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Abstract

Keywords

This report describes a generic aircraft model which is based on a simplifica-
tion of the full rigid body equations of motion most often used for realistic
simulations. The model is applicable to piloted simulations as well as modeling
of autonomous behavior of aircraft when there is a path planner och behav-
ior generator present. For the latter types of applications a simple velocity
vector following autopilot is included in the model . Particular emphasis has
been put on making visible the various assumptions used when obtaining the
model. This makes it easy to adapt the model to other applications, such as
bank-to-turn operated missiles and aircraft with nonstandard configurations.

Flight mechanics, Flight dynamics, Aircraft model
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Sammanfattning

Nyckelord

Rapporten beskriver en generisk flygplansmodell som baseras p̊a en förenkling
av den fulla stelkroppsdynamiken som oftast används vid realistiska simulering-
ar. Modellen är tillämpbar b̊ade för pilotstyrda simuleringar och modellering
av autonomt beteende i de fall d̊a det finns en planeringsfunktion eller be-
teendegenerator tillgänglig. För de senare typerna av tillämpningar finns det
inkluderat i modellen en enkel autopilot som klarar att följa commandon för
hastighetsvektorn. Speciell vikt har lagts vid att synliggöra de olika antagan-
den som använts vid framtagandet av modellen. Detta gör det lätt att anpassa
modellen till andra tillämpningar, s̊asom “bant-to-turn”-opererade missiler och
flygplan med ickestandard konfiguration.

Flygmekanik, Flygplansmodell
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1 Introduction
In this report we develop a generic mathematical model of an aircraft flying in
coordinated flight.1 The model is indented to serve as a platform for simula-
tions as well as performance assessments and can be used in (human) piloted
simulations or in an autopilot guided mode. It is is based on linearized equa-
tions of motion in all three axes (a 6 degree-of-freedom model) and can be
made to represent a large number of aircraft by changing the (relatively) few
parameters in it. An underlying assumption of this is that the aircraft to be
modeled is either “conventional” in its (open loop, bare airframe) dynamics,
or, in case of an aircraft with a stability augmenting or dynamics synthesizing
control system, has been rendered “conventional” in its closed loop behavior
(i.e. with flight control system engaged).

1.1 Outline
In the next chapter we present a summary of the model which can be used as
a reference and lookup when implementing it and in the following chapters we
present a detailed derivation of it.

1.2 Notation
We use standard mathematical notation where (real or complex) scalars are
marked with ordinary typeface, like 𝑚, and vectors in R𝑛 and matrices in
R𝑛×𝑚 are indicated by bold typeface, like 𝑥 and 𝐴. Unless otherwise indi-
cated, vectors are considered as column vectors and the elements of vectors
and matrices are indicated by subscripts. Transposition of a vector or ma-
trix is indicated by a superscript 𝑇 and the norm (always the 2-norm) of a
vector is marked as ‖ · ‖. When the elements of a vector are explicitly listed
together they are enclosed by square brackets like 𝑥 = [𝑥1, 𝑥2]

𝑇 . A square
diagonal matrix 𝐷 ∈ R𝑛×𝑛 with the diagonal elements 𝑑1, . . . , 𝑑𝑛 is indicated
as 𝐷 = diag(𝑑1, . . . , 𝑑𝑛).

Superscripts within parentheses are often used to enumerate individual el-
ements of a family of vectors or scalars, like 𝑓 (𝑎). The linear subspace of R𝑛

spanned by 𝑚 vectors 𝑥(1), . . . ,𝑥(𝑚) ∈ R𝑚 is denoted by [𝑥(1), . . . ,𝑥(𝑚)] and
the orthogonal complement, i.e. the set {𝑦 ∈ R𝑛 | 𝑦𝑇𝑥(𝑗) = 0, 𝑗 = 1, . . . ,𝑚},
is denoted [𝑥(1), . . . ,𝑥(𝑚)]⊥. Unit length vectors in R3 pointing along the (pos-
itive direction of) coordinate axes in coordinate systems will occur below and
they are denoted as 𝑒𝑗 where the subscript 𝑗 ∈ {1, 2, 3} refer to the coordi-
nate axis in question. More generally, for any vector 𝑥 ∈ R𝑛 ∖ 0 we define
𝑒𝑥 = (1/‖𝑥‖)𝑥. The cross product between vectors in R3 is marked with ×.

The imaginary unit is marked 𝑖. Time differentiation of a (time differen-
tiable) vector 𝑥 is marked with the dot notation as 𝑥̇. Often the dependence
in a certain function on some variables is suppressed in the notation to avoid
cluttering the presentation, but when this is the case it should be clear from
the context. In particular, the time argument 𝑡 implicit in many quantities is
almost never written out.

1The model is also applicable to missiles which are operated in bank-to-turn mode. In
(Robinson, 2010) a similar model is developed which is applicable for skid-to-turn operated
missiles. The material presented here builds on material in (Robinson, 2010).
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2 Summary of model
In this chapter we give a summary of the equations and relations needed to
implement the model and in the following chapters we provide a detailed deriva-
tion of these. The contents of the various subsections of Section 2.1 can serve
as a reference and the main assumptions underlying the derivation of the model
are listed in Section 2.1.7. In Section 2.2 a summary of a simple velocity vector
following autopilot is given.

2.1 Aircraft dynamics
We assume that the aircraft behaves as rigid body and that with it is associated
a body fixed Cartesian coordinate system 𝐵 with the (flight mechanical) stan-
dard orientation (Stevens & Lewis, 2003); the 𝑥-axis is directed along the main
axis of the aircraft with positive extension forward, the 𝑦-axis points out over
the right wing and the 𝑧-axis points downward. We moreover assume that the
aircraft is left-right symmetric and that it exhibits coordinated flight (Phillips,
2010), so that the apparent force in the 𝑦-direction in 𝐵 (the sideforce) felt by
a pilot is zero at all times. This is the same as to say that the aerodynamic
force in the 𝑦-direction in 𝐵 is zero and by the symmetry of the airframe the
sideslip angle must be zero at all times.

The relations listed here describe the part of the model which corresponds
to a piloted aircraft, with variables expressed1 in the frame 𝐵. In order to
get a full model representing flight in an Earth fixed frame 𝐸, where position
and orientation should be defined, a relation describing the evolution of the
orientation must be added and the relation for velocity in 𝐸 must be integrated.

2.1.1 Definitions
The velocity vector 𝑣 and angular velocity vector 𝜔 in 𝐵 have components
given by 𝑣 = [𝑢, 𝑣, 𝑤]𝑇 and 𝜔 = [𝑝, 𝑞, 𝑟]𝑇 . From these, the angle of attack 𝛼,
the airspeed 𝑉 and the wind axis roll rate 𝑝(𝑊 ) are defined as

𝛼 = arctan(𝑤/𝑢), (2.1)

𝑉 =
√︀
𝑢2 + 𝑣2 + 𝑤2, (2.2)

𝑝(𝑊 ) =
1

𝑉
𝑣𝑇𝜔. (2.3)

The force vector in 𝐵 is denoted 𝑓 = [𝑓𝑥, 𝑓𝑦, 𝑓𝑧]
𝑇 and we divide it into aero-

dynamic, gravity and thrust induced components, respectively, as

𝑓𝑥 = 𝑓
(𝑎)
𝑥 + 𝑓

(𝑔)
𝑥 + 𝑓

(𝑡)
𝑥 ,

𝑓𝑦 = 𝑓
(𝑎)
𝑦 + 𝑓

(𝑔)
𝑦 + 𝑓

(𝑡)
𝑦 ,

𝑓𝑧 = 𝑓
(𝑎)
𝑧 + 𝑓

(𝑔)
𝑧 + 𝑓

(𝑡)
𝑧 ,

where, by assumptions (given in this chapter), 𝑓
(𝑎)
𝑦 = 𝑓

(𝑡)
𝑦 = 𝑓

(𝑡)
𝑧 = 0. From

these components we define the lift and drag forces 𝑓𝐿, 𝑓𝐷, respectively, as

𝑓𝐿 = 𝑓 (𝑎)
𝑥 sin(𝛼)− 𝑓 (𝑎)

𝑧 cos(𝛼), (2.4)

𝑓𝐷 = −𝑓 (𝑎)
𝑥 cos(𝛼)− 𝑓 (𝑎)

𝑧 sin(𝛼). (2.5)

1We don’t give units for the variables, it is assumed that this is done at time of imple-
mentation in a consistent system of units, e.g. the metric (SI) system.
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2.1.1.1 Basic forces

Lift
The lift force 𝑓𝐿 can be expressed in terms of the aerodynamic lift force coef-
ficient 𝐶𝐿 as

𝑓𝐿 =
1

2
𝜌𝑉 2𝑆𝑟𝑒𝑓𝐶𝐿(𝛼), (2.6)

where 𝜌 is the air density and 𝑆𝑟𝑒𝑓 is the reference (wing) area. We shall
assume that 𝑓𝐿 is linear in 𝛼 which is equivalent to assuming linearity in 𝛼 of
𝐶𝐿, viz

𝐶𝐿(𝛼) =
𝜕𝐶𝐿

𝜕𝛼
|𝛼=0 𝛼. (2.7)

With this assumption we can write (2.6) as

𝑓𝐿 =
1

2
𝜌𝑉 2𝑆𝑟𝑒𝑓

𝜕𝐶𝐿

𝜕𝛼
|𝛼=0 𝛼. (2.8)

Drag
The drag force 𝑓𝐷 is modeled in terms of the drag force coefficient 𝐶𝐷 as

𝑓𝐷 =
1

2
𝜌𝑉 2𝑆𝑟𝑒𝑓𝐶𝐷(𝛼,𝑀), (2.9)

where

𝐶𝐷(𝛼,𝑀) = 𝐶𝐷0
(𝑀) +𝐾(𝑀)𝐶𝐿(𝛼)

2

= 𝐶𝐷0
(𝑀) +𝐾(𝑀)

(︁𝜕𝐶𝐿

𝜕𝛼
|𝛼=0

)︁2

𝛼2 (2.10)

and the parasitic drag coefficient 𝐶𝐷0
and the induced drag quadratic factor

𝐾 both have some prescribed dependencies on Mach number 𝑀 . The value of
𝛼 is obtained from the load factor 𝜂 in (2.12) below (via 𝜂(𝑎) in (2.12), using
(2.15)).

Thrust
We assume that the thrust acts only in the (positive) 𝑥-direction in 𝐵 so that

𝑓
(𝑡)
𝑦 = 𝑓

(𝑡)
𝑧 = 0. The thrust component 𝑓

(𝑡)
𝑥 in the 𝑥-direction is assumed to

have the dynamics

𝑓 (𝑡)
𝑥 =

1

𝜏𝑇
(𝑡𝑠𝑠𝑓𝑇0

(𝑀,ℎ)− 𝑓 (𝑡)
𝑥 ), (2.11)

where 𝑡𝑠𝑠 ∈ [0, 1] is the throttle setting, 𝑓𝑇0(𝑀,ℎ) is the maximum engine
thrust at Mach number 𝑀 and altitude ℎ, and 𝜏𝑇 is the engine response time
constant.

2.1.1.2 Load factor

The aerodynamic load factor 𝜂(𝑎) and (total) load factor 𝜂, respectively, are
defined as

𝜂(𝑎) =
𝑓𝐿
𝑚𝑔

, 𝜂 = 𝜂(𝑎) − 𝐹
(𝑔𝑡)
𝛼

𝑔
, (2.12)

where 𝐹
(𝑔𝑡)
𝛼 is a normalized force (acceleration) quantity given by

𝐹 (𝑔𝑡)
𝛼 =

1

𝑚

(︀
𝑓 (𝑔)
𝑧 cos(𝛼)− (𝑓 (𝑔)

𝑥 + 𝑓 (𝑡)
𝑥 ) sin(𝛼)

)︀
. (2.13)

10
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2.1.1.3 State variables

The dynamics in 𝐵 of the aircraft is represented in terms of the six state
variables 𝜂, 𝜂̇, 𝑉, 𝑝(𝑊 ), 𝑞, 𝑟, as described below.

2.1.2 Pitch channel
The dynamics in the pitch channel are modeled in terms of the load factor 𝜂,
its derivative 𝜂̇ and commanded load factor 𝜂𝑐 as

𝑑

𝑑𝑡

[︂
𝜂
𝜂̇

]︂
=

[︂
0 1

−𝜔2
𝑠𝑝 −2𝜁𝑠𝑝𝜔𝑠𝑝

]︂ [︂
𝜂
𝜂̇

]︂
+

[︂
0
𝜔2
𝑠𝑝

]︂
𝜂𝑐, (2.14)

where the undamped natural frequency 𝜔𝑠𝑝 and damping 𝜁𝑠𝑝 are either open
loop (“bare airframe”) values or closed loop values (synthesized e.g. by a stabil-
ity augmentation system). In the former case the variable 𝜂𝑐 must be considered
as a scaled version of the actual stick input and in the latter case 𝜂𝑐 can be con-
sidered as a rough approximation of a real stick input (without any filtering)
or as the reference signal sent to the controller subsystem by an autopilot. In
case of a closed loop interpretation, the values of 𝜔𝑠𝑝, 𝜁𝑠𝑝 are given by handling
criteria. The values for 𝛼 and 𝑞 are computed from 𝜂, 𝜂̇ using two algebraic
relations, see below.

2.1.2.1 Angle of attack

From (2.7), (2.8) and (2.12) we have

𝜂(𝑎) =
1

2𝑚𝑔
𝜌𝑉 2𝑆𝑟𝑒𝑓

𝜕𝐶𝐿

𝜕𝛼
|𝛼=0 𝛼 (2.15)

and from this 𝛼 can be solved. However, the dynamics in (2.14) are formulated
in terms of 𝜂 and therefore 𝛼 must be (nonlinearly) solved2 from the rightmost
relation in (2.12), given 𝜂.

2.1.2.2 Pitch rate

The pitch rate 𝑞 is defined in terms of the load factor 𝜂 in (2.12) and the (time
derivative of the) normalized gravity/thrust force (acceleration) component

𝐹
(𝑔𝑡)
𝛼 in (2.13) using the approximation

𝑞 = − 𝑔

𝑍𝛼

(︀
𝜂̇ +

𝐹̇
(𝑔𝑡)
𝛼

𝑔

)︀
+

𝑔

𝑉
𝜂 (2.16)

where 𝑍𝛼 is defined in terms of the coefficient 𝐶𝑍 for the aerodynamic force in
the 𝑧-direction as3

𝑍𝛼 =
1

2𝑚
𝜌𝑉 2𝑆𝑟𝑒𝑓

𝜕𝐶𝑍

𝜕𝛼
|𝛼=0

However, for small angles of attack 𝛼 we have approximately

𝜕𝐶𝑍

𝜕𝛼
= −𝜕𝐶𝐿

𝜕𝛼

and hence we have approximately

𝑍𝛼 = − 1

2𝑚
𝜌𝑉 2𝑆𝑟𝑒𝑓

𝜕𝐶𝐿

𝜕𝛼
|𝛼=0. (2.17)

2In actual numeric simulation this can be done by most easily in an approximate manner
by using the values of 𝛼 previous time steps to update 𝜂. From this one can then compute
a new value for 𝜂(𝑎) and subsequently also a new value for 𝛼.

3For small angles of attack we have (cf. (2.4)) approximately 𝜕𝐶𝑍/𝜕𝛼 = −𝜕𝐶𝐿/𝜕𝛼.

11



FOI-R--3185--SE

If the angle of attack and thrust are assumed to be more slowly varying than

the orientation of the aircraft the time derivative 𝐹̇
(𝑔𝑡)
𝛼 can be computed using

the approximation

𝐹̇ (𝑔𝑡)
𝛼 =

1

𝑚

(︀
𝑓 (𝑔)
𝑧 cos(𝛼)− 𝑓 (𝑔)

𝑥 sin(𝛼)
)︀

(2.18)

and the relation

𝑓̇
(𝑔)

= −𝜔 × 𝑓 (𝑔), (2.19)

where 𝑓 (𝑔) = [𝑓
(𝑔)
𝑥 , 𝑓

(𝑔)
𝑦 , 𝑓

(𝑔)
𝑧 ]𝑇 .

2.1.3 Roll channel
The roll channel is simply modeled as

𝑝̇(𝑊 ) =
1

𝜏𝑝
(𝑝(𝑊 )

𝑐 − 𝑝(𝑊 )), (2.20)

where 𝜏𝑝 is the roll axis time constant, as dictated by the bare airframe char-

acteristics or handling qualities, and 𝑝
(𝑊 )
𝑐 is the commanded velocity axis roll

rate.

2.1.4 Yaw channel
The yaw channel has no dynamics, only an algebraic condition which is needed
in order to keep 𝛽 = 0 at all times, viz.[︂

𝑝
𝑟

]︂
=

[︂
cos(𝛼) sin(𝛼)
sin(𝛼) − cos(𝛼)

]︂ [︂
𝑝(𝑊 )

−𝐹𝛽

𝑉

]︂
, (2.21)

where

𝐹𝛽 =
𝑓
(𝑔)
𝑦

𝑚
. (2.22)

2.1.5 Velocity
The dynamics for the airspeed are given by

𝑉̇ =
1

𝑚

(︀
(𝑓 (𝑔)

𝑥 + 𝑓 (𝑡)
𝑥 ) cos(𝛼) + 𝑓 (𝑔)

𝑧 sin(𝛼)− 𝑓𝐷
)︀

(2.23)

where the drag force 𝑓𝐷 and thrust force 𝑓
(𝑡)
𝑥 are modeled as in (2.9) and (2.11),

respectively.

