 2006, p.622). It is therefore urgent to investigate the 
toxicity of nanoparticles. This can be done in vivo, but for screening purposes and ethical 
reasons, complementary in vitro methods are desirable. In this report, the possibility to 
study the effects of nanoparticles on living cells using Raman microspectroscopy together 
with hyperspectral data analysis is investigated. In this study, human lung epithelial cells 
(A549) were exposed to nanoparticles and compared to control cells. We choose lung 
epithelial cells as model systems since they represent cells found in the alveolar system 
which is the main entry pathway of nanoparticles in humans.  

 

 
Figure 1 A hyperspectral image made up by 16 pixels. Each pixel contains a Raman spectrum. 

Raman microspectroscopy is a non-invasive technique, which can be used for 
measurements on living cells with a minimum of sample pre-treatment. With this 
technique one can measure several spots in a sample in two dimensions sequentially in one 
run to construct a Raman “map” 1 or a hyperspectral image (Figure 1), i.e. an image with 
spectral information from many wavelength bands in each pixel (Baena & Lendl, 2004, 
p.534-535). With confocal Raman microspectroscopy it is in addition possible to perform 
three-dimensional Raman mapping. The data matrix obtained from mapping is here 
unfolded to a two dimensional data matrix and the data is then analyzed multivariately by 
principal component analysis (PCA) and partial least squares discriminant analysis (PLS-
DA). Multivariate methods are useful when the data to be analyzed consists of large and 
complex data matrices, which may contain missing data, noise or multicollinear variables. 
(Eriksson et al. 2006, pp.23-25)  

 

Selected nanoparticles investigated in this project are titanium dioxide (TiO2) and goethite 
(α-FeO(OH)) (Figure 2). TiO2 has a wide range of application. It is primarily used as 
pigment in e.g. paints, cosmetics, sun screen, food, etc. TiO2 has for a long time been 
considered as toxicologically inert and has been used as negative control in both in vivo 
and in vitro studies (Hext et al. 2005. pp.461-462), but there are also studies which show 

                                                 
1 Sequential acquisition of spectra in different spatial location is usually called mapping to distinguish it from 

imaging, which is reserved for simultaneous acquisition of spectra in different spatial locations. The latter is 
typical done with Fourier-transform infrared spectroscopy (FTIR) and magnetic resonance (MRI) techniques.  
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that TiO2 nanoparticles also cause adverse health effects. Gurr et al. have shown that TiO2 
nanoparticles cause oxidative damage of DNA in human bronchial epithelial cells (2005. 
pp.66-73) and Oberdörster et al. have shown that nano-sized TiO2 causes lung 
inflammation in rats (1992, p.198). 

 

 
Figure 2 Goethite nanoparticles (left) and TiO2 nanoparticles (right). 

Goethite is an iron oxide mineral present in soil and sediments and it is also a component 
of rust (Manceau et al. 2000, p.3643; Suh et al. 2009, p.153). Toxicological studies have 
so far mostly been concentrated on iron oxides other than goethite. However, since the 
structure of goethite nanorods (Figure 2) resembles the structure of carbon nanotubes and 
the disreputable crocidolite in amphibole asbestos, goethite may, from morphological 
reasons, be a suspected candidate to give adverse effect on cells. There are several studies 
which show that carbon nanotubes are toxic. Casey et al. (2008, p.83) have shown carbon 
nanotubes to induce indirect cytotoxicity in A549 cells.  

1.1 Objective 
The hypothesis of this project is to investigate if it is possible to discriminate between 
Raman signals from control cells and nanoparticle exposed lung epithelial cells and 
possibly also be able to quantitatively classify the spectral response by hyperspectral 
multivariate data analysis. The project includes data collection, investigation of pre-
treatment techniques and multivariate analysis of the spectroscopic data. 
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2 Theory 

2.1 A549 lung cells 
A549 cells are a human type II alveolar epithelial cell line. Vibrational frequencies and 
peak assignments of Raman spectra from A549 cells are shown in Table 5, Appendix 1 
(Notingher et al. 2002, p.233). 

2.2 Confocal Raman microspectroscopy 
In Raman spectroscopy, monochromatic light, from a laser source, passes through a 
sample and the scattered radiation is analyzed. Most of the light is absorbed or passes 
through the sample unaffected. A small part of the light (≈1/1000) is scattered in all 
directions without changing the energy, E=hν0, of the light (Rayleigh radiation). A tiny 
fraction of this scattered light (≈1/1000 of the scattered or ≈1/106 of the total intensity) 
does however interact with the molecules in the sample. This changes the energy of the 
light such that ΔE=h(ν0±νi), corresponding to the vibrational energy levels i of the 
molecules. The photons can either lose some of their energy (Stokes radiation) or collect 
energy from already excited molecules (anti-Stokes radiation) (Figure 3). The laser 
frequency, used to irradiate the sample, ν0 can be in the UV, visible or infrared region, but 
the difference of the frequency of the irradiated light and the scatter light |ν0±νi | is an 
infrared (vibrational) frequency. Hence, Raman spectroscopy is a vibrational spectroscopy 
method and is sensitive to molecular vibrations. In the present study we employ either near 
infrared (λ=785 nm) or visible (λ=514 nm) laser light. To be Raman active, the molecules 
need to have a polarizability that changes because of rotations or vibrations in the 
molecule  (Atkins & de Paula, 2005, pp.481-504). The classical explanation of the Raman 
process is that the electric field of light influences the electric fields within the molecule 
i.e. induces a dipole in the molecule. This in turn changes the frequency of light. The 
induced dipole moment, μind, is proportional to the field strength: 

 

Ε= αμ ind      (1) 
 

where the constant α (units m3) is the polarizability of the molecule. Larger molecules 
typically have larger α, but depend on the specific bond that is excited. All molecules have 
non-zero polarizability even if they have no permanent dipole moment. For this reason, 
Raman scattering can measure the vibrational frequencies of molecules that will not 
absorb infrared light and is in this sense complementary to infrared spectroscopy. An 
advantage in biological studies is that water is a molecule that only gives a weak Raman 
signal and hence does not interfere with signals from other molecules (Pyrgiotakis et al. 
2009, p.1465). 

 

 
Figure 3 Raman (Stokes and anti-Stokes) and Rayleigh scattering. (Vanderkooi, 2006, p.5) 
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The Raman signal is however typically very weak and renders analysis of small amounts 
of absorbents difficult. The Raman signal is much improved if laser rejection filters, which 
filter the comparatively strong Rayleigh radiation, are used (McCreery, 2000, pp.1-9). This 
reduces contribution from notorious fluorescence in biological materials, which can be 
∼106 times stronger than the Raman signal. The Raman signal can be further increased if 
cooled multichannel detectors, for example charge coupled devices (CCD) are used, 
because they detect a range of wavelengths simultaneously, which reduces the run time 
and improves signal-to-noise (S/N).  

 

In this report, confocal Raman microspectroscopy is used (Figure 4). The Raman 
microspectroscope consists of a microscope connected to a Raman spectroscope. The laser 
is focused through the objective of the microscope and the scattered photons are then 
collected by the same objective. The light passes through a confocal hole on the way to a 
CCD detector (Figure 4). The confocal hole is an adjustable hole that separates light which 
is in focus from light that are outside the focal point (Baena & Lendl, 2004, p.535). A 
small hole gives a focused signal, which increases the resolution in the Z-direction (Horiba 
JobinYvon, HR800 User Manual, p.35). 

