
Application whitelisting

ARNE VIDSTRÖM

FOI-R--3434--SE 	 	
ISSN 1650-1942 April 2012

FOI
MSB

FOI
Swedish Defence Research Agency
SE-164 90 Stockholm

Phone +46 8 555 030 00
Fax +46 8 555 031 00

www.foi.se	

Raises the bar against certain threats but no silver bullet

The National Programme for Increased Security in Industrial Control Systems aims at enhancing the
national capacity to handle Cyber-related threats to Industrial Control Systems (SCADA-systems) of critical
importance to society. The programme’s objectives are to increase the technical competence and to support
users of such systems, in order to increase overall security. The Programme is run by the Swedish Civil Contin-
gencies Agency in co-operation with the public and private sectors.

The Swedish Defence Research Agency, FOI, develops and runs the Programme’s Technical Co-operation
Platform. It consists of an advanced SCADA-laboratory with technical demonstrators, skill training courses in
IT-security for SCADA operators, participation in national and international exercises, research collaboration
and awareness raising activities.

Swedish Civil Contingencies Agency
SE-651 81 Karlstad

Phone: +46 (0) 771-240 240
Fax: +46 (0) 10-240 56 00

www.msb.se

Arne Vidström

Application whitelisting

Raises the bar against certain threats but no silver bullet

Säkerhet i industriella informations- och styrsystem

Security in Industrial Control Systems Security in Industrial Control Systems

Arne Vidström

Application whitelisting

Raises the bar against certain threats but no silver bullet

FOI-R--3434--SE

Detta verk är skyddat enligt lagen (1960:729) om upphovsrätt till litterära och konstnärliga verk.
All form av kopiering, översättning eller bearbetning utan medgivande är förbjuden

This work is protected under the Act on Copyright in Literary and Artistic Works (SFS 1960:729).
Any form of reproduction, translation or modification without permission is prohibited.

 Titel Applikationsvitlistning

Title Application Whitelisting

Rapportnr/Report no

Månad/Month April

Utgivningsår/Year 2012

Antal sidor/Pages 25 p

ISSN 1650-1942

Kund/Customer MSB / Swedish Civil Contingencies Agency

FoT område

Projektnr/Project no E323125

Godkänd av/Approved by Lars Höstbeck

Ansvarig avdelning Informations- och aerosystem

 FOI-R--3434--SE

3

Sammanfattning

Vitlistning har föreslagits som en lösning på några av de speciella

säkerhetsproblem som finns hos SCADA-system (Supervisory Control and Data

Acquisition). Av olika anledningar är sådana system svåra att uppdatera och det

kan också vara problematiskt att köra och hålla antivirusprogram uppdaterade i

dem.

Vitlistning handlar framför allt om att förhindra oavsiktlig exekvering av filer

som kan innehålla skadlig kod. Man kan inte förvänta sig andra

säkerhetsfunktioner från vitlistningsprodukter, som till exempel skydd mot

buffertöverskridningsattacker, även om de kan innehålla sådana funktioner.

Anledningen är helt enkelt att det ligger utanför vitlistningens uppgift. Ibland kan

vitlistning i sig också skydda mot andra sorters attacker, men det är inget mer än

en positiv bieffekt och inget man kan förlita sig på.

Det finns en konsensusförväntan om att allt som inte uttryckligen godkänns är

spärrat vid vitlistning. Den här studien visar att det är en mycket förenklad bild

av verkligheten. En konsekvens av det är att man kan förvänta sig att framtida

skadlig kod ibland kommer innehålla funktionalitet som utnyttjar sårbarheter i

vitlistningsprodukterna själva.

Vitlistning bör betraktas som ett användbart komplement till andra

säkerhetslösningar. Skyddet som ges av vitlistning är inte tillräckligt för att

ersätta uppdateringar av mjukvara och antivirusprogram. Vitlistning är ingen

universallösning som kan ersätta andra säkerhetslösningar.