2.1.6 Computational dependencies
The main computational dependencies for computation of the velocity 𝑉 in 𝐸
and the quaternion 𝑞 (or Euler angles) defining the relative orientation between
𝐵 and 𝐸 are outlined in Figure 2.1 below.

2.1.7 Summary of assumptions
The main assumptions used in the derivation below of the model in Section 2.1
are listed in Table 2.1. Note that they are of varying importance for the
resulting closed loop model.

12
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𝑡𝑠𝑠 → 𝑉
𝛽 (= 0)

𝜂𝑐 →
[︂

𝜂
𝜂̇

]︂
→ 𝛼

⎫⎪⎪⎬⎪⎪⎭ → 𝑣

↘
𝑞

𝑝
(𝑊 )
𝑐 → 𝑝(𝑊 ) → 𝑝

↘
𝑟

⎫⎪⎪⎬⎪⎪⎭ → 𝑞

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
→

[︂
𝑉
𝑞

]︂

Figure 2.1: Illustration of the main computational dependencies in the aircraft
model.

Main assumptions
No. Assumption Page

1 No force contribution from control surfaces. 15
2 Sideslip angle 𝛽 = 0 at all times. 19
3 Left-right symm. airframe (aerodyn. 𝑦-force is 0 for 𝛽 = 0). 19
4 No thrust force contribution in side force. 19
5 No thrust force in 𝑧-axis (cf. 4 above). 20
6 Ideal (first order) closed loop roll rate dynamics. 22
7 No inertia coupling into open loop pitch rate dynamics. 22
8 Aerodynamic 𝑧-force only dependent on 𝛼, and aerodynamic

pitch mom. only dependent on 𝛼, 𝑞 & control surf. settings. 22
9 Geometric nonlinearities in pitch linearized around 𝛼 = 0. 23
10 Airspeed is slowly varying in pitch dynamics. 25
11 Forces and moments linearized at 𝛼 = 𝑞 = 0 in pitch dyn. 25
12 Aerodyn. force & mom. equilibr. for 𝛼 = 𝑞 = 0 in pitch dyn. 25
13 Ideal synthesized closed loop pitch dynamics. 28
14 Orientation can change faster than angle of attack and thrust 31

Table 2.1: Assumptions used in the derivation of the model in Section 2.1.

2.2 Autopilot
We assume that the Earth fixed frame 𝐸 is (right handed) Cartesian. The
autopilot is capable of aligning the velocity vector 𝑉 in 𝐸 if the aircraft with
a constant reference velocity vector 𝑉 𝑟. It consists of two subsystems; the
guidance law and the command generators for roll and pitch commands. Addi-
tionally, a simple (e.g. PID-type) controller can be applied to control the mag-
nitude of the velocity so that also the aircraft velocity magnitude converges to
the magnitude of the reference velocity vector.

2.2.1 Guidance law
Let𝑅(𝑞) be the rotation matrix that relates quantities in𝐵 and 𝐸, respectively,
so that for example

𝑉 = 𝑅(𝑞)𝑣.

The acceleration commanded by guidance 𝑣̇𝑔 in 𝐵 of the aircraft is computed
from

𝑣̇𝑔 = 𝑅(𝑞)𝑇𝐺(𝑉 ,𝑉 𝑟), (2.24)

13
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with
𝐺(𝑉 ,𝑉 𝑟) =

𝑐𝑔
‖𝑉 ‖2‖𝑉 𝑟‖

(Ω𝑔 × 𝑉 ) (2.25)

where 𝑐𝑔 > 0 is a constant and

Ω𝑔 = 𝑉 × 𝑉 𝑟. (2.26)

The vector 𝑉 is aligned with 𝑉 𝑟 if and only if 𝐺(𝑉 ,𝑉 𝑟) = 0 (for nonzero
𝑉 ,𝑉 𝑟), i.e. if and only if 𝑣̇𝑔 = 0. The number

2𝑉

𝑐𝑔

can be interpreted as the time constant which describes the guidance law re-
sponse 𝑣̇𝑔 to a stepwise change in the reference velocity 𝑉 𝑟. It is reasonable
to make the dynamics of the guidance law (2.24) and (2.25) somewhat slower
than the dynamics of the aircraft.

2.2.2 Orientation command generator
The command generator subsystem of the autopilot issues commands for roll
and pitch in order to drive 𝑣̇𝑔 in (2.24) to zero.

Define the vector 𝜎 ∈ R3 by

𝜎 = [sin(𝛼), 0,− cos(𝛼)]𝑇 , (2.27)

The command generator control law is given by

𝑝(𝑊 )
𝑐 = 𝑔

𝑐𝑔
𝑉
(𝛾1𝑣̇𝑔,2 + 𝛾2Φ)

√︃
1− (𝜎𝑇 𝑣̇𝑔)2 + (𝑣̇𝑔,2)2

𝑐2𝑔
, (2.28)

𝜂𝑐 = 𝛿𝜎𝑇 𝑣̇𝑔, (2.29)

where 𝑣̇𝑔,2 = 𝑒𝑇2 𝑣̇𝑔 and 𝜂𝑐 is the commanded load factor and 𝛿 > 0, 𝛾1 > 0,
and 𝛾2 < 0. The constant 𝛿 defines the time constant

𝑉

𝑔𝑐𝑔𝛿

of the load factor tracking (with respect to the guidance law (2.24), (2.25)) and
the constants 𝛾1, 𝛾2 define the dynamics for the roll-bank tracking adjustments
and the relative influence of 𝑣̇𝑔,2 and Φ for these (see (6.41)–(6.43) below).

14
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3 Rigid Body Mechanics
The most fundamental assumption underlying the derivation of the model is
that the dynamics of the aircraft can be described by rigid body motion.1

To describe the dynamics we use the Newton-Euler (NE) equations and ev-
erything that follows will be the result of specifications, transformations and
simplifications relating to these equations. We assume that there is a body
fixed Cartesian frame 𝐵 defined for the aircraft, with the orientation of the
axes which is standard in flight mechanics, and that the origin of 𝐵 is at the
center of mass (CoM).

3.1 The Newton-Euler equations
The NE equations2 for the motion in 𝐵 for the CoM and the motion around
the CoM of the aircraft read (Stevens & Lewis, 2003)

𝑣̇ =
1

𝑚
𝑓 − 𝜔 × 𝑣, (3.1)

𝜔̇ = 𝐽−1(𝑚− 𝜔 × 𝐽𝜔), (3.2)

where 𝑣 = [𝑢, 𝑣, 𝑤]𝑇 ∈ R3 is the velocity, 𝜔 = [𝑝, 𝑞, 𝑟]𝑇 ∈ R3 is the angular
velocity, 𝑓 = [𝑓𝑥, 𝑓𝑦, 𝑓𝑧]

𝑇 ∈ R3 is the force, 𝑚 ∈ R3 is the moment, 𝑚 > 0 is
the mass and 𝐽 ∈ R3×3 is the moment of inertia matrix which we assume3 has
the form

𝐽 =

⎡⎣ 𝐽𝑥𝑥 0 𝐽𝑥𝑧
0 𝐽𝑦𝑦 0
𝐽𝑥𝑧 0 𝐽𝑧𝑧

⎤⎦ .

The force vector 𝑓 is made up of aerodynamic forces (which are mainly due to
the orientation of the velocity vector 𝑣 in 𝐵, on control surface settings and
on 𝜔, for a given Mach number and air density) and gravity and thrust. It
will later turn out to be convenient to divide the forces 𝑓𝑥, 𝑓𝑦, 𝑓𝑧 into aerody-

namic components 𝑓
(𝑎)
𝑥 , 𝑓

(𝑎)
𝑦 , 𝑓

(𝑎)
𝑧 , gravity induced components 𝑓

(𝑔)
𝑥 , 𝑓

(𝑔)
𝑦 , 𝑓

(𝑔)
𝑧

and thrust components 𝑓
(𝑡)
𝑥 , 𝑓

(𝑡)
𝑦 , 𝑓

(𝑡)
𝑧 , respectively, so that

𝑓𝑥 = 𝑓
(𝑎)
𝑥 + 𝑓

(𝑔)
𝑥 + 𝑓

(𝑡)
𝑥 ,

𝑓𝑦 = 𝑓
(𝑎)
𝑦 + 𝑓

(𝑔)
𝑦 + 𝑓

(𝑡)
𝑦 ,

𝑓𝑧 = 𝑓
(𝑎)
𝑧 + 𝑓

(𝑔)
𝑧 + 𝑓

(𝑡)
𝑧 .

(3.3)

The moment vector 𝑚 consists of aerodynamic moments.4 Aircraft are nor-
mally controlled using control surfaces located forward (canards) or aft (elevons,
elevators, ailerons and tail fin) of the CoM, and in both these cases control
surface deflections in general give considerably larger relative change in 𝑚
than in 𝑓 . It is therefore reasonable, as an approximation, to neglect the Assumption 1.

1This means in particular that we assume that the total mass and mass distribution are
constant (and all mass flow effects are neglected).

2We assume that the force and moment terms are at least piecewise continuous functions
so that a unique solution to the initial value problem always exists, at least locally in time.

3If the mass distribution is symmetric when mirrored in the 𝑥𝑧-plane we have 𝐽𝑥𝑦 =
𝐽𝑦𝑥 = 𝐽𝑦𝑧 = 𝐽𝑧𝑦 = 0, which is a common assumption common in flight mechanics when the
coordinate axes in 𝐵 have the standard orientation Stevens & Lewis (2003).

4Thus, we assume that thrust gives no moment contribution (in particular we do not
consider thrust vectoring) but extension to this case is trivial.
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force contributions from the control surfaces and we shall do so here. Fur-
ther, it is convenient to partition the moment 𝑚 as 𝑚 = 𝑚(𝑎) + 𝑢, where
𝑢 = [𝑢𝑥, 𝑢𝑦, 𝑢𝑧]

𝑇 ∈ R3 is the moment caused by the control surface deflec-
tions (from their nominal position) and represents the control variable, and

𝑚(𝑎) = [𝑚
(𝑎)
𝑥 ,𝑚

(𝑎)
𝑦 ,𝑚

(𝑎)
𝑧 ]𝑇 is the remaining aerodynamic moment (which is

mainly due to the orientation of the velocity vector 𝑣 in 𝐵 and on 𝜔, for a
given Mach number and air density).

3.2 Motion in an Earth fixed frame
To get the complete motion in an Earth fixed Cartesian frame 𝐸 (assumed
inertial) it is necessary to complement (3.1), (3.2) with kinematic and dynamic
relations which translate the motion to 𝐸, e.g. (Stevens & Lewis, 2003)

𝑉 = 𝑅(𝑞)𝑣, (3.4)

𝑞̇ =
1

2
𝑞 ∘ (0,𝜔),

where 𝑉 ∈ R3 is the velocity for the CoM expressed in 𝐸 and 𝑅(𝑞) ∈ R3×3

is the rotation matrix which relates 𝐵 and 𝐸. The rotation matrix 𝑅(𝑞) is
here expressed as a function of an orientation quaternion 𝑞 ∈ H (the symbol
∘ denotes quaternion multiplication and (0,𝜔) is the purely imaginary quater-
nion obtained from the vector 𝜔). Finally, the position in 𝐸 is obtained by
integrating 𝑉 over time.

For later use we note that Newton’s equation for the motion of the CoM in
𝐸 reads

𝑉̇ =
1

𝑚
𝐹 (3.5)

where 𝐹 is the force vector in 𝐸, viz.,

𝐹 = 𝑅(𝑞)𝑓 (3.6)

and from the theory of relative motion (cf. Appendix A) we have

𝑅(𝑞)𝑇 𝑉̇ = 𝑣̇ + 𝜔 × 𝑣 (3.7)

(which of course together yields the force equation (3.1) in 𝐵).

3.3 Aerodynamic coordinates
In aerodynamic contexts it is common to use other coordinates than the Carte-
sian defined in 𝐵, in particular it is common to employ angle of attack, sideslip
angle and airspeed (or total velocity). The main reason for introducing these
(spherical) coordinates is that the most important force (at least for an airfoil),
the lift, is essentially linear (or affine) in 𝛼 over a large interval. We therefore
introduce the angle of attack 𝛼, sideslip angle5 𝛽 and airspeed 𝑉 as6

𝛼 = arctan(𝑤/𝑢),
𝛽 = arcsin(𝑣/𝑉 ),

𝑉 = ‖𝑣‖ =
√
𝑢2 + 𝑣2 + 𝑤2,

5The definition of 𝛽 used here is the one most often used in aircraft contexts. In missile
contexts the definition of 𝛽 is usually taken as 𝛽 = arctan(𝑣/𝑢). In our analysis, which is
based on linearization, the end result (the simplified model) will the same regardless of which
definition is used.

6Since we shall not consider aircraft that fly “sideways” or “backwards” there is no
practical restriction in making the domain of definition for 𝛼, 𝛽 as “small” as we do.
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where 𝛼, 𝛽 ∈ (−𝜋/2, 𝜋/2) and 𝑉 > 0, which gives us the inverse relations

𝑢 = 𝑉 cos(𝛼) cos(𝛽),

𝑣 = 𝑉 sin(𝛽),

𝑤 = 𝑉 sin(𝛼) cos(𝛽).

In terms of these variables, the force equation (3.1) can be expressed with the
following three equations (Stevens & Lewis, 2003; Johansson, 1998)

𝛼̇ =
𝐹𝛼

𝑉
− 𝑝 cos(𝛼) tan(𝛽)− 𝑟 sin(𝛼) tan(𝛽) + 𝑞, (3.8)

𝛽̇ =
𝐹𝛽

𝑉
+ 𝑝 sin(𝛼)− 𝑟 cos(𝛼), (3.9)

𝑉̇ = 𝐹𝑉 , (3.10)

where

𝐹𝛼 =
𝑓𝑧 cos(𝛼)− 𝑓𝑥 sin(𝛼)

𝑚 cos(𝛽)
, (3.11)

𝐹𝛽 =
𝑓𝑦 cos(𝛽)− 𝑓𝑥 cos(𝛼) sin(𝛽)− 𝑓𝑧 sin(𝛼) sin(𝛽)

𝑚
, (3.12)

𝐹𝑉 =
𝑓𝑦 sin(𝛽) + 𝑓𝑥 cos(𝛼) cos(𝛽) + 𝑓𝑧 sin(𝛼) cos(𝛽)

𝑚
. (3.13)

In the following chapters, the system (3.2) and (3.8)–(3.10) will, through a se-
quence of steps, be simplified to yield the equations in the model in Section 2.1.

3.3.1 Wind axes
If we define the two vectors 𝜆,𝜎 ∈ R3 by

𝜆 = [− cos(𝛼) tan(𝛽), 1,− sin(𝛼) tan(𝛽)]𝑇 , (3.14)

𝜎 = [sin(𝛼), 0,− cos(𝛼)]𝑇 , (3.15)

and recall that

𝑣 = 𝑉 [cos(𝛼) cos(𝛽), sin(𝛽), sin(𝛼) cos(𝛽)]𝑇 (3.16)

we see that the quantities in (3.8)–(3.13) can be expressed in terms of (scaled)
projections onto 𝜆,𝜎 and 𝑣. These three vectors are mutually orthogonal and
[𝑣], [𝜆], [𝜎] represent the so called wind axes. The unit vectors 𝑒𝑣, 𝑒𝜆,𝜎 define
a (left-handed) basis 𝑊 for 𝐵 which is often more convenient for representation
of aerodynamic forces than the standard basis 𝑒1, 𝑒2, 𝑒3. In particular, if we
set 𝛽 = 0 we can define the pitch plane lift7 and drag forces 𝑓𝐿, 𝑓𝐷 ∈ R as

𝑓𝐿 = 𝑓 (𝑎)
𝑥 sin(𝛼)− 𝑓 (𝑎)

𝑧 cos(𝛼), (3.17)

𝑓𝐷 = −𝑓 (𝑎)
𝑥 cos(𝛼)− 𝑓 (𝑎)

𝑧 sin(𝛼). (3.18)

The pitch plane lift and drag forces8 𝑓𝐿, 𝑓𝐷 are the components along 𝜎 and

−𝑒𝑣, respectively, of the aerodynamic force 𝑓 (𝑎) (when 𝛽 = 0 and 𝑓
(𝑎)
𝑦 = 0)

which is a case that will be of interest below.

7As alluded to above, 𝑓𝐿 is exactly linear (affine) in 𝛼 according to e.g. thin airfoil theory.
8Lift and drag are defined in terms of the wind axes in general but we shall here only

need to consider the (pitch plane) case obtained when 𝛽 = 0.
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Another important aspect of the wind axes vectors 𝑒𝑣, 𝑒𝜆,𝜎 is that they
also represent a natural basis for the angular velocities of the aircraft. Thus,
𝜔 can be represented as

𝜔 = 𝑝(𝑊 )𝑒𝑣 + 𝑞(𝑊 )𝑒𝜆 + 𝑟(𝑊 )𝜎

where
𝑝(𝑊 ) = 𝑒𝑇𝑣𝜔, 𝑞(𝑊 ) = 𝑒𝑇𝜆𝜔, 𝑟(𝑊 ) = 𝜎𝑇𝜔. (3.19)

By setting 𝛽 = 0 in (3.14)–(3.16) it is clear that an aircraft in coordinated flight
(“bank-to-turn flight”) should always (ideally) be maneuvered by a combina-
tion of rotations around the body 𝑦-axis, i.e. the axis [𝑒𝜆] (pitching maneuver),
and rotations around velocity vector axis, i.e. the axis [𝑒𝑣] (rolling maneuver).
This ideal decomposition of the rotational motion is not always possible to
achieve, see below, but it can serve as a template (and we shall assume that
the aircraft is indeed capable of maneuvering like this).