 

 
Figure 4 Schematic overview of a confocal Raman microspectroscope (modification of copyright 
material from Kaiser Optical Systems, 2009). 
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2.3 Data pre-treatment 
All data contain varying amounts of noise and there are often peaks hidden in the 
background. If the sample contains organic molecules, the background can be especially 
troublesome due to fluorescence (Zhang, Z-M et al. 2009, p.1). It is therefore necessary to 
pre-treat the data, for example smooth the spectrum and remove the background. Other 
necessary pre-treatments may be normalization or frequency calibration. Spectral shifts, so 
called alignment problems, can for example occur when the laser or the laser rejection 
filter is replaced, if the temperature is decreased or increased or when the laser is switched 
off (Witjes et al. 2000, pp.105-106; Swierenga et al. 1999, pp.3-4). Such shifts are small, 
but also small shifts can give misleading results in a multivariate data analysis and it is 
therefore important to correct for these spectral variations (Witjes et al. 2000, p.105-116). 
Normalization is necessary if there are fluctuations of the laser or a drift in the laser 
power. Fluctuations and drift often occur because of the sensitive optics and since the 
Raman signal is directly proportional to the laser power, intensity variations will be seen 
in spectra collected on different occasions. (Cooper, 2009, p.244) 

2.3.1 Background-correction 

Two different methods were tested: a baseline correction and the baselineWavelet-
algorithm implemented in R language by Zhang, Z-M et al. (2009). For baseline 
correction, a straight line is calculated between two user defined points, or the mean values 
between a number of user defined points. The spectrum is then projected to this line and 
brought to baseline. 

 

The baselineWavelet-algorithm detects the peaks by using continuous wavelet transform 
(CWT) with the Mexican hat wavelet as mother wavelet and estimates the peak widths 
using CWT with the Haar wavelet as mother wavelet. The background is subsequently 
fitted using penalized least squares with binary masks. The R-code is in Appendix 2. 

2.3.2 Normalization 

Normalization is a procedure where the intensity of the spectra is corrected, for example 
by dividing peaks by the intensity of an internal standard. Here is no internal standard used 
and there are no peaks that can be expected to have equal intensity in all measurements, so 
it is not possible to use a peak in the spectra for normalization. An alternative 
normalization procedure is vector normalization, where all vectors are divided by the 
Euclidian norm: 

 

|||| x
xx =normalized      (1) 

 

In vector normalization, all vectors are normalized to unit vector length, which means that 
all intensity variations between spectra are eliminated, but the original shape of each 
spectrum is kept. (Schmid et al. 2009, p.162). Since intensity differences may reflect 
concentration differences, the vector normalization may remove important spectral 
information. It is however considered necessary to vector normalize to eliminate all 
intensity differences from the fluctuating laser. This process has been applied on Raman 
spectroscopic data before by Schmid et al. (2009) and Zhang, L et al. (2005). Swierenga et 
al. (1999) concluded that vector normalization gives small prediction errors in PLS models 
if it is used together with Savitzky-Golay smoothing (pp.14-15).  
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2.3.3 Calibration 

The Raman microspectroscope was here regularly calibrated against the 520.7 cm-1-peak 
from Si. Small remaining spectral shifts were corrected by internal calibration against the 
peak at 322 cm-1, originating from the supporting CaF2 (see section 3). This was done by 
finding the maximum of a parabola fitted to eleven points around the peak maximum. All 
spectra were shifted accordingly. 

2.3.4 Savitzky-Golay smoothing 

Savitzky-Golay smoothing is a smoothing method, based on a least squares procedure. A 
number of points before and after the number to be smoothed (the Window size) are 
selected and the point is then fitted to a polynomial of a selected degree. In that way, the 
amplitude of the noise is reduced with minimal distortion of the peaks containing 
information (Savitzky & Golay, 1964, pp.1627-1639).  

2.4 Multivariate data analysis 
In large data sets, it can be of use to apply projection methods, a sort of multivariate data 
analysis, which aim to reduce the number of variables without loss of important 
information. There are many applications and the analysis can be applied to get an 
overview of data, as well as for classification or prediction purposes. In contrast to 
classical statistics, the variables do not need to be independent and the data may also 
contain noise or missing values. The data in multivariate data analysis is usually arranged 
in matrices, where each row corresponds to an observation (measurement) and each 
column corresponds to a variable. (Eriksson et al. 2006, pp.8-29) 

2.4.1 Hyperspectral data analysis 

In traditional spectroscopic measurements, where hyperspectral data analysis has been 
applied, such as near-infrared spectroscopy (NIR), the measurements have been performed 
on single spots. This method works as long as the sample is homogenous and the sample 
spot represents the whole sample.  Today, there are spectroscopic instruments that can 
record spectral information at different spatial locations on the sample, either 
simultaneously (imaging) or sequentially (mapping). These instruments can record several 
spots, or pixels, which thus make up a multispectral or hyperspectral image (Figure 1). 
The difference between multispectral and hyperspectral images is not clearly defined, but 
a multispectral image is an image with four or more wavelength channels and 
hyperspectral images contain usually 100 or more wavelength channels. (Burger, 2006, 
pp.1-4). 

 

In hyperspectral data analysis, the information from such images is unfolded to a large 
data matrix and multivariate methods as principal component analysis (PCA) or partial 
least squares discriminant analysis (PLS-DA) can be applied. Small spots of the whole 
sample are, in that way, analyzed at the same time. The method has especially big 
advantages when the sample is complex or inhomogeneous (Burger, 2006, pp.1-4). 
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2.4.2 Principal component analysis 

Principal component analysis is a multivariate method, which  can be applied to a data 
matrix, X, to get an overview of the data and to see groups or trends in data. PCA-models 
can also be used for classification. The data is projected to new variables, principal 
components, by decomposing the data according to: 

 

ETPX     ' +=      (2) 

 

Here, T is the score matrix, P is the loading matrix and E contains the residuals (Geladi et 
al, 1989, p.211). 

 

The columns in the score matrix are the principal components, of which the first is chosen 
to explain most of the variance in data and the following are orthogonal. (Eriksson et al. 
2006, pp.46-47) A picture of the projection onto the two first principal components is 
shown in Figure 5. The picture also shows the distance to the model, which is the standard 
deviation of the residual (Eriksson et al. 2006. p.385). A critical value, which corresponds 
to a higher value than 95% of the observations’ distance to model, is used to find outliers. 
If the PCA model is used for classification, observations below the critical value are 
considered as members of the class. 

 

 
Figure 5 Principal component analysis. The picture shows the plane made up by principal component 
1 (PC1) and principal component 2 (PC2) and the projection of observation (i) onto this plane. ti1 and 
ti2 are score values. 

The projection can be visualized in a score plot, in which the observations are plotted in 
the new coordinate system, based on the principal components. The loading matrix 
contains information about the variables and its loading vectors can be plotted in a similar 
way, to visualize groupings among the variables. (Eriksson et al. 2006, p.33) Some of the 
observations may deviate in the projection. Such outliers are identified in a score plot, 
which often is combined with an elliptical 95% confidence interval (Hotelling T2 ellipse) 
(Eriksson et al. 2006, p.391). 
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2.4.3 Partial least squares discriminant analysis 

Partial least squares projection to latent structures (PLS) is a multivariate method, which 
can be used when there is not only a data matrix X, but also a matrix Y that contains 
response variables. PLS-models are mainly of use for prediction and classification. 

 

The data is projected to new variables, score-vectors, which explain the main variation in 
data. Unlike PCA, these variables do not only describe the variation in X, but the variation 
in X and Y simultaneously. Y and X are decomposed as follows: 

 

ETPX    ' +=      (3) 

 

FTCY     ' +=      (4) 

 

E and F are residuals matrices, T is the score matrix, P is a loading matrix and C is a 
matrix containing the coefficients, the “weights”, in the model. The scores can also be 
regarded as a linear combination of the original variables with coefficients W: 

 

XWT   =      (5) 

 

(5) and (6) give the relationship: 

 

Y = XWC' + F     (7) 

 

WC’ is also referred to as PLS-regression coefficients (Wold et al. 2001, pp.109-115). 