Nyckelord: vitlistning, SCADA, antivirus, skadlig kod, uppdatering

FOI-R--3434--SE

4

Summary

Whitelisting has been suggested as a solution to some of the special security

problems faced by SCADA (Supervisory Control and Data Acquisition) systems.

For various reasons, such systems can be hard to patch and it can also be

problematic to run and keep antivirus software up-to-date on them.

Whitelisting is mainly about the protection against unintended execution of files

which may contain malware. Specific whitelisting products may also contain

other security features - for example protection against buffer overruns. Such

features must not be expected though, since they are not part of whitelisting

itself. Sometimes whitelisting itself will protect against other kinds of attacks

too, but that is no more than a positive side-effect, and nothing to be relied upon.

There is also a consensus expectancy of default deny in whitelisting. However,

this study shows that default deny is a very simplified picture of reality. A

consequence of this is that we should expect future malware to sometimes

contain circumvention functionality which exploits vulnerabilities in the

whitelisting products themselves.

Whitelisting should be regarded as a useful complement to other security

solutions. The kind of protection offered by whitelisting is not enough to replace

software patching and antivirus software though. It is no silver bullet capable of

replacing other security solutions.

Keywords: whitelisting, SCADA, antivirus, malware, patching

 FOI-R--3434--SE

5

Contents

1 Introduction 7

2 The security model of whitelisting 8

3 Security features are not the same as secure features 11

4 The true complexity is revealed if we look under the hood 13

5 The monitoring of native executable files is illustrative 14

5.1 Default deny is easier said than done ... 15

5.2 Extensive error handling can break default deny too 15

5.3 What does not seem to matter can matter too 16

6 How to evaluate whitelisting products 18

6.1 How to evaluate coverage ... 19

6.2 How to evaluate implementation robustness 20

6.3 The risk of a system crash should not be forgotten 21

7 Malware trends and whitelisting products 23

8 Conclusions 25

FOI-R--3434--SE

6

 FOI-R--3434--SE

7

1 Introduction
The interest in application whitelisting is growing.

1
 In particular, whitelisting has

been suggested as a solution to some of the special security problems faced by

SCADA (Supervisory Control and Data Acquisition) systems.
2
 For various

reasons such systems can be hard to patch and it can also be problematic to run

and keep antivirus software up-to-date on them. There has been a lot less focus

on how much one can trust whitelisting products, although there are recent

examples of these kinds of evaluations.
3

4
 However, these examples are mainly

targeted against aspects where there is no consensus about what to expect from

the products.

The purpose of this study has been to evaluate how useful whitelisting is for

SCADA purposes – in particular if it can solve the special security problems

faced by these systems.

The study has been financed by the Swedish Civil Contingencies Agency (MSB)

as part of the cooperation NCS3 between MSB and the Swedish Defence

Research Agency (FOI). It has also involved the industrial partners Siemens

Industrial Turbomachinery (SIT) and ABB Automation Technologies.

1
 N. McDonald, Gartner, Application Control / Whitelisting Interest is Growing Rapidly, 2010-05-

11, accessed 2012-04-02, <http://blogs.gartner.com/neil_macdonald/2010/05/11/application-

control-whitelisting-interest-is-growing-rapidly>
2
 M. Hines, eWeek, Apps Whitelisting Proponents Tout Growing Acceptance, 2009-06-25, accessed

2012-04-12,

<http://securitywatch.eweek.com/applications_whitelisting/apps_whitelisting_proponents_tout_gr

owing_acceptance.html>
3
 Foreground Security, Raising the White Flag - Bypassing Application White Listing, 2012-02-02,

accessed 2012-04-12, <http://www.foregroundsecurity.com/blog/raising-the-white-flag-

bypassing-application-white-listing.html>
4
 D. Peterson, Digital Bond, 2 x S4 Videos on Application Whitelisting in ICS, 2012-02-02, accessed

2012-04-12, <http://www.digitalbond.com/2012/02/02/2-x-s4-videos-on-application-whitelisting-

in-ics>

FOI-R--3434--SE

8

2 The security model of whitelisting
The concept “security model” is usually used to refer to formal theoretical

security models like the Bell–LaPadula model (BLP), multilevel security (MLS),

or role-based access control (RBAC). In fact there is some kind of security model

behind most software products, but it might just not be that explicit. We assume

some things about the products security-wise and we do not demand other things

from them.