3.4 Equilibrium points
In flight mechanical studies of maneuvering aircraft it is common to neglect
gravity and assume that the airspeed (and air density) is constant (Goman &
Khramstovsky, 1997; Jahnke, 1998; Goman et al., 2007). This simplifies the
analysis and does not in general change the qualitative characteristics of prob-
lems related to maneuvering in a significant way. The focus will then be on the
dynamics in the part of the NE equations represented by (3.2) and (3.8)–(3.10).
For these equations, the most fundamental problem is to determine the exis-
tence (and nature of) equilibrium points (Goman et al., 2007) since these points
represent sustainable flight conditions (under the simplifying assumptions).

As noted above, one of the natural basic motions of an aircraft is rotation
around the velocity vector axis [𝑒𝑣]. However, it is not in general possible (due
to properties of the airframe and control surfaces) to specify 𝛼, 𝛽, 𝑝(𝑊 ), have
𝑞(𝑊 ) = 𝑟(𝑊 ) = 0 and obtain equilibrium in (3.2) and (3.8)–(3.10) (Goman
et al., 2007). Thus, the quantities 𝑞(𝑊 ), 𝑟(𝑊 ) have to be considered as free
variables and be allowed to to take arbitrary nonzero values when seeking
equilibrium to (3.2) and (3.8)–(3.10). Still, it is very natural to use 𝛼, 𝛽, 𝑝(𝑊 )

as controlled variables (ones for which desired values are commanded during
maneuvering) and this approach is (essentially) the one we shall take.
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4 Simplifying the Equations I
In this chapter we perform simplifications which can be motivated by consider-
ing only the most important functional dependencies in various quantities and
by considering the relative sizes of various terms occurring in the equations.
Moreover, we shall linearize the geometric nonlinearities (those related to the
change to aerodynamic coordinates 𝛼, 𝛽, 𝑉 ).

4.1 Simplified force equation
Assumption 2.

Since we shall focus on the case of coordinated flight, i.e. flight where the
side slip angle 𝛽 is zero at all times, we shall start by investigating what
consequences such a condition has.

4.1.1 Sideslip angle
From (3.9) we see that 𝛽 is identically 0 over a time interval [𝑡0, 𝑡1] if and only
if 𝛽(𝑡0) = 0 and the relation

0 =
𝐹𝛽

𝑉
+ 𝑝 sin(𝛼)− 𝑟 cos(𝛼) (4.1)

holds over [𝑡0, 𝑡1]. We may therefore we use (4.1) together with the assumption
𝛽(𝑡0) = 0 for some 𝑡0 as a necessary and sufficient condition for 𝛽 ≡ 0. In fact,
we may then assume1 that 𝐹𝛽 = 𝑓𝑦/𝑚 since this is what the expression for 𝐹𝛽

in (3.12) reduces to when 𝛽 = 0. Moreover, for an airframe which is symmetric Assumption 3.

when mirrored in the 𝑥, 𝑧-plane in 𝐵 the aerodynamic force component 𝑓
(𝑎)
𝑦 is

an odd (continuous) function of 𝛽 and therefore must vanish when 𝛽 = 0. If Assumption 4.
we restrict attention to such airframes and assume that the trust contribution
𝑓
(𝑡)
𝑦 in (3.3) is zero we thus have

𝐹𝛽 =
𝑓
(𝑔)
𝑦

𝑚
. (4.2)

This expression for 𝐹𝛽 is used in the model in Section 2.1. We also note that
𝛽 ≡ 0 is equivalent to 𝑣 ≡ 0 which in its turn implies 𝑣̇ ∈ [𝑒𝑣,𝜎] = [𝑒2]

⊥ for
all times and we note that (4.1) and (4.2) together yield

𝑟(𝑊 ) = 𝜔𝑇𝜎 = −𝑓
(𝑔)
𝑦

𝑚𝑉
(4.3)

which will be used below.

4.1.2 Angle of attack
If we use the assumption 𝛽 = 0 in (3.8) we obtain

𝛼̇ =
𝐹𝛼

𝑉
+ 𝑞, (4.4)

where 𝐹𝛼 from (3.11) here becomes

𝐹𝛼 =
𝑓𝑧 cos(𝛼)− 𝑓𝑥 sin(𝛼)

𝑚
. (4.5)

1Assume 𝛽(𝑡0) = 0 and 𝑓𝑦/(𝑚𝑉 ) + 𝑝 sin(𝛼) − 𝑟 cos(𝛼) = 0 over a time interval ℐ
containing 𝑡0 and that 𝑓𝑥, 𝑓𝑦 , 𝑓𝑧 are 𝐶1-functions there. Then by (3.9), (3.12) we have

𝛽̇ = (1/(𝑚𝑉 ))(𝑓𝑦(cos(𝛽)− 1)− 𝑓𝑥 cos(𝛼) sin(𝛽)− 𝑓𝑧 sin(𝛼) sin(𝛽)) over ℐ and by uniqueness
of solutions 𝛽 ≡ 0 is the only solution to this differential equation.
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With the definitions in (3.3) we can also divide 𝐹𝛼 correspondingly as

𝐹𝛼 = 𝐹 (𝑎)
𝛼 + 𝐹 (𝑔𝑡)

𝛼 , (4.6)

where the aerodynamic component 𝐹
(𝑎)
𝛼 can be expressed in terms of the pitch

plane lift force 𝑓𝐿 in (3.17) as

𝐹 (𝑎)
𝛼 =

𝑓
(𝑎)
𝑧 cos(𝛼)− 𝑓

(𝑎)
𝑥 sin(𝛼)

𝑚
= −𝑓𝐿

𝑚
, (4.7)

and the gravity/thrust component 𝐹
(𝑔𝑡)
𝛼 defined by

𝐹 (𝑔𝑡)
𝛼 =

1

𝑚

(︀
𝑓 (𝑔)
𝑧 cos(𝛼)− (𝑓 (𝑔)

𝑥 + 𝑓 (𝑡)
𝑥 ) sin(𝛼)

)︀
. (4.8)

Here, we have also introduced the assumption that 𝑓
(𝑡)
𝑧 = 0, which togetherAssumption 5.

with the previous assumption that 𝑓
(𝑡)
𝑦 = 0 means that thrust only acts along

the 𝑥-axis in 𝐵.
The expression for 𝐹

(𝑔𝑡)
𝛼 in (4.8) is used in the model in Section 2.1 (for

some computational aspects on this term, see Sec. 5.4.3 below).

4.1.3 Velocity
If we use the assumption 𝛽 = 0 in (3.10) we obtain

𝑉̇ = 𝐹𝑉 =
𝑓𝑥 cos(𝛼) + 𝑓𝑧 sin(𝛼)

𝑚
. (4.9)

With the definitions in (3.3) we can also split 𝐹𝑉 as

𝐹𝑉 = 𝐹
(𝑎)
𝑉 + 𝐹

(𝑔𝑡)
𝑉 , (4.10)

where the aerodynamic component 𝐹
(𝑎)
𝑉 is related to the pitch plane drag force

𝑓𝐷 in (3.18) as

𝐹
(𝑎)
𝑉 = −𝑓𝐷

𝑚
(4.11)

and the gravity/thrust component 𝐹
(𝑔𝑡)
𝑉 is defined by

𝐹
(𝑔𝑡)
𝑉 =

1

𝑚

(︀
(𝑓 (𝑔)

𝑥 + 𝑓 (𝑡)
𝑥 ) cos(𝛼) + 𝑓 (𝑔)

𝑧 sin(𝛼)
)︀
. (4.12)

Summing up, equation (4.4) together with the condition 𝛽 = 0 and (4.9)
yield a complete description of the evolution of the variables 𝛼, 𝛽 and 𝑉 in the
transformed and simplified version of the force equation (3.8)–(3.10), provided
we specify either time evolutions or functional relations for the force compo-

nents 𝑓
(𝑎)
𝑥 , 𝑓

(𝑔)
𝑥 , 𝑓

(𝑡)
𝑥 , 𝑓

(𝑔)
𝑦 , 𝑓

(𝑎)
𝑧 , 𝑓

(𝑔)
𝑧 . (Recall that the aerodynamic forces have

implicit dependence on variables other than those in the NE equations, or their
transformed counterparts, such as dependence on air density which is mostly
dependent on altitude.)

4.2 Simplified moment equation
We consider here aircraft that have “conventional” airframes with certain sym-
metries in shape and mass distribution. Therefore we can assume a certain form
of the moment of inertia matrix and certain relations between the elements in
it to hold.
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4.2.1 Roll channel
The open loop dynamics for 𝑝 can be extracted form (3.2) as

𝑝̇ = 𝐽𝑧𝑧
𝑞𝑟𝐽𝑦𝑦 − 𝑞(𝑝𝐽𝑥𝑧 + 𝑟𝐽𝑧𝑧)

𝐽𝑥𝑥𝐽𝑧𝑧 − 𝐽2
𝑥𝑧

+ 𝐽𝑥𝑧
𝑝𝑞𝐽𝑦𝑦 − 𝑞(𝑟𝐽𝑥𝑧 + 𝑝𝐽𝑥𝑥)

𝐽𝑥𝑥𝐽𝑧𝑧 − 𝐽2
𝑥𝑧

+
𝐽𝑧𝑧

𝐽𝑥𝑥𝐽𝑧𝑧 − 𝐽2
𝑥𝑧

(𝑚(𝑎)
𝑥 + 𝑢𝑥)−

𝐽𝑥𝑧
𝐽𝑥𝑥𝐽𝑧𝑧 − 𝐽2

𝑥𝑧

(𝑚(𝑎)
𝑧 + 𝑢𝑧). (4.13)

For a fighter aircraft2 the ratio 𝐽𝑧𝑧/𝐽𝑥𝑧 can be in the order of 30 or more and

since𝑚
(𝑎)
𝑧 +𝑢𝑧 will be small compared to𝑚

(𝑎)
𝑥 +𝑢𝑥, at least during maneuvering

(with small 𝛽), the last moment term on the right in (4.13) is likely to be
small compared the one before it. Moreover, since the mass distribution of the
aircraft can generally be assumed to be well known the first two terms in (4.13)
can be canceled, at least approximately, by adding a term to the control law.
Together this means that it is reasonable to assume that the control system on
the aircraft can synthesize a closed loop roll response as3

𝑝̇ =
1

𝜏𝑝
(𝑝𝑐 − 𝑝), (4.14)

where 𝑝𝑐 is the commanded value for the roll rate around the 𝑦-axis in 𝐵 and
𝜏𝑝 is the associated time constant, as dictated by standard handling qualities
requirements (Hodgkinson, 1999, p. 94,133).

4.2.1.1 Velocity axis roll

As indicated before, we shall take 𝑝(𝑊 ) in (3.19) to be the controlled variable for
roll motion and from the definition (3.19) we obtain for the case of coordinated
flight (𝛽 = 0)

𝑝̇(𝑊 ) = 𝑝̇ cos(𝛼) + 𝑟̇ sin(𝛼) + 𝛼̇(𝑟 cos(𝛼)− 𝑝 sin(𝛼)). (4.15)

The open loop dynamics for 𝑟 can be extracted from (3.2) as

𝑟̇ = 𝐽𝑧𝑥
𝑞(𝑝𝐽𝑥𝑧 + 𝑟𝐽𝑧𝑧)− 𝑞𝑟𝐽𝑦𝑦

𝐽𝑥𝑥𝐽𝑧𝑧 − 𝐽2
𝑥𝑧

+ 𝐽𝑥𝑥
𝑞(𝑝𝐽𝑥𝑥 + 𝑟𝐽𝑥𝑧)− 𝑝𝑞𝐽𝑦𝑦

𝐽𝑥𝑥𝐽𝑧𝑧 − 𝐽2
𝑥𝑧

− 𝐽𝑥𝑧
𝐽𝑥𝑥𝐽𝑧𝑧 − 𝐽2

𝑥𝑧

(𝑚(𝑎)
𝑥 + 𝑢𝑥) +

𝐽𝑥𝑥
𝐽𝑥𝑥𝐽𝑧𝑧 − 𝐽2

𝑥𝑧

(𝑚(𝑎)
𝑧 + 𝑢𝑧) (4.16)

and by combining (4.13), (4.15) and (4.16) it follows that

𝑝̇(𝑊 ) = (𝐽𝑧𝑧 cos(𝛼)− 𝐽𝑥𝑧 sin(𝛼))
𝑞𝑟𝐽𝑦𝑦 − 𝑞(𝑝𝐽𝑥𝑧 + 𝑟𝐽𝑧𝑧)

𝐽𝑥𝑥𝐽𝑧𝑧 − 𝐽2
𝑥𝑧

+ (𝐽𝑥𝑧 cos(𝛼)− 𝐽𝑥𝑥 sin(𝛼))𝐽𝑥𝑧
𝑝𝑞𝐽𝑦𝑦 − 𝑞(𝑟𝐽𝑥𝑧 + 𝑝𝐽𝑥𝑥)

𝐽𝑥𝑥𝐽𝑧𝑧 − 𝐽2
𝑥𝑧

+ (𝐽𝑧𝑧 cos(𝛼)− 𝐽𝑥𝑧 sin(𝛼))
𝐽𝑧𝑧

𝐽𝑥𝑥𝐽𝑧𝑧 − 𝐽2
𝑥𝑧

(𝑚(𝑎)
𝑥 + 𝑢𝑥)

− (𝐽𝑥𝑧 cos(𝛼)− 𝐽𝑥𝑥 sin(𝛼))
𝐽𝑥𝑧

𝐽𝑥𝑥𝐽𝑧𝑧 − 𝐽2
𝑥𝑧

(𝑚(𝑎)
𝑧 + 𝑢𝑧)

+ 𝛼̇(𝑟 cos(𝛼)− 𝑝 sin(𝛼)).

2For e.g. the ADMIRE model Forssell & Nilsson (2005) the values are 𝐽𝑥𝑥 = 21000kg/m2,
𝐽𝑦𝑦 = 81000kg/m2, 𝐽𝑧𝑧 = 101000kg/m2 and 𝐽𝑥𝑧 = −2500kg/m2.

3A first order form for the open loop response is a reasonable approximation for many
aircraft due to the shape of the aerodynamic roll damping moment Hodgkinson (1999) and
(presumably) therefore this form of the response is kept in handling qualities requirements.
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By the same argumentation that was used above it is clear that the term de-
scribing moment around the 𝑧-axis is in general likely to be considerably smaller
than the one describing moment around the 𝑥-axis, and the remaining terms
contain known or measurable quantities which can, at least approximately, be
canceled by the control law. Hence, it is reasonable to assume that also the
closed loop roll response around the velocity vector can be synthesized to have
the formAssumption 6.

𝑝̇(𝑊 ) =
1

𝜏𝑝
(𝑝(𝑊 )

𝑐 − 𝑝(𝑊 )), (4.17)

where 𝑝
(𝑊 )
𝑐 is the commanded value for the velocity axis roll rate 𝑝(𝑊 ) in (3.19).

4.2.2 Pitch channel
For the pitch channel finally we extract open loop dynamics for 𝑞 from (3.2) as

𝑞 = −𝑟(𝑝𝐽𝑥𝑥 + 𝑟𝐽𝑥𝑧)

𝐽𝑦𝑦
− 𝑝(𝑝𝐽𝑥𝑧 + 𝑟𝐽𝑧𝑧)

𝐽𝑦𝑦
+

1

𝐽𝑦𝑦
(𝑚(𝑎)

𝑦 + 𝑢𝑦) (4.18)

With similar argumentation as for the roll channel about the possibility for the
control law to, at least approximately, cancel (smaller) terms we see that it is
reasonable to approximate (or model) it asAssumption 7.

𝑞 =
1

𝐽𝑦𝑦
(𝑚(𝑎)

𝑦 + 𝑢𝑦). (4.19)

Thus, we shall use (4.19) as our model of the open loop moment equation for
the pitch channel which will later lead to a closed loop model for the pitch
channel (when the 𝛼, 𝑞 dynamics have been further developed).

4.2.3 Yaw channel
If we use 𝑝 to describe the roll motion, as in (4.14), we can simply postulate 𝑝
and then (at each time instant) solve for 𝑟 in (4.1) (with (4.2)) to satisfy the
sufficient condition for 𝛽 to remain zero at all times (i.e start with 𝛽(𝑡0) = 0
at some 𝑡0 and then satisfy (4.1) for all times onward). However, when using
𝑝(𝑊 ) in (3.19) instead to describe the roll motion, as in (4.17), it is clear that
we at each time instant must satisfy the system[︂

cos(𝛼) sin(𝛼)
sin(𝛼) − cos(𝛼)

]︂ [︂
𝑝
𝑟

]︂
=

[︂
𝑝(𝑊 )

−𝐹𝛽

𝑉

]︂
. (4.20)

Since the matrix on the left always has full rank (indeed, it is orthogonal) this
will define (𝑝, 𝑟) uniquely in such a way that both conditions (4.17) and (4.1)
are fulfilled. For easy reference we write down the solution to (4.20) which is[︂

𝑝
𝑟

]︂
=

[︂
cos(𝛼) sin(𝛼)
sin(𝛼) − cos(𝛼)

]︂ [︂
𝑝(𝑊 )

−𝐹𝛽

𝑉

]︂
. (4.21)

4.3 Simplified nonlinear pitch plane model
Additional simplifications over those given in previous sections can be obtained

if one observes the main functional dependencies in 𝑓
(𝑎)
𝑧 and 𝑚

(𝑎)
𝑦 . TheAssumption 8.

aerodynamic force 𝑓
(𝑎)
𝑧 generally mainly depends on 𝛼 (more than on 𝑞 for

fixed 𝑉 ) (Stevens & Lewis, 2003, p. 76) and the moment 𝑚
(𝑎)
𝑦 depends mainly

on 𝛼 and 𝑞. We are therefore going to assume that these are the only functional

dependencies in 𝑓
(𝑎)
𝑧 and 𝑚

(𝑎)
𝑦 .
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Further, the relative sizes of the geometric nonlinearities (the trigonometric
functions) occurring in Sec. 4.1 will in general be determined by the simple fact
that 𝛼 will be small or at most moderate.4 Thus, it is reasonable to replace Assumption 9.
the geometric nonlinearities with their first order approximation (linearization)
around 𝛼 = 0.