 

PLS discriminant analysis (PLS-DA) is a special case of PLS, where Y contains dummy 
variables, which assign the observations to classes. (Eriksson et al. 2006. pp.181-182) 
Examples of dummy variables in our study are variables which give information about 
particle exposure: “Control cell”, “TiO2” and “Goethite”. In each variable, all observations 
are given discrete values, 1 or 0, depending on if the observation belongs to the class or 
not. Prediction cut off values are set for the classification. The lowest value was set to 0.5 
and the highest value was set to 1.5. These cut off values means that all observations in the 
interval -0.5 – 0.5 are classified as not belonging to the class and all observations in the 
interval 0.5 – 1.5 are classified as members to the class. Observations outside the limits are 
not classified i.e. unknown class. 
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PLS-DA models can be evaluated by cross validation, which means observations are 
excluded and predicted by the model. It is common to exclude all observations one by one, 
i.e. leave-one-out cross validation, but since it is a time-consuming procedure, 1/7 of the 
data, evenly spread in the data set, were here excluded each round. The differences 
between the real values and the values predicted by the model are summarized in the 
predicted residual error sum of squares (PRESS) and used to calculate Q2, which explains 
the predictive power of the model. (Eriksson et al. 2006. p.389) 

 
2)ˆ( YYPRESS ∑ −=     (8) 

 

∑= 2YSS      (9) 

 

SS
PRESSQ −

=
12     (10) 

 

Y is the observed value and Ŷ is the value predicted by the model.  

2.4.4 Pre-processing methods – mean centering and scaling to unit 
variance 

Mean centering means subtracting the mean value for each variable from all observations. 
After mean centering, the center of the data is moved to origin of coordinates (Eriksson et 
al. 2006, pp.45-46), which makes it easier to interpret multivariate models. The 
interpretation is unaffected. (Wold et al. 2001, p.113).  

 

Scaling to unit variance, UV-scaling, is a pre-processing method where all observations 
are divided by the standard deviations for each variable. The method can be regarded as a 
normalization procedure, where big differences in order of magnitude are removed and 
variables with high values are prevented from taking disproportionate significance in the 
model. This means for example that in a measurement from a complex sample, 
compounds with low concentrations and compounds with high concentrations will give 
equal contribution to the model after UV-scaling (Wiklund, 2007, p.37).  

2.4.5 Variable selection 

The W-matrix contains the weights for all variables. The uncertainty in the weights can be 
estimated by using the Jack-knifing procedure to calculate confidence intervals. The Jack-
knifed confidence intervals are calculated from the standard error from each loading, 
based on cross-validation, and from a statistical value corresponding to a 95% confidence 
interval. These Jack-knifed confidence intervals are in some cases large and include zero. 
Such variables do most likely not contribute to important information and can be excluded. 
(Wiklund et al, 2008, pp.118-119) 
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Figure 6 An alternative S-plot. Weights for PLS-model nucleus/cytoplasm, centered data on X-axis. 
Weights for PLS-model nucleus/cytoplasm, centered and UV-scaled data on Y-axis. Variables 
corresponding to the selected weights have been excluded. 

 

Spectra may also have peaks with especially high intensities. Such peaks may have high 
impact in the model, but do not necessarily contain important information. These peaks 
can be identified in an alternative S-plot, where the weights from a PLS model, based on 
centered data, are plotted against the weights from a PLS model, based on centered and 
UV-scaled data.  Variables that do not follow the ideal S-shape can often be excluded 
without loss of important information, which can be confirmed by high Jack-knifed 
confidence intervals. S-plots, where the covariance and correlation are combined in a 
scatter plot, have been used previously by Wiklund et al. (2008) for orthogonal PLS 
models. Wiklund et al. (2008) found that S-plots are useful in analysis of complex data, 
since they facilitate selection of variables that both have a high correlation and a low 
covariance, i.e. they are important in the model and do not origin from noise. An example 
of a S-plot is shown in Figure 6. 
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3 Method 

3.1 Cell preparation 
A549 cells (ATCC CCL-185; American Type Culture collection) were cultured in RPMI-
1640 (Gibco BRL, Paisley, UK) supplemented with 10% fetal calf serum (FCS; Hyclone, 
Perbio Science, Aalst, Belgium) and 50 μg/ml gentamicin at 37° C in a humidified 
atmosphere with 5% CO2. For Raman spectroscopy measurements, cells were seeded at 
density of 5*104 cells/ml onto CaF2 substrates in 12-well culture plates and allowed to 
attach over night before exposed to nanoparticles. Stock solutions of 1 mg/ml TiO2 
particles (P25) or goethite particles in phosphate buffered saline pH 7.2 (PBS) was 
performed. The samples were sonicated at +4 (Bransonic 221 sonicator) for 45 min and 
vigorously vortexed before diluted further to 10 μg/ml in cell medium. This was done to 
produce a stable and well dissolved nanoparticle suspension. After 24-72 h exposure to 
nanoparticles, the cell cultures were washed 5 times with 1 ml PBS to remove detachable 
nanoparticles. The CaF2 substrates were subsequently transferred to 6-well culture plates 
prior to Raman spectroscopy measurements. Figure 7 shows a schematic picture of the 
sample presentation.  A summary of the measured cells are in Table 4, Appendix 1. 

 

 
Figure 7 Schematic picture of the sample presentation. The A549 cells are placed on CaF2-
substrates and covered with phosphate buffered saline (PBS) solution in 6-well plates. 

3.2 Nanoparticles 
Two types of nanoparticles were used: Titanium dioxide (TiO2) and an iron hydroxide, 
goethite (α-FeO(OH)). The TiO2 sample, denoted P25, was obtained from Degussa AG, 
Germany and contains mainly anatase nanoparticles with a primary particle size dp ≈ 21 
nm. The α-FeOOH was prepared and characterized as described by Boily et al. (2001, 
pp.12-27) and Mäkie et al. and consist of approximately 11-16 nm wide and 62-120 nm 
long elongated nanoparticles (nanorods). 

3.3 Raman mapping 
Confocal mapping was performed on living cells on CaF2 substrates in sample wells as 
shown in Figure 7. A schematic drawing of the confocal Raman microspectroscopy set-up 
is shown in Figure 4. Unless otherwise stated, each cell was measured at 16 different spots 
at a fixed focal plane (z-axis) which was defined by a 10.5*10.5 µm square grid. The scan 
time was set to 90*3 s in each spot resulting in a total measurement time of 72 min for all 
16 points. The measured spots were chosen to cover as much as possible of the cell and to 
cover both the nucleus and cytoplasm regions. All spectra were recorded using a Horiba 
JobinYvon LabRam HR800 Raman microscope with a 60× water immersion objective and 
a thermoelectrically air-cooled CCD detector. The laser source employed was an Ar+ laser 
(514 nm) operated at 12.5 mW. A 600 lines/mm-grating was used in the measurements 
and the confocal hole was set to 150 µm.  
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3.4 Data pre-treatment 
Spikes, i.e. peaks that contain no spectral information from the sample and originate from 
spurious background radiation or bad pixels in the CCD, were removed manually by 
replacing their intensity values with the mean value for the intensity for the points on both 
sides of the spike. 

 

A number of pre-treatment methods were tested on the spike-eliminated data: baseline 
correction, baselineWavelet, Savitzky-Golay smoothing, vector normalization and 
calibration. Data analysis was done in Evince Image, version 2.4.0. (UmBio, Umeå, 
Sweden), in MatLab 7.10.0. (The MathWorks, Nattick, USA) and in R 2.8.1 (The R 
Foundation for Statistical Computing, Vienna, Austria).  

3.5 Hyperspectral data analysis 
The multivariate data analysis was performed in Evince Image, version 2.4.0. (UmBio, 
Umeå, Sweden). 

 

In the data analysis, all measurements from the cells were included – here referred to as 
observations. Furthermore, all data points in the spectral region between 730 cm-1 and 
1800 cm-1 (which does not contain absorption bands due to nanoparticles) were included 
and are referred to as variables. The chosen spectral region contains 622 variables as 
dictated by the spectral resolution (1.72 cm-1). 

 

Of all measured cells, 24 were randomly picked out and included in the models, while the 
remaining 6 measured cells were used as an external test set for evaluation. All data is here 
mean centered before modelling and variables are selected using alternative S-plots and 
Jack-knifed confidence intervals. 
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4 Results and Discussion 

4.1 Raman mapping of living cells – experimental 
considerations 

In Raman mapping experiments, it is critical to optimize scan time and laser power before 
data collection. It is important to maintain high intensity without applying too high photon 
dose, especially when a small confocal hole is used, since a small confocal hole also limits 
the amount of light that reaches the detector and results in poor S/N. It is however not 
possible to employ too long run time because biological samples are sensitive to 
irradiation damage and laser heat dissipated may dehydrate the cells or induce irreversible 
thermal modifications.  

