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Sub area code

Projektnummer / Project no
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Abstract

Keywords

This report serves as a review and survey of earlier work in the field of entity
matching as well as current software implementations in this area. Entity
matching uses string matching methods known as field metrics to find similar
text strings that could correspond to similar names or addresses. The outputs
from these field metrics are often used with different classification methods
to determine if the strings (or the entire entry the strings are a part of) are
matching or unmatching. These classification methods include both supervised
and unsupervised methods originating in statistics and machine learning.
This report proposes using other classifiers including vertex similarity and text
mining-methods to generate additional evidence that two entities match. Ver-
tex similarity is studied in network analysis and aims to identify nodes sharing
a large fraction of common neighbors, indicating that the entities have similar
social or communication networks. Text mining-methods are useful in finding
similar documents and other written longer texts, indicating that two entities
have the same language usage or deal with the same topics. Some small exper-
imental evaluations are offered using citation data from two different sources
to test these two methods of finding similar entities. Furthermore, the report
proposes methods based on data fusion to combine these classifiers with the
traditional field metrics into an ensemble.

Record matching, duplicate entry detection, entity resolution, vertex similarity,
ensemble classification, data fusion, information fusion
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Sammanfattning

Nyckelord

Denna rapport inneh̊aller en genomg̊ang och diskussion av tidigare arbeten
inom entitetsmatchning samt aktuella implementationer av dessa i form av olika
programvaror. Entitetsmatchning använder strängmatchande metoder som ofta
kallas fältmatchningsmetoder för att hitta liknande textsträngar som kan best̊a
av exempelvis liknande namn eller adresser. Dessa fältmetoder används ofta
tillsammans med olika klassificeringsmetoder för att avgöra om strängar (eller
hela den posten som strängarna är en del av) är matchande eller inte. Dessa
klassificeringsmetoder innefattar b̊ade övervakade (supervised) och oövervakade
(unsupervised) metoder som har ursprung i statistik och maskininlärning.
Rapporten föresl̊ar att man även kan använda andra typer av klassificerare
som inkluderar nodlikheter och text mining-metoder för att generera ytterliga-
re bevis p̊a att tv̊a entiteter är matchande. Nodlikhet studeras i nätverksanalys
och syftar till att identifiera noder som delar en stor andel gemensamma gran-
nar, vilket visar att entiteterna har liknande sociala nätverk eller kommunika-
tionsvanor. Text mining-metoder är användbara för att hitta liknande doku-
ment och andra skriftliga längre texter, vilket tyder p̊a att tv̊a entiteter har
samma spr̊akbruk eller skriver om samma ämnen. N̊agra små experimentella
utväderingar presenteras även i rapporten, där de föreslagna metoderna appli-
ceras p̊a citeringsdata fr̊an tv̊a olika källor. Slutligen diskuteras om metoder
fr̊an datafusion kan användas för att kombinera dessa nya föreslagna metoder
tillsammans med traditionella fätmatchningsmetoder för att skapa en ensemble
av klassificerare.

matchning av dataposter, identifiering av dupletter, entitetsmatchning, ensem-
bleklassificering, nodlikhet, datafusion, informationsfusion
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1 Introduction
Integration of data from several different data sources is an important prob-
lem as more and more information becomes available for analysis. One major
problem is that sources often are heterogeneous, i.e. the information often has
different formats, spellings, and may contain erroneous or conflicting infor-
mation. This occurs in many different applications, including data mining,
census, marketing and other similar fields. Therefore this problem has been
studied in many different fields and is thereby also known by many different
names. Names used include e.g. record linkage (statistics), database hardening
(computer science), data integration (data mining), and entity matching. The
latter term is adopted in this report for describing the task of finding entries
in a number of data records that corresponds to the same entity (individual).

This report aims to present and summarize the most important and com-
monly used methods from the different scientific fields working with this prob-
lem. The scenario considered is that data from a number of heterogeneous
sources should be merged into one. This merger should be accomplished with
a minimum of duplicate entries and entries concerning the same entity should
be merged so that all information regarding a single entity are contained within
one entry. To complete this matching, all possible pairs must be compared be-
tween the records. This results in a very large number of comparisons that
requires a lot of computational effort.

It is inefficient and time consuming to compare all the possible pairs of data
entries. To decrease the number of comparisons needed, some blocking strategy
is usually applied on the data material. A blocking strategy limits the number
of comparisons by e.g. requiring that the day of birth must be the same in
two data records before considering them for comparisons. Finding a suitable
blocking strategy is difficult and is often done manually . Choosing a bad
blocking strategy results in bad results as many comparisons are disregarded,
which could result in bad accuracy.

Purpose and intended reader The purpose of this report is to serve as a
reference to state of the art research and implementations of entity matching.
The intended reader is a FOI researcher who works on information fusion tools,
but the report should also be of interest to technically oriented personnel in
the Swedish Armed Forces and at FMV.

Motivation and background Continuing by presenting an outline of how
record linkage works and thereby how duplicate data entries can be detected.
In heterogeneous data sources, data corresponding to the same real-world prop-
erty can be organized in different ways. A simple example of the problem with
data integration is that the date-of-birth can be written as a combined field
with MMDDYY (Month, Day, and Year) or as three different fields for month,
day, and year. This problem is remedied by a simple data transformation that
combines several different data fields into one.

13
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Another more difficult and related problem is the matching of strings, which
can describe names, addresses, affiliations, and other important characteristics.
These strings can be misspelled, contradicting, old, etc. therefore making it
impossible to match them by using normal (crisp) operators such as the equality
operator. Some fuzzy metrics are therefore needed to counter the problem with
different spellings, word orders, and missing/extra inserted words. These field
metrics are used to compare two strings and estimate how similar they are
with each other.

Figure 1.1: Small example of matching two data fields between two records. The
first pair is an obvious match using the equality operator with a small transformation.
The second record has some misspellings and errors and does not match using the
equality operator. Therefore some other fuzzy operator is needed to compare these
fields.

The problem with string metrics is shown schematically in Figure 1.1 where
two pairs of entries are compared by equality operators. The first pair is equal
if a small data transformation is applied, the second pair is not considered
equal by the equality operator but is in fact probably equal. The differences
between the entries are the spelling of the last name and some erroneous input
of the birth month. This problem and proposed solutions are discussed in the
next two chapters of this report.

A more detailed description of the full method and the problem is found in
Figure 1.2, where two data records are compared. Each data record consists
of a number of data entries each containing some data fields. In this example,
two records containing the data fields name, address, phone number, and day-
of-birth are to be combined using this record linkage method. Each pair of
matching fields are compared using some of the fuzzy string metrics. These
metrics are used as an input into an entry matching method which classifies
each pair of entries as matching, possible matching, or unmatching. To be able
to classify these entries some classification regions are needed. These regions
are often estimated from training data or by the data itself using some entity
matching method.

Previous and related work Entity matching builds upon the earlier
mentioned efforts in statistics, data mining, bioinformatics, and other related
fields. The first mention of record linkage, i.e. to combine information about
a person from several different sources is due to Dunn Halbert (1946). This
idea was later formalized in terms of quantitative measures by Newcombe et al.
(1959) and then by the first matching model (often used today) in Fellegi &
Sunter (1969). Later works have focused on using different forms of machine
learning to classify pairs of entities by the use of field matching metrics. A
good account of these efforts and the state of research in the field is given by

14
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Figure 1.2: Schematic overview over a general entity matching procedure including
field matching metrics and automatic entry matching. The problem concerns finding
duplicate entries in some data records using metrics to compare similarity. The result
is pairs of entries that are classified as: matching, unmatching, or possible matches.

Elmagarmid et al. (2007).
Ensemble methods have a long history in the study of neural networks and

other classification methods. Some of the earliest work in ensemble of classifiers
was done in the form of boosting, the most commonly used method for this is
AdaBoost which is due to Freund & Schapire (1997a). Later works in ensemble
classification are summarized and discussed in e.g. Hastie et al. (2003), Polikar
(2006), and Rokach (2010).

The graph-based entity matching methods are presented in Bhattacharya
& Getoor (2006) and the used vertex similarity measures have been exten-
sively studied in the field of network analysis, see e.g. Leicht et al. (2006) for
more information and comparisons. Text mining is an additional field, from
which methods and results are used in this report. Primarily, Latent Semantic
Analysis is used which is due to Deerwester et al. (1990).

To the author’s knowledge, no previous effort has been given the integration
of ensemble classification methods in entity matching, to merge the information
found in several different sources (and of several different types). Some previous
work done to combine the classifiers in an ensemble for entity matching is
presented in Chen et al. (2009) using graph-based methods, as well as using
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other methods as in e.g. Zhao & Ram (2005) and Shen et al. (2007). The major
difference between the proposed methods in this report and from previous work
is the use of several different methods to compare entries. In previous works,
only e.g. different field matching metrics are used to compare the data in two
entries.

Contribution and proposed methods Two new methods for entity
matching are proposed and discussed in this report: (i) using a number of
weak classifiers in sequence as a blocking strategy, and (ii) combining classi-
fiers using voting or meta-learners. The two latter methods are commonly used
in data fusion and ensemble classification methods.

As the citation data is combined from a number of different sources, ab-
stracts and co-author information are useful for matching identities. Methods
from social network analysis and text mining (analysis) are applied for finding
similar pairs of entries. By using some simple faster classifier to screen the set
of all possible pairs a functional blocking strategy is found. This is done in se-
quence with increasing accuracy, as more accurate and complex classifiers have
a higher computational complexity. The resulting candidate pairs are analyzed
by using standard methods from record linkage or entity matching.

The second proposed method uses the full information from an ensemble
of classifiers using some combination rule or a meta-learner. The simplest
combination rule is the majority voting rule with an optional weighting of each
classifier. Other more advanced combiners are found using Dempster’s rule-
of-combination (from evidence theory), Bayes’ rule, and variance-minimizing
linear programming. Meta-learner methods include stacking, where the output
from an ensemble of weak classifiers are used as an input to a second stage of
classifiers. This meta-learner is trained using the classifications found by the
weak classifiers in some training set and also the training data itself. Therefore
enabling the meta-learner to use different combination of weak classifiers for
different types of data.

These ensemble classification methods are quite computational intensive
and some blocking strategies are required as a pre-processing step to limit the
computational effort. These strategies can e.g. require that a majority of the
characters in some strings are common or by applying some field matching
metric. To the author’s knowledge, no previous work has been done in en-
tity matching using ensembles of weak classifiers from such diverse fields as
proposed in this report.

Evaluations and results The proposed methods are evaluated using some
citation data gathered by Johansson et al. (2011), which contains a co-author
network and abstracts from each paper presented at the annual FUSION con-
ference. The actual data set is a combination of citation information obtained
from IEEE Xplore and Thomson Reuters’ ISI Web of Knowledge, i.e. two het-
erogeneous data sources. The aim of the evaluations is to find duplicate authors
that have different variations of their name, i.e. other spellings, initials, and
similar problems. A common problem is e.g. that some authors are cited with
two initials in some papers and only one initial in another. As these names are
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spelled differently most bibliographical software creates two distinct entities for
this single author. The aim is to identify these duplicates and merge them to
have only a set of authors, each corresponding to a unique entity.

The sequential method with graph-based and text mining-based methods
is evaluated and compared with a common blocking strategy (requiring equal
last name). The graph-based method requires some similarity in the co-author
network structure, i.e. that the pair of nodes share a large fraction of common
co-authors (neighbors) indicating evidence for the hypothesis that the pair of
nodes correspond to a single entity. The text mining-based method analyzes
the topics of the paper abstracts to cluster the papers into groups with common
contents. The set of possible pairs is thereby limited to all the pairs within
each group, using the assumption that authors often write a few papers within
the same topic. This also greatly reduces the number of pairs to consider with
standard matching methods.

The results indicate that the sequential method is a good blocking strategy
for data material containing more advanced data structures than text strings.
It is however the case that the three different sequential methods find different
candidate pairs. Therefore, it is recommended to use the union of these three
considered methods as the input to e.g. the Fellegi-Sunter method with the
Expectation Maximization-algorithm in order to find matching entities.

The full ensemble method is only tested using some minor studies on a small
data set. This serves only to illustrate the usefulness and potential of this ap-
proach and thereby justifying future and continued work with this method.
The main problem and reason for the limited study is time constraints and dif-
ficulties in finding appropriate labeled data sets for evaluating the performance
and accuracy of ensemble methods. In the following simulation experiments
field matching metrics, network structure similarity, and abstract similarity are
combined as the input of a simple classifier. An implementation is proposed to
calculate each of these quantities and some preliminary results using a Support
Vector Machine as a meta-learner is presented indicating some tendencies for
better performance compared with the sequential method. Despite the lim-
ited comparison, it is the conclusion that this ensemble method is the most
promising and thereby merits future research effort.

Disposition This report continues with a presentation of current field
matching metrics and matching methods from the theory of record linkage.
These chapters introduce methods for comparing text strings and determining
classification regions. Some learning methods including: classification trees,
clustering, and support vector machines, are also presented and discussed.
The report continues with a presentation of current implementations for entity
matching and recommendations regarding their use. A framework for match-
ing entities in citation data and similar text-based network data is presented
using methods from ensemble classification. This framework is evaluated using
some citation data and the results are discussed in the following chapters. The
appendices contain a tutorial of some software packages and some source code
used in the simulation studies.
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2 Field matching
The first step towards creating a method for matching similar data entries is
to quantify the similarity between different types of data. Many well-known
measures already exist for quantifying similarities in integers, floats and sets.
These include the usual norm measures (Manhattan and Euclidean distances),
set measures (the Jaccard and cosine measures), and others. Comparing the
similarity of these types of data is therefore already well-studied and good
methods exist in both clustering and classification theory.

Another type of data commonly encountered is text strings, which are non-
trivial to compare using standard methods. It is possible to use set measures to
compare the similarity between strings, by treating each character as a member
in a set comprised by the text string. However, these type of methods heavily
penalize misspellings of words and are therefore not suitable for our problem.

To counter the problems of using traditional measures for the studies of
sets, some other methods have been developed during the last few decades.
These methods are all defined as field matching techniques, as they are used to
match individual fields in a data set to each other. Field matching methods can
be divided1 into character-based, token-based, and phonetic similarity metrics.
We continue by reviewing the most promising methods in the two2 former
metric types. This section follows the presentation in Elmagarmid et al. (2007)
closely with some additions from other sources.

2.1 Character-based similarity metrics

The first type of similarity measures are concerned with comparing the char-
acters used in two different strings. We present the two most commonly used
metrics in this subsection: edit distances and the Jaro-Winkler metric.

2.1.1 Edit distance

Perhaps the simplest of character-based methods is the Levenshtein edit dis-
tance presented in Levenshtein (1966). This metric is related to the Hamming
distance used in information theory. This measure compares two strings by the
number of edits needed to transform one string into the other. Denote the two
strings s1 and s2, then the edit distance is the minimum amount of operations
needed to transform s1 into s2 or vice versa. The allowed edit operations are:

1This division into metric families is due to Elmagarmid et al. (2007).
2Phonetic methods are not treated as they depend heavily on the language considered,

i.e. methods developed for e.g. American English does not necessarily perform well for the
Nordic languages. Therefore this method is considered impractical in comparing names in a
more globalized world in which cultures and people (thereby also names) tend to increasingly
mix.
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• insertion of a character into a string,

• removal of a character in a string,

• replacement of a character with a different character.

To calculate the edit distance, a dynamic programming problem is usually
solved with a complexity of O(|s1||s2|). However, there exist more elaborate
versions of the algorithm which limit the complexity to O(k|s1|) or similarly
O(k|s2|) for some k such that the edit distance between s1 and s2 is less than
k.

Other refinements to the edit distance includes gaps, which allows for a
smaller number of operations in strings with left-out words. For example,
using gaps a single operation is needed to transform Sven Anders Svensson
into Sven Svensson. This is done by just removing the additional word (the
gap) using a single operation, i.e. removing or adding Anders to transform the
strings. The cost of this operation can vary depending on the location of the
gap, usually higher costs are given to gaps in the beginning and end of strings
than in the middle.

2.1.2 Jaro-Winkler metric

Another common similarity measure is known as the Jaro-Winkler metric pre-
sented in Winkler & Thibaudeau (1987), which is used for comparing short
strings such as names. We begin by discussing the simpler Jaro metric due to
Jaro (1978), which is calculated as follows:

1. Find the length of each string, n1 = |s1| and n2 = |s2|.
2. Find the number of common characters c shared between the two strings.

A common character fulfills the following:

s1[i] = s2[j], |i− j| ≤ 1

2
min {n1, n2} . (2.1)

3. Find the number of possible transpositions, t, which is the number of
common characters for which s1[i] �= s2[i] where i = 1, 2, . . . , c.

4. The Jaro metric, J(s1, s2), is given by

J(s1, s2) =
1

2

(
1 +

[
n1 + n2

n1n2

]
c− t

2c

)
. (2.2)

The complexity of this algorithm is O(n1n2) and is due to the calculation of
the number of common characters. A common extension of the Jaro metric is
the Jaro-Winkler metric due to Winkler & Thibaudeau (1987), which gives a
higher weight to prefix matches by the following

JW(s1, s2) = J(s1, s2) + pmax{l, 4} (1− J(s1, s2)) , (2.3)
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where p ∈ [0, 0.25] is a factor3 controlling how the score is increased for having
common prefixes, l is the length of the longest common prefix of s1 and s2. As
previously stated, this method is well suited for comparing names of all types
and does not have the drawback of the phonetic family of measures, which is
strongly language dependent.

2.1.3 Comparison

The different character-based metrics are best understood by some compara-
tive examples. In Table 2.1, some simple examples of misspellings and different
formatted strings are compared using the edit distance, Jaro, and Jaro-Winkler
metrics. The three metrics find a large similarity between two pairs of strings
”Sven Svensson/Sven Svenson” and ”Svensson, Sven/Svensson, S”. The met-
rics does not however find any larger similarity between the other three exam-
ples in the table.

String 1 String 2 L J JW

Sven Svensson Sven Svenson 1 0.974 0.985
Svensson, Sven S Svensson 8 0.790 0.811
Svensson, Sven Svensson, S 3 0.923 0.957
Division of Information Systems Information Systems Division 21 0.710 0.710
Division of Information Systems Information Systems 12 0.713 0.713

Table 2.1: Small comparison between some text strings using the Levensthein (edit
distance), Jaro, and Jaro-Winkler metrics.

The more advanced metric, Jaro-Winkler finds larger similarity between
the three first comparisons in the table. This is as expected as Jaro-Winkler
is specially design to weight the first letters in a name higher than the ending
of names, i.e. this metric handles initial vs. full first name well. The Jaro
and Jaro-Winkler metrics are also designed for matching names and does not
perform well with other types of strings, such as organizational names. For
these types of text strings, some other measures are needed and token-based
metrics are therefore discussed in the following section.