If we use these assumptions and approximations in (4.4) and (4.19) we
obtain a model of the form

𝛼̇ =
𝑍(𝛼)

𝑉
+ 𝑞 +

𝐹
(𝑔𝑡)
𝛼

𝑉
, (4.22)

𝑞 = 𝑀(𝛼, 𝑞) + 𝑈 (𝑦), (4.23)

(with 𝐹
(𝑔𝑡)
𝛼 as in (4.8)) where we have introduced the normalized forces5 (ac-

celerations) and normalized moments (angular accelerations) according to

𝑍 =
𝑓
(𝑎)
𝑧

𝑚
, 𝑀 =

𝑚
(𝑎)
𝑦

𝐽𝑦𝑦
, 𝑈 (𝑦) =

𝑢𝑦

𝐽𝑦𝑦
. (4.24)

This model will, after some further simplifications, be one of the core parts of
the overall aircraft model. We note that the normalized force 𝑍 is in general
almost linear (affine) in 𝛼 (for small to moderate values, cf. (4.7)).

4Since we shall not consider high angle of attack flight it is reasonable to assume that 𝛼
is at most of the order 25∘.

5Note that 𝑍 and 𝑀 have implicit dependence on 𝑉 and on air density/altitude.
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5 Simplifying the Equations II
In this chapter we further simplify the equations of motion by linearizing also
the aerodynamic force and moment terms. Since it is generally true for Assumption 10.
maneuvering aircraft that 𝑉 evolves on a slower time scale than 𝛼, 𝑞 we shall
in the treatment of the pitch plane dynamics consider 𝑉 as slowly varying
(i.e. set 𝑉̇ = 0). In the last section we shall derive a dynamic model for the
evolution of 𝑉 .

5.1 Linearized model of the pitch plane dynamics
If we linearize the aerodynamic forces and moments in the simplified pitch plane
dynamics equations (4.22), (4.23) around a reference point (𝛼, 𝑞) = (𝛼0, 𝑞0)
where 𝛼0, 𝑞0 are small (so that (4.22), (4.23) provide a good approximation to
the pitch dynamics) and slowly varying (so that 𝛼̇0 = 0, 𝑞0 = 0) we obtain

˙̃𝛼 =
𝑍𝛼(𝛼0)

𝑉
𝛼̃+ 𝑞 +𝑅𝛼(𝛼0, 𝑞0), (5.1)

˙̃𝑞 = 𝑀𝛼(𝛼0, 𝑞0)𝛼̃+𝑀𝑞(𝛼0, 𝑞0)𝑞 + 𝑈̃ +𝑅𝑞(𝛼0, 𝑞0), (5.2)

where 𝑈
(𝑦)
0 is a normalized reference moment and we have introduced the de-

viations
𝛼̃ = 𝛼− 𝛼0, 𝑞 = 𝑞 − 𝑞0, 𝑈̃ = 𝑈 (𝑦) − 𝑈

(𝑦)
0 , (5.3)

and notation

𝑍𝛼 =
𝑑𝑍

𝑑𝛼
, 𝑀𝛼 =

𝜕𝑀

𝜕𝛼
, 𝑀𝑞 =

𝜕𝑀

𝜕𝑞
,

(with 𝑍,𝑀 as in (4.24)) and

𝑅𝛼(𝛼0, 𝑞0) =
𝑍(𝛼0)

𝑉
+ 𝑞0 +

𝐹
(𝑔𝑡)
𝛼

𝑉
, 𝑅𝑞(𝛼0, 𝑞0) = 𝑀(𝛼0, 𝑞0) + 𝑈

(𝑦)
0 , (5.4)

(with 𝐹
(𝑔𝑡)
𝛼 as in (4.8)). One choice of the reference point (𝛼0, 𝑞0) for the lin-

earized system (5.1), (5.2) is the one where the two remainder terms 𝑅𝛼(𝛼0, 𝑞0)

and 𝑅𝑞(𝛼0, 𝑞0) in (5.4) become zero for 𝑈
(𝑦)
0 = 0. This would correspond to an

equilibrium point for the linearized system with gravity and thrust included,
but since this would depend on the orientation of the vehicle and throttle set-
ting it will not turn out to be the most convenient for our future developments.

5.1.1 Aerodynamic equilibrium
The choice of linearization point greatly affects the dynamics in the linearized
model1 but since we here focus on the resulting closed loop behavior we use a
“generic” reference point and choose Assumption 11.

(𝛼0, 𝑞0) = (0, 0).

We shall also assume that at the reference point 𝛼0 = 𝑞0 = 0 the system Assumption 12.

(5.1), (5.2) is at equilibrium if 𝐹
(𝑔𝑡)
𝛼 = 0 and 𝑈

(𝑦)
0 = 0. This will make the

effects of gravity explicitly visible. It moreover implies that 𝑍(0) = 0, i.e. the
airframe provides zero lift at zero angle of attack, but this is reasonable for

1Various aspects of the choice of linearization point and its consequences are discussed
in (Robinson, 2010).
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most airframes since the actual value is likely to be close to zero. Likewise
the equilibrium condition implies 𝑀(𝛼0, 𝑞0) = 0, i.e. aerodynamic moment
balance with control surfaces in neutral position, which can be made to hold
by a redefinition of the moment terms. (Taken together this means that the
reference point 𝛼0 = 𝑞0 = 0 can be thought of as one which gives aerodynamic
equilibrium to the system (5.2).)

5.1.2 Aerodynamic coefficients
The normalized forces and moments in (5.1), (5.2) are commonly described by
aerodynamic coefficients (Stevens & Lewis, 2003; Raymer, 2006). For instance,

𝑍(𝛼) =
1

2𝑚
𝜌𝑉 2𝑆𝑟𝑒𝑓𝐶𝑍(𝛼) (5.5)

where 𝜌 is the air density, 𝑆𝑟𝑒𝑓 is the reference area and 𝐶𝑍 is the aerodynamic
force coefficient in the (positive) 𝑧-direction in 𝐵. In particular we see that
𝑍(𝛼) = 0 is equivalent to 𝐶𝑍(𝛼) = 0 so the assumption above that 𝛼0 = 𝑞0 = 0
yields aerodynamic equilibrium also implies 𝐶𝑍(0) = 0.

The coefficient 𝐶𝑍 can be Taylor expanded around 𝛼 = 0 and the linear
approximation of 𝐶𝑍 is then

𝐶𝑍(𝛼) =
𝜕𝐶𝑍

𝜕𝛼
|𝛼=0𝛼 (5.6)

Usually, this approximation is accurate for 𝛼 up to, at least, 25∘ and this is
one of the reasons for the widespread use of linearized pitch plane models. In
terms of the linear representation (5.6) we have

𝑍𝛼(0) =
1

𝑚

𝜕𝑓
(𝑎)
𝑧

𝜕𝛼
|𝛼=0 =

1

2𝑚
𝜌𝑉 2𝑆𝑟𝑒𝑓

𝜕𝐶𝑍

𝜕𝛼
|𝛼=0. (5.7)

For later use we note also that in terms of aerodynamic coefficients the defini-
tion (3.17) can be written

𝐶𝐿(𝛼) = 𝐶𝑋(𝛼) sin(𝛼)− 𝐶𝑍(𝛼) cos(𝛼),

where 𝐶𝐿 is the lift force coefficient corresponding to the lift force 𝑓𝐿 in (3.17)
and 𝐶𝑋 is the coefficient for the aerodynamic force in the 𝑥-direction in 𝐵. It
follows that

𝜕𝐶𝐿

𝜕𝛼
|𝛼=0 = 𝐶𝑋(0)− 𝜕𝐶𝑍

𝜕𝛼
|𝛼=0

but the term 𝐶𝑋(0) is often2 more than two orders of magnitude smaller than
the other terms so it can be ignored. Thus, near 𝛼 = 0, the slope of the lift
force coefficient and the slope of the 𝑧-force coefficient are, after a sign change,
essentially identical.

The other linearized force and moment quantities in (5.1), (5.2) can analo-
gously be described in terms of the appropriate aerodynamic force and moment
coefficients and their derivatives.

5.2 The short period approximation
The equations for the linearized pitch plane dynamics (5.1), (5.2) around the
reference point (𝛼0, 𝑞0) = (0, 0) can be written on scalar (SISO) form in terms

2In the transonic region this is no longer true, but 𝐶𝑋(0) is then still significantly smaller
than the term 𝜕𝐶𝑍/𝜕𝛼|𝛼=0.
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of the variable 𝛼 by eliminating 𝑞 as

𝛼̈ =
𝑍𝛼

𝑉
𝛼̇− 𝑍𝛼𝑉̇

𝑉 2
𝛼+𝑀𝛼𝛼+𝑀𝑞𝑞 + 𝑈̃ +

𝑑

𝑑𝑡

𝐹
(𝑔𝑡)
𝛼

𝑉

=
𝑍𝛼

𝑉
𝛼̇− 𝑍𝛼𝑉̇

𝑉 2
𝛼+𝑀𝛼𝛼+𝑀𝑞(𝛼̇− 𝑍𝛼

𝑉
𝛼− 𝐹

(𝑔𝑡)
𝛼

𝑉
)

+𝑈̃ +
𝑑

𝑑𝑡

𝐹
(𝑔𝑡)
𝛼

𝑉

=
(︀𝑍𝛼

𝑉
+𝑀𝑞

)︀
𝛼̇+

(︀
𝑀𝛼 −𝑀𝑞

𝑍𝛼

𝑉

)︀
𝛼

+𝑈̃ −𝑀𝑞
𝐹

(𝑔𝑡)
𝛼

𝑉
+

𝑑

𝑑𝑡

𝐹
(𝑔𝑡)
𝛼

𝑉
, (5.8)

where

𝑍𝛼 = 𝑍𝛼(0), 𝑀𝛼 = 𝑀𝛼(0, 0), 𝑀𝑞 = 𝑀𝑞(0, 0)

and we have used the assumption 𝑉̇ = 0. The second order linear dynamics
described by the differential equation (5.8) is often referred to as the short
period approximation, Ananthkrishnan & Unnikrishnan (2001), of the pitch
plane dynamics.

The short period approximation (5.8) can be parametrized as

𝛼̈+ 2𝜁𝑠𝑝𝜔𝑠𝑝𝛼̇+ 𝜔2
𝑠𝑝𝛼 = 𝑈̃ + 𝑈 (𝑔𝑡), (5.9)

where

𝑈̃ = 𝑈 (𝑦) − 𝑈
(𝑦,𝑎)
0 , 𝑈 (𝑔𝑡) = −𝑀𝑞

𝐹
(𝑔𝑡)
𝛼

𝑉
+

𝐹̇
(𝑔𝑡)
𝛼

𝑉
, (5.10)

and the undamped natural frequency 𝜔𝑠𝑝 and damping 𝜁𝑠𝑝, respectively, are
given by

𝜔2
𝑠𝑝 = −(𝑀𝛼 −𝑀𝑞𝑍𝛼/𝑉 ), (5.11)

2𝜁𝑠𝑝𝜔𝑠𝑝 = −(𝑀𝑞 + 𝑍𝛼/𝑉 ). (5.12)

The expressions (5.11), (5.12) for the undamped natural frequency and damp-
ing are the ones often given in the literature to describe the short period ap-
proximation3 (cf. e.g. (Ananthkrishnan & Unnikrishnan, 2001, Eq. (10)), or
(Stevens & Lewis, 2003, Eq. (4.2-10)) with 𝑍𝛼̇, 𝑍𝑞,𝑀𝛼̇ = 0).

5.2.1 State space representation
A state space representation of (5.9) will turn out to be useful below. The
simplest choice of state variables 𝑥1, 𝑥2 is

𝑥1 = 𝛼, 𝑥2 = 𝑥̇1

which gives the representation[︂
𝑥̇1

𝑥̇2

]︂
=

[︂
0 1

𝑀𝛼 −𝑀𝑞
𝑍𝛼

𝑉
𝑍𝛼

𝑉 +𝑀𝑞

]︂ [︂
𝑥1

𝑥2

]︂
+

[︂
0
1

]︂
𝑢

=

[︂
0 1

−𝜔2
𝑠𝑝 −2𝜁𝑠𝑝𝜔𝑠𝑝

]︂ [︂
𝑥1

𝑥2

]︂
+

[︂
0
1

]︂
𝑢, (5.13)

3Usually, however, the linearization point (𝛼0, 𝑞0) in (5.1), (5.2) is one which gives equi-
librium straight and level horizontal flight (Ananthkrishnan & Unnikrishnan, 2001).
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where the new control variable 𝑢 is defined by

𝑢 = 𝑈̃ −𝑀𝑞
𝐹

(𝑔𝑡)
𝛼

𝑉
+

𝐹̇
(𝑔𝑡)
𝛼

𝑉
= 𝑈̃ + 𝑈 (𝑔𝑡) (5.14)

and 𝑈̃ , 𝑈 (𝑔𝑡) are defined as in (5.10). We note in passing that the eigenvalues
𝜆1,2 of the matrix on the right in (5.13), which are the roots of the characteristic
polynomial of the system (i.e. the poles to the transfer function in (5.9)), are
given by

𝜆1,2 = −𝜔𝑠𝑝

(︀
𝜁𝑠𝑝 ∓ 𝑖

√︁
1− 𝜁2𝑠𝑝

)︀
(assuming that 𝜔𝑠𝑝 > 0 and 𝜁𝑠𝑝 ∈ (0, 1)).

5.3 Closed Loop System
It is easy to see that the system (5.13) is controllable and therefore a linear
state feedback controller can be added to the system to synthesize any closed
loop poles. Indeed, if a state feedback of the form

𝑢̃ = [𝑘1 𝑘2]

[︂
𝑥1

𝑥2

]︂
+ 𝑢

is added to the system (5.13) then the new system has the same form as the
old (with new control input 𝑢̃), but where the substitutions

𝑀𝛼 → 𝑀𝛼 + 𝑘1,

𝑀𝑞 → 𝑀𝑞 + 𝑘2,

have been made. The closed loop poles are the roots of the corresponding
modified version of the characteristic polynomial of the system, which is the
polynomial in derivatives on the left in (5.9). Analogous remarks hold if we
instead consider the dynamics in (5.13), (5.14).

It is easy to see that the resulting new damping and undamped natural
frequency in (5.11) and (5.12) can be assigned arbitrary values by varying
𝑘1, 𝑘2. Since such a state feedback controller can always be assumed to beAssumption 13.
present (and the airframe to have sufficient control surface area and actuator
power within the operating envelope of the vehicle) we can assume that (5.13),
(5.14), in fact describes the closed loop system for the pitch channel with the
desired (w.r.t. handling qualities) dynamics (i.e. the values of the undamped
natural frequency and damping having the desired values). The values of the
quantities in (5.13), (5.14) then no longer represent the physical “bare airframe”
properties, but “virtual quantities,” synthesized by the controller, cf. below.

5.4 Load factor
The simplified linearized pitch plane dynamics model developed so far will be
the basis for the pitch channel dynamics in the overall model in Section 2.1.
However, the linearized pitch plane dynamics model employs the angle of attack
as basic variable and this is in general not a good choice for command, at
least not for a piloted aircraft. Therefore, we shall here develop an equivalent
model of the pitch channel dynamics which utilize a more natural variable for
command, the load factor.

5.4.1 Aerodynamic load factor
As remarked above, in studies of maneuvering aircraft it is often warranted to
start by studying the dynamics of the aircraft in a gravity free setting. Since
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the effects of thrust are easily added later it is moreover convenient to study the
dynamics resulting from aerodynamic forces and moments alone. Particularly
important is then the load induced by the aerodynamic force in the 𝜎-direction
in 𝐵 and this can be represented by the aerodynamic load factor 𝜂(𝑎) defined
as

𝜂(𝑎) =
𝑓𝐿
𝑚𝑔

,

where 𝑓𝐿 is the lift force in (3.17). Thus, the aerodynamic load factor is the
ratio of the lift and weight forces.