 

The A549 cells used in this study are known to be robust. Notingher et al. have shown that 
they survive for at least 60 min exposure to λ=785 nm irradiation at 115 mW laser power 
(Notingher et al. 2002, pp.231-232).  The effect of the laser used in this study is much 
lower (maximum 30 mW, λ=785 nm). Employing the 785 nm laser diode yielded however 
not good quality Raman spectra in our case. Instead, a 514 nm Ar-ion (0-50 mW) laser 
was used. The lower wavelength implies a higher energy which is potentially more likely 
to damage the cells. It is therefore necessary to carefully inspect the cells before and after 
measurements. For example, the cell adherence to the CaF2 substrate is sensitive to the cell 
condition. Bad cells do often come off the substrate. Another important test is to inspect 
the activity inside the cell. A lot of movements imply activities such as cell division or cell 
death, and can be an indication that the cell does not feel well. Figure 8 shows an example 
of a cell that has come off the substrate. The membrane did in some cases burst (Figure 9), 
which clearly indicates damage. 

 

A 12.5 mW laser power was chosen and 90*3 s in each measurement point was considered 
sufficient scan time to give good quality spectra with interpretable peaks. 

 

 
Figure 8 A549 cell before (left) and after (right) 2 h exposure to �=514 nm laser, 50 mW. 
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Figure 9 Cell with a damaged cell membrane after exposure to �=514 nm laser, 5-25 mW (photon 
dose: 5.0 * 10-4  E). 

 

The measured points in the Raman mapping were chosen not to overlap. The diameter of 
an A549 cell is about 20 to 30 μm and, since a 4*4 grid was measured in each cell, a 3.5 
µm distance between each measurement point was regarded necessary. To make sure the 
illuminated part of the sample is not larger than this distance, a confocal hole of maximum 
165 µm must be used according to the relationship between the confocal hole and the 
illuminated part of the sample (Horiba JobinYvon, HR800 User Manual, p.38):  

 

56.04.1objectiveediilluminathole ⋅⋅⋅= MDD     (11) 

 

Here, Dhole is the diameter of the confocal hole, Dilluminated is the illuminated part of the 
sample and Mobjective is the magnification of the objective (60 in this case). The size of the 
confocal hole was set to 150 µm in all measurements presented here. 

 

The depth resolution for λ = 514 nm and confocal hole = 150 µm is about 4.57 µm (Horiba 
JobinYvon, Quality Control). To make sure the measurement was not performed outside 
the cell and to make sure the cell nucleus was in the mapping, the Z-value was optimized 
by measuring at different Z in the nucleus and choosing the Z that gave the largest 
intensity for the peaks at 669 cm-1, 782 cm-1 and/or 788 cm-1, which corresponds to signals 
from DNA/RNA. A comparison between a spot inside and a spot outside a cell nucleus is 
shown in Figure 10, where a clear difference can be seen at 782 cm-1.   
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Figure 10 Comparison between spectrum from a sample spot inside the cell nucleus (red) and 
outside the cell nucleus (blue).  

 

4.2 Data pre-treatment 

4.2.1 Background-correction 

The baseline correction procedure did not give adequate result in our case, mainly because 
of the difficulty to identify representative start- and end points to be used in the calculation 
of the correction line. Figure 11 shows an example of the baseline correction. It is evident 
from Figure 11 that reliable baseline correction is difficult.  

 

 
Figure 11 Spectra before (green) and after (red) baseline correction. 

Instead the background was corrected by using the baselineWavelet-algorithm 
implemented by Zhang et al. (2009). The result is shown in Figure 12. It is found that the 
baselineWavelet algorithm yields a good and reproducible background correction for all 
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spectra without significant peak broadening and loss of spectral information. This method 
was applied on all spectra used for hyperspectral data analysis. R-code for the 
baselineWavelet background correction is in Appendix 2. 
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Figure 12 Background correction using the baselineWavelet-algorithm (Zhang, Z-M et al. 2009). Red 
– raw data. Blue – data after background correction. 

4.2.2 Normalization 

Spectra before and after vector normalization are shown in Figure 13 and Figure 14, 
respectively. Normalized data was used in all models, since it was considered necessary to 
normalize data to eliminate intensity differences caused by sample inhomogeneities 
(particles exposure/distribution and inter-cell variations), date of acquisition (laser 
fluctuations), cell culturing, and other factors that could not be held constant. 

 

 
Figure 13 Spectra before vector normalization. 
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Figure 14 Spectra after vector normalization. 

 

4.2.3 Calibration 

An example of internal CaF2 frequency calibration is shown in Figure 15. The picture 
shows the phenylalanine peak, which is a well isolated peak in the region used for 
hyperspectral data analysis. The correction is not perfect due to the finite frequency 
resolution (1.72 cm-1), but a clear improvement is seen. All spectra were calibrated in this 
manner before data analysis.  

 

 
Figure 15 The phenylalanine peak before (left) and after (right) calibration and vector normalization. 

4.2.4 Savitzky-Golay smoothing 

The window size, the number of points before and after the point to be smoothed, was 
varied and the optimum window size was considered to be the size that gave minimum 
distortion of peaks. Optimum window size was found to be 5 points. Figure 16 shows 
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spectra before and after smoothing. Savitzky-Golay smoothing gives spectra that are easier 
to visual interpret, but models based on smoothed data had generally lower Q2 compared 
to models based on non-smoothed data, probably because of distortion of peaks, especially 
sharp peaks, which are sensitive to smoothing due to the spectral resolution. Spectra were 
not smoothed before modelling, unless otherwise stated. 

 

 
Figure 16 Spectrum smoothed by Savitzky-Golay algorithm. Red superposed spectrum shows raw 
data. 

4.3 Identification of the cell nucleus 
It is sometimes possible to distinguish the nucleus from the cytoplasm in optical 
microscopy (OM) images merely by inspecting the images. However, the OM images give 
no depth resolution and the precise 3D location is not possible to deduce based on OM 
only. Employing Raman spectroscopy, the nucleus can be identified by comparing the 
intensities in the vibrational bands that are unique for DNA/RNA. In particular the band at 
782 cm-1 is comparable strong and well-isolated from other absorption bands. This peak 
has here been compared in Raman intensity maps and the measurements that showed the 
highest intensity were considered to belong to the nucleus. In most cases, these 
observations were found to correspond well to the nucleus identified in OM. Figure 17 
shows an example of an optical image and corresponding intensity map, which shows the 
amplitude of the 782 cm-1 peak.  

 

 
Figure 17 Left: OM image of Cell L, cell exposed to TiO2. Cell nucleus is marked with a green, dashed 
line and red dots corresponds to the measured spots at fixed Z. Right: An intensity map, which shows 
the pixels in the hyperspectral image, colored according to relative intensity for the peak at 782 cm-1. 

Observations that belong to nucleus and cytoplasm, respectively, were identified by using 
both intensity maps and OM images. In cases where both the intensity map and OM image 
indicated that a certain measurement belongs to the same class (nucleus or cytoplasm), the 
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measurement was included in a PLS-DA model. 144 observations, of which 84 were 
classified as measurements from nucleus and 60 were classified as measurements form 
cytoplasm, were finally included in the PLS-DA. The data was smoothed with Savitzky-
Golay algorithm (5 points, second-order polynomial). The model yielded a relatively low 
Q2, 0.58, (see Table 7, Appendix 1) but score scatter plot (Figure 18) showed a clear trend 
in data. Most of the observations from nucleus were found to have positive values in 
component 1, while most of the observations from cytoplasm were found to have negative 
values in component 1. 

 

 
Figure 18 Score plot. PLS-DA model, nucleus (green)/cytoplasm (blue). 