2.2 Token-based similarity metrics

In comparison with character-based methods, token-based methods are more
robust to errors in input and spelling. These methods are also better in identi-
fying rearranged and missing words. In this subsection, we discuss the WHIRL
metric and two improved versions of this metric using q-grams and by relaxing
the assumption of strict (crisp) equality between phrases.

3A common choice for this factor is p = 0.1 and this value is used in the following
examples and simulation experiments.
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2.2.1 WHIRL metric

The most promising and commonly applied method from this family is the
WHIRL metric due to Cohen (1998) which adopts a weighting scheme called
tf-idf (term-frequency and inverse-document-frequency) with the well-known
cosine measure. Each word in a string is assigned a weight using the following
expression

vs(w) = log(tfw + 1) log(idfw), (2.4)

where tfw is the frequency of the word w in the entire data set and idfw is the
inverse fraction of entries in the data set in which the word w appears

idfw = |D|n−1
w , (2.5)

where nw is the frequency of the word w occurring in the data set D. Rare
items are therefore given a large weight and common items are given a smaller
weight, indicating larger and smaller importance. These weights are used with
the cosine measure to find the similarity between two strings as

sim(s1, s2) =

|D|∑
j=1

vs1(j)vs2(j)

||vs1 ||2||vs2 ||2
, (2.6)

where (as above) s1 and s2 are two strings, || · ||2 denotes the Euclidean norm,
and the weights are computed using the relation above in Eq. (2.4). As previ-
ously discussed, the main advantage of this method is that it does find similarity
between strings with missing and rearranged words. The main drawback is the
sensitivity for some spelling errors. For example the strings ”Computer Science
Department” and ”Deprtment of Computer Scence” have zero similarity.

2.2.1.1 WHIRL metric with q-grams

To counter this problem, Gravano et al. (2003) extended the WHIRL system
using q-grams, which are substrings of q characters common to both strings.
The aim is to find long q-grams, indicating that the two strings are similar.
This new method does find a non-zero similarity in the previous example and
also performs well with insertion and deletion of words.

This method is therefore most useful in comparing for example names of
organizations and titles of documents. Gravano et al. (2003) suggests that
q = 3 is a good choice and the change in the previously discussed WHIRL
metric is just by changing the words w into q-grams uq and repeat the same
calculations.

2.2.1.2 Soft WHIRL metric

Another improvement to the WHIRL metric is presented in Bilenko et al.
(2003) by relaxing the summation given in Eq. (2.6). This is done by summing
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over all pairs of phrases that are similar (or identical) by some field matching
metric. A usual choice is the Jaro-Winkler metric with a limit value, θ = 0.9,
for similar phrases. The resulting summation is the set of close phrases,

close(θ, s1, s2) = {w ∈ s1 : ∃v ∈ s2 and JW(w, v) ≥ θ}, (2.7)

where JW( · ) denotes the Jaro-Winkler metric. Let c(w, t) denote a weight
calculated by

c(w, s2) = max
v∈s2

JW(w, v), (2.8)

which is added into the resulting generalized version of Eq. (2.6), found as

sim(s1, s2) =
∑

w∈close(θ,s1,s2)

vs1(w)vs2(w)c(w, s2)

||vs1 ||2||vs2 ||2
, (2.9)

with notation as above. This measure is more robust to spelling errors, inser-
tions and deletions of words as only some partial similarity is required to be
included in the summation resulting in the field similarity.

2.2.2 Comparison

The different token-based metrics are best understood by some comparative
examples. In Table 2.2, some simple examples of misspellings and different
formatted strings are compared using the originial WHIRL-metric and the two
proposed improved versions. The three metrics does not find any stronger
pairings in these shorter strings, as the token-based metrics are more useful
for longer text strings and not names. The metrics however identifies strong
connections in the pair Division of Information Systems/Information Systems.

String 1 String 2 O Q S

Sven Svensson Sven Svenson 0.398 0.330 0.398
Svensson, Sven S Svensson 0.356 0.271 0.354
Svensson, Sven Svensson, S 0.356 0.271 0.354
Division of Information Systems Information Systems Division 0.336 0.219 0.336
Division of Information Systems Information Systems 0.517 0.408 0.517

Table 2.2: Small comparison between some text strings using the three versions of
the WHIRL-metric: Original, Q-gram (with q = 3), and Soft (with the Jaro-Winkler
metric and limit 0.90).

The q-gram version seems to perform worse in comparison with the original
and softer versions. Larger data sets are required to evaluate the measures
in more general terms, as the weighting scheme does not work for a smaller
collection of text strings (as in this case). In general, the soft-WHIRL measure
has been performing best in larger comparisons between these measures (see
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the following discussion regarding recommendations). As the WHIRL-measure
is only implemented in Java, some effort has been given to implementing the
three different measures in R, see Appendix B.1 for details.

2.3 Recommendations

The aim of this section is to provide some guidance to recommended field
matching metrics for some common situations. This section is based on pre-
vious benchmarks and simulation experiments conducted by various authors,
e.g. Cohen et al. (2003) and Yancey (2005).

Field matching methods can be divided into the two categories discussed
in this chapter with the addition of phonetic metrics. As previously discussed,
phonetic metrics are language dependent and the metric must be adapted for
each individual language. For general methods, therefore only character-based
and token-based metrics are useful, both individually or in combination using
hybrid methods.

To begin with, it is worth to mention the problem with the lack of common
benchmark data sets. As studies of metrics tend to use different benchmarks for
matching fields, it is difficult to draw any general conclusions in many cases.
Some studies however indicate that some measures are better than others,
whereas other studies indicate that no single metric is better than others in
general. In this section, we provide an overview of a few studies and their
results, but urge the reader to keep in mind that the results of these studies
are strongly dependent on the type of data used for comparisons.

In Cohen et al. (2003), the following metrics are compared: Levensthein,
Jaro, Jaro-Winkler, Jaccard, WHIRL, Jensen-Shannon, Simplified Fellegi-Sunter,
soft WHIRL, and recursive matching. Some of these methods have not been
discussed in this report and readers are referred to the paper discussing this
study for more details of each method. The methods are evaluated using a large
number of different data sets ranging from animal and bird names, to US. cen-
sus data. The WHIRL and Jaro-Winkler metrics are discussed as having good
average performance on the data sets used in this study. The authors recom-
mend soft WHIRL as a good general choice and also discuss the importance
of using learning to combine several distance measures. This latter discussion
is continued in the following sections of this report, as it is the cornerstone of
matching identities as well as a future important research field.

Another study comparing different field matching metrics is found in Bilenko
et al. (2003), using the same data sets as the previous paper. This paper veri-
fies the same conclusions and continues by comparing methods for learning to
combine different metrics, this is further discussed in the next chapter.

Yancey (2005) offers a comparison of several different metrics used on name
data from the US. Census Bureau. The paper compare several types of Jaro-
Winkler metrics as well as a number of different edit distances. The results
indicate that Jaro is the best metric when used in combination with the prefix
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adjustment (Jaro-Winkler) and that standard edit distance is the best variation
of edit distances. The paper also propose a method to combine the Jaro-
Winkler and standard edit distance metrics, however results indicate that this
does not yield any large improvements.

In summary, Jaro-Winkler metrics are commonly recommended for match-
ing names, soft WHIRL is recommended for long text strings as titles of papers,
affiliations and similar fields. For digits and number data, no specific metrics
have been developed so far. Usually digits are therefore compared using string
metrics, e.g. edit distances or Jaro metrics. This does not always yield good
results and more effort is needed in developing metrics for digit data. Other
suitable measures could be norms of different kinds, depending on which kinds
of errors that are present in the data. If typos and such are present then edit
distances are preferable, but if the digits are estimated numbers then norms are
the better choice. As previously stated, no universal best choice is available
in string comparisons and therefore it is more important to use good com-
binations of methods than choosing a particular metric, more on this in the
following sections.
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3 Matching models
The previous section discussed different methods for comparison of text strings,
names, and other common data types. Using these methods it is possible to
quantitatively calculate the similarity between two strings. The remaining
problem is to find the classification regions (limit values) that specify when
two entries are to be merged and are distinct.

We discuss some different methods: both unsupervised and supervised used
in conjuncture with the field matching metrics from the previous section to find
models for matching data entries. The aim is to present some different methods
used in implementations and discuss these from a practical standpoint, thereby
producing recommendations for when to use which model.

3.1 Fellegi-Sunter model

The first proposed model for record linkage was a probabilistic method using
classification into one of two different classes1: matching, M , and unmatching,
U . For the remainder of this section, we adopt the following notation which is
due to Fellegi & Sunter (1969). Assume that two data entries A and B contain
some elements a ∈ A and b ∈ B and that the set of ordered pairs

A×B = {(a, b); a ∈ A, b ∈ B}, (3.1)

is the union of the two sets containing matching and unmatching entries,

A×B = M ∪ U, where (3.2)

M = {(a, b); a = b, a ∈ A, b ∈ B},
U = {(a, b); a �= b, a ∈ A, b ∈ B}.

The elements of each entry could for example be name, address, telephone
number, or shoe size. These entries assume some value denoted by the functions
α(a) and β(b). Given some comparison function, γ, we define a comparison
vector between the n entries in a and b as the following

γ [α(a), β(b)] =
{
γ1 [α(a), β(b)] , . . . , γn [α(a), β(b)]

}
. (3.3)

In our example, this vector should correspond to how e.g. name, address, phone
number and shoe size match using some field matching method. Originally, a
binary model was used with an equality operator comparing fields, therefore
the similarity assumes only values 0 and 1. Each element in this vector is
therefore a quantitative value of how similar each field is.

1Sometimes a third class is also used called possible matches and holds the pair for clerical
review)
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The Fellegi-Sunter model assumes that the comparison vectors are gener-
ated by one of two different (overlapping) probability distributions. These
distributions are unknown beforehand and an important part of the method is
to estimate the distribution functions to be able to identify vectors drawn from
each distribution. In our case, the two distributions correspond to matching
and unmatching pairs of entries and the overlapping part between the distri-
butions are the pairs that are returned for manual review (shown in Figure
3.1).

The remaining problem is to find some rule telling when the fields of the data
entries are similar enough such that the data entries themselves are considered
duplicates. Continuing by defining the conditional probabilities of γ, given that
(a, b) ∈ M by m(γ) and (a, b) ∈ U by u(γ) as

m(γ) = P
{
γ [α(a), β(b)]

∣∣(a, b) ∈ M
}
,

=
∑

(a,b)∈M

P {γ [α(a), β(b)]}P [
(a, b)

∣∣M]
, (3.4)

u(γ) = P
{
γ [α(a), β(b)]

∣∣(a, b) ∈ U
}
,

=
∑

(a,b)∈U

P {γ [α(a), β(b)]}P [
(a, b)

∣∣U]
. (3.5)

Using these two definitions it is possible to show that the decision rule has the
following form,

(α(a), β(b)) ∈
{
M if P(M |γ) ≥ P(U |γ)
U otherwise

(3.6)

which can be rewritten using Bayes theorem as,

(α(a), β(b)) ∈
{
M if l(γ) = P(γ|M)

P(γ|U) ≥ P(U)
P(M)

U otherwise
(3.7)

where l(γ) is the likelihood ratio and also the limit between the two sets M
and U .

In Figure 3.1, the probability distributions for matching and unmatching
are shown together with the region corresponding to possible matches. The
distributions are approximated using some of the methods described below:
naive and EM-algorithmic methods.

The overlap between the distributions are corresponding to the usual alpha
error (False Positive) and beta error (False Negative) in statistical hypothesis
testing. It is important to note that some data sets could return diffuse prob-
ability distribution functions and thereby also large overlaps. In these cases,
the result will be uncertain and it is therefore important to observe e.g. the
Kullback-Leibler divergence to determine the amount of overlap between the
two distributions.
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Figure 3.1: The probability density functions for the two different classifications:
matching and unmatching. The intersection between the two density functions is the
region corresponding to possible matches. If the distributions are clearly separated,
a comparison γ[α(a), β(b)] between two entries a and b is classified by the distribu-
tion the vector has support in. In this sketch, only one field is compared and the
main problem is to find a limit value, γ∗, such that the entries are matching if the
comparison value is larger than this and unmatching otherwise.

3.1.1 Naive method

As the values of P(γ|M),P(γ|U),P(U), and P(M) are not known, we are
forced to make some simplifying assumptions to compute these unknown quan-
tities. The most common assumption is that the conditional probabilities,
P(γ|M) and P(γ|U), are independent and therefore can be rewritten as

P(γ|M) =

n∏
i=1

P
(
γi [α(a), β(b)]

∣∣M)
, (3.8)

P(γ|U) =
n∏

i=1

P
(
γi [α(a), β(b)]

∣∣U)
, (3.9)

which can be obtained using a training set of data by calculating the conditional
probabilities, P

(
γi [α(a), β(b)]

∣∣ · ), using the supplied labels. This method was
used in applications for many years, until recently when the assumption of
conditional independence was questioned.

3.1.2 EM-based method

To counter this, new methods were developed that did not rely on the assump-
tion of independence to calculate the likelihood ratio in Eq. (3.7). A suitable
method which also is unsupervised (does not need any training set of data) is
using the Expectation-Maximization (EM) algorithm. Widely used and well-
known, the EM-algorithm is used as a maximum likelihood estimator for some
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parameter θ of a parametric probability distribution. The algorithm is often
used to classify a mix of observations from two different Gaussian distributions.
As it is assumed that comparison vectors are drawn from either the Gaussian
distribution2 corresponding to matching or unmatching pairs of entries, the
EM-algorithm is most useful and promising for classifying the comparison vec-
tors. The algorithm is divided into two steps (thereby its name): Expectation
and Maximization, which are repeated until some predetermined accuracy has
been achieved.

The simplest version of using the EM-algorithm to estimate the likelihood
ratio in Eq. (3.7) is given by Jaro (1989) using a binary comparison function,
γi = 1 if the fields match and γi = 0 otherwise for all i = 1, 2, . . . , n. The aim
is to estimate θ = (m,u, p) where p is the proportion of matched pairs in Q and
m and u are the conditional probabilities as previously defined. Let Q denote
the set of all pairings between entries in A and B, i.e. all pairs in A×B.

The first step of the EM-algorithm is concerned with finding the expected
value of θ̂ = (m̂, û, p̂), by using the complete data vector g = (γi, gi) where gi
is estimated by

{
P(M ∩Q|γi),P(U ∩Q|γi)

}
, where the parameters are esti-

mated using

P(M ∩Q|γi) =
p̂
∏n

j=1 m̂
γj
i

j (1− m̂j)
1−γj

i

K
, (3.10)

P(U ∩Q|γi) =
(1− p̂)

∏n
j=1 û

γj
i

j (1− m̂j)
1−γj

i

K
, (3.11)

K = p̂

n∏
j=1

m̂
γj
i

j (1− m̂j)
1−γj

i +

(1− p̂)

n∏
i=1

û
γj
i

j (1− ûj)
1−γj

i .

In the Maximization-step, the new estimates of m̂i and ûi, for i = 1, 2, . . . , n,
are given by

m̂i =

∑N
j=1 P(M ∩Q|γj)γi

j∑N
j=1 P(M ∩Q|γj)

, (3.12)

ûi =

∑N
j=1 P(U ∩Q|γj)γi

j∑N
j=1 P(U ∩Q|γj)

. (3.13)

2The assumption of Gaussian distributions holds under the Central Limit Theorem when
the number of comparison vectors is large. The usual rule-of-thumb for the CLT states that
the result holds when the number of observations is larger than 30, which is true for almost
all sets of data as the number of possible pairs is a quadratic function of the number of data
entries.

30



FOI-R--3265--SE

The estimated proportion of matched pairs is found using the following expres-
sion

p̂ =
1

N

N∑
i

P(M ∩Q|γj) (3.14)

where N is the number of entries. Iterating these two steps produces maximum
likelihood estimations of (m(γ), u(γ), p) which are used in combination with Eq.
(3.7) to classify the links as matching or unmatching. This EM-algorithmic
method is due to Winkler (2000) and interested readers are referred to that
paper for more details and derivations.

3.2 Machine learning methods

The previously discussed model is based on a probabilistic view of record link-
age. This method had the advantage of being unsupervised which suits most
applications better than supervised methods, as external labels and training
sets are not often available and therefore generating good training sets is dif-
ficult. Lacking a good set of labeled training data can result in incomplete
or wrongly trained classifiers. Supervised methods often have better accuracy
when properly trained, which is the main advantage of this family of methods.

In general, supervised methods also perform better in practical applications
and it is therefore interesting to discuss these methods for completeness. Three
different methods are discussed: classification using decision trees, support
vector machines and unsupervised methods using clustering methods.

3.2.1 Decision Trees

Decision trees are commonly used in classification of patterns and generally in
data mining. The simplicity in the interpretation of decision trees in compari-
son with e.g. neural networks, is one reason for the popularity of this method.
A decision tree is a tree-like structure which starts at a root node and branches
out according to some conditions.

An example of a decision tree is shown in Figure 3.2, where two data entries
each containing two fields (first and last names) are compared using e.g. the
Jaro metric. The comparison function, γi = γi [α(a), β(b)], is used to classify
the entries as matching or unmatching. If the comparison value of the last name
fulfills γ1 > 0.7 than the comparison proceeds with the first name, otherwise
the entries are classified as unmatching. Only if the last name fulfills γ1 > 0.7
and the first names γ2 > 0.8 are the entries classified as matching.

A popular method for generating decision trees is using Classification And
Regression Trees (CART) algorithm developed in Breiman et al. (1984). In
this section, we follow Duda et al. (2001) and Hastie et al. (2003) to provide
a short review of the method and present how it is useful in matching similar
records.

Remember the setting in this section, that N observations are available
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Figure 3.2: A simple decision tree to classify two data entries as matching or un-
matching. Each entry contains two fields: first and last names, which are compared
using some field matching metric denoted γ1 and γ2 respectively.

with n different comparable fields and that the observations (data entries)
either match or unmatch.

The CART algorithm splits the space of all observations into rectangle-like
sets in which each the response is a constant value, see Figure 3.3. Where
two features (fields) are used and two regions (corresponding to matching and
unmatching pairs of fields) are shown in a 2-dimensional space. In higher
dimensional problems the number of separating hyperplanes making a cartoon-
like visualization impossible.

Figure 3.3: An example of some rectangular regions generated by CART in a space
of two features and with two classes.