We know from earlier remarks that the lift force aerodynamic coefficient
𝐶𝐿 in general is essentially linear in 𝛼 around 𝛼 = 0 and therefore 𝜂(𝑎) can be
described in terms of (the derivative of) 𝐶𝐿 (cf. Sec. 5.1.2) as

𝜂(𝑎) =
1

2𝑚𝑔
𝜌𝑉 2𝑆𝑟𝑒𝑓

𝜕𝐶𝐿

𝜕𝛼
|𝛼=0𝛼 (5.15)

Moreover, from Section 5.1.2 we know also that for 𝛼 = 0 we may (as a good
approximation) replace 𝜕𝐶𝐿/𝜕𝛼 with −𝜕𝐶𝑍/𝜕𝛼. Thus, in the language of the
linearized model (5.1) (with 𝛼0 = 𝑞0 = 0) 𝜂(𝑎) can be expressed as4

𝜂(𝑎) = −𝑍𝛼

𝑔
𝛼 = − 1

2𝑚𝑔
𝜌𝑉 2𝑆𝑟𝑒𝑓

𝜕𝐶𝑍

𝜕𝛼
|𝛼=0𝛼 (5.16)

where 𝑍𝛼 = 𝑍𝛼(0) and we have used (5.7).

5.4.1.1 State space representation

From (5.13), (5.14) we immediately obtain (after a rescaling of the control
variable) a state space model for the behavior of 𝜂(𝑎) as

𝑑

𝑑𝑡

[︂
𝜂(𝑎)

𝜂̇(𝑎)

]︂
=

[︂
0 1

−𝜔2
𝑠𝑝 −2𝜁𝑠𝑝𝜔𝑠𝑝

]︂ [︂
𝜂(𝑎)

𝜂̇(𝑎)

]︂
+

[︂
0
𝜔2
𝑠𝑝

]︂
𝑢. (5.17)

By the discussion in (5.3) we know that the expression (5.17) not only describes
the open loop behavior but also the closed loop behavior, depending on how
we interpret the values of the undamped natural frequency and damping factor
𝜔𝑠𝑝, 𝜁𝑠𝑝, respectively, and the control variable 𝑢. In the open loop case we
interpret these as the bare airframe values and in the closed loop case as the
values prescribed by the handling qualities, and the control variable 𝑢 can be

interpreted as commanded (desired) aerodynamic load factor 𝜂
(𝑎)
𝑐 .

From (5.5), (5.7), (5.15), (5.16) and the fact that 𝑍(0) = 0 by assump-
tion we also see that the dynamics for the aerodynamic load factor 𝜂(𝑎) are
equivalent (under the stated conditions) to those of the aerodynamic lift force
coefficient 𝐶𝐿 (or, after a sign change, 𝐶𝑍). We can therefore by a simple linear
transformation (𝛼, 𝛼̇) → (𝐶𝐿, 𝐶̇𝐿) in (5.17) and obtain a system of exactly the
same form and we may interpret the input, after rescaling, as commanded 𝐶𝐿.

The aerodynamic load factor 𝜂(𝑎) is intimately related to angle of attack 𝛼
and therefore links the two to “ideal,” i.e. gravity free, turning radius. However,
for actually representing the motion in 𝐸, where gravity is present, it is often
more relevant to use the total load factor.

4The quantity 𝜂(𝑎)/𝛼, frequently denoted (𝑛/𝛼) is central to handling quality specifica-
tions such as CAP and C*, see e.g. (Tobie et al., 1966; MIL-HDBK-1797) and the discussion
in (Field, 1993).
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5.4.2 Load factor (total)
In piloted flight, the most relevant variable describing the pitch dynamics in
most flight conditions is the (total) load factor (Tobie et al., 1966). The load
factor 𝜂 represents the total load in the 𝜎-direction in 𝐵 and is defined by

𝜂 =
𝜎𝑇𝑓

𝑚𝑔
=

𝑓𝑥 sin(𝛼)− 𝑓𝑧 cos(𝛼)

𝑚𝑔
. (5.18)

Using the simplified equations (4.5)–(4.7) resulting from the assumption 𝛽 = 0
we see that (5.18) can be written

𝜂 = −𝐹𝛼

𝑔
= 𝜂(𝑎) − 𝐹

(𝑔𝑡)
𝛼

𝑔
(5.19)

where 𝐹
(𝑔𝑡)
𝛼 is given by (4.8). This shows that controlling 𝜂 can equally well

be viewed as a tracking problem for 𝜂(𝑎).

5.4.2.1 State space representation

A state space representation of the dynamics for 𝜂 is more or less immediately
obtained from (5.19) and the pitch dynamics model we have developed above
(if we use the approximation 𝜕𝐶𝐿/𝜕𝛼 = −𝜕𝐶𝑍/𝜕𝛼 near 𝛼 = 0). From (5.17)
and (5.19) we obtain the following representation for the dynamics of 𝜂,

𝑑

𝑑𝑡

[︂
𝜂
𝜂̇

]︂
=

[︂
0 1

−𝜔2
𝑠𝑝 −2𝜁𝑠𝑝𝜔𝑠𝑝

]︂ [︂
𝜂
𝜂̇

]︂
+

[︂
0
𝜔2
𝑠𝑝

]︂
𝑢+

[︂
0
−𝑑

]︂
, (5.20)

where

𝑑 =
1

𝑔

(︀
𝐹 (𝑔𝑡)
𝛼 + 2𝜁𝑠𝑝𝜔𝑠𝑝𝐹̇

(𝑔𝑡)
𝛼 + 𝜔2

𝑠𝑝𝐹
(𝑔𝑡)
𝛼

)︀
. (5.21)

We know from the discussion following (5.17) that the dynamics for 𝜂 will have
the form (5.20) in both open and closed loop, and in the latter case the control
variable 𝑢 in (5.20) can be interpreted as commanded aerodynamic load factor

𝜂
(𝑎)
𝑐 . On a fighter aircraft the terms making up 𝑑 in (5.21) can be assumed to
be directly measurable and therefore can be canceled by the control. Hence, if
we define a new control signal 𝑢̃ as

𝑢̃ = 𝑢− 𝑑

𝜔𝑠𝑝
(5.22)

the dynamics in (5.20) will be of exactly the same form as in (5.17) and the
control variable 𝑢̃ can be interpreted as commanded (total) load factor 𝜂𝑐. In
other words, the dynamics for (𝛼, 𝛼̇) (in (5.13)) and (𝜂(𝑎), 𝜂̇(𝑎)) (in (5.17)) and
(𝜂, 𝜂̇) (in (5.20)) in open loop as well as closed loop are all of the same form.
Therefore, if we for example interpret the state variables in this system as (𝜂, 𝜂̇)
in closed loop then the control variable will represent the commanded value 𝜂𝑐
for the total load factor (closed loop). One slight problem with this is that we
then obtain a differential algebraic system for 𝜂, 𝛼 since 𝛼 has to be solved for
in (5.19) to obtain 𝑑 in (5.21). However, in practice this can be handled by, at
each time step, use values of 𝛼 obtained from previous time steps to calculate
𝑑, then update 𝜂 using (5.20), then calculate a new value for 𝜂(𝑎) using (5.19)
and from this finally obtain a new value for 𝛼 from (5.15).

5.4.2.2 Pitch rate

From (4.21) we obtain values for 𝑝, 𝑟 but 𝑞 is also needed to determine the
full vector 𝜔 of angular velocities in 𝐵. If we use the simplified relation (4.4)
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obtained for 𝛽 = 0, take time derivative of the sides in the first equality in
(5.15) (assuming that 𝜌, 𝑉 are slowly time varying) and apply (5.19) we obtain

𝑞 = − 𝑔

𝑍𝛼
𝜂̇(𝑎) +

𝑔

𝑉

(︀
𝜂(𝑎) − 𝐹

(𝑔𝑡)
𝛼

𝑔

)︀
= − 𝑔

𝑍𝛼

(︀
𝜂̇ +

𝐹̇
(𝑔𝑡)
𝛼

𝑔

)︀
+

𝑔

𝑉
𝜂. (5.23)

This shows that 𝑞 can be obtained as an affine output function5 of the state in
either (5.17) or (5.20).

In piloted flight at low Mach numbers, such as take-off and landing, the
variable mainly sensed by the pilot is the pitch rate 𝑞 and therefore it is desirable
to be able to control this as well as the load factor. Indeed, the handling quality
criteria based on the C* parameter (Tobie et al., 1966; Field, 1993) are based
on this insight. However, using (5.23) and (5.17) or (5.20) it is straightforward
to design controllers (and thereby models of the closed loop behavior in the
pitch channel) based on the pitch rate, or a mix of the pitch rate and load
factor.

5.4.3 Computation of the term 𝐹̇
(𝑔𝑡)
𝛼

Assumption 14.
If we assume that 𝛼 and 𝑓

(𝑡)
𝑧 are slowly varying6 compared to the variation of

𝑓
(𝑔)
𝑥 , 𝑓

(𝑔)
𝑧 we obtain, after taking time derivatives of both sides of (4.8), that

𝐹̇ (𝑔𝑡)
𝛼 =

1

𝑚

(︀
𝑓 (𝑔)
𝑧 cos(𝛼)− 𝑓 (𝑔)

𝑥 sin(𝛼)
)︀
. (5.24)

To obtain expressions for 𝑓
(𝑔)
𝑥 , 𝑓

(𝑔)
𝑧 we note that the forces 𝑓 in 𝐵 and their

counterparts 𝐹 in 𝐸 are related by the same transformation rule as the veloc-
ities in (3.4), viz.

𝐹 = 𝑅(𝑞)𝑓

and it follows that (cf. Appendix A)

𝐹̇ = 𝑅(𝑞)(𝜔 × 𝑓) +𝑅(𝑞)𝑓̇ . (5.25)

We can decompose 𝐹 into aerodynamic components 𝐹 (𝑎), gravity 𝐹 (𝑔) and
thrust 𝐹 (𝑡) as

𝐹 = 𝐹 (𝑎) + 𝐹 (𝑔) + 𝐹 (𝑡)

and applying this to (5.25) (assuming gravity in 𝐸 is constant so that 𝐹̇
(𝑔)

= 0)
we obtain in particular

𝑓̇
(𝑔)

= −𝜔 × 𝑓 (𝑔). (5.26)

Thus, a simplified model for 𝐹̇
(𝑔𝑡)
𝛼 is obtained from (5.24) and (5.26).

5.5 Velocity
By combining (4.9)–(4.12) we obtain

𝐹𝑉 =
1

𝑚

(︀
+ (𝑓 (𝑡)

𝑥 + 𝑓 (𝑔)
𝑥 ) cos(𝛼) + 𝑓 (𝑔)

𝑧 sin(𝛼)− 𝑓𝐷
)︀
. (5.27)

5The zero of the corresponding transfer function is known to have a significant effect on
handling qualities and the associated time constant, often denoted 𝑇𝜃2 (MIL-HDBK-1797),
is in body frame quantities represented by −𝑉/𝑍𝛼.

6In other words, we assume that the part of 𝐹̇
(𝑔𝑡)
𝛼 which is due to 𝛼̇, 𝑓

(𝑡)
𝑧 is small compared

to the rest of 𝐹̇
(𝑔𝑡)
𝛼 . This is a reasonable approximation in those instances when 𝐹̇

(𝑔𝑡)
𝛼 yields

a noticeable contribution to (5.19) and 𝜂̇ is not small. (The assumption about slowly varying

𝛼 and 𝑓
(𝑡)
𝑧 is used only here.)
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This is the expression for 𝐹𝑉 used in the model in Section 2.1.

The 𝑓
(𝑡)
𝑥 -term in (5.27) can be modeled as7

𝑓 (𝑡)
𝑥 =

1

𝜏𝑇
(𝑡𝑠𝑠𝑓𝑇0(𝑀,ℎ)− 𝑓 (𝑡)

𝑥 ), (5.28)

where 𝑡𝑠𝑠 ∈ [0, 1] is the throttle stick setting, 𝑓𝑇0
(𝑀,ℎ) is the maximum engine

thrust at Mach number 𝑀 and altitude ℎ, and 𝜏𝑇 is the engine response time
constant.

The drag force 𝑓𝐷 in (3.18) and (5.27) is modeled in terms of the drag force
coefficient 𝐶𝐷 as

𝑓𝐷 =
1

2
𝜌𝑆𝑟𝑒𝑓𝐶𝐷(𝛼,𝑀) (5.29)

where
𝐶𝐷(𝛼,𝑀) = 𝐶𝐷0

(𝑀) +𝐾(𝑀)𝐶𝐿(𝛼)
2 (5.30)

and the parasitic drag coefficient 𝐶𝐷0(𝑀) and the induced drag quadratic
factor 𝐾(𝑀) both have some prescribed dependencies on Mach number (see
e.g. (Raymer, 2006, Sec. 12.5, 12.6)). The 𝛼-dependence in 𝐶𝐿 can be expressed
in terms of 𝜂(𝑎) using (5.15) (with 𝐶𝑍(0) = 0, cf. Sec. 5.1.2).

5.6 Load Limiter
On a piloted aircraft, the flight envelope is determined by constraints on the
pilot, airframe and engine. The engine induced limitations are easy to incorpo-
rate into the engine thrust model (5.28). The constraints induced by pilot and
airframe can to a large extent be captured by limits on the load factor alone,
due to the intimate relation between angle of attack, aerodynamic load factor
and load factor, cf. (5.15) and (5.19).

5.6.1 Predictive limiting
Since there is a dynamic relation between load factor command 𝜂𝑐 and the load
factor 𝜂 it is nontrivial to determine which values of the command 𝜂𝑐 that will
yields future values of 𝜂 which are all admissible, i.e. satisfy all the constraints.
One way to address this problem is to solve the differential equation which
describes the evolution of 𝜂 for given initial values and varying inputs 𝜂𝑐, and
seek inputs that give extrema in the future values of 𝜂. If the extrema in 𝜂
are non admissible, the input 𝜂𝑐 needs to be constrained, and the process can
be repeated until a sufficiently restrictive constraint on the input is found such
that the future output is admissible at all times.

Fortunately, the dynamics for 𝜂𝑐 and 𝜂 are linear (time invariant) second
order, so finding the extrema 𝜂 and corresponding “worst-case” inputs 𝜂𝑐 is
not difficult to do, either analytically or numerically. In particular, max and
min values of 𝜂, when 𝜂𝑐 is constrained to an interval, can be generated with
constant inputs.

Furthermore, in the case where the load factor dynamics are “ideal” the
damping 𝜁𝑠𝑝 is in the order of 0.7 and then there is very little “overshoot”
in the step response, cf. Figure 5.1 below, and load factor limiting essentially
boils down to limiting the command 𝜂𝑐. (This holds true even for fairly large
variations in the initial derivative 𝜂̇(𝑡0), as can be seen in Figure 5.1.)

However, the set of admissible load factor values varies significantly through-
out the envelope so in effect the check for admissibility of the input should be
done very often, ideally at each time step in the solver used when executing
the model in Section 2.1.

7An extra parameter, signifying whether or not the afterburner is lit, is often added.
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Figure 5.1: Typical step response for 𝜂(𝑡) as in (5.20), (5.22) with parameters
𝜔𝑠𝑝 = 3, 𝜁𝑠𝑝 = 1/

√
2 and 𝜂(𝑡0) = 0, and 𝑢̃ = 1, 2.
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6 Autopilot
The model developed in the previous chapters can be taken to describe the
closed loop behavior of an aircraft with stability augmenting, or even dynamics
synthesizing, flight control system. However, this assumes that the commanded
input is given in terms of values for the (velocity axis) roll rate 𝑝(𝑊 ), load factor
𝜂 and throttle setting 𝑡𝑠𝑠. These values can be given by a pilot, or operator,
in a manned simulation but it is also occasionally useful to have an autopilot
to generate acceleration commands which are to be followed by the aircraft.
In this chapter we shall develop an autopilot for the simplest case of path
following, namely that of adjusting the velocity vector of the aircraft in 𝐸
until it coincides with a reference velocity vector. The most complex part of
the autopilot design is an orientation command generator which mimics the
actions of a pilot in order to generate commands for 𝑝(𝑊 ), 𝜂 and 𝑡𝑠𝑠 that can
be directly fed to the aircraft model.

6.1 Velocity direction following
We assume that the object is to have the aircraft velocity 𝑉 in 𝐸 approach
a reference value 𝑉 𝑟, which may be constant or slowly time varying. This
problem is solved in two steps. The first step is a guidance law that provides
acceleration commands which when followed will align the aircraft velocity
vector with a reference velocity vector (without regards to the magnitude).
The second step is a command generator that provides commands for roll
rate, load factor and throttle setting to perform this alignment and adjust the
magnitude of the aircraft velocity vector to the reference value. The latter
subproblem is solved separately so for the most part in the development below
we shall assume that the magnitude of the aircraft velocity is constant (or
slowly varying).