The weights in the final model are shown in Figure 19. As expected, the peak at 788 cm-1 
has a large impact in the model, but an advantage of a multivariate model is that it includes 
all spectral features. In Figure 19 it is evident that the model finds important contribution 
to the model due to the peaks at 1680 cm-1 and 1342 cm-1. Indeed, these absorption bands 
are found to have about the same weight as the one at 788 cm-1, which is readily 
distinguished and identified in the raw spectra (see e.g. Figure 10). Guided by Table 5, 
Appendix 1 we see that the peak at 1342 cm-1 corresponds to CH deformations, but also 
contain contributions from adenine and guanine in DNA and RNA. This peak is not easy 
to distinguish in the raw spectra. It can however readily be revealed in a PLS-DA model. 
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Figure 19 Weight plot (W[1]) for PLS-DA model, nucleus/cytoplasm. Positive values are correlated to 
observations from nucleus and negative values are correlated to observations from cytoplasm. 95% 
confidence interval is marked in black.  

Other important absorption bands associated with the nucleus are located at 1614 cm-1, 
1487 cm-1, 1209 cm-1, 1099 cm-1, 1040 cm-1, 981 cm-1 and 951 cm-1. The 1209 cm-1 peak 
originates from C-C6H5 stretching in phenylalanine and from tryptophan. Other peaks do 
not correspond to peaks assigned in Table 5, Appendix 1. The 1614 cm-1 peak is close to 
peaks due to tyrosine, tryptophan and phenylalanine. The 1099 cm-1 peak is close to peaks 
due to PO2

- stretch (DNA/RNA) and C-C stretch in lipids and carbohydrates. The 1040 
cm-1 peak is close to peaks due to C-C and C-O stretch in lipids and carbohydrates, 
respectively. 

 

We find that the 1438 cm-1 peak is important to describe the cytoplasm. This spectral 
feature is a part of a region that contains signals from CH deformations. The region 
between 1248 cm-1 and 1329 cm-1 is also important to describe differences between 
cytoplasm and nucleus. This region contains mainly information from amides, CH 
deformations and =CH deformation in lipids. The 1320 cm-1 peak overlaps with 
DNA/RNA absorption due to guanine. Other important peaks are located at 1743 cm-1, 
1659 cm-1 and 1367 cm-1, respectively, which mainly originate from lipids. Peaks from 
lipids can be expected to be important since some of the measurements from cytoplasm 
may contain information from the cell membrane. The model also shows that the peaks at 
1589 cm-1, 1400 cm-1 and 1073 cm-1 also describe important spectral features associated 
with the cytoplasm. 

 

Based on this PLS-DA model, all measurements were either classified as belonging to the 
cytoplasm or the nucleus region. Of these 310 observations, 10 were not classified because 
these observations had distance to model-values above the calculated critical distance to 
model value. 

 

The model was evaluated by using the test set. However, since no independent calibrated 
test set exists, which quantifies the full spectral response, this evaluation can only be made 
on the assumption that the nucleus and the cytoplasm, respectively, may be determined 
solely from analysis of optical images and from selected specific spectral features, which 
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here is the 783 cm-1 peak. Figure 20 shows a comparison of the observations classified 
from the 783 cm-1 peak and the observations classified by the PLS-DA model 

 

 
Figure 20 Comparison of the classification based on the 783 cm-1 peak and the classification made 
by PLS-DA. Cell E – control cell. Cell K – 24 h exposure to TiO2. Cell O – 48 h exposure to TiO2. Cell 
Q – control cell. Cell T – 24 h exposure to goethite. Cell Y – 48 h exposure to goethite. 

The classification of Cell E, Cell O, Cell Q and Cell T is quite similar for the two 
classification methods, even though there are some deviations. The classification of Cell K 
and Cell Y differ however significantly. Figure 21 shows OM images of Cell K and Cell 
Y. The nucleus is difficult to distinguish, but the dashed green line indicates where 
shadows from the nucleus membrane may be seen. Only four measurements in Cell K are 
classified as measurements from the nucleus by the PLS-DA model, but these seems to 
correspond to the cell nucleus in OM image and to be more reliable than the classification 
based only on the 783 cm-1-peak. Since the nucleus is difficult to distinguish in the OM 
image for Cell Y, the classification by the PLS-DA model is hard to evaluate, but the 
observations in the lower left corner seems to belong to the nucleus and they are in that 
case correctly classified. 

 

 
Figure 21 OM micrograph of Cell K, cell exposed to TiO2 (left), and OM micrograph of Cell Y, cell 
exposed to goethite (right). Spots measured with Raman microspectroscopy are marked by red dots. 
The position of the nucleus, inferred by inspecting the OM image, is marked by green dashed line. 
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4.4 Particle distribution 

4.4.1 Titanium dioxide 

The anatase TiO2 nanoparticles appear mainly as large 400-700 nm agglomerates – much 
larger than their primary particle sizes – inside the cells after 24 h exposure in agreement 
with previous reports (Andersson et al.) and are therefore readily observed in OM. Raman 
mapping directly proves that the agglomerates inside the cells consist of anatase TiO2. In 
Figure 36, Raman spectra in the 279-2030 cm-1 region, obtained from a cell exposed to 
TiO2, are shown. The Raman vibrational frequencies and peak assignments are shown in 
Table 6, Appendix 1. The particle distribution in cells from the test set is depicted in 
Figure 23. The picture shows the relative intensity of the peak at 513 cm-1. Intensities 
above 500 eps are considered as “high” and are colored in red/brown. Figure 23 shows that 
particles can be found in cytoplasm as well in nucleus, in varying amounts. Cell O has low 
content of particles. 

4.4.2 Goethite 

Goethite nanoparticles can also be seen in OM, see Figure 22. In Figure 36, Raman spectra 
in the 279-2030 cm-1 region, obtained from a cell exposed to goethite, are shown. The 
Raman vibrational frequencies and peak assignments are shown in Table 6, Appendix 1. 
Figure 23 shows the relative intensity of the peak at 478 cm-1 for the cells in the test set. 
Intensities above 1000 eps are considered as “high” and are colored in red/brown. Particles 
can be found in cytoplasm as well in nucleus, in varying amounts. 

 

 
Figure 22 OM micrograph of Cell V: Cell exposed to goethite during 24 h. 
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Figure 23 Intensity map for particle exposed cells in the test set. Cell K: 24 h exposure to TiO2. Cell 
O: 48 h exposure to TiO2. Cell T: 24 h exposure to goethite. Cell Y: 48 h exposure to goethite. High 
intensities (> 500 cps for the 513 cm-1-peak from TiO2 or > 1000 cps for the 478 cm-1-peak from 
goethite) are red/brown and other are colored according to relative intensities for the 513 cm-1-peak 
and the 478 cm-1-peak. Grey denotes area outside nucleus or cytoplasm, respectively. 

4.5 Groupings and classes 
PCA of raw data shows a trend, which at a first glance seems to be a separation between 
cells exposed to nanoparticles and control cells, but in fact seems to be correlated to the 
date when the data was collected. Figure 24 and Figure 25 show score plots which 
highlight this. This shows the importance of randomization of studies, to eliminate the 
effects from differences between different days and other differences that are not possible 
to hold constant. It also shows the importance of awareness of which relationship that is 
modelled and the importance of keeping track of all variables that may affect a study, not 
only the investigated variables.  

 

After pre-treatment and collection of more data, groupings based on different days could 
not clearly be seen in a PCA model. A PLS-DA model, with the different days set as Y-
variables, gave a model which could not predict which day the observations from the test 
set were measured, which also indicates that these differences are eliminated. No other 
clear groupings were seen in PCA models based on pre-treated data. 
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Figure 24 Score plot. PCA of raw data. Green – control cells. Blue – particle exposed cells. 

 

 
Figure 25 Score plot. PCA of raw data. Same score plot as in Figure 23, but with observations 
colored depending on day of measurement. Green – day 1. Blue – day 2. Yellow – day 3. Light blue – 
day 4. Purple – day 5. Brown – day 6. 