Suppose that the observational space is partitioned into M sets denoted
by R1, R2, . . . , RM which in our setting corresponds to different matching and
unmatching sets. The response from an input x (usually γ = x as field matching
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metrics are used to compare data entries) is expressed as

f(x) =

M∑
m=1

cmI{x ∈ Rm}, (3.15)

where I{ · } is the identity function (assuming value 1 if the expression is true
and 0 otherwise) and cm is the average of the observed response in the region
Rm

cm =
1

N

N∑
i=1

yiI{xi ∈ Rm}. (3.16)

The half-planes that define the regions (by splitting the observation space) is
defined by some point splitting variable j and point s as

Ri(j, s) = {X|Xj ≤ s} and Ri+1(j, s) = {X|Xj > s}, (3.17)

for some value of i which indicates the number of branchings. The remaining
problem is to determine the number of splittings of the observation space that
gives the optimal solution to the classification problem. This is done by using a
quality measure usually called the impurity measure, Qm(T ), for some number
of splittings, m, and tree T . Some different measures for Qm(T ) exist in the
literature and Hastie et al. (2003) discuss the following:

Misclassification error: 1− p̂mk(m), (3.18)

Gini index:

K∑
i=1

p̂mk(1− p̂mk), (3.19)

Gross-entropy/deviance: −
K∑
i=1

p̂mk log p̂mk, (3.20)

where it is assumed that the classification can take only K values (in our case
K = 2 but K is kept unspecified for the general case), resulting in that p̂mk,
the proportion of class k observations in node m, is given by

p̂mk =
1

Nm

∑
xi∈Rm

I{yi = k}, (3.21)

where m is some node (in the decision tree) representing some region Rm with
Nm observations. The observations in node m are classified as class k(m) which
is the majority class in nodem. Finding the extreme value ofQm(T ) determines
the optimal number of splittings. The CART algorithm works backwards to
select the optimal model (number of splittings) by first constructing a maximal
tree, then pruning it (collapsing nodes) using the impurity measure to find the
optimal tree.
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3.2.1.1 Boosting and Bagging

Decisions trees are possible to improve by using ensemble methods, e.g. boost-
ing and bagging. These two methods generate large improvements by simple
means but require some additional computational effort. The idea is to use
multiple classifiers in combination to produce a better classification of an ob-
servation. This presentation is based on Hastie et al. (2003), which is a good
reference for additional information about these methods and their generaliza-
tions.

Boosting is a powerful method for improving classification by arranging a
large number of weak classifiers into a committee, which finally classifies by
some form of voting. The boosting method considered in this section is called
the AdaBoost.M1 and is due to Freund & Schapire (1997b). Given a data
material on the form (yi, Xi) where yi ∈ {−1, 1} indicate the correct labeled
class (unmatching or matching) and Xi are some observed data (similarities of
data fields). The error rate on the training set of M entries is found by the
following

ε̄ =
1

M

M∑
i=1

I{yi �= G(xi)}, (3.22)

where G( · ) is the output of the classifier. The weak classifiers are found
iteratively by reweighing the training data set using the following

wi = wi exp [αmI{yi �= Gm(xi)}] , where (3.23)

αm = log

[
1− εm
εm

]
, εm =

1∑M
i=1 wi

M∑
i=1

wiI{yi �= G(xi)},

for i = 1, 2, . . . ,M (the number of data fields). Repeating the CART algorithm
for K such reweighed data sets yield K weak classifiers that together classify
an observation x using the following voting rule

G(x) = sign

[
K∑

k=1

αmGm(x)

]
, (3.24)

using the value of αm computed in the m-th step of the iterative procedure to
generate weak classifiers.

Another approach to improve classifiers is by using bagging (bootstrap ag-
gregating), which draws upon the well-known bootstrap methods from statis-
tics. The bagging method for predictors is due to Breiman (1996) and operates
by creating an ensemble of classifiers each generated from a bootstrap sample
of the training data.

Let Z = {(xi, yi)|i = 1, 2, . . . ,M} denote the training data set and draw
B bootstrap samples with replacement, Z∗b, for b = 1, 2, . . . , B. For each Z∗b

construct a classifier returning a K-vector, f̂∗b(x) = (f̂∗b
1 (x), . . . , f̂∗b

K (x)), with
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f̂∗b
i (x) = 1 where i ∈ {1, 2, . . . ,K} is the classification given by the classifier

and f̂∗b
i (x) = 0 for all remaining elements. The classifier can be constructed

by e.g. using the CART-algorithm on the bootstrap sample from the training
data set. Let

f̂bag(x) =
1

B

B∑
b=1

f̂∗b(x), (3.25)

denote a K-vector where each element, Kk, correspond to the proportion of
the bootstrapped trees predicting that an observation x is of class k. The
observation is classified as the class with the highest proportion of predictions,
i.e. a majority vote from the B bootstrapped decision trees. It is possible to
show that this method reduces the variance of the estimated classification but
does not reduce the bias.

A popular improvement to bagging is by using randomized decision trees,
i.e. a random forest (disjoint trees in graph theory), to create an ensemble of
classifiers. The random trees are grown using a bootstrapped sample from the
training set, Z∗b, but by splitting the best node found in a random sample of
nodes from the tree until a minimum node size have been found. This ensemble
classifies an observation using e.g. majority voting. For more information about
random forests, see Hastie et al. (2003).

3.2.2 Support Vector Machines

Support Vector Machines (SVM) are commonly used in machine learning to
classify observations by splitting the observation space by hyperplanes. This
method is due to Boser et al. (1992) and this presentation is adopted from
Duda et al. (2001), Hastie et al. (2003), and Han & Kamber (1992). The usual
formulation of this problem is as follows

min ||β|| subject to:
{
yi(X

�
i β + β0) ≥ 1− ηi

ηi ≥ 0,
∑

i ηi ≤ C
, (3.26)

where (as before) Xi denotes observation i, the labels are denoted as yi, β
denotes the vector of parameters defining the hyperplane, i = 1, 2, . . . , n,
and C ∈ 	 denotes some real-valued constant. This optimization problem
is quadratic and can therefore be solved using Lagrangian multipliers. The
resulting Lagrangian dual function is found as

LD =

n∑
i=1

αi − 1

2

n∑
i=1

n∑
j=1

αiαjyiyj 〈h(xi), h(xj)〉 , (3.27)

where h(xi) are transformed feature vectors, 〈 · , · 〉 denotes the inner product,
and αi ∈ (0, C) are constants. The dual Lagrangian function is maximized
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using the following conditions

β =

n∑
i=1

αiyixi, αi = C − μi,
n∑

i=1

αiyi = 0,

αi

[
yi
(
x�
i β + β0

)− (1− ηi)
]
= 0, μiηi = 0, (3.28)

yi
(
x�
i β + β0

)− (1− ηi) ≥ 0,

where C ∈ 	 is real-valued contact often interpreted as some cost and i =
1, 2, . . . , n. The final solution can be written on the form

f(x) = h(x)�β + β0 =
n∑

i=1

αiyi 〈h(x), h(xi)〉+ β0, (3.29)

where h(x) are defined through a kernel function, K(x, x′) = 〈h(x), h(x′)〉,
commonly chosen as any of the following:

dth-Degree polynomial: K(x, x′) = [1 + 〈x, x′〉]d , (3.30)

Gaussian (Radial) basis: K(x, x′) = exp
[−c||x− x′||2] , (3.31)

Neural network (Sigmoid): Kc,d(x, x
′) = tanh [c 〈x, x′〉+ d] , (3.32)

for some real-valued constants c, d ∈ 	. The cost parameter C is chosen to
minimize over-fitting by e.g. leave-one-out cross-validation. Finding the classi-
fier, f(x), by solving this optimization problem with a chosen kernel yields the
support vectors which are all of equal distance from the classifier.

Figure 3.4: An example of a non-linear SVM with two classes. The support vectors
are the two data points that are crossed by the margins (grey lines) of the separating
hyperplane (green line)
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This is shown schematically in Figure 3.4, where the classifier (separating
hyper planes) have been calculated (green line) between two classes. The grey
lines are the margins of the classifier and the two points crossed by these
margins are the so called support vectors. This example is of a non-linear
SVM using some of the previously discussed kernels that maps the classifier
into a linear space, in which the quadratic optimization problem in (3.26) can
be solved.

3.2.3 Clustering

The two previously discussed methods, decision trees and SVM, are exam-
ples of supervised methods that require some training set of data to find good
classifiers. Another example of unsupervised methods in addition to the proba-
bilistic EM-method discussed above is data clustering methods, which also can
be used in classification. Clustering algorithms are commonly divided into two
main categories: hierarchical method that merge data points iteratively from
the bottom-up, or top down, and partitional methods that merge data points
simultaneously into clusters. In this discussion, we only review partitional
methods as they are commonly used in classification of data records.

As previously stated, partitional algorithms merge data points into clusters
in one step instead of only two data points/clusters at a time (as in hierarchical
methods). The most common (and perhaps simplest) partitional method is k-
means which operates by dividing data points into k clusters using central
points known as centroids. Each data point is placed in the cluster which
corresponds to centroid with the smallest distance (largest similarity) to the
specific data point. The centroids are often initially placed randomly in the
observation space and are moved after each data point has been assigned to
a cluster. The movement is often determined by the mean of the resulting
clusters. This iterative process repeats until the clustering is stable and no
data points change clusters.

In Figure 3.5, the output after some iterations of the k-means algorithm is
shown. Three different clusters have been used to cluster this set of data (shown
with ’+’-signs) and the data points corresponding the the cluster (shown with
squares, circles, and triangles). The result is dependent on the measure used
to calculate the updated position of the centroids. Often the simple mean is
used but there are other possible measures to use for calculating centroids, each
resulting in different clusters.

The main problem with this method is the interpretation of the resulting
output, as it is unknown what the identified clusters mean in terms of our
labeling: matching, unmatching and possible match. If only two labels are
used: matching and unmatching, then the cluster containing higher similarity
metrics is usually taken as the matching cluster and the remaining cluster is
treated as containing unmatched records.

Another proposed remedy for this problem is by using only a few labeled
observations, which are used to identify clusters after the k-means algorithm
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Figure 3.5: A data set with three clusters (shown with squares, triangles, and circles)
and the corresponding centroids shown with ’+’-signs.

has found some stable solution. This semi-supervised method is due to Verykios
(2000) and is a version of a more general method that is referred to as co-
training in the machine learning literature.

This method is also possible to use together with bootstrap samples from
the observed data and then aggregated using bagging to find estimated classifi-
cations. The centroids and therefore also the resulting classifications are found
from the centroids resulting from each the bootstrapped sample of the train-
ing data by hierarchical agglomerative clustering methods using the average
linkage method. For details see Verykios (2000).

3.3 Recommendations

This section aims to give some general recommendation regarding the choices
of unsupervised and supervised methods to combine several different fields
and/or metrics. The importance of which field metric to use was discussed in
the previous chapter with the summary that it depends on the data set and
that matching methods are more important. Most of the introduced methods
in this chapter are compared in Bilenko et al. (2003), Sariyar et al. (2009) and
Köpcke et al. (2010).

Sariyar et al. (2009) compares all of the introduced methods (in this chap-
ter) using randomly generated (scrambled) data sets and real-world data. It
is shown that methods that perform well on random data sets do not always
perform well on real-world data. The paper compares the following meth-
ods: Fellegi-Sunter with the EM algorithm, CART (with/without bagging and
boosting), and SVM. The results indicate that CART with bagging, CART
with boosting, and SVM perform best if trained with data that are repre-
sentative to the data that is later to be matched. This is not the case with
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stochastic methods like the Fellegi-Sunter-EM method that do not require any
training and therefore is preferred when no suitable training data is available.
The former methods are therefore recommended in general when some previous
knowledge of the data exist, otherwise the latter method is recommended for
matching data entries.

The large problem indicated in other studies using supervised methods,
is finding the optimal training data. Some random methods commonly used
do not have the right proportions of matching and unmatching entries. It is
also difficult to find duplicates in large materials to include and examples of
common types of errors. This can be solved by using other methods e.g. active
learning methods where the algorithm asks the user when in doubt regarding
the classification of an entry.

In Bilenko et al. (2003), the authors compare three different methods to
combine the similarity of several fields: using one field, the average of many
fields, and support vector machines. These methods are used in combination
with the following field comparison metrics: soft TF-IDF, Jaro, and Leven-
shtein. The three different methods are quite different in complexity: the
simple single field comparison, the naive mean approach, and the elaborate
support vector machine. In this case, complexity is better than simplicity and
the authors strongly recommend using SVMs for identity matching.

The SVM method is however supervised and requires a small amount of
training data, which therefore imply some manual effort. Supervised methods
are often better than their unsupervised counterparts (when good training data
exists), and as SVM is the recommended supervised methods as it only requires
small training sets. Some implementations have simple tools for generating
small training sets by asking the user for manually labeling a few entries (or
using active learning). As we later uncover, this is the recommended method
for most problems. We urge the reader to keep in mind the comment from
the last chapter, these surveys have been conducted on different data sets.
Therefore it is difficult to find the best general method but it is possible to find
methods that perform satisfactory on a range of different data sets.
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4 Implementations
This section introduces and discusses some available tools for matching data
entries using the previously discussed methods. Two types of implementations
are discussed: autonomous programs and libraries useful in programming lan-
guages such as R, C, and Python.

The autonomous programs have advantages in being user-friendly and ready
for instant use. The drawback is that the autonomous programs are manual and
often do not contain any automatic component, thus requiring user interactions
for all (or some) possible matching entries.

This is the advantage of the discussed libraries, which allows for automat-
ically classifying which data entries that are matching and unmatching. In
this chapter, we discuss a number of tools for entity matching (duplication
detection) that are free for non-commercial usage:

• D-Dupe - Standalone tool developed by a group at Department of Com-
puter Science at University of Maryland.

• FEBRL (Freely Extensible Biomedical Record Linkage) - Python libraries
with GUI developed by the ANU Data Mining Group at The Australian
National University.

• FRIL (Fine-Grained Records Integration and Linkage Tool) - Standalone
Java tool developed by Pawel Jurczyk at Emory University.

• Merge ToolBox (MTB) - Standalone Java tool developed by University
of Duisburg-Essen.

• Record Linkage (R Package) - developed by Andreas Borg and Murat
Sariyar.

• The Link King (SAS library) - developed by Washington State’s Division
of Alcohol and Substance Abuse.

• SimMetrics (Java library) - developed by Sam Chapman at the University
of Sheffield

• Jellyfish (Python library) - developed by Michael Stephens and James
Turk.

4.1 D-dupe

D-dupe is a standalone program for merging duplicate entities in network data,
such as citation networks. The program provides a graphical user interface
(GUI) that is user-friendly and easy to understand. Possible merges are calcu-
lated by user-defined metrics applied on the fields of the different data entries.
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Candidates for merges are displayed on the main screen together with the sub-
graph and more detailed publication data for each of the two authors that are
suspected to be duplicates.

The program does not provide any support for data preprocessing, which
could be easily done in e.g. Python before importing the material into the
program. Data preprocessing includes the standardization and transformation
of data fields, which could include removal of punctuations and capitalization.
Other common preprocessing steps are splitting and merging strings in such
manner that the data fields are comparable between the two data sets. For
example, names could be written as several fields (first name, middle name,
last name) in one set and as only one field in the other. With transformations,
this would result in much lower comparison values between the data sets if
compared untransformed.

D-dupe supports a large number of different field matching metrics includ-
ing: Levenstein, Jaccard, Jaro, and Jaro-Winkler. Different measures can be
applied to different fields and each comparison is weighted using a scheme spec-
ified by the user. The program does however not include any of the matching
methods previously discussed and relies on that the user chooses manually
which nodes that should be merged and marked distinct. This is the main
drawback of this program as automatic functionality is a requirement for pro-
cessing any larger data set.

The advantage is that user interaction probably result in better matching
results but is impractical for large data sets. For more information and back-
ground about D-dupe and the research behind it, see Bilgic et al. (2006) and
the homepage: http://www.cs.umd.edu/projects/linqs/ddupe/.

4.2 FEBRL

FEBRL is a Python-based library that includes field matching metrics as well as
several different matching models. It is well-developed and includes advanced
methods based on Hidden Markov Models (HMM) to standardize and pre-
process data. It is written in Python, making it relatively fast and easy to
modify and combine with other methods. The main drawback is that the
library no longer is updated and therefore not compatible with current versions
of Python and required libraries. It is however possible to use older versions of
the program and libraries (if they can be found), or harvest the code (as it is
open source1) for developing a framework for entity matching.

The library includes many different comparison metrics including compres-
sion, edit distance, Jaro-Winkler, q-grams, and phonetic methods. It is possible
to use different metrics for different data fields and as in D-dupe these met-
rics can be weighted by the user’s expected ranking of importance concerning
the data fields. It also includes a large number of matching models including:

1The latter is not possible for commercial projects but some parts can be used for research
purposes.
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Figure 4.1: The user interface of D-dupe, indicating a match and all connections
between two entries in a bibliographic file. The tool let the user select if these two
nodes are to be merged or are distinct.

Fellegi-Sunter, k-means, and Support Vector Machines (thereby supporting
supervised, unsupervised, and probabilistic methods). For more information
and background see Christen (2008) and materials at the project’s homepage:
http://datamining.anu.edu.au/projects/linkage.html. Some documen-
tation of the different libraries and functions included in FEBRL are found in
the documentation, which is a good starting-point for salvaging/reusing code:
http://cs.anu.edu.au/~Peter.Christen/Febrl/febrldocu-0.4.01.zip.

As the library GUI is not functional, it is difficult to evaluate this tool for
any future use. The large number of included methods and metrics are however
good indicators of that this tool at least was a good choice in the past. Some
documentation exists of the different functions and there usage and it would
therefore probably be possible to harvest2 the code included.

2This has not however been pursued during this work but is included as a comment for
future work.
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4.3 FRIL

Another Java-based standalone program is FRIL which supports some different
field matching metrics as well as automatic matching through the Fellegi-Sunter
method using the EM technique. The supported metrics are: edit distance,
phonetic metrics and q-grams. FRIL includes methods for some pre-processing
of the data fields, e.g. merging and splitting strings of names and other impor-
tant fields. The program also allows for using different metrics for comparing
different fields and as in the previous programs, these are also possible to weight
manually and automatically (by the EM-algorithm).

The user interface is friendly and easy to learn and requires only some
small amounts of user interactions. Most of the procedure is automated and
the program is quite fast in merging and deduplicating data sets. The main
drawback of the program is the lack of functionality as it only supports one
method for record matching. The program is supported by some video tutorials
on their homepage. Some additional materials are found in Jurczyk et al. and
at the homepage: http://fril.sourceforge.net/.

Figure 4.2: The user interface of FRIL. The graphical representation of the process
is shown: pre-processing of the data sources then a linkage rule that is weighted to
finally produce an output.
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4.4 Record Linkage (R Package)

Record Linkage is a library for the statistical freeware R, which includes a
large number of field matching metrics and automatic matching methods. The
metrics supported are phonetic codes, Jaro-Winkler, and Levenshtein. The
automatic matching methods included are e.g. Fellegi-Sunter (using the EM
method), k-means, classification trees (with bagging or boosting), support vec-
tor machines, and neural networks.

As this is a library, it is possible to use the included methods in any manner
by writing scripts. It is also possible to include new functions and metrics, by
just adding functions to the library code. This makes libraries more versatile
and simpler to modify for special needs. R also includes a large number of
libraries for ensemble methods, classification, clustering, text analysis, data
mining, and statistical analysis/evaluation. This is a large advantage for rapid
prototype development of ensemble methods which include more than strings
metrics for matching data entries and identities.