When we encounter a new class of software there might be some initial

confusion about its security model if it is not stated explicitly. For example, the

whitelisting product Application Control from McAfee offers some amount of

protection against buffer overruns.
5
 Is whitelisting in general supposed to block

the execution of unwanted code in any form? Some people seem to think so, but

most do not. Here are a few examples where the central task of whitelisting is

stated explicitly:

 “Most application-control vendors control whether a given file can be

executed or not”.
6

 “It only allows certain trusted files to run on your machine”.
7

 “Whitelisting involves barring all but approved executables from

running on a given machine”.
8

The consensus implicit security model of whitelisting is all about blocking the

execution of files which are not in the whitelist database. In addition, some of the

products have extra features which have nothing to do with whitelisting. For

example, in a 2009 review by InfoWorld, two of the six tested products offered

some amount of protection against buffer overruns.
9
 It is not the task of

whitelisting itself to protect from attacks against vulnerabilities in whitelisted

executable files, which is the case with for example buffer overruns. However,

5
 McAfee, McAfee Application Control, accessed 2012-04-02,

<http://www.mcafee.com/us/products/application-control.aspx>
6
 N. McDonald, Gartner, Application Control / Whitelisting Interest is Growing Rapidly, 2010-05-

11, accessed 2012-04-02, <http://blogs.gartner.com/neil_macdonald/2010/05/11/application-

control-whitelisting-interest-is-growing-rapidly>
7
 R. Vamosi, CNET, Column: Will you be ditching your antivirus app anytime soon?, 2008-07-21,

accessed 2012-04-02, <http://news.cnet.com/8301-10789_3-9994679-57.html>
8
 J. Brooks, eWeek, Application Whitelisting Gains Traction, 2008-09-25, accessed 2012-04-02,

<http://www.eweek.com/c/a/Security/Application-Whitelisting-Gains-Traction>
9
 R. Grimes, InfoWorld, Whitelisting security solutions by the features, 2009-11-04, accessed 2012-

04-02, <http://www.infoworld.com/node/98873>

 FOI-R--3434--SE

9

there have been evaluations of whitelisting products where buffer overrun

protection was included in the tests anyway.
10

Not even all executable files are monitored by the whitelisting products though.

This is the question of coverage. One must not automatically expect that for

example Java, ActiveX or kernel modules are monitored.
11

 There are also special

problems with various more or less obscure interpreted languages, since it cannot

be expected that whitelisting products should be able to cover them all. The

question of coverage has been a central point in at least one evaluation of

whitelisting products.
12

Another question is the extent to which the products should protect against the

actions of ordinary users. The main purpose of whitelisting is to protect against

users trying to execute files containing malware. But should such products

protect themselves against a user who might try to circumvent them on purpose

or who might break them through some trivial mistaken action? There is no

consensus about the answer to this question. There are differences between the

products, both regarding if such protection is included at all, and regarding how

inclusive such protection is when it is included.
13

 For example, Application

Control from McAfee protects all its components from being deleted or renamed.

On the other hand, SE46 from Cryptzone does not protect vital components from

being renamed. Simply renaming a vital component can potentially render a

whitelisting product installation useless. Such an attack against SE46 will be

presented later.