6.1.1 Guidance law
Let the heading error angle 𝜃 ∈ [−𝜋, 𝜋) be defined by

cos(𝜃) =
𝑉 𝑇

𝑟 𝑉

‖𝑉 𝑟‖‖𝑉 ‖
(6.1)

where it is assumed that 𝑉 ,𝑉 𝑟 are bounded away from 0. The first step in
developing the autopilot is to devise a smooth guidance law 𝐺 : R3 ×R3 → R3

such that 𝜃 will be driven to 0 when 𝐺 defines the dynamics for 𝑉 , i.e. when
the aircraft acceleration 𝑉̇ is given by

𝑉̇ = 𝐺(𝑉 ,𝑉 𝑟). (6.2)

Define the vector Ω𝑔 in 𝐸 by

Ω𝑔 = 𝑉 × 𝑉 𝑟

and consider the guidance law 𝐺 given by

𝐺(𝑉 ,𝑉 𝑟) =
𝑐𝑔

‖𝑉 ‖2‖𝑉 𝑟‖
(Ω𝑔 × 𝑉 ), (6.3)
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where 𝑐𝑔 > 0 is a constant. We then have1

𝐺(𝑉 ,𝑉 𝑟) =
𝑐𝑔

‖𝑉 ‖2‖𝑉 𝑟‖
(︀
𝑉 × (𝑉 𝑟 × 𝑉 )

)︀
=

𝑐𝑔
‖𝑉 𝑟‖

𝑃 [𝑉 ]⊥𝑉 𝑟 =
𝑐𝑔

‖𝑉 𝑟‖
(𝐼 − 𝑃 [𝑉 ])𝑉 𝑟. (6.4)

It follows that the magnitude of 𝐺(𝑉 ,𝑉 𝑟) is given by

‖𝐺(𝑉 ,𝑉 𝑟)‖2 =
𝑐2𝑔

‖𝑉 𝑟‖2
⃦⃦
𝑉 𝑟 −

𝑉 𝑇𝑉 𝑟

‖𝑉 ‖2
𝑉
⃦⃦2

=

𝑐2𝑔
‖𝑉 𝑟‖2

(‖𝑉 𝑟‖2 − 2
(𝑉 𝑇𝑉 𝑟)

2

‖𝑉 ‖2
+

(𝑉 𝑇𝑉 𝑟)
2

‖𝑉 ‖2
) = 𝑐2𝑔(1− cos2(𝜃)) (6.5)

and we see that 𝐺(𝑉 ,𝑉 𝑟) = 0 is equivalent to cos(𝜃) = ±1. (There are
thus two equilibrium points to (6.2) which can be defined in terms on this
condition on 𝜃.) Further, since the right hand side in (6.5) is bounded by 𝑐2𝑔 for
cos(𝜃) ≥ 0 it is clear that the constant 𝑐𝑔 determines the maximal magnitude
of the acceleration commands. When the guidance law 𝐺 in (6.3) is applied so
that (6.2) holds we see that

𝑉̇ =
𝑐𝑔

‖𝑉 𝑟‖
𝑃 [𝑉 ]⊥𝑉 𝑟 (6.6)

and it follows in particular that

𝑑

𝑑𝑡

‖𝑉 ‖2

2
= 𝑉 𝑇 𝑉̇ = 0. (6.7)

so the guidance law does not require the velocity of the aircraft to change, i.e.
𝐺 is consistent with normal acceleration maneuvering.

6.1.1.1 Stability of the guidance law

To see that the guidance law 𝐺 in (6.3) actually accomplishes the goal of
driving the heading error angle 𝜃 in (6.1) to 0 in the simplest case we assume
that 𝑉̇ 𝑟 = 0. The dynamics for cos(𝜃) ∈ [−1, 1] when 𝐺 is applied as in (6.2)
are then (since 𝑉̇ = 𝑑‖𝑉 ‖/𝑑𝑡 = 0 by (6.7))

𝑑

𝑑𝑡
cos(𝜃) =

𝑉 𝑇
𝑟 𝑉̇

‖𝑉 𝑟‖‖𝑉 ‖
=

𝑐𝑔
‖𝑉 𝑟‖2‖𝑉 ‖

𝑉 𝑇
𝑟 𝑃 [𝑉 ]⊥𝑉 𝑟 =

𝑐𝑔
‖𝑉 𝑟‖2‖𝑉 ‖

𝑉 𝑇
𝑟 (𝐼 − 𝑃 [𝑉 ])𝑉 𝑟 =

𝑐𝑔
‖𝑉 ‖

(︀
1−

(︀ 𝑉 𝑇
𝑟 𝑉

‖𝑉 𝑟‖‖𝑉 ‖
)︀2)︀

=

𝑐𝑔
𝑉
(1− cos2(𝜃)) =

𝑐𝑔
𝑉
(1− cos(𝜃))(1 + cos(𝜃)). (6.8)

This differential equation has two equilibria given by cos(𝜃) = ±1 and for
cos(𝜃) ∈ (−1, 1) we have 𝑑 cos(𝜃)/𝑑𝑡 > 0. Hence, the equilibrium at cos(𝜃) = 1
is stable with domain of attraction (−1, 1] (and consequently the equilibrium
at cos(𝜃) = −1 is unstable).

1This shows that 𝐺(𝑉 ,𝑉 𝑟) is independent of the magnitudes of 𝑉 ,𝑉 𝑟 which is the
reason for the normalization chosen in the definition (6.3).
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Linearized dynamics
A Taylor expansion of both sides of (6.8) around 𝜃 = 0 shows that we have the
linear approximation

𝜃 = − 𝑐𝑔
2𝑉

𝜃. (6.9)

It follows that the quantity 2𝑉/𝑐𝑔 can be interpreted as a time constant 2 for
the dynamics of 𝜃 near 0.

Time varying reference velocity
In case 𝑉 𝑟 is not constant we define3 the angular velocity Ω𝑟 in 𝐸 by

𝑑

𝑑𝑡

𝑉 𝑟

‖𝑉 𝑟‖
= Ω𝑟 ×

𝑉 𝑟

‖𝑉 𝑟‖
. (6.10)

and note that the dynamics for cos(𝜃) then become (cf. (6.8))

𝑑

𝑑𝑡
cos(𝜃) =

𝑑

𝑑𝑡

(︀ 𝑉 𝑇
𝑟

‖𝑉 𝑟‖
)︀ 𝑉

‖𝑉 ‖
+

𝑉 𝑇
𝑟 𝑉̇

‖𝑉 𝑟‖‖𝑉 ‖
=

(Ω𝑟 ×
𝑉 𝑟

‖𝑉 𝑟‖
)𝑇

𝑉

‖𝑉 ‖
+

𝑐𝑔
𝑉
(1− cos2(𝜃)). (6.11)

The value of cos(𝜃) increases when the right hand side is positive, i.e. when

cos2(𝜃) < 1 +
1

𝑐𝑔
(Ω𝑟 ×

𝑉 𝑟

‖𝑉 𝑟‖
)𝑇𝑉

so in particular cos(𝜃) always increases as long as the rightmost term here is
positive. In case it is negative we can estimate its size by using the bound

|(Ω𝑟 ×
𝑉 𝑟

‖𝑉 𝑟‖
)𝑇𝑉 | ≤ ‖Ω𝑟 ×

𝑉 𝑟

‖𝑉 𝑟‖
‖‖𝑉 ‖ ≤ ‖Ω𝑟‖‖𝑉 ‖.

Thus, if ‖Ω𝑟‖ is bounded we can make cos(𝜃) arbitrarily close to 1 (i.e. make
the heading error arbitrarily close to 0) by making 𝑐𝑔 large.

6.1.2 Orientation command generator
The second step in the development of an autopilot is to devise a command
generator for the roll and pitch commands needed in order to follow the accel-
eration commands provided by the guidance law.

Let 𝑣̇𝑔 be the value of the guidance law in (6.3) after rotation into 𝐵, i.e.

𝑣̇𝑔 = 𝑅(𝑞)𝑇𝐺(𝑉 ,𝑉 𝑟) (6.12)

where 𝑅(𝑞) is the rotation matrix in (3.4), and let 𝑣𝑟 be the reference velocity
in 𝐵, i.e.

𝑣𝑟 = 𝑅(𝑞)𝑇𝑉 𝑟. (6.13)

2For motion with only normal acceleration, the magnitude of the acceleration is bilinear
in the magnitudes of the velocity and angular velocity. Thus, for constant normal acceleration
the velocity and angular velocity are (modulo a constant) reciprocal. Since 𝜃 plays the role
of angular velocity here the constant acceleration condition suggests that, for given value of
𝜃, the time derivative 𝜃 should (modulo a constant) be reciprocal to 𝑉 , as in (6.9).

3Let 𝜈 be a smoothly time varying unit norm vector in R3. Then 𝜈̇𝑇 𝜈 = 0 at all times.
Define 𝜉 by 𝜉 = 𝜈 × 𝜈̇. Then 𝜉 × 𝜈 = (𝜈 × 𝜈̇) × 𝜈 = 𝜈 × (𝜈̇ × 𝜈) = 𝜈̇.
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Then we have

𝑣̇𝑔 =
𝑐𝑔

‖𝑉 ‖2‖𝑉 𝑟‖
𝑅(𝑞)𝑇

(︀
𝑉 × (𝑉 𝑟 × 𝑉 )

)︀
=

𝑐𝑔
‖𝑣‖2‖𝑣𝑟‖

(︀
𝑣 × (𝑣𝑟 × 𝑣)

)︀
=

𝑐𝑔
‖𝑣𝑟‖

𝑃 [𝑣]⊥𝑣𝑟 (6.14)

where we have used the well-known fact that rotations commute with the cross
product operation (cf. e.g. (Arnold, 1989, p. 131)). The relations (6.14) show
in particular that 𝑣̇𝑔 ∈ [𝑣]⊥ at all times, as expected, and to drive 𝐺(𝑉 ,𝑉 𝑟)
to 0 in 𝐸 is equivalent to drive 𝑣̇𝑔 to 0 in 𝐵.

Principle
The principle used to drive 𝑣̇𝑔 to 0 is easy to illustrate if we note that when
guidance commands are exactly followed then the identity (6.2) holds. From
(3.5), (3.6) and (6.12) we see that we must then have

𝑣̇𝑔 =
1

𝑚
𝑓 . (6.15)

However, since 𝛽 ≡ 0 we have 𝑒𝜆 = 𝑒2 and therefore the left hand side lies
in [𝑒2,𝜎] at all times. The right hand side of (6.15) can be expressed in wind
axes components as

1

𝑚
𝑓 =

1

𝑚
𝑒𝑇𝑣 𝑓𝑒𝑣 +

1

𝑚
𝑒𝑇2 𝑓𝑒2 +

1

𝑚
𝜎𝑇𝑓𝜎

=
1

𝑚
𝑒𝑇𝑣 𝑓𝑒𝑣 +

𝑓
(𝑔)
𝑦

𝑚
𝑒2 + 𝑔𝜂𝜎 =

1

𝑚
𝑒𝑇𝑣 𝑓𝑒𝑣 − ‖𝑣‖𝑟(𝑊 )𝑒2 + 𝑔𝜂𝜎 (6.16)

where we have used the fact that 𝑓
(𝑎)
𝑦 = 0 when 𝛽 = 0, that thrust does not

act in the body 𝑦-axis direction (cf. Sec. 4.1.1), relation (4.3) as well as the
the definition of load factor (5.18). Now, the first term on the right in (6.16)
can be made zero by proper adjustment of thrust (to balance drag) and the
remaining two terms must then sum up to 𝑣̇𝑔 in order to have equality in
(6.15). The last term on the right (6.16) is directly controllable (by applying
the proper commands in pitch) but the middle term in (6.16) can only be
affected indirectly, by rolling the aircraft (so that the gravity force component
in the body 𝑦-axis takes the appropriate value). In essence, the aircraft must
be rolled so that the body force component in the 𝑦-direction takes the proper
value and the appropriate pitch command must be applied to satisfy the force
requirement in the 𝜎-direction. Next we shall devise a controller for this.

6.1.2.1 Command generator control law

From (6.12) and the theory of relative motion (Appendix A) it follows that

𝑣̈𝑔 = 𝑅(𝑞)𝑇
𝑑

𝑑𝑡
𝐺(𝑉 ,𝑉 𝑟)− 𝜔 × 𝑣̇𝑔. (6.17)

The time derivative on the right can be computed explicitly from (6.4) as

𝑑

𝑑𝑡
𝐺(𝑉 ,𝑉 𝑟) =

𝑐𝑔
‖𝑉 ‖2‖𝑉 𝑟‖

(︁
−
(︀ 2

‖𝑉 ‖
𝑑

𝑑𝑡
‖𝑉 ‖+ 1

‖𝑉 𝑟‖
𝑑

𝑑𝑡
‖𝑉 𝑟‖

)︀(︀
𝑉 × (𝑉 𝑟 × 𝑉 )

)︀
+
(︀(︀
𝑉̇ × (𝑉 𝑟 × 𝑉 )

)︀
+

(︀
𝑉 × (𝑉̇ 𝑟 × 𝑉 )

)︀
+
(︀
𝑉 × (𝑉 𝑟 × 𝑉̇ )

)︀)︀)︁
. (6.18)
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In the important special case of constant reference velocity and normal accel-
eration maneuvering, i.e.

𝑉̇ 𝑟 = 0, 𝑉̇ =
𝑑‖𝑉 ‖
𝑑𝑡

= 0, (6.19)

the right hand side of (6.18) simplifies considerably. We shall now in a se-
quence of steps expand and simplify the right hand side of (6.17) using the
representation (6.18), under the assumption (6.19).

Normal acceleration and constant reference velocity
When (6.19) holds we have 0 = 𝑉 𝑇 𝑉̇ = 𝑣𝑇𝑅(𝑞)𝑇 𝑉̇ and thus

𝑅(𝑞)𝑇
𝑑

𝑑𝑡
𝐺(𝑉 ,𝑉 𝑟) =

𝑐𝑔
‖𝑣‖2‖𝑣𝑟‖

(︁(︀(︀
𝑅(𝑞)𝑇 𝑉̇ × (𝑣𝑟 × 𝑣)

)︀
+

(︀
𝑣 × (𝑣𝑟 ×𝑅(𝑞)𝑇 𝑉̇ )

)︀)︁
= − 𝑐𝑔

‖𝑣‖2‖𝑣𝑟‖
(︀
(𝑣𝑇𝑣𝑟)𝑅(𝑞)𝑇 𝑉̇ + (𝑣𝑇

𝑟 𝑅(𝑞)𝑇 𝑉̇ )𝑣
)︀
, (6.20)

where we have used (6.13), the fact that cross products commute with rotations
and the triple product formula. Further, from the theory of relative motion we
have the relation (3.7) and thus (6.20) can be written

𝑅(𝑞)𝑇
𝑑

𝑑𝑡
𝐺(𝑉 ,𝑉 𝑟) = − 𝑐𝑔

‖𝑣‖2‖𝑣𝑟‖
(︀
(𝑣𝑇𝑣𝑟)𝑣̇ + (𝑣̇𝑇𝑣𝑟)𝑣

)︀
− 𝑐𝑔

‖𝑣‖2‖𝑣𝑟‖
(︀
(𝑣𝑇𝑣𝑟)(𝜔 × 𝑣) + ((𝜔 × 𝑣)𝑇𝑣𝑟)𝑣

)︀
. (6.21)

Coordinated turn
The term 𝜔× 𝑣 in (6.21) can be expressed in terms of wind axes quantities as

𝜔 × 𝑣 = (𝑝(𝑊 )𝑒𝑣 + 𝑞𝑒2 + 𝑟(𝑊 )𝜎)× 𝑣 = 𝑞‖𝑣‖𝜎 − 𝑟(𝑊 )‖𝑣‖𝑒2 (6.22)

(since 𝑒𝑣, 𝑒2,𝜎 is a left handed system, 𝑒𝑣 × 𝑒2 = −𝜎). Due to the condition

𝛽 = 0 the last term on the right in (6.22) is directly related to 𝑓
(𝑔)
𝑦 as in (4.3),

indeed
𝑓
(𝑔)
𝑦

𝑚
= −𝜔𝑇𝜎‖𝑣‖ = −𝑟(𝑊 )‖𝑣‖. (6.23)

The relation (6.23) can also be expressed in terms of Euler angles. Let
Ψ,Φ ∈ [−𝜋, 𝜋) and Θ ∈ [−𝜋/2, 𝜋/2) be the yaw, roll and pitch angles, respec-
tively, in the yaw-pitch-roll decomposition of 𝑅(𝑞)𝑇 given by4

𝑅(𝑞)𝑇 = 𝑅Φ𝑅Θ𝑅Ψ

where the rotation matrices 𝑅Ψ,𝑅Θ,𝑅Φ represent the elementary yaw, pitch
and roll axis rotation matrices, respectively (Stevens & Lewis, 2003, pp. 26,27).
Then we have

𝑅Φ𝑅Θ𝑅Ψ =⎡⎣ 𝑐(Θ)𝑐(Ψ) 𝑐(Θ)𝑠(Ψ) −𝑠(Θ)
−𝑐(Φ)𝑠(Ψ) + 𝑠(Φ)𝑠(Θ)𝑐(Ψ) 𝑐(Φ)𝑐(Ψ) + 𝑠(Φ)𝑠(Θ)𝑠(Ψ) 𝑠(Φ)𝑐(Θ)
𝑠(Φ)𝑠(Ψ) + 𝑐(Φ)𝑠(Θ)𝑐(Ψ) −𝑠(Φ)𝑐(Ψ) + 𝑐(Φ)𝑠(Θ)𝑠(Ψ) 𝑐(Φ)𝑐(Θ)

⎤⎦
(6.24)

4Thus assumes the standard flight mechanical convention of having the 𝑧-axis in 𝐸 point-
ing downwards.
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where we have let 𝑐( · ) and 𝑠( · ) denote cos( · ) and sin( · ) respectively. It
follows in particular that

𝑓 (𝑔) = 𝑚𝑔[− sin(Θ), sin(Φ) cos(Θ), cos(Φ) cos(Θ)]𝑇

so that (6.23) gives

− 𝑟(𝑊 )‖𝑣‖ = 𝑔 sin(Φ) cos(Θ). (6.25)

For later reference we note that that the relation between Euler angular
rates and body rates which follows from (6.24) is (Stevens & Lewis, 2003)⎡⎣ Φ̇