The main drawback is that libraries requires the user to write script to uti-
lize the methods included. This therefore requires some familiarity with R and
is not as user-friendly as some of the previously discussed implementations.
As R also is quite unknown for many, examples of code and tutorials are pro-
vided in Appendix A and Appendix B. More information is found in Sariyar &
Borg (2010) and on the package’s homepage at the Comprehensive R Archive
Network: http://cran.r-project.org/web/packages/RecordLinkage.

4.5 Others

Other software and libraries are also available freely for non-commercial usage.
We continue by naming a few of these with a shorter description.

The first tool is called Merge Toolbox (MTB) which includes automatic
matching using distance-based methods. See Schnell et al. (2009) and the
homepage: http://www.uni-due.de/soziologie/ for more information.

Another popular tool is The Link King. The main drawback of this tool is
that it requires SAS to function. More information is found at the homepage:
http://www.the-link-king.com/.

Some libraries exist for Java and Python calculationing field matching met-
rics. For Java, SimMetrics can be used for calculation of a large number of
metrics including: Levenshtein, Jaro-Winkler, phonetic, Jaccard, and q-grams.
The package is found at: http://sourceforge.net/projects/simmetrics/.
For Pyhton, Jellyfish can be used for calculating metrics such as: Levenshtein,
Jaro-Winkler and phonetic metrics. The package is found at the Python library
collection: http://pypi.python.org/pypi/jellyfish.
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4.6 Recommendations

D-dupe is the only tool that is specifically developed for entity resolution in
social networks, as it shows the user the relevant subgraphs and any common
neighbors. This allows the user to make better decisions regarding if two entries
(nodes) should be merged or if they are distinct. The drawback with this
method is that it requires user interaction and it is difficult and time consuming
to apply this tool on any large data sets. This tool is more suitable for smaller
data sets or for constructing labeling for training a supervised method.

FRIL is a good tool for finding duplicates or similar entries in large sets of
data. The tool supports many different metrics but only one matching method
and as previously discussed the Fellegi-Sunter-EM algorithm performs worse
than the discussed supervised methods. The advantage is that the selected
method does not require any training and that the tool is user-friendly and
simple to use.

The two last discussed tools are libraries for Python and R. While these
tools are versatile and useful, they both require some working knowledge in pro-
gramming and the respective languages. FEBRL is widely used in benchmark
papers and seems to be an efficient implementation of many of the discussed
methods. The only drawback is the lack of compatibility with current versions
of Python and required packages. Some functionality can be recovered using
the functions without the user interface, or by rewriting parts of the code to
run even without some required packages (but with less functionality).

The other library, which is adopted for some future work in Chapter 7,
is the R-package RecordLinkage. This tool implements many of the different
methods described to combine the similarity of several fields to find similar
entries. The drawbacks with the package is the lack of more complex metrics
and that R is quite unknown as a programming tool, which we compensate by
some newly developed code that is presented in Appendix B together with a
tutorial on using the package in R, found in Appendix A.

For future usage, we therefore recommend these four tools but for different
situations. Python is in general faster than R, so for larger data sets it is
preferable to use Python and FEBRL (if possible). The advantage with the R
package is that it is still under development and is actively maintained. D-dupe
is good for verifying results and creating sets of training data. FRIL is good for
some applications where training data is unavailable or unsupervised methods
preferred.
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5 Graph and text mining-based methods
Traditional entity matching (and record linkage) methods are often concerned
with applying the field matching metrics previously discussed. These field
metrics are useful if the data fields are shorter text strings. However, these
metrics are not useful if the fields contain longer written text documents.

In this chapter, we discuss other methods to compare the similarity between
data entries, namely graph-based and text mining-based methods. The former
analyzes the relationship between different data entries to find authors with
many common connections, which could indicate that these entries are only
one entity. The latter methods use text analysis to identify texts found in
different entries that discuss the same topics and uses the same type of words.
This could indicate that the texts are written by the same entity and that
therefore these two entries correspond to a single real-world entity.

These methods are later applied in a data fusion framework that uses more
than one data source (field metrics, vertex similarities, and text similarities)
to determine if two entries correspond to a single entity or not.

5.1 Vertex similarity

An approach for identifying similar entities in networked data (such as link or
author networks) is using the network structure itself. The idea for this origi-
nates from the fields of complex networks and sociology, where vertex similarity
and structural equivalence have been studied. The main underlying thought
is that nodes are similar if they share a large fraction of neighbors, e.g. share
many friends in a social network or share many coauthors in citation networks.
An example of this is shown in Figure 5.1, where two nodes corresponding to
authors in a citation network are shown with their neighbors. As these nodes
share a large fraction of neighbors and have similar names, it is possible that
they correspond to the same real-world person.

We follow Leicht et al. (2006) by discussing some common simple metrics for
determining vertex similarity. The simplest possible measure of the similarity
of two nodes in the graph-based setting is the number of shared neighbors
found as

σ(vi, vj) = |Γi ∩ Γj |, (5.1)

where Γi denotes the set of neighbors of node vi. The drawback of this measure
is that nodes with a high degree (many neighbors) will have a larger similarity
than nodes with smaller degree. To obtain a comparable measure, it is neces-
sary to normalize the similarity by the node degrees. Some common similarity
measures, σ(vi, vj), are

Jaccard:
|Γi ∩ Γj |
|Γi ∪ Γj | , Cosine:

|Γi ∩ Γj |√|Γi||Γj |
, Vertex:

|Γi ∩ Γj |
|Γi||Γj | ,
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Figure 5.1: Two nodes and their neighbors (grey nodes) corresponding to a sub-
network of some citation data.

Dice:
2|Γi ∩ Γj |
|Γi|+ |Γj | , Inv. log-weighted:

∑
x∈Γij

1

log |Γx| ,

where x ∈ Γij is common neighbors to nodes i and j, i.e. Γij = Γi ∩ Γj

in the inverse log-weighted similarity that is due to Adamic & Adar (2003).
Similar nodes in graphs will have high values of similarity, which may indicate
that two nodes are not distinct. By using some predetermined limit value, l,
classification is achieved using some linkage function such that

f(x) =

{
−1 if x = σ(vi, vj) ≤ l

1 if x = σ(vi, vj) > l
, (5.2)

i.e. the two nodes match if f(x) = 1 and unmatch if f(x) = −1 for some
similarity x.

If the data comes from a citation network, nodes sharing many neighbors
and having similar names may indicate duplicate records. One separate evi-
dence (similar names or sharing many neighbors) is not proof enough to indicate
duplicate entries. Combining the two evidences may offer a stronger proof of
that the nodes correspond to the same author. This is the starting point of the
idea of fusing multiple classifiers into one better classifier, which is discussed
in the following chapter.

5.2 Latent Semantic Analysis

Text mining is usually applied to find documents with similar context or for
finding semantic expressions (grouping words with similar meaning). The
most commonly used method is often referred to as Latent Semantic Analysis
(LSA) and follows a series of three steps: (i) the creation of a weighted Term-
Document (TD) matrix, (ii) calculating a truncated singular value decompo-
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sition, (iii) calculating similarity and clustering similar documents. These dif-
ferent steps are now discussed in detail.

The grouping of similar documents is done using the partitional clustering
algorithm called k-means with the cosine similarity between documents

sim(Di,Dj) =
|x ∩ y|√|x||y| , (5.3)

where Di and Dj are some vectors describing the content of two (different)
documents i and j. These vectors are found by a truncated Singular Value
Decomposition (SVD) of the weighted TD-matrix. The TD-matrix, X = [Xij ],
is found by calculating the frequency of words occurring in each document,
the rows denote the different terms used in all documents in the collection
of documents (the Corpus) and the columns denote the different documents.
Each element in the TD-matrix, Xij , describes the frequency with which the
word i occurs in the document j.

The TD-matrix is weighted using the TF-IDF measure previously discussed
in connection with the WHIRL measure. The aim is to give uncommon words
more weight than more commonly found words1. The matrix is weighted using
the same expression that is shown in Eq. (2.4) for the WHIRL metrics. This
weighted TD-matrix is decomposed using the following relation

X = UΣV�, (5.4)

where U and V are orthogonal matrices with singular vectors and Σ is a
diagonal matrix with the singular values. To truncate this decomposition, an
appropriate number of singular values needs to be determined. This is usually
done by some rule-of-thumb, e.g. the Kaiser criteria (stating that all values
larger than unity should be included). Another method usually applied in
Principal Component Analysis (PCA) is to the find the elbow point in the
scree plot. The latter is a plot of the decreasingly sorted singular values and
the former is found as the point after which the scree line tends to level out,
see the cartoon in Figure 5.2.

The truncated expansion is found by choosing some appropriate number of
singular values, k, as the following

X̂k =
k∑

i=1

UikΣiiV
�
ki, (5.5)

where the columns of X are the new coordinates describing each document.
These column vectors are used in the cosine measure as the vectors describing
documents. The advantage of this method is that the truncated SVD reduces

1It is worth noting that stop words often are removed before constructing the term-
document matrix. These stop words include common prepositions and other functional
words, e.g. the, is, and, which, and that, which carries no specific meaning.

49



FOI-R--3265--SE

Figure 5.2: A scree plot with the singular values sorted in decreasing magnitude.
The elbow point is found as the point after which the line tends to level out, as
indicated by the label in the graph.

the number of words (by creating groups of words with similar meaning as
new basis vectors) and by reducing the amount of noise (infrequently occurring
words). This makes it easier to find documents (abstracts) with similar content.

The cosine similarity is computed for each pair of documents and placed in
a similarity matrix, S = [Sij ], where the element Sij = sim(X̂k,i, X̂k,j) denotes
the cosine similarity between columns i and j in the truncated SVD computed
above. This matrix describes the similarity between documents and is used
together with the k-means algorithm to cluster similar documents into groups.
The k-means algorithm is used to generate k clusters of documents and the
result is a label for each document ci, where i = 1, 2, . . . , N and N is the
number of documents, describing to which cluster each document belong.
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6 Proposed frameworks
As previously discussed, an interesting possibility for creating better classifiers
for matching duplicate data entries is by fusing the output from a number of
different classification methods or data from several sources. The motivation
for this is the difficulty of finding matching entries/entities by using only one
of the previously discussed metrics or matching models. It may therefore be
fruitful to investigate if it is possible to employ data fusion methods on this
problem, as this allows for combining different methods and data from several
sources.

The simplest methods for data fusion are based on averaging and voting,
but some more elaborate techniques exist including Dempster-Shafer theory
and various versions of decision trees. These methods are reviewed in this
section and applied to the problem analyzed in this report concerning entity
matching.

Remember the scenario outlined in the introduction of this report, some
data has been gathered from a large number of sources, e.g. by mining blogs
and similar social pages on the web. The combination of these heterogeneous
sources generates a large data structure with incomplete and contradictory
information. The aim is to identify similar elements and merge them together to
clean and integrate the information found in different sources. This can be done
in one of two different ways, either by reducing the number of pairs to compare
using traditional record linkage methods, or by applying data fusion methods to
combine evidence from a number of different classifiers. The two methods are
presented graphically in Figure 6.1, where graph-based and text mining-based
methods are used to identify duplicate candidates or for estimating evidence
for the hypothesis that two nodes are duplicates.

6.1 Weak classifiers

The information obtained from the different sources in this scenario are of at
least three different types: names, number, etc. (field data), links and inter-
actions (network data), and finally the language structure (text mining data)
found in the blog posts. It is the aim of this chapter to describe how this data
could be used in combination to recover the underlying network by summariz-
ing and applying the background presented in the previous two chapters.

6.1.1 Statistical learning-based methods

The entity matching methods originating in machine learning and statistics
were discussed in Chapter 3, included the Fellegi-Sunter model (probabilis-
tic/statistical method) and supervised and unsupervised learning. The latter
methods require some string comparison measure, a field metric, to compare
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Figure 6.1: The two different methods proposed in this report. (i) to find a small
number of possible pairs to be compared with standard entity matching methods
including the Fellegi-Sunter method and other methods based on machine learning.
(ii) to merge the output from an ensemble of classifiers either directly by voting, or
by combining evidences using Dempster-Shafer theory or fuzzy sets.

strings of characters or digits. This fuzzy metric is used as an input to e.g.
classification trees or partitional clustering, which are used to classify observa-
tions of pairs of entries as: matching, unmatching, or possible matches. Some
of these methods require training and perform well when trained with good
data sets. The Fellegi-Sunter model and clustering methods does not require
training but instead require that some important assumptions are fulfilled, e.g.
large sets of conditionally independent data.

The field matching methods suitable for a certain type of data vary and
no general best choice exist as a result of the no-free-lunch theorem, stated by
Wolpert & Macready (1995). The theorem states that there exists no single
best method for learning (classification), the best method for a certain problem
is dependent on the data material used. In the experiments found in the
following chapter, the only suitable data material in the compiled data are the
names of authors, therefore the Jaro-Winkler measure is considered the best
choice following the recommendations in the previous chapter on field matching
metrics.

One additional problem with the author names is that they only contain the
last names and the initials, making it difficult to find a good blocking strategy
and thus limiting the required number of comparisons. In other applications, it
is often the case that address data, day of birth, etc. also are available and then
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a blocking strategy could be that year of birth and address is equal, year or day
of birth is equal, etc. In this situation, only two different blocking strategies
are possible: requiring that the initials are equal or that the last names are
equal, thus limiting the possibility of applying any traditional blocking strat-
egy. To counter this problem, we later propose some other methods used as a
preprocessing step to limit the number of comparisons of pairs.

6.1.2 Graph-based methods

Graph-based methods are discussed in Section 5.1 together with a number of
different measures used for comparing the similarities of nodes in networks.
Suitable networks in the scenario are e.g. co-author, link, communication net-
works, where each node indicate an individual and each link corresponds to
some interaction or relation observed between two nodes. In co-author net-
works, each node corresponds to an (unique) author and each link indicates
that two authors have published a paper together. Other possible networks
could indicate links between blogs, or evidence of communication between two
individuals. The aim is to find nodes with similar interactions, which is the
basis for some evidence that the nodes may not be distinct but in reality are
duplicates (using different names/aliases or spellings).

Similar interactions are equivalent with sharing a large fraction of neigh-
boring nodes, i.e. nodes that are connected by a link to a specific node. By
identifying similar nodes, the number of pairs to investigate using statisti-
cal and learning-based methods are greatly reduced. Thus, this graph-based
method can be used as a pre-processing step to speed up computations but
also to include some additional evidence that two nodes are duplicates. The
latter function is discussed in more detail later in this chapter, in connection
with ensemble methods to combine evidences for multiple sources.

Graph-based methods are used in the following chapter, in some experi-
ments to find duplicates in co-author networks. To find pairs of nodes with
similar neighborhoods, the Jaccard, Dice, and inverse-log weighted similarities
are used in combination with a voting rule. Each similarity measure is com-
pared with a predefined limit value (classification region) to classify each pair
of nodes as similar or dissimilar. The classifications from the three different
methods are combined using a majority rule, i.e. choosing the label most fre-
quently occurring in the output from the similarity measures for each node. It
is important to note that there are many other rules for combining evidences
(results from different classifiers), e.g. using the median, sum, product, or gen-
eralized mean of the similarity and compare this value with some classification
region.

6.1.3 Text mining-based methods

Text mining-based methods are discussed in Section 5.2. This approach com-
pares entries containing long text fields by using Latent Semantic Analysis to
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find similar topics in texts. In general terms, these methods can also be used
for blog posts, articles and other documents to find similar topics and use of
language. The aim in the following simulation experiments is to use text min-
ing methods for finding abstracts with similar contents, which can be used as
a indicator for similar authors. This is useful as most scientists work within a
certain sub-field and the abstracts should therefore contain similar words.

Other applications are to analyze topics of texts written in blogs and per-
haps also implement methods to analyze the style of writing in texts. These
two approaches can return some form of quantitative measure of how similar
texts are and therefore also evidence that two authors correspond to the same
real-world entity. These methods are also useful in limiting the number of
comparisons to be done in e.g. the Fellegi-Sunter model. Therefore acting as
a blocking strategy by grouping abstracts (authors) together into groups and
only comparing authors within the same group. If the assumption of authors
consistently writing about the same topics is correct, this strategy should be
effective in limiting the computational effort needed for entity matching.

6.2 Sequential blocking method

As previously discussed, a sequential blocking method can be used to identify
possible candidates for pairs of nodes that are duplicates. This section will
present the idea in a more formal manner. This method is particularly useful
in the cases where only small amounts of text strings are available for each data
entry. This makes it difficult to apply standard methods including blocking
strategies and the Fellegi-Sunter method, as only a few fields are comparable
with field comparison metrics.

The idea is instead to use other information, e.g. from the network struc-
ture or some text documents to find pairs of nodes that could be similar. As
previously stated, this reduces the number of possible pairs to compare and
therefore also the computational effort needed. If the data material consists of
many data fields including standard information such as name, addresses, day-
of-birth, etc. ordinary record linkage methods can be applied. Finding a good
blocking strategy is difficult and is often limited by the amount of information
at hand.

A similar problem is that a data material can sometimes contain very few
data fields, thereby limiting the effectiveness of standard entity matching us-
ing field matching metrics. Using only a name field makes it very difficult to
accurately determine if two entries are duplicates. An example is the following
two names: John A. Doe and John Doe, are these two entries referring to the
same real-world person? It is impossible to tell using only this data but by
considering some other aspects, more evidence are gathered and more certain
classifications are possible. This sequential method filters other possible dupli-
cates and therefore adds evidence from network structures and text sources in
several steps.
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The sequential method reduces the considered set of data entries, A = (Ai),
where Ai is a data entry with Ai = (Aij) as the j data fields contained in the
entry. The set of all possible pairs is found as

Â = A×A = {(Ai, Aj);Ai, Aj ∈ A|i, j ∈ {1, . . . , n}, i �= j} . (6.1)

The number of possible pairs is related to the number of data entries, n = |A|,
in the data record A. For n = 103 data entries there are therefore n2 = 106

comparisons to be made.
The reduction is done by using some other method, e.g. graph-based meth-

ods and/or text mining-based methods to screen all possible pairs. The set of
possible pairs are nodes that according to the selected method(s) are similar.
Using the graph-based method, this is equivalent to assuming that only pair
of nodes sharing at least a certain fraction of their neighbors are interesting to
compare using record linkage methods. By screening the total set of possible
pairs, Â, it is possible to greatly reduce the number of comparisons to be made
by this form of blocking strategy, that does not depend on the data fields. The
name sequential blocking comes from the idea that some methods can be used
in sequence for step-wise reducing the set of pairs.

An example that corresponds to our setting is to first require that authors
should share some fraction of co-authors to be considered candidates for dupli-
cates, and then require that a number of abstracts have at least some specific
similarity. This drastically reduces the amount of possible candidate pairs, Â,
to consider using e.g. traditional record linkage with the Fellegi-Sunter model.

6.3 General ensemble method

This proposed method differs from the sequential approach in using all the
available information from different classification methods simultaneously. The
sequential approach limited the number of pairs to consider step-by-step. If the
amount of information is small, this approach could fail to find similar authors
and entries. Instead, the information is used in a more optimal manner by
collecting as much information as possible before classifying pairs as matching
or unmatching.