4.6 Classification of particle exposed cells 
PLS-DA models were constructed based on the whole data set as well as separate models 
based on the observations that the PLS-DA model had classified as either observations 
from nucleus or observations from cytoplasm. A PLS-DA model was also made based on 
control cells and observations with high particle concentration (intensity > 500 cps for the 
513 cm-1-peak from TiO2 or intensity > 1000 cps for the 478 cm-1-peak from goethite).  A 
summary of the number of components and Q2-values is in Table 1 and in Table 7, 
Appendix 1. The Q2 varies between ~0.42-0.50, which can be considered as poor. Score 
plot for principal components 1, 2 and 3 showed a weak separation between classes in all 
four models. The model based on observations with high particle concentrations was 
slightly better than other (Figure 26). Large overlaps are evident but there are also some 
outliers among the observations from particle exposed cells in component 1 and from 
control cells in component 3. 
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Figure 26 Score plots. PLS-DA model, control cells/particle exposed cells. The model is based on 
observations from control cells and observations with high particle concentration. Left: component 1 
and 2. Right: component 1 and 3. Yellow – control cells. Blue – cells exposed to goethite. Green – 
cells exposed to TiO2. 

 
Table 1 Summary of number of components and Q2 for PLS-DA models. 

Model No. components Q2 

All observations 9 0.41579 

Cytoplasm 8 0.46608 

Nucleus 7 0.42062 

High particle concentration 7 0.50489 
 

The models were also evaluated by using the test set defined in Table 4, Appendix 1. 
Figure 27 shows a classification of the observations in the test set. The model based on all 
observations classifies most of the observations well except the observations from Cell O, 
in which more than 50% of the observations are false classified.  Note that there is only a 
low concentration of particles in this cell (see Figure 23). Cell O can therefore be expected 
to show more similarities to control cells than particle exposed cells. The model based on 
observations with high particle concentrations show worse classification of Cell O and 
Cell Y. This model classifies more observations as control cells, which is expected. If 
there are no particles, or a very low concentration of particles, in the measured spot, the 
observation will probably be more similar to observations from control cells. The model 
based on observations from cytoplasm has on the whole a similar classification to the 
model based on all observations. The model based on observations from nucleus has many 
false classified observations, particularly in Cell E, Cell O and Cell Y. 
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Figure 27 Comparison of the classification. Class denotes the correct classes. Cell E – control cell. 
Cell K – 24 h exposure to TiO2. Cell O – 48 h exposure to TiO2. Cell Q – control cell. Cell T – 24 h 
exposure to goethite. Cell Y – 48 h exposure to goethite. 

It is however not to be expected that any model is able to correctly classify all 
measurements of cells, since a cell not necessarily show “particle exposed properties” 
throughout the whole cell. The observed particle distributions are spatially 
inhomogeneously distributed and are expected to chemically affect only the local 
environment significantly. Thus a cell cannot be expected to show “particle exposed” 
properties in the cell nucleus if particles are not detected there.  

 

Figure 28 shows the weights for the model based on control cells and observations with 
high particle concentrations. The corresponding plot for all observations and observations 
from nucleus or cytoplasm are quite similar. The important spectral regions which 
describe the control cells are: (i) 1005 cm-1 (phenylalanine) and 1033 cm-1 (C-C stretch in 
lipids), (ii) the 1600-1640 cm-1 region which includes signal from C=C tyrosine and 
tryptophan, and (iii) the region between 730-820 cm-1, which originates from tryptophan, 
uracil, cytosine, thymine and O-P-O stretch (DNA/RNA).  The important peaks that 
describe particle exposed cells are peaks in the 1200-1350 cm-1 region. Here, peaks from 
amides, =CH deformations, CH deformations, phenylalanine, tryptophan, CH2 twist, 
adenine and guanine can be found. The peak at 1578 cm-1, from guanine and adenine, and 
the peak at 1013 cm-1, from C-O deoxyribose (DNA/RNA), are also important. 

 

The PLS-DA models show that particle exposed cells exhibit higher Raman intensity from 
some of the peaks that originate from DNA/RNA and also higher intensity in the region 
containing peaks due to amides. This may be an indication of an increased production of 
m-RNA. The 788 cm-1-peak from O-P-O stretch (DNA/RNA) is however connected with 
control cells, but overlaps on the other hand with the 760 cm-1-peak from tryptophan. 
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Figure 28 Weight plot (w[1]) for PLS-DA model, control cells/particle exposed cells. The PLS-DA 
model is based on control cells and observations with high particle concentration. Positive values are 
correlated to particle exposed observations and negative values are correlated to observations from 
control cells. 95% confidence interval is marked in black. 

4.7 Effects of titanium dioxide 
Based on previous studies, the biological effects of TiO2 after 24 h exposure is expected to 
be small (Andersson et al.; Hext et al, 2005, p.471). Thus, spectral modifications in the 
1000-1800 cm-1 region, where biological molecules are seen, are expected to be small. 
Here we constructed PLS-DA models based on all data as well as separate models based 
on the observations that the previously described PLS-DA model had classified as either 
belong to nucleus or cytoplasm. A PLS-DA model was also made based on control cells 
and observations with high particle concentration (intensity > 500 cps for the 513 cm-1-
peak from TiO2).  A summary of the number of components and Q2-values is in Table 2 
and in Table 7, Appendix 1. They show Q2-values, which varies between ~0.40 and 0.62. 
The observations were not well separated in score plots, but the model based on 
observations from cytoplasm demonstrated the best separation and is shown in Figure 29. 

 
Table 2 Summary of number of components and Q2 for PLS-DA models. 

Model No. components Q2 

All observations 8 0.61773 

Cytoplasm 5 0.51866 

Nucleus 6 0.39523 

High particle concentration 9 0.65803 
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Figure 29 Score plot. PLS-DA, control cells/cells exposed to TiO2. The PLS-DA model is based on 
observations from cytoplasm. Green – cells exposed to TiO2. Yellow – control cells. 

Classification by PLS-DA models are shown in Figure 30. Overall the classification is 
good, except for Cell O. As before, Cell O is generally classified as a control cell. Cell Q 
has in three out of four models some observations classified as particle exposed. 

 

Figure 31 shows a weight plot for the PLS-DA model based on observations from the 
cytoplasm. The phenylalanine peak at 1005 cm-1 seems to be the most important spectral 
feature which describes control cells. Other important regions are 1600 cm-1 – 1650 cm-1, 
which consists of signals from C=C tyrosine and C=C phenylalanine, tryptophan, tyrosine, 
guanine and adenine. The most important peaks that describe cells exposed to TiO2 are 
those found between: (i) 1650– 1670 cm-1, which originates from amides and C=C 
stretches in lipids, (ii) 1425 – 1480 cm-1, which originates from CH deformations in 
proteins and lipids, and (iii) 1245 – 1315 cm-1, which describe amides and =CH 
deformations and CH2 twists in lipids. Thus, the particle exposed cells appear to have a 
higher concentration of proteins and/or higher protein activity. This can maybe be 
explained by production of small proteins, for example cytokines, due to the onset 
inflammation (Ekstrand-Hammarström et al.; Singh et al. 2007. p.149), and aggregation of 
protein on particles. 

 

 
Figure 30 Comparison of the classification. Class denotes the correct classes. Cell E – control cell. 
Cell K – 24 h exposure to TiO2. Cell O – 48 h exposure to TiO2. Cell Q – control cell.  
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Figure 31 Weight plot (w[1]) for PLS-DA model, control cells/particle exposed cells. The PLS-DA 
model is based on observations from cytoplasm. Positive values are correlated to particle exposed 
observations and negative values are correlated to observations from control cells. 95% confidence 
interval is marked in black. 