Θ̇

Ψ̇

⎤⎦ =

⎡⎣ 1 tan(Θ) sin(Φ) tan(Θ) cos(Φ)
0 cos(Φ) − sin(Φ)
0 sin(Φ)/ cos(Θ) cos(Φ)/ cos(Θ)

⎤⎦⎡⎣ 𝑝
𝑞
𝑟

⎤⎦ . (6.26)

Dynamics for 𝑣̇𝑔

We now turn to the last term on the right in (6.17). If we express it in terms
of wind axes quantities we have (since 𝑣̇𝑔 ∈ [𝑣]⊥)

𝜔 × 𝑣̇𝑔 = (𝑝(𝑊 )𝑒𝑣 + 𝑞𝑒2 + 𝑟(𝑊 )𝜎)× (𝑣̇𝑔,2𝑒2 + (𝜎𝑇 𝑣̇𝑔)𝜎) =

𝑝(𝑊 )𝑒𝑣 × (𝑣̇𝑔,2𝑒2 + (𝜎𝑇 𝑣̇𝑔)𝜎) + 𝑞𝑒2 × (𝜎𝑇 𝑣̇𝑔)𝜎 + 𝑟(𝑊 )𝜎 × 𝑣̇𝑔,2𝑒2 =

(𝑟(𝑊 )𝑣̇𝑔,2 − 𝑞(𝜎𝑇 𝑣̇𝑔))𝑒𝑣 + 𝑝(𝑊 )(𝜎𝑇 𝑣̇𝑔)𝑒2 − 𝑝(𝑊 )𝑣̇𝑔,2𝜎 (6.27)

where 𝑣̇𝑔,2 = 𝑒𝑇2 𝑣̇𝑔. Thus, from (6.17), (6.21), (6.22) and (6.25), (6.27) we
obtain

𝑣̈𝑔 = −𝑐𝑔
𝑉

cos(𝜃)𝑣̇ − 𝑐𝑔
𝑣̇𝑇𝑣𝑟

𝑉 ‖𝑣𝑟‖
𝑒𝑣 − 𝑐𝑔

𝑉
cos(𝜃)(𝑞𝑉 𝜎 + 𝑔 sin(Φ) cos(Θ)𝑒2)

− 𝑐𝑔
𝑉 ‖𝑣𝑟‖

(𝑞𝑉 (𝜎𝑇𝑣𝑟) + 𝑔𝑣𝑟,2 sin(Φ) cos(Θ))𝑒𝑣

+ (𝑞(𝜎𝑇 𝑣̇𝑔) +
𝑔𝑣̇𝑔,2
𝑉

sin(Φ) cos(Θ))𝑒𝑣

− 𝑝(𝑊 )(𝜎𝑇 𝑣̇𝑔)𝑒2 + 𝑝(𝑊 )𝑣̇𝑔,2𝜎, (6.28)

where 𝑣𝑟,2 = 𝑒𝑇2 𝑣𝑟. This is the expression for 𝑣̈𝑔 that we are going to use as a
basis for our command generator control law.

Separated dynamics for 𝑣̇𝑔

It is easy to see that 𝜎̇ ∈ [𝑣] when 𝛽 = 0 and therefore (recall that 𝑣̇𝑔 ∈ [𝑣]⊥)
we obtain from (3.1), (6.22) and (6.28) that

𝑑

𝑑𝑡
(𝜎𝑇 𝑣̇𝑔) = 𝜎̇𝑇 𝑣̇𝑔 + 𝜎𝑇 𝑣̈𝑔 =

− 𝑐𝑔
𝑉

cos(𝜃)𝜎𝑇 (
1

𝑚
𝑓 − 𝜔 × 𝑣)− 𝑐𝑔𝑞 cos(𝜃) + 𝑝(𝑊 )𝑣̇𝑔,2 =

− 𝜂𝑔
𝑐𝑔
𝑉

cos(𝜃) + 𝑝(𝑊 )𝑣̇𝑔,2. (6.29)

From (6.28) we also obtain (since 𝑣̇ ∈ [𝑒2]
⊥, cf. Sec. 4.1.1)

𝑣𝑔,2 = 𝑒𝑇2 𝑣̈𝑔 = −𝑔
𝑐𝑔
𝑉

cos(𝜃) sin(Φ) cos(Θ)− 𝑝(𝑊 )𝜎𝑇 𝑣̇𝑔. (6.30)
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and from (6.26) have

𝑑

𝑑𝑡
(sin(Φ) cos(Θ)) = Φ̇ cos(Φ) cos(Θ)− Θ̇ sin(Φ) sin(Θ) =

cos(Φ) cos(Θ)(𝑝+ tan(Θ) sin(Φ)𝑞 + tan(Θ) cos(Φ)𝑟)

− sin(Φ) sin(Θ)(cos(Φ)𝑞 − sin(Φ)𝑟) =

𝑝 cos(Φ) cos(Θ) + 𝑟 sin(Θ). (6.31)

The quantity cos(𝜃) defined in (6.1), which occurs in many places above,
can be expressed in terms of the quantities 𝜎𝑇 𝑣̇𝑔 and 𝑣̇𝑔,2 = 𝑒𝑇2 𝑣̇𝑔 if we note
that (6.5) and (6.12) give

‖𝑣̇𝑔‖2 = 𝑐2𝑔(1− cos2(𝜃))

and therefore

cos(𝜃) = ±

√︃
1− ‖𝑣̇𝑔‖2

𝑐2𝑔
= ±

√︃
1− (𝜎𝑇 𝑣̇𝑔)2 + (𝑣̇𝑔,2)2

𝑐2𝑔
. (6.32)

We note that cos(𝜃) does not change sign in the open set

𝒞 = {(𝜎𝑇 𝑣̇𝑔, 𝑣̇𝑔,2) ⊂ R2 | (𝜎𝑇 𝑣̇𝑔)
2 + (𝑣̇𝑔,2)

2 < 𝑐2𝑔}. (6.33)

Summing up, the open loop dynamics for the command generator are given
by (6.29)–(6.31) with the representation (6.32).

Small Euler angles assumption
We are going to partly linearize the open loop dynamics before specifying the
control law. More specifically, we are going to use the linearizations of (6.30)
and (6.31) around Φ = Θ = 0, which are given by

𝑣𝑔,2 = −𝑔
𝑐𝑔
𝑉
Φcos(𝜃)− 𝑝(𝑊 )𝜎𝑇 𝑣̇𝑔, (6.34)

Φ̇ = 𝑝. (6.35)

The open loop dynamics used by the command generator control law are thus
given by (6.29), (6.34) and (6.35) with the representation (6.32). We note here
also that as a linear approximation around 𝛼 = 0 we have

𝑝(𝑊 ) = 𝑝

which is useful when implementing the command generator control law below.

Command generator control law
The command generator control law for roll and pitch employs body roll rate
𝑝 and normal acceleration 𝜂 as control variables. It is nonlinear but resembles5

(apart from a nonlinear scale factor) a linear state feedback law, viz.

𝑝 = 𝑔
𝑐𝑔
𝑉
(𝛾1𝑣̇𝑔,2 + 𝛾2Φ)

√︃
1− (𝜎𝑇 𝑣̇𝑔)2 + (𝑣̇𝑔,2)2

𝑐2𝑔
, (6.36)

𝜂 = 𝛿𝜎𝑇 𝑣̇𝑔, (6.37)

5The term cos(𝜃) in (6.32) and (6.36) can often probably be well approximated by the
value 1 in the implementation (as is done in the linearized analysis below). This was pointed
out by Dr. P. Ögren, FOI.
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where 𝛾1 > 0, 𝛾2 < 0 and 𝛿 > 0 are some constants (to be further discussed
below).

Remark: By its symmetry around 0 for 𝜂, the control law (6.36), (6.37) is
only applicable for non aggressive maneuvering, i.e. for cases where the aircraft
will never roll “upside down” in order to exploit the airframe’s capability to
generate a higher positive normal acceleration in the body frame 𝐵.

Closed loop system
The closed loop system resulting from (6.29), (6.32) and (6.34), (6.35) is

𝑑

𝑑𝑡
(𝜎𝑇 𝑣̇𝑔) = 𝑔

𝑐𝑔
𝑉

√︃
1− (𝜎𝑇 𝑣̇𝑔)2 + (𝑣̇𝑔,2)2

𝑐2𝑔

(︀
− 𝛿𝜎𝑇 𝑣̇𝑔 + 𝛾1𝑣̇

2
𝑔,2 + 𝛾2𝑣̇𝑔,2Φ

)︀
,

(6.38)

𝑑

𝑑𝑡
𝑣̇𝑔,2 = 𝑔

𝑐𝑔
𝑉

√︃
1− (𝜎𝑇 𝑣̇𝑔)2 + (𝑣̇𝑔,2)2

𝑐2𝑔

(︀
− Φ− 𝛾1𝜎

𝑇 𝑣̇𝑔 𝑣̇𝑔,2 − 𝛾2𝜎
𝑇 𝑣̇𝑔Φ

)︀
,

(6.39)

𝑑

𝑑𝑡
Φ = 𝑔

𝑐𝑔
𝑉

√︃
1− (𝜎𝑇 𝑣̇𝑔)2 + (𝑣̇𝑔,2)2

𝑐2𝑔

(︀
𝛾1𝑣̇𝑔,2 + 𝛾2Φ

)︀
. (6.40)

For (𝜎𝑇 𝑣̇𝑔, 𝑣̇𝑔,2,Φ) ∈ 𝒞 × R this system has a unique equilibrium point at
(𝜎𝑇 𝑣̇𝑔, 𝑣̇𝑔,2,Φ) = (0, 0, 0) which is shown to be semi-globally asymptotically
stable in Proposition 6.1 below.

Linearized closed loop dynamics
The system (6.38)–(6.40) is weakly (quadratically) nonlinear and the lineariza-
tion around (𝜎𝑇 𝑣̇𝑔, 𝑣̇𝑔,2,Φ) = (0, 0, 0) is

𝑑

𝑑𝑡
(𝜎𝑇 𝑣̇𝑔) = −𝑔

𝑐𝑔
𝑉
𝛿𝜎𝑇 𝑣̇𝑔, (6.41)

𝑑

𝑑𝑡
𝑣̇𝑔,2 = −𝑔

𝑐𝑔
𝑉
Φ, (6.42)

𝑑

𝑑𝑡
Φ = 𝑔

𝑐𝑔
𝑉
(𝛾1𝑣̇𝑔,2 + 𝛾2Φ). (6.43)

Thus, in the linearized equations (6.41)–(6.43) the dynamics for 𝜎𝑇 𝑣̇𝑔 are
decoupled from the dynamics of the (𝑣̇𝑔,2,Φ)-subsystem and the dynamics for
𝜎𝑇 𝑣̇𝑔 are given by a simple first order linear system with time constant

𝑉

𝑔𝑐𝑔𝛿
.

The (𝑣̇𝑔,2,Φ)-subsystem in (6.42), (6.43) in can be written

𝑑

𝑑𝑡

[︂
𝑣̇𝑔,2
Φ

]︂
= 𝑔

𝑐𝑔
𝑉

[︂
0 −1
𝛾1 𝛾2

]︂ [︂
𝑣̇𝑔,2
Φ

]︂
(6.44)

where the system matrix has eigenvalues

𝜆1,2 =
𝑔𝑐𝑔
2𝑉

(︀
𝛾2 ±

√︁
𝛾2
2 − 4𝛾1

)︀
. (6.45)

The system in (6.44) is asymptotically stable at (0, 0) if and only if both eigen-
values 𝜆1, 𝜆2 lie strictly inside the left half plane in C, i.e. if and only if

𝛾1 > 0 and 𝛾2 < 0. (6.46)
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To gain some insight into how the two parameters 𝛾1 and 𝛾2 should be
chosen we note that the first factor on the right of (6.36) can be written

𝑔
𝑐𝑔
𝑉
𝛾1(𝑣̇𝑔,2 +

𝛾2
𝛾1

Φ).

Thus, in the control law (6.36) one can view 𝛾1 as a gain parameter and the
𝛾2/𝛾1 as a parameter defining the relative influence of 𝑣̇𝑔,2 and Φ, respectively.
With this formulation the ratio 𝛾2/𝛾1 also determines the equilibrium point for
the Φ-dynamics in (6.43).

Stability of the command generator control law
The stability analysis of the command generator control law will be based on
a Lyapunov argument. As Lyapunov function (candidate) we will consider
𝒱 : R× R× R → [0,∞) given by

𝒱(𝑥, 𝑦, 𝑧) = 𝑥2

2
+

𝑦2

2
+ 𝑎𝑦𝑧 + 𝑏

𝑧2

2
(6.47)

where 𝑏 > 𝑎2 > 0. This guarantees that 𝒱 is (strictly) positive definite but the
constants 𝑎, 𝑏 will be further specified below.

Along a solution trajectory to (6.29), (6.34), (6.35) near any point where
cos(𝜃) > 0 (cf. (6.32)) we have

𝑑

𝑑𝑡
𝒱(𝜎𝑇 𝑣̇𝑔, 𝑣̇𝑔,2,Φ) =

𝜎𝑇 𝑣̇𝑔
𝑑

𝑑𝑡
(𝜎𝑇 𝑣̇𝑔) + 𝑣̇𝑔,2𝑣𝑔,2 + 𝑎𝑣𝑔,2Φ+ 𝑎𝑣̇𝑔,2Φ̇ + 𝑏ΦΦ̇ =

− 𝑔
𝑐𝑔
𝑉

(︀
𝜂𝜎𝑇 𝑣̇𝑔 + 𝑣̇𝑔,2Φ+ 𝑎Φ2

)︀√︃
1− (𝜎𝑇 𝑣̇𝑔)2 + (𝑣̇𝑔,2)2

𝑐2𝑔

+ 𝑝(𝑊 )(−𝑎Φ𝜎𝑇 𝑣̇𝑔 + 𝑎𝑣̇𝑔,2 + 𝑏Φ)

and in closed loop (with (6.36), (6.37))

𝑑

𝑑𝑡
𝒱(𝜎𝑇 𝑣̇𝑔, 𝑣̇𝑔,2,Φ) = −𝑔

𝑐𝑔
𝑉

√︃
1− (𝜎𝑇 𝑣̇𝑔)2 + (𝑣̇𝑔,2)2

𝑐2𝑔
·(︀

𝛿(𝜎𝑇 𝑣̇𝑔)
2 + 𝑣̇𝑔,2Φ+ 𝑎Φ2 − (𝛾1𝑣̇𝑔,2 + 𝛾2Φ)(−𝑎Φ𝜎𝑇 𝑣̇𝑔 + 𝑎𝑣̇𝑔,2 + 𝑏Φ)

)︀
=

− 𝑔
𝑐𝑔
𝑉

√︃
1− (𝜎𝑇 𝑣̇𝑔)2 + (𝑣̇𝑔,2)2

𝑐2𝑔
𝒲(𝜎𝑇 𝑣̇𝑔, 𝑣̇𝑔,2,Φ; 𝛾1, 𝛾2, 𝑎, 𝑏), (6.48)

where 𝒲( · , · , · ; 𝛾1, 𝛾2, 𝑎, 𝑏) : R×R×R → R is the (continuous) parametrized
function

𝒲(𝜎𝑇 𝑣̇𝑔, 𝑣̇𝑔,2,Φ; 𝛾1, 𝛾2, 𝑎, 𝑏) =

𝛿(𝜎𝑇 𝑣̇𝑔)
2 − 𝛾1𝑎(𝑣̇𝑔,2)

2 + (𝑎+ 𝛾2(𝑎𝜎
𝑇 𝑣̇𝑔 − 𝑏))Φ2

(1 + 𝛾1(𝑎𝜎
𝑇 𝑣̇𝑔 − 𝑏)− 𝛾2𝑎)𝑣̇𝑔,2Φ. (6.49)

Thus, since 𝒲( · , · , · ; 𝛾1, 𝛾2, 𝑎, 𝑏) vanishes at 0 we see that any set 𝒟 ⊂ 𝒞 ×R
(with 𝒞 as in (6.33)) containing the origin 0 ∈ R3 in its interior and for which we
can show that 𝒲( · , · , · ; 𝛾1, 𝛾2, 𝑎, 𝑏) is positive definite in 𝒟∖{0} is a positively
invariant set for the closed loop dynamics (6.29), (6.32) and (6.34)–(6.37) (so
that, in particular, cos(𝜃) remains positive there). More precisely, we have the
following result.
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Proposition 6.1 If 𝛿 > 0, 𝛾1 > 0, 𝛾2 < 0 then the origin 0 on the state
manifold 𝒞 × R is an asymptotically stable equilibrium point for the (closed
loop) dynamical system 𝒮 given by (6.29), (6.32) and (6.34), (6.35), viz.6

𝑑

𝑑𝑡
(𝜎𝑇 𝑣̇𝑔) = −𝜂𝑔

𝑐𝑔
𝑉

√︃
1− (𝜎𝑇 𝑣̇𝑔)2 + (𝑣̇𝑔,2)2

𝑐2𝑔
+ 𝑝𝑣̇𝑔,2,

𝑑

𝑑𝑡
𝑣̇𝑔,2 = −Φ𝑔

𝑐𝑔
𝑉

√︃
1− (𝜎𝑇 𝑣̇𝑔)2 + (𝑣̇𝑔,2)2

𝑐2𝑔
− 𝑝𝜎𝑇 𝑣̇𝑔,

𝑑

𝑑𝑡
Φ = 𝑝,

where the controls 𝜂, 𝑝 are given by (6.36), (6.37). The domain of attraction of
0 contains the (open) ellipsoid