This method is based on extensive earlier work in ensemble methods, inter-
ested readers are referred to e.g. Hastie et al. (2003), Polikar (2006), and Rokach
(2010) for more information. In general, ensemble methods use a combination
of weaker classifiers to create a better one using a wisdom-of-crowds-effect.
Examples of ensemble techniques include the previously discussed: bagging
and boosting method, where the training data is re-sampled to generate an
ensemble of classifiers. These methods are generally referred to as generative
methods, as some random method is used to create a group of classifiers by
changing the training data.

Given an ensemble of classifiers (generated randomly or by some other
method), the aim is to combine the classifications into a single ensemble classi-
fication of an observation. Two different methods are generally used to do this,
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according to the taxonomy used in Rokach (2010), namely weighting methods
and meta-learning methods.

Weighted methods use the combination of the classifications from a number
of different types of classifiers each trained on the entire (or a subset) of the
data set. This type of methods require that the output between the classifiers
are of the same form, e.g. one of two different labels or a number in a certain
interval.

Meta-learning methods use the output from several different classifiers as
an input to some new supervised learner, which is trained by the same labels
as the ensemble of classifiers. This latter method uses the labeling twice, first
to train the ensemble of weak classifiers and to train the meta-classifier that
combines the output of the ensemble to generate a single ensemble classification
of an observation.

In our setting, both of these methods are useful for combining the classifica-
tion from the ensemble of weak classifiers, where each classifier is some metric
comparing pairs of fields, vertex similarity, or similarity in abstracts. How-
ever, for the sake of simplicity and due to time constraints, only the former
method using a weighted scheme is discussed in detail in this section. Using
meta-learning is quite straight-forward and details of this method is provided
in Rokach (2010).

The different weak classifiers available are the probabilistic matching, ma-
chine learning-based matching, graph-based, and text mining-based methods.
All these classifiers can be used to compare the text strings, network informa-
tion, and documents contained within the data entries. These classifiers return
either a labeling of a pair of nodes (as matching or unmatching) using some
classification regions, or a quantified measure indicating how similar two nodes
are in some respect.

This is partly shown in Figure 6.2, where the three different discussed meth-
ods are combined into an ensemble that classifies entities and data entries.
Some methods are used to classify (or quantitatively determine the similarity)
of some data entries. These results are merged using some method from data
fusion, such that the most probable label or a probability is returned. Thus de-
termining the similarity between data entries and if each pair of entries should
be considered duplicated and therefore merged.

6.3.1 Weighted combination

To combine a number of weak classifiers using some weighted combination
method, each classifier must return some label and also sometimes a quantified
probability or certainty that the classification is correct. There exists a large
number of different methods for combining these labels, e.g.

• (Weighted) majority voting, combines the classifications by selecting the
most common label.
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Figure 6.2: A cartoon over the proposed method to combine text metrics, graph-
based methods and LSA into a classifier for finding duplicate entries and unique
entities.

• Bayesian combination, selects the most probable label using the posterior
probability given a training set. (Buntine, 1990)

• Dempster-Shafer combination, uses a generalized form of probability which
naturally allows for combination of several sources of evidence. (Shlien,
1990)

• Vogging, uses an interesting variation of Markowitz Mean-Variance Port-
folio Theory to find a linear combination of classifiers to maximize the
accuracy and minimize the variance. (Derbeko et al., 2002)

• Naive Bayes, classification by using the naive (assuming independent
weak classifiers) Bayes’ rule for combining several labels.
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All these methods and some other are discussed briefly in Rokach (2010), which
also provides references for further reading for interested readers. In this report,
only a few of these methods are discussed for completeness and future work
includes studies and adaptations of these methods for use on a case-by-case
basis.

6.3.1.1 (Weighted) majority voting

One of the commonly used and in general considered best method is using a
simple voting scheme (either weighted or unweighted). Each classifier votes on
the label which it has determined is the most probable one. These votes can be
weighted using some measure describing the certainty and performance of the
classifier, which is often previously determined from larger studies or assigned
by some human expert.

Let y = (yi) denote the classifications from the ensemble, where yi is the
label designated by classifier i. A simple majority rule is found using

ŷ = cm(y), (6.2)

where the function cm( · ) returns the most frequently found label in the argu-
ment. Another method is found by weighting each classifier with some weight,
wi, found from training data or manually determined. The corresponding
weighted majority voting rule is

ŷ = cm(w�y), (6.3)

where w = (wi) is the vector of weights with wi as the weight for classifier i.
As previously discussed, this combination method is one of the simplest

methods and often performs well. This is the background for why it is often
recommended as the best method, simplicity and focusing on increasing the
data set are often more important than using more advanced methods.

6.3.1.2 Dempster-Shafer combination

Another well-known and commonly used method in data fusion is Dempster-
Shafer theory and Dempster’s rule of combination. In this method, each clas-
sifier either provides an estimate of the probability that the labeling is correct,
or is given a probability by some earlier experiments or from a human expert.
These probabilities are combined into the belief and plausibility that some
outcome is true, e.g. that a pair or entries are duplicates.

In Shlien (1990), the authors propose the use the following mass function,
m( · ), to assign probabilities to different outcomes

m(ci, x) = 1−
∏
k

[1− p̂Mk
(y = ci|x)] , (6.4)

where p̂Mk
(y = ci|x) is the estimated probability that the classifier i correctly

classifies the observation x to the class ci which corresponds to the external
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labeling y. The belief function, Bel( · ), is found using the following expression

Bel(ci, x) =
1

K

m(ci, x)

1−m(ci, x)
, (6.5)

where the amount of conflict, K, is calculated by

K =
∑
ci

m(ci, x)

1−m(ci, x)
+ 1, (6.6)

and the classification from the combined ensemble of classifiers is the label, ci,
that maximizes the belief function. This is only one of many different methods
for using Dempster-Shafer to combine the outcomes of classifiers. Important
future work includes more investigations into suitable mass and belief functions
as well as selecting an appropriate combination rule.

6.3.2 Meta-combination

The other class of methods for combining ensembles of weak classifiers discussed
in Rokach (2010) are meta-combination methods. One of the most accurate is
stacking several different classifiers generated by different inducers, i.e. parts
of training data or different classification methods. The aim is to use learning
with the original training data and the observed outcomes from the classifiers
to determine e.g. the weights in a decision tree that optimizes the accuracy.

In our setting each classifier i generates some output label, ci, from the
training data and the observation x. These outcomes are used by the meta-
combiner with the training data to find a meta-classifier, y, on the following
form

y = f(x) = f(c1, c2, . . . , cn, x). (6.7)

It has been shown that this method generates approximately the same accuracy
as selecting the best classifier i using cross-validation. Some more advanced
methods have been proposed to increase the accuracy beyond that of the best
weak classifier.

Stacking is one of the simpler methods to combine the outcomes from some
weak classifiers using a trained classifier. However some more interesting meth-
ods exist in this family of combination methods:

• Arbiter trees, a bottom-up method to combine classifiers two at a time
into arbiters that are combined until only one remain. (Chan & Stolfo,
1993)

• Combiner trees, similar to arbiter trees but uses combiners trained with
the classifications of each pair of weak classifiers. (Chan & Stolfo)

• Grading, uses trained meta-classifiers to determine when weak classifiers
are correct in their classification. Only weak classifiers that are considered
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classifying the given type of observation correctly are included in the
combination. (Seewald & Fürnkranz, 2001)

As in the weighted combination methods, less is often more and simple
method are often considered the better choice for meta-combiners as well. The
main issue with this method is to select an appropriate method to classify the
combination. CARTs are useful as the weights are easily understood in terms
of the accuracy and performance of the weak classifiers. SVMs are robust
methods with high accuracy and also require only a small training set. It is
not straight-forward to select the best method for ensemble method for entity
matching and this remain an area of future study.

6.4 Recommendations

As previously stated, the following evaluation experiments use the sequential
methods for generating blocking strategies. This is mainly due to time con-
straints and the better method of choice for future work is to implement the
full data fusion method. This method requires some computer experiments to
find appropriate methods for either finding the weights for majority voting,
functional expressions for the Dempster-Shafer method, or for selecting an ap-
propriate meta-learning and train this using a manually constructed training
set.

The easiest method to implement is probably the majority voting rule using
some form of weights distributed by a human expert. These weights should be
selected in such manner that the more accurate (and relevant) weak classifiers
receive more influence of the combined classification. An expert could select
which parameters that are most important for the currently considered data set
and therefore control the combination method. Some aid to selecting weights
could be found using a trained decision tree as a meta-combiner. The weights
of each weak classifier is then easily found as the height of the tree from that
classifier to the root.

Meta-learning could also be an important method for combining the en-
semble of classifiers. Using a simple meta-classifier, such as the decision tree
with bagging or boosting creates a simple but also powerful meta-combiner.
Stacking is therefore the best considered choice in this more advanced form of
ensemble classification.

Finally, summarizing the different approaches introduced in this chapter.
The simplest and fastest method to implement is the sequential method for
generating appropriate blocking strategies for the usual record linkage methods.
These methods are well-known and tested using many different data sets. The
drawbacks of record linkage methods with the sequential method is that all
properties are assumed to be independent of each other. The cross-effects of
e.g. the network structure and abstract text are neglected and therefore some
relevant pairs are missing from the list of candidate pairs.

Other more advanced methods based on data fusion methods include voting
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and stacking. These methods are probably more relevant in future applications
and remains a future topic for research.
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7 Results
To test and evaluate the framework sketched in the previous chapter, we apply
some of the methods proposed on the data material investigated in Johansson
et al. (2011). The authors of this reference have combined citation data from
the FUSION conference using two different sources. This corresponds well
with the previously discussed problem with heterogeneous data sources that
e.g. have different spellings of names.

Following the discussion in the last section, the number of pairs of candi-
date duplicates is limited by blocking strategies or by requiring graph or text
similarities. The graph similarity consists of sharing a significant fraction of
neighbor nodes, i.e. a large number of co-authors in citation data. Text similar-
ity consists of a high cosine similarity in the truncated SVD from the citation
abstracts. High similarity corresponds to similar paper topics, which is assumed
to be an evidence supporting that two authors are duplicate candidates.

The considered data material consists of citation information about 786 pa-
pers1 with a total of 1, 899 authors (neglecting duplicate names). The number
of possible pairs, n2 = 3, 606, 201, is large and comparing all possible pairs is
time consuming thus requiring some smart method to reduce this set. The data
material consists of the usual citation information with e.g. authors, titles, and
abstracts. These are the only data fields that are useful for matching different
spellings of names of authors. To reduce the number of candidate pairs, we
now continue with the blocking strategies, graph-based, and text mining-based
methods discussed in the previous chapters.

7.1 Fellegi-Sunter method with blocking

The most common method for reducing the number of possible pairs is a block-
ing strategy. As previously discussed, this strategy requires/assumes that some
fields are exactly equal in matching pairs. As only the last names and initials
are available for most papers, this approach is not suitable as requiring last
names to be equal only leaves the initial to be compared.

Instead, we are limiting ourselves to the papers where the full names of the
authors are provided. These names are extracted using Python (the code is
found in Appendix C.1) and analyzed using the RecordLinkage packages in R
following the tutorial given in Appendix A using the Fellegi-Sunter model with
the EM-algorithm and equal last names as the blocking strategy. The results
with the highest weights are presented in Table 7.1, where pairs of matching
names are shown.

1Only a randomly selected subset of the original data set from Johansson et al. (2011)
has been used in the evaluation of the introduced methods. This is due to the limitation of
the 32-bit Windows installation on the computers used for the calculations.
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Name 1 Name 2

Le Cadre, J. -P Le Cadre, J.-Pierre
Yang, Shanchieh Jay Yang, Shanchieh J
Chang, KuoChu Chang, Kuo-Chu
Soysal, Goekhan Soysal, Gokhan
Mellema, Garfield Mellema, Garfield R
Wu, Jian Kang Wu, Jian-Kang
Jilkov, Vesellin P Jilkov, Vesselin P
Lobbia, Robert B Lobbia, Robert N
Oxenham, Martin G Oxenham, Martin
Rheaume, Frangois Rheaume, Francois
Strat, Thomas Strat, Thomas M
Wright, Edward J Wright, Edward

Table 7.1: Possible matches found using the Fellegi-Sunter model using the EM-
algorithm and the blocking strategy that last names should be equal.

This method is able to match names with initials and full first names, as
well as some smaller spelling errors. An example of the former in that Le
Cadre, J. -P is matched with Le Cadre, J.-Pierre and the latter is exemplified
by matching Jilkov, Vesellin P with Jilkov, Vesselin P. The drawback of this
blocking strategy is that last names are required to be equal in each pair, this
is a pretty strong assumption to make as spelling differences in last names also
occur frequently. We therefore continue by considering other methods as well,
the results of each method is then possible to merge using one of several different
rules. The simplest is just to combine the matching pairs of each method into
a list but other methods (discussed in the previous chapters) includes voting.

7.2 Graph-based methods

The graph-based methods are applied on the co-author network generated from
the citation data using the software Bibexcel. The details of the steps used to
extract the citation data from web sources to creating a pajek-file is described in
the supplemental material to Johansson et al. (2011). The resulting network is
exported to a pajek-format which is imported in the software R. The following
analysis is done using the package igraph to calculate the vertex similarities.

As previously discussed, the classification is determined by a limit value
and in this experiment the value 0.9 is used for all three measures. A simi-
larity larger than 0.9 results in classifying two nodes as similar. The resulting
label from the three applied measures: Jaccard, Dice, and inverse-log weighted
similarity, are used in majority voting for determining if nodes are considered
similar in the graph-based sense.

The output is used as the possible candidate pairs in the Fellegi-Sunter
method using the EM-algorithm and the Jaro-Winkler metric for finding sim-
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ilar names. The analysis is done using the implementations in the R-package
RecordLinkage with the code as presented in Appendix B.3. The resulting
matches between author names are presented in Table 7.2.

Name 1 Name 2

Grindle, C Girindle, C
Seo, YW Seo, Y-W
Fisher, JW III Fisher, JW
Zhang, M Zhang, Miao
Xu, Q Xu, QF
Raprey, V Rapley, V

Table 7.2: Possible matches found using the graph-based voting method with the
Jaccard, dice and inverse-log weighted measures. The 70 results have been manually
reviewed and the remaining candidates are shown in this table.

As clearly seen in the table, the method is successful in identifying some
common problems in citation data from multiple sources. These errors in-
clude different spellings, writing out initials or full name, etc. In comparison
with usual record matching methods, this graph-based method has somewhat
higher accuracy with lower computational complexity. The success of this
method depends on the assumption that duplicate nodes share a large fraction
of neighbors.

It is therefore not probable that this method always is suitable. However,
the method is useful in networked data, e.g. citation information, communica-
tion data, and link extracted from web pages. Other measures for comparing
vertex similarity are discussed in Chapter 5.1. Further studies using these mea-
sures are necessary for selecting the optimal measure and the limit values for
the classification regions and parameters for weighted voting.

7.3 Text mining-based methods

The abstracts are extracted using a simple Python-script found in Appendix C.2
and is used as an input to the lsa package in R. This package has implemented
methods for constructing weighted Term-Document (TD) matrices from text
files. Singular value decomposition is applied on the TD-matrix to determine
the optimal number of singular values using a Scree plot. The value at which
the decomposition is truncated is determined manually as the elbow point in
the plot.

The cosine similarity is calculated for each pair of abstracts using the trun-
cated SVD and used as a similarity measure for partitioning the set of abstracts.
The clustering is done using the k-means algorithm with the same number of
clusters as singular values used. The resulting clustering of abstracts generates
a number of groups within which the abstracts have similar contents. The ac-
curacy of this method is undetermined but some overlap in topics are present
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Title

Reliable hidden Markov model filtering through coherent lower previsions
State Estimation with Sets of Densities Considering Stochastic and Systematic Errors
Bayesian Estimation with Uncertain Parameters of Probability Density Functions
Nonlinear Fusion of Multi-Dimensional Densities in Joint State Space
Optimal parametric density estimation by minimizing an analytic distance measure
Parameter identification and reconstruction for distributed phenomena based on...

Hybrid Density Filter
Predictive analysis network tool for human knowledge elicitation and reasoning
The Hybrid Density Filter for nonlinear estimation based on hybrid conditional...

density approximation
Revisiting JDL model for automotive safety applications: The PF2 functional model
Approximate nonlinear Bayesian estimation based on lower and upper densities
Parameterized joint densities with gaussian and gaussian mixture marginals
Optimal mixture approximation of the product of mixtures
Distributed Greedy Sensor Scheduling for Model-based Reconstruction of Space-Time...

Continuous Physical Phenomena
Gaussian Filtering using State Decomposition Methods
Extension of the Sliced Gaussian Mixture Filter with Application to Cooperative...

Passive Target Tracking

Table 7.3: Titles of papers included in the one of the topic groups found by the
k-means algorithm.

in a fast overview, in Table 7.3 some titles are presented with similar topics
created by the SVD.

It is difficult to identify any common theme in the titles presented in Table
7.3 without any deeper knowledge of what the papers contain. Some frequently
found words are estimation and density functions, which could hint of the
underlying concepts that describe this cluster.

Without any deeper analysis of this list of titles, we continue by applying
record linkage-method onto the authors of the papers found in one cluster.

As discussed before, authors are assumed to write papers falling into the
same cluster and this corresponds to that the authors write papers about the
same topic for each conference. The names of authors within each cluster are
paired using the Fellegi-Sunter method with the EM-algorithm and no blocking
strategy. An example of the result for one randomly selected cluster is shown
in Table 7.4.

Some names are obvious matches in the table, but a large number of er-
roneous matched pairs are also present. This is due to only using the initials
as first names. The string matching metrics does not work well for only one
letter and it is therefore better to use the entire first name. A solution for this
problem is to combine several different methods and use voting for determining
matching and unmatching pairs.

Another interesting result from using the k-means method on the truncated

66



FOI-R--3265--SE

SVD of the TD-matrix is the possibility to calculate the similarity between
abstracts clustered together. An example of such a similarity calculation is
shown in Figure 7.1, where the blue indicate large similarity and purple indicate
lower (but still quite high) similarity. As clearly seen there are off-diagonal
elements with a high amount of similarity, which should (under our assumption)
indicate abstract with similar topics. The clusterings appear to be quite distinct
with high cohesion as the abstracts clustered together often have high cosine
similarity.

7.4 Ensemble methods

The previous two sections discussed the performance of sequential methods as
blocking strategies used in combination with the Fellegi-Sunter model. Another
approach, previously discussed in this report, is to combine the output from
an ensemble of classifiers. In this section, we use both standard field matching
methods as well as the same graph-based and text mining-based methods used
in the previous two sections. The aim is to investigate if it is possible and
better to use an ensemble approach in comparison with a sequential approach.