10

 D. Peterson, Digital Bond, 2 x S4 Videos on Application Whitelisting in ICS, 2012-02-02,

accessed 2012-04-12, <http://www.digitalbond.com/2012/02/02/2-x-s4-videos-on-application-

whitelisting-in-ics>
11

 D. Shackleford , SANS, Application Whitelisting: Enhancing Host Security , 2009-10, accessed

2012-04-02,

<http://www.sans.org/reading_room/analysts_program/McAfee_09_App_Whitelisting.pdf>
12

 Foreground Security, Raising the White Flag - Bypassing Application White Listing, 2012-02-02,

accessed 2012-04-12, <http://www.foregroundsecurity.com/blog/raising-the-white-flag-

bypassing-application-white-listing.html>
13

 D. Peterson, Digital Bond, 2 x S4 Videos on Application Whitelisting in ICS, 2012-02-02,

accessed 2012-04-12, <http://www.digitalbond.com/2012/02/02/2-x-s4-videos-on-application-

whitelisting-in-ics>

FOI-R--3434--SE

10

Summary

At this point we can put together at least a sketchy picture of the implicit

security model of whitelisting. Its central task is to protect the system from the

unintended execution of files that may contain malware. There is a consensus

expectancy of default deny. There is however no consensus about the exact

coverage of file types to be monitored. We cannot expect any other security

features from whitelisting products, like protection against buffer overruns,

although some products may contain certain extra features. Finally, there is no

consensus about how well the products should protect themselves against the

actions of users.

 FOI-R--3434--SE

11

3 Security features are not the same

as secure features
The previously mentioned InfoWorld whitelisting review from 2009 is pretty

representative of many reviews of security products in general. They often focus

on things like the graphical user interface, ease of configuration, and similar. Of

course those aspects are important, but the problem with this kind of review is

illustrated nicely by the comic in Figure 1.

Figure 1. TornadoGuard App Review by Randall Munroe.
14

The reason why you choose to run a security product in the first place is probably

that you wish to protect yourself against various threats. Unfortunately, most

reviews fail to measure that capability almost completely. It is much more

14
 <http://xkcd.com/license.html>

FOI-R--3434--SE

12

complicated to rate the security of the features of a product than to rate the

number of and general appearance of its security features.

 FOI-R--3434--SE

13

4 The true complexity is revealed if

we look under the hood
To gain an understanding of just how complex the question of the reliability of

whitelisting products is, we have to look under the hood of them. Most people

probably have the impression that whitelisting entails scarce more than a

software module that calculates some kind of checksum for each executed file

and compares it to a database of whitelisted files.

In reality, the whitelisting products have a much larger number of tasks which

they go through before they perform the final comparison between the file and

the whitelist database. First of all, they do not just monitor one single point in the

operating system and check everything that passes through it. Instead they

monitor various checkpoints, and different whitelisting products utilize different

techniques for that task. Next, they do not simply do a comparison for every

single file they discover at such a checkpoint. Instead they first perform various

tests, and then decide if it is appropriate to make a comparison with the whitelist

database at all. Here we will focus on a single type of file for illustrative

purposes, but remember that there are other types as well. Also remember that

the general impression of whitelisting is that it is all about default deny, but as

you will see there is a certain amount of default allow at a level below the default

deny.

FOI-R--3434--SE

14

5 The monitoring of native

executable files is illustrative
The file type we will focus on is the native executable file. These are the ones

that contain x86 machine code and are run directly by the user. The most widely

known example is probably the EXE file in Windows. This should really be the

strong suit of the whitelisting products. Not keeping track of obscure interpreted

languages is one thing, but keeping track of native executable files is spot on in

the middle of their role.

We will begin by taking a look at the file header of a modern EXE file. In fact, a

modern Windows EXE file starts with a file header that is similar to a legacy

EXE header from MS-DOS 2.0 (anno 1982). The reason is backwards

compatibility. The legacy header contains 14 different items, the first of which is

a signature consisting of the letters ‘MZ’.
15

 The other 13 items specify things like

the size of the file, memory relocation information, the size of the header itself,

initial values for different processor registers in 16 bit mode, and so on.