4.8 Effects of goethite 
PLS-DA models were constructed from all data as well as separate models based on the 
observations that the previously described PLS-DA model had classified as either 
belonging to nucleus or cytoplasm. A PLS-DA model was also made based on control 
cells and observations with high particle concentration (intensity > 1000 cps for the 478 
cm-1 peak due to goethite).  A summary of the number of components and Q2-values is 
shown in Table 3 and in Table 7, Appendix 1. The Q2 varies between ~0.45 and 0.65, 
which is somewhat better than Q2 for models that separates control cells from cells 
exposed to TiO2. The separation in the score plot is significantly improved (Figure 32). 
There are however still overlap between particle exposed cells and control cells. The 
models based on observations from cytoplasm and selected observations with high particle 
concentration showed the best separation (Figure 32).  In both models, there are more 
observations from control cells than observations from particle exposed cells. The groups 
in PLS-DA models should ideally be of same size and the fact that the control groups are 
larger may negatively affect the model. 

 
Table 3 Summary of number of components and Q2 for PLS-DA models. 

Model No. components Q2 

All observations 8 0.65394 

Cytoplasm 5 0.55824 

Nucleus 4 0.44869 

High particle concentration 5 0.53013 
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Figure 32 Score plots. PLS-DA, control cells/cells exposed to goethite. Control cells and observations 
with high particle concentration (left), observations from cytoplasm (right). Yellow – control cells. Blue 
– cells exposed to goethite. 

The same score plots are also shown in Figure 33, where the observations are colored 
depending on exposure time. The observations from the cells that have been exposed to 
goethite for 48 h or more are in general not better separated from control cells than 
observations from the cells that have been exposed to goethite during a shorter time. A 
better separation could not be seen in other components either. Thus, the exposure time is 
not important to describe the explained differences due to goethite exposure.  

 

 
Figure 33 Score plots. PLS-DA, control cells/cells exposed to goethite. Control cells and observations 
with high particle concentration (left), observations from cytoplasm (right). Green – 24 h exposure 
time. Blue – 48 h exposure time. Yellow – 72 h exposure time. Red – control cells. 

Figure 34 shows the classification of the test set. The two control cells, Cell E and Cell Q, 
are in general well classified, but with many wrongly classified observations by the model 
based on observations from nucleus. Cell T is also well classified in other models than the 
model based on observations from nucleus, which classifies only 50% of the observations 
as particle exposed. Most of the observations in Cell Y are classified as control cells, 
especially by the model based on observations from cytoplasm and the model based on 
observations with high particle concentration, which only classify the three observations 
with high particle concentration as particle exposed.  
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Figure 34 Comparison of the classification. Class denotes the correct classes. Cell E – control cell. 
Cell Q – control cell. Cell T – 24 h exposure to goethite. Cell Y – 48 h exposure to goethite. 

The weight plot in Figure 35 shows the important spectral bands in the PLS-DA model 
based on observations from cytoplasm. The most important region, which describes the 
cells exposed to goethite, is 1200–1374 cm-1. Here, peaks mainly due to amides and =CH 
deformations in lipids are present, but also CH deformations in proteins and signals from 
adenine and guanine. The latter assignment is supported by the high weight of the peak 
present at 1578 cm-1 which occurs in the same region where adenine and guanine exhibit 
strong absorption. We speculate that an increased protein and DNA/RNA activity may be 
explained by a production of m-RNA to synthesize cytokines due to ensuing inflammatory 
response. However, we do not have independent cytometric data that support this 
conclusion, but merely based on the much stronger separation in the model for goethite 
compared to the model for TiO2, we may predict that goethite induces inflammatory 
responses in the lung epithelial cells. We note however that this spectral interpretation is 
complicated by small and overlapping peaks at 782 cm-1 and 788 cm-1, which are also 
signals from DNA/RNA, but according to the model, are important to describe control 
cells. Since these peaks are small and the confidence intervals are so high, this correlation 
is uncertain, but we cannot rule out protein aggregation on the nanoparticles as a cause for 
the spectral modification.  

 

Other peaks that are important to describe control cells are peaks between 1020 cm-1 and 
1090 cm-1 (C-C stretching in lipids and C-N stretching in proteins), the peak at 760 cm-1, 
which originates from tryptophan, a region around 1445 cm-1, which originates from CH 
deformations, and peaks between 1600 cm-1 and 1670 cm-1, which originates from C=C 
stretching from lipids, phenylalanine, tyrosine, tryptophan and signals from amides. 
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Figure 35 Weight plot (w[1]) for PLS-DA model, control cells/ cells exposed to goethite. The PLS-DA 
model is based on observations from cytoplasm. Positive values are correlated to particle exposed 
observations and negative values are correlated to observations from control cells. 95% confidence 
interval is marked in black. 
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5 Conclusions 
Nanoparticle exposed cells and control cells are complex and inhomogeneous samples that 
are difficult to compare if only a few measurements are collected from each sample, in 
particular since measurements from different parts of cells have spectral differences (e.g. 
peaks from DNA/RNA in cell nucleus), which may be much larger than possible spectral 
differences caused by nanoparticles. In this study, hyperspectral images have been 
collected and whole cells or measurements from a certain location in cells have been 
analyzed and compared.  

 

For Raman measurements, we used an Ar-ion laser, λ = 514 nm, the confocal hole was 
set to 150 µm and the total measurement time was set to 72 min/cell. Cells may be 
sensitive to the laser irradiation and cannot be measured during a too long time, but 
the cells were inspected after measurement and they appeared to be unaffected. The 
collected spectra were also found to have sufficient quality for hyperspectral data 
analysis. A longer measurement time, however, had been advantageous because we 
had been able to collect more measurements, e.g. measurements from three 
dimensions instead of a plane. 

 

Before hyperspectral data analysis, it was considered necessary to pre-treat the data. 
Background correction is important because fluorescence gives a complicated background 
and makes a multivariate data analysis more difficult. Intensity variations, which originate 
from fluctuating laser power, were eliminated by vector normalization, which also can 
eliminate possible important differences, which originate from concentration differences in 
the sample. Internal standard calibration could have been a better option, but was not used 
here. Another pre-treatment method, smoothing, was tested. However, smoothing was 
found to worsen the analysis and spectra were hence not smoothed. An advantage with 
hyperspectral data analysis is that it is robust to noise. 

 

PLS-DA was here used to identify the cell nucleus. A PLS-DA model was based on 
observations that showed evidence from both optical microscope images and Raman 
spectra (peak at 783 cm-1) to belong to either the cytoplasm or nucleus region. The weight-
plot obtained from this analysis shows correlation between the studied DNA/RNA-peak 
and other DNA/RNA-peaks, which are difficult to distinguish before hyperspectral data 
analysis. 

 

PLS-DA models were also made to analyze differences between control cells and particle 
exposed cells. Separate models were made for the two different nanoparticles in the study. 
The separate models for TiO2 and goethite are better than the model based on all data, 
because they show better separation between particle exposed cells and control cells in 
score plots and the Q2-values are improved. The model based on control cells and cells 
exposed to goethite shows the best separation, which indicates that goethite spectrally 
affects the cells more than TiO2 nanoparticles. The separation between control cells and 
particle exposed cells can also be improved if the observations from the nucleus are 
excluded. This can be explained by small differences between the cell nucleus in control 
cells and in particle exposed cells. About the same improvement is seen if the observations 
that contain high amount of particles are selected and other observations among the 
particle exposed cells are excluded. 
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A test set has been used for evaluation. One of the particle exposed cells in the test set 
contained only small amounts of particles. This cell was overall classified as a control cell 
by all PLS-DA models. Other cells were on the whole correctly classified.  The models 
based on observations with a high particle concentration classify most of the observations 
as control cells, which is expected since observations from sample spots with low amount 
of particles may have more similarities to control cells. It is however not likely that a 
model can classify all observations correctly. The simple explanation to this is that a cell 
cannot be expected to show “particle exposed properties” throughout the whole cell.  