In Table 7.5, the result of some possible matches are presented. Twelve
different queries are input into a program which computes the field matching
metric (Jaro-Winkler) of the name fields, the vertex similarities of the co-
author network (Jaccard and Dice), and the maximum (non-unity) similarity
of abstracts written by the two authors. The column CA describes if two
authors have appeared in the same paper, indicating that they are co-authors
and therefore cannot be duplicates (1 if they have co-authored a paper and 0
otherwise).

As previously discussed, the Jaro-Winkler metric is one of many different
methods for comparing shorter text strings, such as names. In this case, the

Name 1 Name 2

Johansson, F Johansson, R
Johansson, F Johansson, P
Hall, D Hall, CM
Hall, D Hall, DL
Williams, M Williams, J
Williams, M Williams, S
Das, S Das Subrata
Powell, G Powell, GM
Rogova, GL Rogova, G
Brown, M Brown, T
Tan, CH Tan, Ah-Hwee
Garcia, O Garcia, J

Name 1 Name 2

Li, H Li, XR
Li, H Li, Xiao-Bai
Karakowski, JA Karakowski, J
McMullen, SAH McMullen, MJ
Sudit, D Sudit, M
Kruger, K Kruger, M
Guerriero, M Guerrero, JL
Levit, I Levitt, T
Owen, T Owens S
Chan, M Chang, KC
Chan, M Chang, KC

Table 7.4: Possible matches found using the text-mining based voting method.
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Figure 7.1: Heatmap of the cosine similarity between 50 documents in one cluster
generated by the truncated SVD-method and k-means.

metric indicates that a large number of pairs are duplicates (if a limit of say 0.9
is used). The Jaccard and Dice measures are based on the similarity of node
neighborhoods in the co-author network with the hypothesis that sharing many
co-authors indicate duplicate entities. Three pairs of nodes have similarity 1
and therefore have identical co-author neighborhoods, the remaining pairs do
not have any larger vertex similarities.

Finally, we analyze the abstracts using LSA to determine papers with sim-
ilar topics, indicating evidence for that the pair of names are referring to the
same entity. The Cosine measure is calculated as the maximum similarity be-
tween the abstracts written by the two authors. It is interesting to conclude
that some pair of names that refer to the same entity (e.g. Grindle and Girindle)
also have a high abstract similarity (0.811) and other pairs (e.g. Xu Q and Xu
QF) have a rather low abstract similarity (0.639). A possible reason for this
is that no concern is given if the name was the lead author of the paper or
written the abstract. As it is probable to assume that only one author writes
the abstract, this similarity could in some cases be misleading. It however evi-
dently works well in some cases and these results also support the assumption
that authors often write (at least) a few papers concerning the same topic or
topics in the same sub-field at FUSION conferences.

The remaining problem is to train a meta-classifier such as a SVM to classify
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Figure 7.2: Co-author neighborhoods for some pairs of authors (marked with green)
in the FUSION citation data. Edge weights indicate the number of papers that
authors have written together.

69



FOI-R--3265--SE

Name 1 Name 2 JW Jaccard Dice Cosine CA

Svenson P Johansson R 0.603 0.027 0.053 0.703 0.000
Svensson P Svenson P 0.980 0.265 0.419 0.807 1.000
Johansson F Johansson R 0.964 0.125 0.222 0.733 0.000
Martenson C Johansson R 0.697 0.000 0.000 0.668 1.000
Grindle C Girindle C 0.937 1.000 1.000 0.811 0.000
Zhang M Zhang Miao 0.940 1.000 1.000 0.398 0.000
Xu Q Xu QF 0.960 1.000 1.000 0.639 0.000
Karakowski JA Karakowski J 0.985 0.000 0.000 0.680 0.000
Rogova G Rogova GL 0.978 0.100 0.182 0.703 0.000
Hall DL Hall CM 0.886 0.200 0.333 0.805 1.000
Das S Das Subrata 0.891 0.030 0.059 0.814 0.000
Powell G Powell GM 0.978 0.000 0.000 0.882 0.000

Table 7.5: The output from the proposed ensemble of weak classifiers comparing two
names using the citation data. The field matching metric Jaro-Winkler (JW), the
network structure similarity measures (Jaccard and Dice), abstract topic similarity
by the LSA with the maximum cosine similarity, and CA indicates if the authors have
written a paper together (1) or not (0). Bold faced figures indicate the three largest
similarities in each column.

pairs of names as (un)matching using the five metrics presented in Table 7.5.
For example, a high JW-metric does not necessary indicate that two names refer
to the same entity, e.g. Svensson P and Svenson P are two distinct authors.
The network similarity is probably the best metric in these types of networks
as authors tend to write papers together with friends and colleagues. Abstract
similarity could be useful in some instances, but it is difficult to know the
amount of involvement the author had in the production of the paper and the
content therein. The CA indicator is the most certain metric discussed in this
example, as if two authors have co-authored a paper it is impossible that they
refer to a single entity.

No evaluation of this method has been done by training a SVM, this is due
to problems with finding appropriate pre-labeled data sets. As constructing
such test and training sets are very time consuming and has therefore not been
done. This is an important future area of study as combination of several
different types of metrics probably is a good method for finding a robust and
flexible method for entity matching in large data materials containing a large
number of different data types.

7.5 Discussion and recommendations

In this chapter, we have tested some of the sequential strategies for finding can-
didate pairs for further analysis using standard record linkage. This sequential
blocking strategy was outlined in the previous chapter and is tested in this
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chapter using graph-based methods on the co-author network as well as text
mining-methods on the abstracts of the papers in some gathered citation data.

The conclusions are that both methods generate some relevant (but also
irrelevant) candidate pairs and greatly reduce the number of pairs to consider
using the matching models. Each method finds different candidate pairs and
it is therefore important to combine the candidate pairs from all the discussed
(and other relevant classification) methods to find many of the duplicate pairs.
If these methods does not find all candidate pairs then e.g. the Fellegi-Sunter
method can never be used to analyze the text strings for matching misspelled
entries etc. As previously discussed, it is important to consider other methods
than this sequential blocking method that allows for interactions between e.g.
the network structure and the topics of papers. This solution is probably too
simple to find all of the relevant pairs to consider using record linkage methods.

The recommendations are therefore to further study the ensemble methods
outlined in the previous section using network structures and text-mining as
additional weak classifiers in addition to the field matching methods and match-
ing models previously discussed. The selection of an appropriate combination
method and weak classifiers should be the focus of further studies in this area.
Previous work in this area indicates that majority voting, Dempster-Shafer,
and stacking are relevant methods to consider for combining the classifications
found by the ensemble.

71





FOI-R--3265--SE

8 Concluding remarks
In this report, the problem of matching entries containing a large number data
fields have been considered. This is often referred to as data integration from a
number of heterogeneous data sources. Common problems in data integration
include: missing and conflicting information that is organized in different forms.
It is therefore necessary to use methods from statistics and machine learning
to reason if two entries are referring to the same entity and should be merged
into one.

Summary and implications We have provided the reader with an exten-
sive background of earlier work done for matching text strings such as names
and addresses. Text string matching is usually done using character-based or
token-based similarity metrics, where the latter are better for longer strings
and the former for shorter strings such as names. These metrics are an inte-
grate part of the matching models introduced for matching data entries with
each other, despite misspellings and conflicting information.

These models include methods from statistics and machine learning, where
some methods are supervised and other unsupervised. In general, if good
training data is available the supervised methods are the better choice with
higher accuracy. If no data can be used for training these models, the Fellegi-
Sunter model using the EM-algorithm to estimate the classification regions is a
good choice. Despite the large amount of field matching metrics and matching
models available for use, there are no generally best methods for every type
of data material but there are some methods (including SVM) that perform
satisfactory on many types of data materials. The choice of an appropriate
classifier is dependent on the data material used and it is difficult to know
beforehand which method that gives accurate results.

The report also discusses some implementations of matching models and
field matching metrics. The conclusions and recommendations are that there
is no stand-alone simple method that is versatile enough for the considered sce-
nario. There exist however some libraries for the software R that are useful for
record linkage and for matching data records from heterogeneous data sources.
It is therefore recommended to use some library for Java, R, or Python instead
of the implementations available.

Data fusion is considered as a good tool for taking different aspects of
the data set into consideration. This include e.g. the comparisons of network
structures and topics of written text as evidence that two entities are matching
or not. We propose two different approaches to include this information into
the usual framework for entity matching. The first is a sequential method to
screen the set of all pairs for candidate pairs that are further investigated using
matching models to identify matching entities. The second method is applying
ensemble classification methods to combine an ensemble of weak classifiers,
including text mining-methods, vertex similarity methods, and field matching
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methods. This latter method is considered the most promising approach for
future work in the area of entity matching. This approach is also recommended
as previous work has been done at FOI with data fusion methods.

The sequential method is evaluated using a citation data set combined from
two different data sources. Therefore some names are spelled differently and
the aim is to identify these different spellings of author names, so that they can
be merged in the co-author network. The results indicate that each considered
method (using last names as blocking strategy, network structures and text
mining-methods) find different matching entities and it is therefore important
to consider several of these methods to find all matching entities. This also
supports the recommendation that data fusion methods are an important future
area of research.

Future work This future research should focus on finding a good weighted
combination or meta-combination method for ensembles of weak classifiers. In
addition, there could exist other good weak classifiers to include in the ensemble
that e.g. quantifies similarity in word use and writing styles. Ensemble methods
are too computationally demanding for usage without strict blocking strategies.
This is an important aspect in all entity matching and some fast and coarse
methods for this are needed to meet the requirements for practical usage and
implementations.

Other important future methods to evaluate are stacking methods that
automatically select the best combination of classifiers for entity matching.
This is however a quite complex procedure requiring a large training set and it
is therefore more likely that the sequential method with simple Fellegi-Sunter
model or the proposed ensemble methods are the better choices.

Lastly, it is important to evaluate the proposed methods using large labeled
data sets to train the meta-classifier and then evaluate the performance using
e.g. the F-measure or any other related measures of accuracy. A good entity
matching method should be flexible in that it can be used on different types of
data without any larger modifications. The method should also be robust with
a high accuracy, that is effectively finding duplicates and merging them even
in noisy and incomplete data. It is doubtful that such a method can be found
and still retain it’s scalability in large data sets. But as ensemble methods have
proven themselves in the past, it is a hopeful avenue for further study.
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A Tutorial on the RecordLinkage package
The RecordLinkage package is available for download in the R interface, by
entering the following commands into the R Console window:

# Tell R to use the same proxy as Windows,

# needs only to be done when at FOI.

setInternet2(TRUE)

# Installs the package from the mirror of your choosing

# (select Sweden in the pop-up window)

install.packages("RecordLinkage")

# Load the library into R

library(RecordLinkage)

The package (and it’s supporting packages) have now been installed and
loaded into R. The first step in most analysis is to import some data from an
external file. This is most simply done by using the following command:

# Import data from file at M:\folder\file.txt

xdata=read.table("M://folder/file.txt",sep="\t",stringsAsFactors=F);

this loads the data in some text file into the variable xdata in R. The sep="\t"
indicate that the columns are separated by tabs (other common separators are
commas ”,” and white spaces ””), the last argument stringsAsFactors=F

tells R to treat the data as strings and not as factors in some statistical exper-
iment. The complete syntax for read.table is accessable using the help com-
mand, help(command) or ?command, which in this case generates an output (as
a html document) beginning with the following:

Description

Reads a file in table format and creates a data frame from it,

with cases corresponding to lines and variables to fields in the file.

Usage

read.table(file, header = FALSE, sep = "", quote = "\"’",

dec = ".", row.names, col.names,

as.is = !stringsAsFactors,

na.strings = "NA", colClasses = NA, nrows = -1,

skip = 0, check.names = TRUE, fill = !blank.lines.skip,

strip.white = FALSE, blank.lines.skip = TRUE,

comment.char = "#",

allowEscapes = FALSE, flush = FALSE,
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stringsAsFactors = default.stringsAsFactors(),

fileEncoding = "", encoding = "unknown")

Which are all the arguments accepted by the command read.table, for more
information about the meaning of each argument, see the corresponding help
page.

R packages often include some example datasets to use for tutorials and
other demonstrations. We follow a modified version of the official tutorial
on the RecordLinkage package before presenting some own examples. Some
datasets are also included in the RecordLinkage package and are accessible by
the following command:

data(RLData500)

This loads some randomly generated register data into the variable called
RLData500. To print the first 5 rows of the loaded data material, write the
following

> RLdata500[1:5, ]

fname_c1 fname_c2 lname_c1 lname_c2 by bm bd

1 CARSTEN <NA> MEIER <NA> 1949 7 22

2 GERD <NA> BAUER <NA> 1968 7 27

3 ROBERT <NA> HARTMANN <NA> 1930 4 30

4 STEFAN <NA> WOLFF <NA> 1957 9 2

5 RALF <NA> KRUEGER <NA> 1966 1 13

which shows us that the data material is divided into a number of fields
(columns) presenting first name, last name, and day of birth (year, month,
and day).

A.1 Fellegi-Sunter

We continue by carrying out a standard analysis of this data material using
some of the field metrics and the Fellegi-Sunter model previously discussed.
Firstly, comparison pairs need to be formed from the data material. For
large data materials, complete comparisons (all entries are compared with each
other) is impractical and some blocking method is used to decrease the number
of comparisons. This blocking is often done by applying a simpler field match-
ing method to find duplicate candidates. Comparison pairs are generated in R
using:

compare.dedup (dataset, blockfld = FALSE, phonetic = FALSE,

phonfun = pho_h, strcmp = FALSE, strcmpfun = jarowinkler,

identity = NA, ...)

compare.linkage (dataset1, dataset2, blockfld = FALSE,
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phonetic = FALSE, phonfun = pho_h, strcmp = FALSE,

strcmpfun = jarowinkler, identity1 = NA, identity2 = NA, ...)

where dataset(1 and 2) denotes some different imported sets of data with
columns indicating fields. blockfld controls which field(s) that should be used
for blocking, identity to include labels (indicating correct classifications), and
the remaining arguments control the field matching methods. See the help file
accessible by ?compare.dedup for more information. The difference between
the two introduced commands are that the first evaluate entries in the same
data set for duplicates, as the other command tries to match entries from two
different data sets together.

The included data set that we are working on also have predetermined labels
for matching and unmatching entries. These are typically used to compare the
obtain solution with the correct solution. By issuing the following command,
it is required that year and month, month and day, or year and day are the
same for two entries to be compared (this is the blocking strategy) and also
include the identity labels as provided by the data set and the Jaro-Winkler
metric to compare strings:

> pairs = compare.dedup(RLdata500, identity = identity.RLdata500,

+ blockfld = list(c(5, 6), c(6, 7), c(5, 7)),strcmp=T)

> summary(pairs)

Deduplication Data Set

500 records

571 record pairs

49 matches

522 non-matches

0 pairs with unknown status

This indicate that there are 571 record pairs of which 49 are duplicates. Ne-
glecting the block strategy, results in 124750 record pairs to be compared and
of these considered pairs 50 are duplicates. By issuing the blocking strategy, we
are missing one duplicate entry but greatly reduces the number of comparisons
that have to be done.

After the comparison pairs have been generated, the next step is to ap-
ply some matching method to find entries that are linked, unlinked, or possi-
bly linked with each other. The RecordLinkage package provide two different
methods for constructing the weighting of the data fields: using Fellegi-Sunter
model with the EM-algorithm and by using the EpiLink approach. Continuing
by applying the EM-method, using the following command:

> weightedpairs = emWeights(pairs)

> summary(weightedpairs)

[...]

[-25,-20] (-20,-15] (-15,-10] (-10,-5] (-5,0] (0,5]

351 160 7 0 0 3

81



FOI-R--3265--SE

(5,10] (10,15] (15,20] (20,25] (25,30]

7 7 33 2 1

which outputs the distribution of the weights. To classify the pairs of data
entries as matching, unmatching, or undecided, using the EM-algorithm, do
the following:

> xpairs = emClassify(weightedpairs)

> summary(xpairs)

53 links detected

0 possible links detected

518 non-links detected

alpha error: 0.000000

beta error: 0.007663

accuracy: 0.992995

Classification table:

classification

true status N P L

FALSE 518 0 4

TRUE 0 0 49

where the output indicated no link (N), possible link (P), and detected link
(L).

A.2 Supervised classification

We continue by using the previous data set as training data for some classifiers
that will classify a larger data set called RLdata10000. This data set is gen-
erated using the same random method as the smaller RLdata500. To train a
classifier, some comparisons need to be formed and labels included to indicate
if pairs match or not. By using the same blocking strategy as in the previous
example, classification training pairs and evaluation pairs are formed by:

>data(RLdata500)

>data(RLdata10000)

>trainingpairs=compare.dedup(RLdata500,

identity=identity.RLdata500,strcmp=T);

>evaluationpairs=compare.dedup(RLdata10000,

identity = identity.RLdata10000,strcmp=T,

blockfld = list(c(5, 6), c(6, 7), c(5, 7)));

RecordLinkage includes five different methods for supervised classification:
CART, CART with bagging(default: 25 bootstrap replicates)/boosting(default:
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50 iterations), SVM (radial kernel as default), and single-layered neural net-
works. These classifiers are trained by using the following commands:

>xcart=trainSupv(trainingpairs, method = "rpart")

>xbagging=trainSupv(trainingpairs,method = "bagging")

>xboosting=trainSupv(trainingpairs,method = "ada")

>xsvm=trainSupv(trainingpairs, method = "svm")

>xnnet=trainSupv(trainingpairs, method = "nnet")

which takes some time (especially boosting) for this large training data set.
When the classifiers have been trained, they can be used to classify new data
by the following:

>outcart=classifySupv(xcart,evaluationpairs)

>outbagging=classifySupv(xbagging,evaluationpairs)

>outboosting=classifySupv(xboosting,evaluationpairs)

>outsvm=classifySupv(xsvm,evaluationpairs)

>outnnet=classifySupv(xnnet,evaluationpairs)

which returns the classifications of the larger data set RLdata10000, statistics
and accuracy are found using the summary command. The corresponding
output for each of the five methods are presented in Table A.1.

Method α-error β-error Accuracy

CART 0.030 < 0.001 0.999
CART with boosting 0.051 0.000 0.999
CART with bagging 0.056 0.000 0.999
SVM 0.054 0.000 0.999
Single-layered neural network 1.000 0.000 0.995

Table A.1: The error rates and accuracy of five different supervised methods trained
with the data set RLdata500, tested on the larger set RLdata10000.

The simple CART method seems to give the lowest α-error when applied
on this data set. Using CART with boosting results in a higher α-error but
lower β-error in comparison with the CART method. This could be preferred
in some applications but we do not go into any deeper analysis at this stage,
these examples only serve to give some hands-on experience with R and this
library.