Already at this point we have a lot of combinations of items and values to play

tricks with. For example, we can construct a file that states that its header is non-

existent (zero length) but indeed does have a header. There is also a checksum

value in the legacy header, and we can set it to a proper value or to a faulty value.

These are just a couple of examples.

What happens when we play these tricks depends on the one hand on how

Windows interprets the values and on the other hand on how the whitelisting

products interpret them. If they both ignore the values completely it does not

matter what we set them to. If Windows accepts them while the whitelisting

products do not accept them there might be a problem. Either the file will be

default denied or it might be default accepted depending on the implementation

of each whitelisting product.

However, a modern EXE file does not end with the legacy header. The true

header of such a file is called a PE header (Portable Executable). A bit further

into the file from the legacy header, at position 3Ch (hexadecimal), we can find

an item that specifies the location of the PE header.
16

 The PE header itself

contains much more information than the legacy header does. In order not to

digress too much from the main topic we will not look at the contents of the PE

header itself. Instead we will work through the details of two actual

15

 Microsoft, Microsoft MS-DOS Programmer's Reference Version 5, Microsoft Press, Redmond,

1991, p. 76.
16

 Microsoft, Microsoft Portable Executable and Common Object File Format Specification, 2010,

p. 11.

 FOI-R--3434--SE

15

vulnerabilities in whitelisting products. The vendors have been notified about

both vulnerabilities and patches have already been released a few months ahead

of the publication of this report.

5.1 Default deny is easier said than done

The first example comes from the product SE46 by Cryptzone.
17

 Remember that

an EXE file starts with the letters ‘MZ’. The first thing SE46 does is to look at

these two bytes. If they are present it goes on to check for other things, like the

PE header. If they are not present it takes a look at the extension of the file. If the

extension is not BAT, CMD, COM or EXE it lets the file through for execution

by Windows.

How can we take advantage of this implementation? One way is if we have a file

with native x86 code that does not start with the letters ‘MZ’ and does not have

one of the four extensions. There is a kind of executable file that does not start

with ‘MZ’ since it is completely headerless. It is the 16-bit COM file from MS-

DOS. We can assemble any 16-bit COM file we wish and try to execute it. It will

pass through the file header check, but it will be caught at the file extension

check. All we need to do now is find an extension that Windows accepts as

executable but which is not in the SE46 shortlist. PIF (Program Information File)

is such an extension. Now we can run any 16-bit COM file just as long as we

make sure it has a PIF extension.

5.2 Extensive error handling can break
default deny too

The second example comes from the product Application Control by McAfee.
18

A closer look at this product reveals that it appears to have more extensive error

handling than SE46. At least in the parts we are concerned with here. Extensive

error handling is usually very good, but sometimes it can be turned against you,

too. Application Control first of all checks if the file has a valid header, including

the PE header, or not. If the header is not valid the file is let through to Windows

for execution, presumably because it is assumed to be non-executable.

17

 Cryptzone, SE46 Application Whitelisting, accessed 2012-04-03,

<http://www.cryptzone.com/products/se46-application-whitelisting>
18

 McAfee, McAfee Application Control, accessed 2012-04-03,

<http://www.mcafee.com/us/products/application-control.aspx>

FOI-R--3434--SE

16

This time, remember that the location of the PE header is specified at position

3Ch (hexadecimal) in an EXE file. The location is specified by a four byte long

value, so that the positions 3Ch, 3Dh, 3Eh and 3Fh are used for this purpose.

Now we create a file that is so small that it is missing the position 3Fh. This

means that the file is really too small to be a PE-style file.

Next, we set the legacy EXE header size to zero. Now it looks like the file is

missing a legacy EXE header too. However, there is still the problem that the file

ends with the extension EXE, so instead we change it to SCR (screensaver).