 

Weight plots give information about variables that are important to describe the modelled 
differences. The plots differ somewhat between different PLS-DA models, but in general 
they show the same pattern. Important peaks to describe the particle exposed cells are 
peaks in the region from ca 1200 cm-1 to 1400 cm-1, which originates from amides and 
lipids, but also DNA/RNA. In the PLS-DA model based on observations from control cells 
and cells exposed to goethite, as well as the PLS-DA model based on all data, the 
DNA/RNA-peak at 1578 cm-1 also seem to be important. This can maybe be explained by 
an increased production of m-RNA. However, this hypothesis is contradicted by peaks 
around 780 cm-1, which originates from signals from DNA/RNA, but here is correlated to 
control cells. Thus we cannot rule out that an explanation of the particle-induced spectral 
modifications is due to protein aggregation. The peaks around 780 cm-1 are part of a region 
with overlapping peaks, which also hold information from proteins (tryptophan) and 
lipids. Other important regions to describe control cells are the phenylalanine peak at 1005 
cm-1, and a region between ca 1600 cm-1 and 1650 cm-1, where peaks from lipids, amides 
and some amino acids can be found. 

 

A final conclusion is that hyperspectral data analysis is very suitable for analysis of data 
from Raman mapping projects, such as the mapping of lung cells in this study. Small 
spectral differences, which are impossible to find by merely inspect a few spectra, can here 
be found by using multivariate projection methods. 
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7 Appendix 1 
Table 4 Summary of measured cells 

Cell name Particle (time of 
exposure) 

Day measured Test set/training set 

Cell A - 1 Training set 

Cell B - 2 Training set 

Cell C - 2 Training set 

Cell D - 2 Training set 

Cell E - 2 Test set 

Cell F - 3 Training set 

Cell G - 3 Training set 

Cell H TiO2  (24 h) 4 Training set 

Cell I TiO2  (24 h) 4 Training set 

Cell J TiO2  (24 h) 5 Training set 

Cell K TiO2  (24 h) 5 Test set 

Cell L TiO2  (24 h) 5 Training set 

Cell M TiO2  (48 h) 6 Training set 

Cell N - 6 Training set 

Cell O TiO2 (48 h) 7 Test set 

Cell P TiO2 (48 h) 7 Training set 

Cell Q - 7 Test set 

Cell R - 7 Training set 

Cell S - 8 Training set 

Cell T Goethite (24 h) 8 Test set 

Cell U Goethite (24 h) 8 Training set 

Cell V Goethite (24 h) 8 Training set 

Cell W Goethite (24 h) 8 Training set 

Cell X - 9 Training set 

Cell Y Goethite (48 h) 9 Test set 

Cell Z Goethite (48 h) 9 Training set 

Cell AA Goethite (48 h) 9 Training set 

Cell AB - 10 Training set 

Cell AC Goethite (72 h) 10 Training set 

Cell AD Goethite (72 h) 10 Training set 



FOI-R--3126--SE   

 44 

Table 5 Assignment of peaks in A549 cells (Notingher et al. 2002, p.233).  

Peak (cm-1) DNA/RNA Proteins Lipids Carbohydrates 

1743   >C=O ester  

1659  Amide I α helix C=C stretch  

1617  C=C tyrosine 

Tryptophan 

  

1607  C=C phenylalanine 

Tyrosine 

  

1578 Guanine 

Adenine 

   

1460  CH deformation CH deformation CH deformation 

1449  CH deformation CH deformation  

1367   Symmetric stretch CH3  

1342 Guanine 

Adenine 

CH deformation   

1320 Guanine CH deformation   

1301   CH2 twist  

1284  Amide III α helix =CH deformation  

1258  Amide III β sheet =CH deformation  

1242  Amide III β sheet   

1231  Amide III random coils   

1209  C-C6H5 stretch phenylalanine, 

Tryptophan  

  

1176  C-H in-plane bending tyrosine   

1158  C-C/C-N stretch   

1128  C-N stretch   

1095 PO2
- stretch  Chain C-C stretch C-C stretch 

1080  C-N stretch Chain C-C stretch C-O stretch 

1066  C-N stretch Chain C-C stretch  

1049   Chain C-C stretch C-O stretch 

1033  C-H in-plane phenylalanine   

1013 C-O deoxyribose   C-O stretch 

1005  Symmetric ring breathing phenylalanine   

985   C-C head groups  

937  C-C backbone stretch 

Α helix 

  

897 Backbone 

Deoxyribose 
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853  Ring breathing tyrosine   

828 O-P-O stretch Out of plane ring breathing tyrosine   

811   O-P-O  

788 O-P-O stretch    

782 Uracil 

Cytosine 

Thymine ring 
breathing 

   

760  Ring breathing tryptophan   

728 Adenine Ring breathing tryptophan C-N head group  

669 Thymine 

Guanine 
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Figure 36 Superposed spectra from mapping of Cell H, A549 cell exposed to TiO2 during 24 h. 

 

 
Figure 37  Superposed spectra from mapping of Cell W, A549 cell exposed to goethite during 24 h. 
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Table 6 Peak assignment for TiO2 and goethite in the measured spectral region 

Peak (cm-1) Particle 

296 Goethite 

388 Goethite 

393 TiO2 

478 Goethite 

442 TiO2 

513 TiO2 

552 Goethite 

612 TiO2 

634 TiO2 

684 Goethite 

 
Table 7 Summary of number of components and Q2 for PLS-DA models. 

Model No. components Q2 

Cytoplasm/nucleus 

 4 0.57640 

Particle exposed/control, all data 

All observations 9 0.41579 

Cytoplasm 8 0.46608 

Nucleus 7 0.42062 

High particle concentration 7 0.50489 

TiO2/control 

All observations 8 0.61773 

Cytoplasm 5 0.51866 

Nucleus 6 0.39523 

High particle concentration 9 0.65803 

Goethite/control 

All observations 8 0.65394 

Cytoplasm 5 0.55824 

Nucleus 4 0.44869 

High particle concentration 5 0.53013 
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8 Appendix 2 
R-code for baselineWavelet background correction (Zhang, Z-M et al. 2009). 

 
library(baselineWavelet) 
library(MASS) 
 
# Reads row 2-17 from in.txt. in.txt contains a 17*1007 matrix, where 
the first row holds the wavenumbers and each row 2-17 corresponds to a 
Raman measurement. Column 1-2 contains spatial information([1,1] and 
[1,2] is empty). 
Cell <- matrix(scan("in.txt",n=16*1007,skip=1),16,1007,byrow=TRUE) 
 
# Creates a vector that contains 63 scales 
scales <-seq(1, 63, 1) 
 
# Loops over all rows 
q=1 
for(q in 1:16) { 

x=Cell[q,3:1007] 
 

# Performs continuous wavelet transform with Mexican hat 
wavelet. The return is a matrix that holds the CWT 
coefficients for each scale. 
wCoefs <- cwt(x, scales=scales, wavelet='mexh') 

 
# Finds the local maxima among the CWT coefficients 
localMax <- getLocalMaximumCWT(wCoefs) 

 
# Identifies ridges from the local maximum of the CWT 
coefficients. The local maximum corresponds to the peak 
center. 
ridgeList <- getRidge(localMax, gapTh=3, skip=2) 

 
# Identifies the peaks by using the ridgelist and the 
estimated signal-to-noise. 
majorPeakInfo = identifyMajorPeaks(x, ridgeList, wCoefs, 
SNR.Th=1,ridgeLength=5) 

 
# Estimates the peak width of the identified peaks by 
using continuous wavelet transform with Haar wavelet.  
peakWidth=widthEstimationCWT(x,majorPeakInfo)      

 
# Fits the background by using penalized least squares 
with binary masks. threshold: peak shape threshold. 
lambda: adjustable parameter; high values give smoother 
fitted background. differences: the order of the 
difference of penalties of Whittaker Smoother method.                      
backgr = 
baselineCorrectionCWT(x,peakWidth,threshold=0.3,lambda=100
,differences=1) 

 
# Subtracts the background 
corrected=x-backgr  

 
# Replaces the original spectrum by the background 

corrected spectrum 
correctedt <- t(corrected) 
Cell[q,3:1007] <- correctedt 

 
} 
 
# Constructs a matrix that contains the background corrected data and 
writes the file out.txt 
correctedmatrix <- matrix(nrow=16,ncol=1007,dimnames=NULL) 
correctedmatrix[1:16,1:1007] <- Cell 
write.matrix(correctedmatrix,file="out.txt",sep="\t" 