A.3 Unsupervised classification

The last type of record matching methods are the unsupervised methods, this
library supports two different clustering based methods: k-means and bagged
k-means. The latter performs a number of k-means clustering on bootstrap
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sampled data and clusters the resulting centroids using agglomerative hierar-
chical clustering. The methods are demonstrated by using the RLdata500 data
set by the following commands:

>data(RLdata500)

>xpairs=compare.dedup(RLdata500,identity=identity.RLdata500,strcmp=T);

>outkmeans=classifyUnsup(xpairs, method="kmeans")

>outbclust=classifyUnsup(xpairs, method="bclust")

>summary(outkmeans)

>summary(outbclust)

which returns the data presented in Table A.2. Compared with the supervised
methods, shown in Table A.1, it is not unexpected that the error rates are
higher and accuracy lower for the unsupervised methods. The performance of
the bagged clustering is even worse than for the k-means method.

Method α-error β-error Accuracy

k-means 0.000 0.695 0.305
Bagged clustering 0.020 0.894 0.106

Table A.2: The error rates and accuracy of two different unsupervised methods
tested on the data set RLdata500.
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B R-implementations
This section contains a implementation of the WHIRL-metrics and some im-
plementations to compare entries in the citation data from Johansson et al.
(2011). The implementations requires the libraries RecordLinkage, lsa and
igraph available from the CRAN library using the commands presented in the
tutorial of the Record Linkage-package, found in the previous appendix.

B.1 WHIRL metrics

Record Linkage (and Python) lacks an implementation of the WHIRL-metrics.
This is a problem as these token-based similarity metrics are quite useful to
compare longer strings. Therefore, a somewhat large effort has been devoted
to implement these metrics in R (original, soft and q-gram based) and the
resulting function is presented in this section.

The input is a vector of strings and the output is a matrix where the element
found in row i and column j corresponds to the similarity between words i and
j in the input vector. The function is called with an additional parameter called
method which determines the version of the WHIRL metric used: original

for the basic version of the metric, qgram for the version using q-grams instead
of words, and soft for the version using the Jaro-Winkler metric to determine
if words are close enough to be compared.

1 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ## WHIRL implementations
3 ## by Johan Dahlin (2011−07−12)
4 ##
5 ## Input: A directory of text files
6 ## A WHIRL−version
7 ## Output: A n x n−matrix with similarities
8 ## between strings i and j in element ij .
9 ## Comment: An implementation of Term−Frequency−

10 ## Inverse−Document−Frequency discussed in
11 ## e.g. Cohen (1998).
12 ##
13 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
14

15 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
16 ## Initialization and parameters
17 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
18

19 ## Load the libraries needed
20 library(lsa)
21 library(RecordLinkage)
22 library(tau)
23

24 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
25 ## Parameters
26 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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27

28 # the method to use (original, qgrams, or soft)
29 method=”soft”
30

31 # the directory containing text files with author names
32 directory=”M://fusionstrasket/authors”;
33

34 # the length of the q−grams generated
35 q=3;
36

37 # the limit for the J−W for close words in the soft metric.
38 simlimit=0.9;
39

40 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
41 ## Subroutines
42 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
43

44 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
45 ## Soft−WHIRL implementation
46 ## Adds similarity of strings similar by
47 ## the Jaro−Winkler metric
48 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
49

50 softWHIRL <− function(zdata,ydata,simlimit=0.9,output) {
51 extrasim=0;
52

53 # Find all words in each string that are not exactly the same
54 commonwords=union(which(zdata!=0),which(ydata!=0));
55 zdata[commonwords]=0; ydata[commonwords]=0;
56 wordsinA=which(zdata!=0); wordsinB=which(ydata!=0);
57

58 # Do only if there exists any more words
59 if ((length(wordsinA) > 0) & (length(wordsinB) > 0)) {
60

61 # Calculate the Jaro−Winkler metric for every pair of words
62 simweight=matrix(0,nrow=length(wordsinA),ncol=length(wordsinB))
63 for (k in 1:length(wordsinA)) {
64 simweight[k,]=jarowinkler(names(wordsinA[k]),names(wordsinB)

);
65 }
66

67 # Calculate the extra similarity as the product of the weights
68 # and the maximum similarity
69 termstosum=which(simweight >= simlimit,arr.ind=T);
70 extrasim=sum(xdata[termstosum[,1]]∗ydata[termstosum[,2]])∗max(

simweight)
71 }
72

73 # Output the old simularity with the new added weight
74 output=output+extrasim;
75 }
76

77 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
78 ## Q−gram−WHIRL implementation
79 ## Uses similarity between q−grams instead
80 ## of words.
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81 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
82

83 qgramWHIRL <− function(directorytoread,q) {
84

85 # Create a directory for temporary files
86 td = tempfile(); dir.create(td);
87 filestoread =dir(directorytoread, full .names=T);
88 Nfiles=length(filestoread)
89

90 # For all text files , find the q−grams for all the strings
91 for ( i in 1:length(filestoread)) {
92 temp=gsub(”\t”,” ”,read.table(filestoread[i],sep=”\n”,stringsAsFactors

=F));
93 qgrams=textcnt(temp,method=”ngram”,n=q);
94 qgrams=qgrams[which(str length(names(qgrams))==q)];
95 qgramsT=c();
96 for (j in 1:length(qgrams))
97 qgramsT=c(qgramsT,rep(names(qgrams[j]),qgrams[j]));
98 write(qgramsT,file=paste(td, i,sep=”/”))
99 }

100

101 # Create a TD−matrix using q−grams instead of words
102 xdata=textmatrix(”td”,stemming=FALSE,stopwords=NULL,minWordLength=1);
103 }
104

105 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
106 ## − Main program −
107 ## Primary WHIRL implementation
108 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
109

110 ## Import all abstracts into a Term−Document matrix and weight it with the
111 ## TF−IDF method to get the weights to use in the following method.
112

113 if (method==”qgrams”) {
114 # Create TD−matrix with qgrams
115 xdata=qgramWHIRL(directory,q=3)
116 } else {
117 # Create TD−matrix with words
118 xdata=textmatrix(directory,stemming=FALSE,stopwords=NULL,

minWordLength=1);
119 }
120

121 # Weight the TD−matrix by the TF−IDF method
122 xdata=lw logtf(xdata)∗gw idf(xdata);
123

124 ## Calculate cosine measure for two strings using the weights as similarity
125 NDocs=dim(xdata)[2];
126 similarity =matrix(nrow=NDocs,ncol=NDocs);
127 for ( i in 1:NDocs) {
128 for (j in i :NDocs) {
129 similarity [ i , j]=sum(xdata[,i]∗xdata[,j])/sqrt(sum(xdata[,i]ˆ2)∗sum(

xdata[,j]ˆ2));
130

131 # add similarity of close words if the soft metric is used
132 if (method==”soft”) similarity[i,j]=softWHIRL(xdata[,i],xdata[,j],

simlimit , similarity [ i , j ]) ;
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133 }
134 similarity [ i , i ]=0;
135 }
136

137 ## Find elements with high similarity and print the author names in a table
138 maxsims=which(similarity>0.8,arr.ind=T);
139 maxsims=cbind(colnames(xdata)[maxsims[,1]],colnames(xdata)[maxsims[,2]])
140

141 # Get the author names from the text files
142 simauthornamesA=c(); simauthornamesB=c();
143 for ( i in 1:dim(maxsims)[1]) {
144 simauthornamesA[i]=gsub(”\t”,”, ”,read.table(paste(”M://

fusionstrasket/authors/”,
145 maxsims[i ,1],sep=””),sep=”\n”,stringsAsFactors=F));
146 simauthornamesB[i]=gsub(”\t”,”, ”,read.table(paste(”M://

fusionstrasket/authors/”,
147 maxsims[i ,2],sep=””),sep=”\n”,stringsAsFactors=F));
148 }
149

150 # Create a nicer table and present for user
151 yy=cbind(simauthornamesA,simauthornamesB)
152 yy=yy[−which(yy[,1]==yy[,2]),];
153

154 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
155 ## End of file
156 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

B.2 Blocking strategy

The implementation using the Fellegi-Sunter method with the EM-algorithm
and requiring equal last names as a blocking strategy. This code uses the
output from the python-file in Appendix C.1 as an input and returns a list a
pairs of name that are candidates of being duplicates.

1 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ## Fellegi−Sunter method with EM−algorithm
3 ## using last name as a blocking strategy
4 ## by Johan Dahlin (2011−06−29)
5 ##
6 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7

8 # Load library and text file with names
9 library(RecordLinkage);

10 pathtofile =”C://Documents and Settings/johdah/My Documents/My Dropbox/work/
entity matching/fusionstrasket/”;

11 xdata=read.table(paste(pathtofile,”IFochFUSION2002till2010filtred.doc”,sep=””),sep=”
\t”,stringsAsFactors=F);

12

13 # Create pairs to compare
14 xpairs=compare.dedup(xdata,blockfld=1,strcmp=T);
15 summary(xpairs)
16

17 # Find weights to pairs by the EM−algorithm and print the most similar pairs.
18 xweighted=emWeights(xpairs);
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19 emresult=emClassify(xweighted);
20 summary(emresult)
21 getPairs(emresult,min.weight=0)
22

23 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
24 ## End of file
25 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

B.3 Graph-based methods

The implementation to find similar authors by the co-author network returned
by the BibExcel application. The neighborhood of each node is found and
the Jaccard, Dice and inverse-log weighted similarity of each pairs of nodes
are calculated. Pairs of nodes with similarity greater than or equal to 0.9 are
considered similar. The output of the three measures are combined using a
simple majority voting rule.

1 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ## Graph similarity to find duplicate nodes
3 ## by Johan Dahlin (2011−06−29)
4 ##
5 ## Input: A pajek−network file (.net)
6 ## Output: A list of nodes that have the same
7 ## neighbor structure and may therefore
8 ## be duplicates .
9 ##

10 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11

12 # Parameters: Limit values for when nodes are considered similar
13 highJac=0.9; # limit for the Jaccard measure
14 highDic=0.9; # limit for the Dice measure
15 highInv=0.9; # limit for the inverse log measure
16

17 freqlimit=2; # how many methods need to find that pairs
18 # of nodes are similar before the ensemble
19 # thinks that the pair is similar .
20

21 # Load the library and the network data file generated for pajek
22 # change path to your file .
23 library(igraph)
24 pathtofile =”C://Documents and Settings/johdah/My Documents/My Dropbox/work/

entity matching/fusionstrasket/”;
25 nameoffile=”IFOCHFUSION2002TILL2010.net”;
26 G=read.graph(paste(pathtofile,nameoffile,sep=””),”pajek”)
27

28 # Locate the larget component and delete all other nodes and nodes with degree one
29 # Save the old labels
30 largestsub=as.numeric(names(which.max(table(clusters(G)$membership))));
31 removed=union(which(clusters(G,)$membership!=largestsub),which(degree(G)==1));
32 V(G)$label=V(G);
33 G=delete.vertices(G,(removed−1));
34

35 # Calculate the similarity for each pair of nodes using:
36 # Jaccard, dice and inverse weighted log similarites .
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37 # See report for details
38 GsimJac=similarity.jaccard(G,mode=”all”);
39 GsimDic=similarity.dice(G,mode=”all”);
40 GsimInv=similarity.invlogweighted(G,mode=”all”);
41

42 # Find pairs of nodes with high similarity in each method
43 highsimJac=t(apply(which(GsimJac>highJac,arr.ind=T),1,sort));
44 highsimDic=t(apply(which(GsimDic>highDic,arr.ind=T),1,sort));
45 highsimInv=t(apply(which(GsimInv>highInv,arr.ind=T),1,sort));
46

47 # Find pairs of nodes that are similar in all three measures
48 # count the frequency of being considered similar and return it
49 simfreq=rep(0,dim(highsimJac)[1]);
50 for ( i in 1:(dim(highsimJac)[1])) {
51 simnode1=which(highsimDic[,1]==highsimJac[i,1]);
52 simnode2=which(highsimDic[,2]==highsimJac[i,2]);
53 simfreq[ i]=simfreq[i]+length(intersect(simnode1,simnode2))
54

55 simnode1=which(highsimInv[,1]==highsimJac[i,1]);
56 simnode2=which(highsimInv[,2]==highsimJac[i,2]);
57 simfreq[ i]=simfreq[i]+length(intersect(simnode1,simnode2))
58 }
59

60 highsimJac=cbind(highsimJac,simfreq);
61

62 # Find candidate pairs of nodes that are found similar by
63 # at least freqlimit no. methods.
64 candidates=highsimJac[which(highsimJac[,3]>(freqlimit−1),arr.ind=T),1:2]
65 candidates=cbind(candidates[,1],candidates[,2])
66 candidates=candidates[−which(candidates[,1]==candidates[,2]),]
67

68 # Return a list of names of the authors that are considered similar
69 candidatenames=cbind(V(G)$id[candidates[,1]],V(G)$id[candidates[,2]])
70 print(candidatenames);
71

72 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
73 ## End of file
74 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

B.4 Text mining-based methods

The implementation to find similar authors by the text-mining methods, group-
ing similar abstracts together. The names of the authors of each group of papers
are compared using standard record linkage methods. The input data is found
using the Python script discussed in Appendix C.2, which creates three direc-
tories containing the abstracts, author names and titles each in a separate text
file. See the Python and R codes for more details regarding the format of the
input. The implementation uses LSA to find a truncated SVD of the Term
Document-matrix and the documents are clustered by the k-means algorithm
into as many clusters as there are terms in the truncated decomposition. This
code returns the groupings of documents and the authors in each group, which
can be analyzed using the Fellegi-Sunter method outlined in the tutorial.
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1 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ## Text similarity to find duplicate nodes
3 ## by Johan Dahlin (2011−06−29)
4 ##
5 ## Input: A directory of abstracts , authors and titles
6 ## Output: The authors in clusters of similar abstracts
7 ##
8 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9

10 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11 ## Latent Semantic Analysis
12 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13

14 # Load LSA library and stop words
15 library(lsa)
16 data(stopwords=stopwords en);
17

18 # Import all abstracts into a Term−Document matrix and weight it with the
19 # TF−IDF method, then calculate the full SVD of the TD−matrix
20 xdata=textmatrix(”M://fusionstrasket/abstracts”,stopwords=stopwords en,minGlobFreq

=10);
21 xdata1=lw logtf(xdata)∗gw idf(xdata);
22 xdata1LSA=lsa(xdata1, dims=dimcalc raw())
23

24 # Plot a scree plot for identification of the optimal number of singular values
25 fulleigenvalues =xdata1LSA$sk;
26 plot(xdata1LSA$sk,type=”l”); identify(xdata1LSA$sk);
27 optimaldims=50
28

29 # Perform a truncated SVD with the selected number of singular values
30 xdata1LSA=lsa(xdata1,dims=optimaldims)
31 xdata1LSAtext=as.textmatrix(xdata1LSA)
32

33 # Calculate the cosine measure of all the abstracts and cluster
34 # the abstract using k−means with the cosine measure and the selected
35 # number of clusters from the scree plot
36 xdata1cossim=cosine(xdata1LSAtext);
37 xdata1clustkmeans=kmeans(xdata1cossim,optimaldims);
38

39 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
40 ## Extract similar authors
41 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
42

43 # Preallocate matrices for authornames
44 filesauthors =matrix(0,nrow=optimaldims,ncol=500);
45 filenamesauthors=matrix(0,nrow=optimaldims,ncol=500);
46

47 # Extract the authors included in each cluster
48 similarauthors=matrix(0,nrow=optimaldims,ncol=1000);
49 similartitels =matrix(0,nrow=optimaldims,ncol=1000);
50

51 for ( i in 1:optimaldims) {
52 temp=which(xdata1clustkmeans$cluster==i);
53 filesauthors [ i ,1: length(temp)]=temp;
54 filenamesauthors[ i ,1: length(temp)]=names(temp);
55 authorsincluster=c(); titels =c(); titelsincluster =c();
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56 for (k in names(temp)) {
57 ktransformed=gsub(”abs”,”authors”,k,fixed=T);
58 temp2=read.table(paste(”M://fusionstrasket/authors/”,ktransformed,

sep=””),
59 sep=”\t”,stringsAsFactors=F)
60 authorsincluster=c(authorsincluster,temp2);
61 ktransformed=gsub(”abs”,”titels”,k,fixed=T);
62 temp2=read.table(paste(”M://fusionstrasket/titels/”,ktransformed,sep

=””),
63 sep=”\t”,stringsAsFactors=F)
64 titelsincluster =c( titelsincluster ,temp2);
65 }
66 names(authorsincluster) <− NULL
67 names(titelsincluster) <− NULL
68 authorsincluster=unlist(authorsincluster);
69 titelsincluster =unlist( titelsincluster ) ;
70 if (length(authorsincluster) > 0)
71 similarauthors [ i ,(1: length(authorsincluster))]=authorsincluster;
72 if (length( titelsincluster ) > 0)
73 similartitels [ i ,(1: length( titelsincluster ))]= titelsincluster ;
74 }
75

76 # Present the authors found in each cluster
77 for ( i in 1:optimaldims) print(c(i,similarauthors[ i ,which(similarauthors[i,] !=0 )]))
78

79 # For some cluster i=7, find all the authors and create a table of their splitted names
80 i=7;
81 print(c(i, similarauthors [ i ,which(similarauthors[i,] !=0 )]))
82 print(c(i, similartitels [ i ,which(similartitels [ i ,] !=0 )]))
83 ioo=similarauthors[i ,which(similarauthors[i,] !=0 )]
84

85 comparablenames=matrix(nrow=length(ioo),ncol=2);
86 for ( i in 1:length(ioo)) {
87 temp=unlist(strsplit(ioo[i],” ”)) ;;
88 if (length(temp)>2) comparablenames[i,]=temp[2:3];
89 if (length(temp)==2) comparablenames[i,]=temp;
90 if (length(temp)==1) comparablenames[i,1]=temp;
91 }
92 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
93 ## Use the RecordLinkage package to find possible matches
94 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
95

96 library(RecordLinkage)
97

98 xcompairs=compare.dedup(comparablenames,strcmp=T)
99 xemweights=emWeights(xcompairs); summary(xemweights);

100

101 xpairs=emClassify(xemweights); summary(xpairs);
102 getPairs(xpairs ,min.weight=2,max.weight=4)
103

104 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
105 ## Create Heat plots of the cosine similarity for each
106 ## cluster
107 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
108

109 names(xdata1clustkmeans$cluster[which(xdata1clustkmeans$cluster==19)])
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110

111 require(lattice) ;
112 simmatrix=array(0,dim=c(optimaldims,100,100));
113 for (k in 1:optimaldims) {
114 temp=filesauthors[k,which(filesauthors[k ,] !=0)]
115 for ( i in 1:length(temp)) {
116 for (j in 1:length(temp)) {
117 simmatrix[k,i , j]=cosine(xdata1LSAtext[,temp[i]],xdata1LSAtext[,

temp[j]])
118 }
119 }
120 }
121

122 i=10; nonzerocoords=sum(simmatrix[i,1,]!=0);
123 levelplot (simmatrix[i ,1:nonzerocoords,1:nonzerocoords])
124

125 levelplot (xdata1cossim[which(xdata1clustkmeans$cluster==7),which(xdata1clustkmeans
$cluster==7)])

126

127 hh=c(); for (i in 1:optimaldims) hh[i]=length(which(xdata1clustkmeans$cluster==i))
128

129 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
130 ## End of file
131 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

B.5 Ensemble methods

The implementation of the subroutines for the ensemble method. The three
functions contained in the R-file are the following:

• coauthornetworksim: calculates the vertex similarity (Jaccard and Dice)
and also returns all the author names.