If we execute such a file in Windows, without Application Control installed, it

will execute despite all these problems. It will look like a legacy EXE file to

Windows, and the execution will start from the very beginning of the file, with

the letters ‘MZ’. Fortunately these letters are in fact executable too, because

when interpreted as machine code instead of as text, they mean something at

least remotely comprehensible to the CPU. Next, the execution continues with

the other items in the header. If we pick the right values for these we can make

sure that the values are on the one hand executable, and on the other hand mean

something as header values too. We also have more space following this, to the

end of the file, where we can insert any code we like without worrying about

what it means value-vise.

Now we have a file which executes as a 16-bit legacy EXE file in Windows. If

we run it in a system protected by Application Control it will execute whether it

is in the whitelist database or not. Application Control finds the file invalid and

simply passes it on to Windows for execution.

5.3 What does not seem to matter can matter
too

In both examples the file we managed to execute contains 16-bit code. This kind

of code has its limitations in Windows compared to ordinary 32-bit or 64-bit

code. For example, it cannot make Win32 API calls. One thing it can do though

is rename files. Remember that the security model of SE46 does not offer

protection against the actions of the users. As soon as our specially crafted

executable starts to execute it looks just like an ordinary user to the system. It is

limited by Windows only because it is 16-bit, but SE46 no longer takes

responsibility for protecting against its further actions. Thus, we can let our

executable rename a few core components of SE46 if we are running on a

sufficiently privileged account. After the next reboot SE46 is no longer running
on the computer. If we try to do the same thing against Application Control we

will not succeed, since it protects its core components from the actions of the

 FOI-R--3434--SE

17

users. What might not seem to matter for whitelisting purposes in fact turns out

to matter a great deal.

Summary

There is a consensus expectancy of default deny in whitelisting, but as we

have seen, that is a very simplified picture of reality. In fact, it is fair to say

that there is default allow in the foundation of whitelisting. The default state

of a computer system is that all kinds of files can be executed through various

paths. Whitelisting products must keep track of all of these paths, keep track

of what tries to go through them, and make a lot of decisions in the process.

Only when the right set of conditions is present, an executable is default

denied and subjected to a final test to see if it should be allowed to execute or

not. When any other set of conditions is present, it is default allowed to

execute.

Finally, there is no consensus about how well the products should protect

themselves against the actions of users. One implication of this is that some

products are more vulnerable than others to the consequences of limited

penetration of their file monitoring.

FOI-R--3434--SE

18

6 How to evaluate whitelisting

products
As we have seen so far, there are at least three aspects of whitelisting products

which we have to take into account if we wish to evaluate them:

 Usability

 Coverage

 Implementation robustness

Many reviews of security software are unfortunately restricted to evaluations of

usability. The previously mentioned InfoWorld review also looked at some

aspects of coverage though, but not at all at implementation robustness. This

problem is not limited to reviews in computer magazines and the like. For

example, the Information Security Management Handbook has a section called

Evaluating Whitelisting Products.
19

 It lists a number of attributes of whitelisting

products which should be taken into consideration when evaluating them against

the requirements one has:

 Manageability

 Deployment

 Policy definition

 The end-user experience

Readers who wish to know more about how to evaluate manageability,

deployment, policy definition and the end-user experience should turn to the

Information Security Management Handbook or a number of other sources which

have more to say about these issues.
20

21

22

23

24

 The vendors also offer quite a lot

19

 R. Shein, ‘Whitelisting for Endpoint Defense’, in Information Security Management Handbook

Volume 5, M. Krause Nozaki & H. Tipton (eds), CRC Press, Boca Raton, 2012, pp. 11-12.
20