ℰ(𝑐𝑔) = {[𝜎𝑇 𝑣̇𝑔, 𝑣̇𝑔,2,Φ]
𝑇 ∈ R3 | (𝜎

𝑇 𝑣̇𝑔)
2

2
+

(𝑣̇𝑔,2)
2

2
+

1

𝛾1

Φ2

2
< 𝑐2𝑔}. (6.50)

Proof: We can write 𝒲(𝜎𝑇 𝑣̇𝑔, 𝑣̇𝑔,2,Φ; 𝛾1, 𝛾2, 𝑎, 𝑏) in (6.49) as the value of
a quadratic looking form

𝒲(𝜎𝑇 𝑣̇𝑔, 𝑣̇𝑔,2,Φ; 𝛾1, 𝛾2, 𝑎, 𝑏) =⎡⎣ 𝜎𝑇 𝑣̇𝑔

𝑣̇𝑔,2
Φ

⎤⎦𝑇

𝒬(𝜎𝑇 𝑣̇𝑔, 𝛾1, 𝛾2, 𝑎, 𝑏)

⎡⎣ 𝜎𝑇 𝑣̇𝑔

𝑣̇𝑔,2
Φ

⎤⎦ (6.51)

where 𝒬(𝜎𝑇 𝑣̇𝑔, 𝛾1, 𝛾2, 𝑎, 𝑏) ∈ R3×3 is the symmetric matrix

𝒬(𝜎𝑇 𝑣̇𝑔, 𝛾1, 𝛾2, 𝑎, 𝑏) =⎡⎣ 𝛿 0 0
0 −𝛾1𝑎

1
2 (1 + 𝛾1(𝑎𝜎

𝑇 𝑣̇𝑔 − 𝑏)− 𝛾2𝑎)
0 1

2 (1 + 𝛾1(𝑎𝜎
𝑇 𝑣̇𝑔 − 𝑏)− 𝛾2𝑎) 𝑎+ 𝛾2(𝑎𝜎

𝑇 𝑣̇𝑔 − 𝑏)

⎤⎦ . (6.52)

The matrix 𝒬(𝜎𝑇 𝑣̇𝑔, 𝛾1, 𝛾2, 𝑎, 𝑏) is positive definite if and only if 𝛿 > 0 and
the lower right 2 × 2 sub matrix is positive definite. By a completing-the-
squares argument it is easy to see that the lower right 2 × 2 sub matrix of
𝒬(𝜎𝑇 𝑣̇𝑔, 𝛾1, 𝛾2, 𝑎, 𝑏) is positive definite if and only if

− 𝛾1𝑎 > 0 (6.53)

and

𝑎+ 𝛾2(𝑎𝜎
𝑇 𝑣̇𝑔 − 𝑏) > − 1

4𝛾1𝑎
(1 + 𝛾1(𝑎𝜎

𝑇 𝑣̇𝑔 − 𝑏)− 𝛾2𝑎)
2. (6.54)

A necessary and sufficient condition7 for the (continuous) function 𝒲 in (6.49)
and (6.51) to be positive definite in a neighborhood of 0 is that the matrix

6We consider the airspeed 𝑉 as a constant here.
7From the analysis of the linearized system in (6.41)–(6.43) and a well-known result

about stability and quadratic Lyapunov functions for linear systems cf. e.g. (Sastry, 1999,
Thm. 5.34, 5.36), we know that the conditions (6.53) and (6.54) for 𝜎𝑇 𝑣̇𝑔 = 0 are neces-
sary and sufficient for asymptotic stability of the closed loop system (6.38)–(6.40) in some
neighborhood of 0.
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𝒬(0, 𝛾1, 𝛾2, 𝑎, 𝑏) is positive definite, i.e. that (6.53) and (6.54) hold for 𝜎𝑇 𝑣̇𝑔 =
0.

We are interested in positive definiteness of 𝒲 under the additional con-
dition that 𝑏 > 𝑎2 > 0 so that 𝒱 in (6.47) is indeed a Lyapunov function.
The conditions (6.53) and (6.54) hold for 𝜎𝑇 𝑣̇𝑔 = 0 and 𝑏 > 𝑎2 > 0 precisely
when the conditions in (6.46) hold, i.e. when 𝛾1 > 0, 𝛾2 < 0. To see that the
conditions in (6.46) are necessary for the conditions (6.53) and (6.54) to hold
for 𝜎𝑇 𝑣̇𝑔 = 0 and 𝑏 > 𝑎2 > 0 we can proceed as follows. To begin with, note
that when 𝜎𝑇 𝑣̇𝑔 = 0 the inequality (6.54) is equivalent to

(1− 𝛾1𝑏+ 𝛾2𝑎)
2 + 4𝛾1𝑎

2 − 4𝛾2𝑎 < 0, (6.55)

Then, assume (in order to reach a contradiction) that 𝛾1 ≤ 0 and that (6.53)
and (6.55) hold for 𝑏 > 𝑎2 > 0. However, when 𝛾1 ≤ 0 and 𝑏 > 𝑎2 we have
𝛾1𝑎

2 ≥ 𝛾1𝑏 and hence

(1− 𝛾1𝑏+ 𝛾2𝑎)
2 + 4𝛾1𝑎

2 − 4𝛾2𝑎 =

1− 2𝛾1𝑏+ 2𝛾2𝑎+ 𝛾2
1𝑏

2 − 2𝛾1𝛾2𝑎𝑏+ 𝛾2
2𝑎

2 + 4𝛾1𝑎
2 − 4𝛾2𝑎 ≥

1− 2𝛾1𝑏+ 2𝛾2𝑎+ 𝛾2
1𝑏

2 − 2𝛾1𝛾2𝑎𝑏+ 𝛾2
2𝑎

2 + 4𝛾1𝑏− 4𝛾2𝑎 =

1 + 2𝛾1𝑏− 2𝛾2𝑎+ 𝛾2
1𝑏

2 − 2𝛾1𝛾2𝑎𝑏+ 𝛾2
2𝑎

2 = (1 + 𝛾1𝑏− 𝛾2𝑎)
2 ≥ 0,

which contradicts (6.55). Hence, we must have 𝛾1 > 0 in order for (6.53) and
(6.54) hold for 𝜎𝑇 𝑣̇𝑔 = 0 and 𝑏 > 𝑎2. Moreover, it follows that we must have
𝑎 < 0. Assume instead (again in order to reach a contradiction) that 𝛾2 ≥ 0
and that (6.53) and (6.55) hold for 𝛾1 > 0. The inequality (6.55) implies
that 𝛾1𝑎

2 − 𝛾2𝑎 < 0 and the inequality (6.53) implies that 𝑎 < 0 but then
𝛾1𝑎

2 − 𝛾2𝑎 > 0 which contradicts (6.55). Hence, also 𝛾2 < 0 in order for (6.53)
and (6.54) hold for 𝜎𝑇 𝑣̇𝑔 = 0 and 𝑏 > 𝑎2 > 0.

In view of the above, we will henceforth only consider the case 𝛾1 > 0, 𝛾2 < 0
and 𝑎 < 0. For this case, the two inequalities (6.53) and (6.54) are equivalent
to the single inequality(︀

𝜎𝑇 𝑣̇𝑔 +
1

𝛾1𝑎
(1− 𝛾1𝑏+ 𝛾2𝑎)

)︀2
+

4

𝛾1𝑎
(𝑎− 𝛾2

𝛾1
) < 0. (6.56)

We know from the above that a necessary and sufficient condition for the
function 𝒲 in (6.49) to be positive definite in a neighborhood of 0 is that the
inequality (6.54) has a solution for 𝜎𝑇 𝑣̇𝑔 = 0, i.e. that (6.56) has a solution for
𝜎𝑇 𝑣̇𝑔 = 0. Such a solution can only exist if the last term on the left in (6.56)
is negative, i.e. if

𝑎 ∈ (
𝛾2
𝛾1

, 0). (6.57)

When this holds, the set of values 𝜎𝑇 𝑣̇𝑔 for which (6.56) is satisfied becomes
the interval (ℓ1, ℓ2) given by

ℓ1,2 = − 1

𝛾1𝑎
(1− 𝛾1𝑏+ 𝛾2𝑎)± 2

√︂
− 1

𝛾1𝑎
(𝑎− 𝛾2

𝛾1
). (6.58)

The interval (ℓ1, ℓ2) becomes symmetric about 0 (and in particular contains
the point 0) when

1− 𝛾1𝑏+ 𝛾2𝑎 = 0 (6.59)

so we must ascertain that this manifold in (𝛾1, 𝛾2, 𝑎, 𝑏)-space contains a point
where 𝑏 > 𝑎2. However, on the manifold defined by (6.59) we always have
𝑏 > 𝑎2 when (6.57) holds since then

𝑏− 𝑎2 =
1 + 𝛾2𝑎

𝛾1
− 𝑎2 =

1

𝛾1
− 𝑎

(︀
𝑎− 𝛾2

𝛾1

)︀
> 0. (6.60)
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Thus, when (6.57) holds the interval (ℓ1, ℓ2) can be made arbitrarily large by
making the constant 𝑎 < 0 close to 0 and then it can be centered, so that it
contains 0, by selecting 𝑏 so that (6.59) holds.

Summing up, when 𝛾1 > 0, 𝛾2 < 0, the constant 𝑎 < 0 satisfies (6.57)
and the constant 𝑏 > 0 is selected so that (6.59) holds the inequality (6.60)
is satisfied and the interval (ℓ1, ℓ2) of values of 𝜎𝑇 𝑣̇𝑔 that satisfy (6.53) and
(6.54) is given by (6.58) and contains the point 0. Thus, the function 𝒱 in
(6.47) is then admissible as a Lyapunov function (candidate) and the matrix
𝒬(𝜎𝑇 𝑣̇𝑔, 𝛾1, 𝛾2, 𝑎, 𝑏) in (6.52) is positive definite for 𝜎𝑇 𝑣̇𝑔 in the interval (ℓ1, ℓ2)
so that the function 𝒲 in (6.49) and (6.51) is positive definite on the set

{(𝜎𝑇 𝑣̇𝑔, 𝑣̇𝑔,2,Φ) ∈ R3 | (𝜎𝑇 𝑣̇𝑔, 𝑣̇𝑔,2) ∈ 𝒞,𝜎𝑇 𝑣̇𝑔 ∈ (ℓ1, ℓ2)}. (6.61)

Since the constant 𝑎 < 0 can always be chosen arbitrarily close to 0 the ar-
guments above show that for 𝛾1 > 0, 𝛾2 < 0 there exist parameter values 𝑎, 𝑏
such that 𝒱 is locally well defined as Lyapunov function for the system 𝒮.
Moreover, the interval (ℓ1, ℓ2) in (6.58) can always be made large enough that
𝒞 ∩ ((ℓ1, ℓ2) × R) = 𝒞 (which happens when −ℓ1, ℓ2 ≥ 𝑐2𝑔). Hence, for 𝑎 < 0
sufficiently close to zero, any level set of 𝒱 contained in the cylinder 𝒞 × R is
part of the domain of attraction of the equilibrium at 0 for the system 𝒮 (cf.
e.g. Sastry (1999, Prop. 5.22)). The only remaining point is to show that the
domain of attraction also includes any ellipsoid of the form (6.50).

Given 𝛾1 > 0, 𝛾2 < 0 and a pair 𝑎 < 0, 𝑏 > 0 such that (6.57), (6.59) are
fulfilled, any (open) level set

{[𝑥, 𝑦, 𝑧]𝑇 ∈ R3 | 𝒱(𝑥, 𝑦, 𝑧) < 𝑐2}

where 𝑐 > 0, is an (open) ellipsoid ℰ𝑎(𝑐) of the form

ℰ𝑎(𝑐) = {[𝑥, 𝑦, 𝑧]𝑇 ∈ R3 | 𝑥
2

2
+

𝑦2

2
+ 𝑎𝑦𝑧 +

1 + 𝛾2𝑎

𝛾1

𝑧2

2
< 𝑐2}.

We have ℰ0(𝑐) ⊆ 𝒞×R if and only if 𝑐 ≤ 𝑐𝑔 and when this holds dist(ℰ0(𝑐), (𝒞×
R)𝑐) = 𝑐𝑔 − 𝑐. We now claim that for 𝑐 < 𝑐𝑔 there exists 𝑎 < 0 such that (6.57)
is fulfilled and

ℰ0(𝑐) ⊂ ℰ𝑎(𝑐+ (𝑐𝑔 − 𝑐)/2) ⊂ 𝒞 × R. (6.62)

However, this is clear since, for fixed 𝑐 < 𝑐𝑔, the functions 𝑎 ↦→ dist(ℰ𝑎(𝑐+(𝑐𝑔−
𝑐)/2), (𝒞×R))𝑐 and 𝑎 ↦→ dist(ℰ0(𝑐)), (ℰ𝑎(𝑐+(𝑐𝑔−𝑐)/2))𝑐 are continuous and for
𝑎 = 0 the relations (6.62) are satisfied (with strictly positive distances). Thus,
the domain of attraction of the equilibrium at 0 for the system 𝒮 includes ℰ0(𝑐)
for any 𝑐 < 𝑐𝑔. However, since ℰ(𝑐𝑔) = ℰ0(𝑐𝑔) the statement in the proposition
about the domain of attraction in (6.50) follows. �

Remark: The value of the constant 𝛾2 < 0 does not affect the domain of
attraction but it greatly effects the dynamics.

Remark: One can also consider more complex control laws that will cancel
more terms in the Lyapunov function derivative (6.48). For instance, one can
instead of (6.37) consider the control law

𝜂 = 𝜎𝑇 𝑣̇𝑔(𝛿 − 𝛾1𝑎𝑣̇𝑔,2Φ− 𝛾2𝑎Φ
2).

The matrix 𝒬(𝜎𝑇 𝑣̇𝑔, 𝛾1, 𝛾2, 𝑎, 𝑏) in (6.52) in the stability proof would then be
replaced by 𝒬(0, 𝛾1, 𝛾2, 𝑎, 𝑏), which is the same as for the linearization. Hence,
the stability region would not be enlarged. Moreover, the linearization of the
closed loop system would be the same as in (6.41)–(6.43) so the closed loop
dynamics would be essentially unchanged.
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A Relative motion
A.1 Relative velocity
Let 𝑥(𝑡) ∈ R3 be a continuously time differentiable vector and let 𝑅(𝑡) ∈ R3×3

be a rotation matrix, i.e. 𝑅(𝑡)𝑇 = 𝑅(𝑡)−1, det(𝑅(𝑡)) = 1, with continuously
time differentiable elements, where time 𝑡 is defined in some open interval
ℐ ⊂ R. Define the vector 𝑋(𝑡) ∈ R3 by

𝑋(𝑡) = 𝑅(𝑡)𝑥(𝑡), 𝑡 ∈ ℐ. (A.1)

Then

𝑋̇(𝑡) = 𝑅̇(𝑡)𝑥(𝑡) +𝑅(𝑡)𝑥̇(𝑡) = 𝑅̇(𝑡)𝑅(𝑡)𝑇𝑅(𝑡)𝑥(𝑡) +𝑅(𝑡)𝑥̇(𝑡) =

𝑅̇(𝑡)𝑅(𝑡)𝑇𝑋(𝑡) +𝑅(𝑡)𝑥̇(𝑡). (A.2)

Since

0 =
𝑑

𝑑𝑡
𝐼3 =

𝑑

𝑑𝑡

(︀
𝑅(𝑡)𝑅(𝑡)𝑇

)︀
= 𝑅̇(𝑡)𝑅(𝑡)𝑇 +𝑅(𝑡)𝑅̇(𝑡)𝑇

it follows that 𝑅̇(𝑡)𝑅(𝑡)𝑇 is skew-symmetric; (𝑅̇(𝑡)𝑅(𝑡)𝑇 )𝑇 = −𝑅̇(𝑡)𝑅(𝑡)𝑇 . A
skew-symmetric linear map R3 → R3 can be identified with a cross product via
the representation 𝑦 × 𝑧 = 𝑆(𝑦)𝑧 where

𝑆(𝑦) =

⎡⎣ 0 −𝑦3 𝑦2
𝑦3 0 −𝑦1
−𝑦2 𝑦1 0

⎤⎦ , 𝑦 = [𝑦1, 𝑦2, 𝑦3]
𝑇 ,

and we thus have 𝑆(𝑦)𝑇 = −𝑆(𝑦) = −𝑦 × · . It follows that there exists (for
each 𝑡) a uniquely defined solution Ω(𝑡) ∈ R3 to the following equation (to hold
identically for all 𝑧 ∈ R3)

Ω(𝑡)× 𝑧 = 𝑅̇(𝑡)𝑅(𝑡)𝑇𝑧. (A.3)

Using Ω(𝑡) defined by (A.3) the relation (A.2) can be written

𝑋̇(𝑡) = Ω(𝑡)×𝑋(𝑡) +𝑅(𝑡)𝑥̇(𝑡),

and if we define the vector 𝜔(𝑡) ∈ R3 by

Ω(𝑡) = 𝑅(𝑡)𝜔(𝑡), 𝑡 ∈ ℐ,

we can further write

𝑋̇(𝑡) = 𝑅(𝑡)
(︀
𝜔(𝑡)× 𝑥(𝑡) + 𝑥̇(𝑡)

)︀
, (A.4)

where we have used the fact that rotations preserve angles and therefore com-
mute with the cross product operation (cf. e.g. (Arnold, 1989, p. 131)).
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