• abstacttextanalysis: calculates the maximum cosine similarity be-
tween abstracts written by the two authors using LSA.

• ensembleentitymatching: script to calculate the different similarities
and return them for evaluation.

The input to the script is a matrix of names where each row contain the two
author names to be investigated. The script can also use the LSA-matrix
created by the abstracts as an input, this is due to the problem with 32-bit
computers and the amount of abstracts to be analyzed, only 64-bit computer
can do this due to memory restrictions. Therefore it is efficient to construct
the matrix and then save it for further use, as it contains all the abstracts. The
script calls the two subroutines in the correct sequence and returns a matrix
with the similarities calculated for each pair of author names.

1 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ## Ensemble Entity matching methods
3 ## by Johan Dahlin (2011−08−09)
4 ##
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5 ## Input: A matrix of names
6 ## Output: A matrix of names and similarity measures
7 ##
8 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9

10 ##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11 ## Co−author network similarity
12 ##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13

14 coauthornetworksim <− function(pathtofiles,name1,name2,plotting=FALSE,authornames
=NULL) {

15

16 ## Construct a matrix with all authors of all papers
17 filestoopen=dir(pathtofiles) ; NDocs=length(filestoopen);
18

19 if (is .null(authornames)) {
20 authornames=matrix(nrow=NDocs,ncol=20)
21 for (nn in 1:NDocs) {
22 temp2=unlist(read.table(paste(pathtofiles,”authors”,nn,”.txt”,sep=””),

sep=”\t”,stringsAsFactors=F));
23 if (length(temp2) > 0) authornames[nn,1:length(temp2)]=temp2;
24 }
25

26 authornames=str trim(authornames)
27 }
28

29 ## Find the paper number where the name string is found as an author
30 name1indices=arrayInd(which(name1==authornames),dim(authornames));
31 name2indices=arrayInd(which(name2==authornames),dim(authornames));
32

33 ## Construct a co−author network
34 coauthorstoname1=matrix(nrow=dim(name1indices)[1],ncol=19);
35 coauthorstoname2=matrix(nrow=dim(name2indices)[1],ncol=19);
36

37 # Find the names of all co−authors
38 for ( i in 1:dim(name1indices)[1]) coauthorstoname1[i,]=authornames[name1indices[i,1],−

name1indices[i,2]]
39 for ( i in 1:dim(name2indices)[1]) coauthorstoname2[i,]=authornames[name2indices[i,1],−

name2indices[i,2]]
40

41 if ((dim(coauthorstoname1)[1]==0) | (dim(coauthorstoname2)[1]==0)) print(”ERROR:
Cannot find author name!!”)

42

43 # Find unique co−authors and merge the two vectors with the author names included
44 coauthors1=unique(coauthorstoname1[−which(is.na(coauthorstoname1))])
45 coauthors2=unique(coauthorstoname2[−which(is.na(coauthorstoname2))])
46 allcoauthors=union(coauthors1,c(coauthors2,name1,name2));
47

48 ## Construct an co−author network adjancency matrix
49 coauthoradjmatrix=matrix(0,nrow=length(allcoauthors),ncol=length(allcoauthors));
50 colnames(coauthoradjmatrix) <− allcoauthors;
51 rownames(coauthoradjmatrix) <− allcoauthors;
52

53 # Add all connections with author 1
54 indexname1=which(name1==allcoauthors)
55 for ( i in 1:dim(name1indices)[1]) {
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56 uniquecoauthorofpaperi=coauthorstoname1[i,−which(is.na(coauthorstoname1[i,]))
]

57 if (length(uniquecoauthorofpaperi) > 0) {
58 for (j in 1:length(uniquecoauthorofpaperi)) {
59 index2=which(uniquecoauthorofpaperi[j]==allcoauthors);
60 coauthoradjmatrix[indexname1,index2]=coauthoradjmatrix[

indexname1,index2]+1;
61 coauthoradjmatrix[index2,indexname1]=coauthoradjmatrix[index2,

indexname1]+1;
62 }
63 }
64 }
65

66 # Add all connections with author 2
67 indexname2=which(name2==allcoauthors)
68 for ( i in 1:dim(name2indices)[1]) {
69 uniquecoauthorofpaperi=coauthorstoname2[i,−which(is.na(coauthorstoname2[i,]))

]
70 if (length(uniquecoauthorofpaperi) > 0) {
71 for (j in 1:length(uniquecoauthorofpaperi)) {
72 index2=which(uniquecoauthorofpaperi[j]==allcoauthors);
73 coauthoradjmatrix[indexname2,index2]=coauthoradjmatrix[

indexname2,index2]+1;
74 coauthoradjmatrix[index2,indexname2]=coauthoradjmatrix[index2,

indexname2]+1;
75 }
76 }
77 }
78

79 xgraph=graph.adjacency(coauthoradjmatrix,mode=”undirected”,add.rownames=T,
weighted=T)

80

81 # Plot the co−author network with green color indicating the authors of interest
82 if (plotting) {
83 l <− layout.fruchterman.reingold(xgraph,weights=E(xgraph)$weights); l <−

layout.norm(l, −1,1, −1,1) ;
84 vertexcolor=rep(”grey”,length(allcoauthors));
85 vertexcolor [indexname1]=”darkgreen”; vertexcolor[indexname2]=”darkgreen”;
86 vertexlabel=matrix(nrow=length(allcoauthors),ncol=1);
87 vertexlabel [indexname1]=V(xgraph)$name[indexname1]; vertexlabel[indexname2

]=V(xgraph)$name[indexname2];
88 plot(xgraph,vertex.label=vertexlabel,layout=l,vertex.color=vertexcolor,edge.

width=E(xgraph)$weight)
89 }
90

91 # Calculate some simularity measures
92 XsimJac=similarity.jaccard(xgraph,mode=”all”)[indexname1,indexname2];
93 XsimDic=similarity.dice(xgraph,mode=”all”)[indexname1,indexname2];
94 XsimInv=similarity.invlogweighted(xgraph,mode=”all”)[indexname1,indexname2];
95

96 list (jaccard=XsimJac,dice=XsimDic,inverselog=XsimInv,authornames=
authornames,

97 name1indices=name1indices,name2indices=name2indices)
98 }
99

100
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101 ##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
102 ## Abstract text analysis
103 ##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
104 abstacttextanalysis <− function(name1indices,name2indices,xdataLSAtext=NULL) {
105 generatedTextmatrix=FALSE;
106

107 if (is .null(xdataLSAtext)) {
108 # Load LSA library and stop words
109 library(lsa)
110 data(stopwords=stopwords en);
111

112 # Import all abstracts into a Term−Document matrix and weight it with
the

113 # TF−IDF method, then calculate the full SVD of the TD−matrix
114 xdata=textmatrix(”M://fusionstrasket/abstracts”,stopwords=stopwords

en,minGlobFreq=10);
115 xdata=lw logtf(xdata)∗gw idf(xdata);
116

117 # Perform a truncated SVD with the selected number of singular values
118 xdataLSA=lsa(xdata, dims=50)
119 xdataLSAtext=as.textmatrix(xdataLSA)
120

121 generatedTextmatrix=TRUE;
122 }
123

124 # Find the abstracts written by each author
125 abstractfilenames1=paste(”abs”,name1indices[,1],”.txt”,sep=””);
126 abstractfilenames2=paste(”abs”,name2indices[,1],”.txt”,sep=””);
127

128 # Compare all pair of abstracts and return the cosine measure
129 abstractcossim=c(); mm=1;
130 for ( i in 1:length(abstractfilenames1)) {
131 for (j in 1:length(abstractfilenames2)) {
132 document1=which(colnames(xdata1LSAtext)==abstractfilenames1[i])
133 document2=which(colnames(xdata1LSAtext)==abstractfilenames2[j])
134 if (length(document1>0) & length(document2>0))
135 abstractcossim[mm]=cosine(xdata1LSAtext[,document1],

xdata1LSAtext[,document2]);
136 mm=mm+1;
137 }
138 }
139

140 # Return the relevant data (maximum cosine similarity) and the LSA−matrix (if
generated)

141 if (length(which(abstractcossim==1))>0) abstractcossim=abstractcossim[−
which(abstractcossim==1)];

142 if (generatedTextmatrix==TRUE) list(maxabssim=max(abstractcossim,na.rm=
T),xdataLSAtext=xdataLSAtext);

143 if (generatedTextmatrix==FALSE) list(maxabssim=max(abstractcossim,na.rm
=T));

144 }
145

146

147

148 ##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
149 ## Ensemble entity matching
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150 ##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
151 ensembleentitymatching <− function(namevector,xdata1LSAtext=NULL,plotting=

TRUE) {
152

153 # Prepare window for plotting the network neighborhoods
154 if (plotting) {
155 Ncomparisons=dim(namevector)[1];
156 Nrows=floor(sqrt(Ncomparisons));
157 Ncols=ceiling(Ncomparisons/Nrows);
158 x11()
159 par(mfrow=c(Nrows,Ncols));
160 }
161

162 # For each pair of names, do the analysis
163 output=matrix(nrow=dim(namevector)[1],ncol=7)
164 for ( i in 1:dim(namevector)[1]) {
165

166 # Calculate the co−author network and vertex similarity
167 if ( i==1) Xcoauthoroutput=coauthornetworksim(”M://fusionstrasket/

authors/”,
168 namevector[i ,1], namevector[i ,2], plotting)
169 if ( i !=1) Xcoauthoroutput=coauthornetworksim(”M://fusionstrasket/

authors/”,
170 namevector[i ,1], namevector[i ,2], plotting ,authornames=

Xcoauthoroutput$authornames)
171

172 # Analyze the abstracts written by the two authors
173 Xcoabsoutput=abstacttextanalysis(Xcoauthoroutput$name1indices,
174 Xcoauthoroutput$name2indices,xdata1LSAtext);
175

176 # Have the authors written a paper together?
177 coauthors=0;
178 if (length(intersect(Xcoauthoroutput$name1indices[,1],

Xcoauthoroutput$name2indices[,1]))>0) coauthors=1;
179

180 X=c();
181 X[1]=jarowinkler(namevector[i,1],namevector[i ,2]) ; # Calculate The

Jaro−Winkler metric
182 X[2]=Xcoauthoroutput$jaccard; # Graph

−based and text−mining based metrics
183 X[3]=Xcoauthoroutput$dice;
184 X[4]=Xcoabsoutput$maxabssim;
185 X[5]=coauthors;
186 output[i,]=c(namevector[i ,1], namevector[i ,2], round(X,3));
187 }
188

189 # Return the table and present it to the user
190 output
191 }
192

193 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
194 ## End of file
195 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A small script for calling the ensemble method and use the output to train
and evaluate a SVM. Please note that the amount of training examples is too
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small in this script and a much larger training set is needed to properly train
the classifier. This script serves only to demonstrate how to call the subroutines
written for the ensemble method.

1 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ## Demostration of
3 ## Ensemble Entity matching methods
4 ## by Johan Dahlin (2011−08−09)
5 ##
6 ## Input: − (Is is just a script )
7 ## Output: A matrix of names and similarity measures
8 ##
9 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10

11 ##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 ## Preliminaries
13 ##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
14

15 # Load the relevant packages
16 library(lsa)
17 library(stringr)
18 library(igraph)
19 library(RecordLinkage)
20

21 # Load the subroutines
22 source(”M://fusionstrasket/datafusionsubroutines.r”);
23

24 # So that the matrix is not reconstructed each time
25 load(”M://abstextmatrix.RData”);
26

27 # Constrcut the matrix of names to be compared
28 namevector=matrix(nrow=12,ncol=2);
29 namevector[1,]=c(”Hall DL”,”Hall D”)
30 namevector[2,]=c(”Das S”,”Das Subrata”)
31 namevector[3,]=c(”Seo YW”,”Seo Y−W”)
32 namevector[4,]=c(”Fisher JW III”,”Fisher JW”)
33 namevector[5,]=c(”Grindle C”,”Girindle C”)
34 namevector[6,]=c(”Zhang M”,”Zhang Miao”)
35 namevector[7,]=c(”Xu Q”,”Xu QF”)
36 namevector[8,]=c(”Raprey V”,”Rapley V”)
37 namevector[9,]=c(”Rogova G”,”Rogova GL”)
38 namevector[10,]=c(”Hall DL”,”Hall CM”)
39 namevector[11,]=c(”Das S”,”Das Subrata”)
40 namevector[12,]=c(”Powell G”,”Powell GM”)
41

42 # Do the analysis
43 ff=ensembleentitymatching(namevector,xdata1LSAtext,plotting=F)
44

45 ## Attempt to learn a SVM to determine if matching or unmatching.
46 gg=c(”M”,”M”,”M”,”M”,”M”,”M”,”M”,”M”,”M”,”U”,”M”,”U”);
47 ff2=matrix(nrow=dim(ff)[1],ncol=5)
48 for ( i in 1:dim(ff) [1]) ff2 [ i ,]=as.numeric(ff[i,−c(1,2)]) ;
49

50 # Train the SVM and present the predicted labels for the training set
51 model=svm(gg ˜. ,data=as.data.frame(cbind(ff2,gg)))
52 summary(model)
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53 predict(model,subset(as.data.frame(cbind(ff2,gg)),select=−gg))
54

55 ## Evaluate the SVM
56

57 # Construct a small evaluation set
58 namevector2=matrix(nrow=3,ncol=2);
59 namevector2[1,]=c(”Johansson F”,”Martenson C”)
60 namevector2[2,]=c(”Das S”,”Das Subrata”)
61 namevector2[3,]=c(”Powell G”,”Powell GM”)
62

63 # Calculate the similarities for these pairs of authors.
64 xx=ensembleentitymatching(namevector2,xdata1LSAtext,plotting=FALSE)
65 xx2=matrix(nrow=3,ncol=5)
66 for ( i in 1:dim(xx)[1]) xx2[i,]=as.numeric(xx[i,−c(1,2)]);
67

68 # Predict the labels of the traning set
69 predict(model,as.data.frame(xx2))
70

71 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
72 ## End of file
73 ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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C Python-scripts

C.1 Extract author names

This script reads the file generated from data taken from Web of Science and
extracts author’s full names for the papers that this information exists. The
names are extracted by identifying the line that begins with AF and the script
outputs the data in a text-file with one author name at each line.

1 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 # Extracting full author names
3 # by Johan Dahlin (2011−06−29)
4 #
5 # Input: The citation information from Web of Science
6 # Output: The Full names of authors tab seperated
7 #
8 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9

10 import os
11

12 def rreplace(s , old, new, occurrence):
13 li = s. rsplit (old, occurrence)
14 return new.join(li)
15

16 # Open files
17 fin=open(”IFochFUSION2002till2010.doc”);
18 fout=open(”temp.doc”,”wt”);
19

20 # Locate author name rows and clean information
21 for line in fin :
22 if ( line .find(’AF− ’) != −1):
23 line=line.replace(’AF− ’,’’)
24 line=line.replace(”,”,’ ’ )
25 line=line.replace(”’”,’ ’ )
26 line=line.replace(’[Anon]’,’ ’ )
27 line=line.replace(’; ’ , ’\n’)
28 line=line.replace(’|’ , ’ ’ )
29 fout .write(line)
30 fin .close()
31 fout .close()
32

33 # Change the order of the first and last names
34 fin=open(”temp.doc”);
35 fout=open(”temp2.doc”,”wt”);
36 for line in fin :
37 line=line.replace(’ ’ , ’\t’ ,1)
38 fout .write(line)
39 fin .close()
40 fout .close()
41

42 # Remove duplicate lines
43 fin=open(”temp2.doc”)
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44 fout=open(”IFochFUSION2002till2010filtred.doc”, ’w’)
45 unique = set(fin.read().split(”\n”))
46 fout .write(””.join([ line + ”\n” for line in unique]))
47 fout .close()
48

49 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
50 # End of file
51 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

C.2 Extract abstracts

This script reads the file generated from data taken from Web of Science and
extracts the full abstract, title of the paper, and name of the authors. The
output is found in text-files stored in three directories, names of authors are
found in authors, titles of papers in titles, and full abstracts in abstracts.
Each filename consists of the directory name and a number, this number is
the same for each file, i.e. the paper with the title found in title100.txt is
written by the authors found in file authors100.txt with the abstract as in
abstract100.txt.

1 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 # Extracting abstracts, authors and titels
3 # by Johan Dahlin (2011−06−29)
4 #
5 # Input: The citation information from Web of Science
6 # Output: Directories of abstracts , authors and titels
7 #
8 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9

10 import os, random
11

12 # Open file
13 fin=open(”IFochFUSION2002till2010.doc”);
14 mm=0
15 marker=0
16 for line in fin :
17 # First time a new paper is encountered, extract authors
18 if ( line .find(’AU− ’) != −1):
19 line=line.replace(’AU− ’,’’)
20 line=line.replace(’;’ , ’\t’ )
21 line=line.replace(’|’ , ’ ’ )
22 line=line.replace(’\n’,’ ’ )
23 mm=mm+1
24 nameoffile=”authors/authors”+str(mm)+”.txt”
25 open(nameoffile,”wt”).write(line)
26 # Extract title
27 if ( line .find(’T1− ’)!= −1):
28 line=line.replace(’T1− ’,’’)
29 line=line.replace(’|’ , ’ ’ )
30 nameoffile=”titels/ titels ”+str(mm)+”.txt”
31 open(nameoffile,”wt”).write(line)
32 if ( line .find(’TI− ’)!= −1):
33 line=line.replace(’TI− ’,’’)
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34 line=line.replace(’|’ , ’ ’ )
35 nameoffile=”titels/ titels ”+str(mm)+”.txt”
36 open(nameoffile,”wt”).write(line)
37 # Stop at end of abstract
38 if (( line .find(’ER− ’) != −1) and (marker==1)):
39 marker=0
40 fout .close()
41 # Extract abstract line by line
42 if (marker==1):
43 line=line.replace(’|’ , ’ ’ )
44 fout .write(line)
45 # Extract the first line of the abstract
46 if (( line .find(’N2− ’) != −1) and (random.random()>0)):
47 line=line.replace(’N2− ’,’’)
48 nameoffile=”abstracts/abs”+str(mm)+”.txt”
49 fout=open(nameoffile,”wt”)
50 fout .write(line)
51 marker=1
52 if (( line .find(’AB− ’) != −1) and (random.random()>0)):
53 line=line.replace(’AB− ’,’’)
54 nameoffile=”abstracts/abs”+str(mm)+”.txt”
55 fout=open(nameoffile,”wt”)
56 fout .write(line)
57 marker=1
58 fin .close()
59 fout .close()
60

61 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
62 # End of file
63 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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