 R. Grimes, InfoWorld, InfoWorld review: Whitelisting security offers salvation, 2009-11-04,

accessed 2012-04-03, <http://www.infoworld.com/d/security-central/test-center-review-

whitelisting-security-offers-salvation-835?page=0,0>
21

 D. Shackleford , SANS, Application Whitelisting: Enhancing Host Security , 2009-10, accessed

2012-04-03,

<http://www.sans.org/reading_room/analysts_program/McAfee_09_App_Whitelisting.pdf>
22

 NSA, Application Whitelisting, accessed 2012-04-03,

<http://www.nsa.gov/ia/_files/factsheets/Application_Whitelisting_Trifold.pdf>
23

 S. Bisson, IT Expert Magazine, Application Whitelists, 2010-05-11, accessed 2012-04-03,

<http://www.itexpertmag.com/security/application-whitelists>
24

 R. Abrams, ESET, White Listing - The End of Antivirus?, 2008-11-16, accessed 2012-04-03,

<http://blog.eset.com/2008/11/16/white-listing-%E2%80%93-the-end-of-antivirus>

 FOI-R--3434--SE

19

of information about such things for marketing purposes. They are of course very

important issues in an evaluation, but here we shall focus on issues which are all

too often forgotten about.

6.1 How to evaluate coverage

Evaluating coverage consists of two parts: investigating which executable file

types are covered by a specific product and investigating the total number of

executable file types that exist for a particular system. With that information it is

easy to calculate the coverage as a percentage for that product on that system.

Investigating which file types are covered by a specific product can be done in

different ways. Some of the information can be found in the marketing and

technical documentation. Exactly how detailed such sources are varies from

vendor to vendor. It can be complemented by contacting the vendor and asking

for further information. This kind of evaluation should be done as a minimum. It

is even better to retrieve an evaluation license for the product in question and test

that the stated information is indeed correct. Such tests are not technically

advanced and can be performed by a normal testing department without special

knowledge of security.

The other part of a coverage evaluation is much harder. The hard problem is how

to make sure that all executable file types in a system have been identified. First

of all there are the well-known file types of the particular operating system, then

the less well-known, then interpreted languages (like for example Perl) which

may not be default on the platform, and finally proprietary interpreted languages

and similar. Advanced software products often have some kind of proprietary

language built in. The exact number of executable file types varies from system

to system depending on the software combinations installed.

The coverage quotient depends on two factors: the whitelisting product and the

system to be protected. Its value can be raised either by using a better

whitelisting product, or by decreasing the number of executable file types in the

system. Different whitelisting products may have different coverage quotients for

different systems depending on the combinations of executable file types they

handle.

FOI-R--3434--SE

20

6.2 How to evaluate implementation
robustness

Evaluating implementation robustness is a much more technically advanced task

than evaluating coverage. Robustness is a measure that depends on how the

product is implemented in detail. Very small details can make all the difference,

as we have seen in the earlier examples. And there are indeed a lot of these small

details in a whitelisting implementation. As figure 2 illustrates, there are many

parallel paths which must to be investigated in order to completely determine

robustness, and many individual steps in each path.

Figure 2. Coverage versus implementation robustness.

For example, one main path could be Java file monitoring and another could be

EXE file monitoring. Each main path consists of several sub-paths. We have seen

that there are a number of checks done when implementing EXE file monitoring,

and still we have only scratched the surface.

In figure 2, the arrow in the middle represents our investigations into EXE file

monitoring. It is medium dashed instead of solid to represent the fact that we

have not looked at every single detail. Instead we have sampled a few specific

details and found a couple of vulnerabilities. The dotted arrows on the sides

represent all the other paths that we have not even taken a cursory look at.

There are probably few organizations which can afford even something remotely

close to a complete evaluation of a whitelisting product. The total number of

implementation details will be huge indeed, their combinations even more

numerous, and without access to the source code the work will be monumental.

A better way is to perform a number of spot checks down a selected path, or

down a few selected paths. Combined with our knowledge about coverage we

coverage

 FOI-R--3434--SE

21

will at least be able to compare two products against each other with some level

of certainty.

Unfortunately this kind of testing cannot be done by most testing departments

because it takes a very specialized skill set. If it is found important enough the

product must probably be sent to an independent security lab for testing.

If such detailed testing is not possible, for financial or other reasons, a simpler

level of evaluation is a reasonable alternative. At a minimum, the vendor should

have an internal code review process for their product. There should be at least

some person who is not involved in the actual development who performs code

security reviews. If there is no such process in place there is a very high risk that

the robustness of the product is lacking.

There are also security aspects of whitelisting products which have nothing to do

with the file monitoring itself. They include but are not limited to:
25

 Attacks against management functions

 Attacks against software distribution points

 Stolen software certificates

 Attacks against the whitelisting database

 Malicious insiders

 Attacks against administration accounts

Some of these demand further evaluation of the whitelisting products, and some

demand further security actions inside the computer network of the organization

where the product is to be deployed.

6.3 The risk of a system crash should not be
forgotten

Another technical aspect of evaluating a whitelisting product is ensuring that it

does not crash the system. Whitelisting products may access various

undocumented parts of the operating system, and they usually contain kernel

mode modules. Thus, there is a potential risk of a system crash, including the

infamous blue screen of death in Windows, because of a software bug.

A crash may be one thing in an office workstation and another thing in a critical

system like for example a SCADA system. The problem is especially precarious

25

 J. Beechey, SANS, Application Whitelisting: Panacea or Propaganda?, 2010-12, accessed 2012-

04-03, <http://www.sans.org/reading_room/whitepapers/application/application-whitelisting-

panacea-propaganda_33599>

FOI-R--3434--SE

22

when the vendor of the whitelisting product is small and has a small user base.

Then the vendor might not have performed enough testing and there may be no

other users who have run the particular system set-up in question. Kernel

modules can become instable for a number of reasons and in a number of

situations, for example depending on the system load. Interactions between

different kernel modules can also lead to crashes. Therefore it is vital to perform

extensive testing before deployment in a critical system. Small vendors may also

be unable to quickly identify the cause and offer a solution if a system crash

indeed occurs.

Summary

The evaluation of whitelisting products is unfortunately often limited to

factors like manageability, deployment, the end-user experience, et cetera.

For security reasons it is also very important to evaluate coverage, robustness,

and so on. Coverage can be evaluated fairly well by a normal testing

department. The robustness of the implementation can be evaluated by

sending the product to an independent security lab where the specialized skill

set needed is available. A realistic ambition is to have the lab do some spot

checking at various points in the product. Then different products can be

compared to each other with at least some amount of certainty. At a simpler

level, a product should at least be evaluated by checking that the vendor has a

satisfactory internal code review process in place.

There are other important security factors too which have nothing to do with

the file monitoring itself. They should also be evaluated, but the details are

beyond the scope of this report.

 FOI-R--3434--SE

23

7 Malware trends and whitelisting

products

As we have seen, there may be vulnerabilities in the whitelisting products

themselves. Such vulnerabilities will most likely be discovered and published in

limited numbers in the future. It is not trivial to find a new vulnerability on

demand when needed, but on the other hand it should be expected that such

discoveries will be made every now and then. More vulnerabilities will be found

the more popular whitelisting becomes and the more interest it generates among

security researchers and hackers.

If whitelisting becomes popular enough, we should expect some malware to

implement circumvention functionality by default. However, it is unlikely that

the majority of malware will contain such functionality unless the use of

whitelisting becomes very widespread. Whitelisting will probably offer good

protection against the absolute majority of file-based malware in the future too.

When malware with circumvention code starts to spread, ordinary antivirus

software will probably handle the threat much more quickly than the vendors of

whitelisting products will be able to offer patches for their products. Antivirus

vendors can usually put a new signature in their database within a day or so when

a new virus appears in the wild.
26

 At least that applies as long as the antivirus

engine itself is not attacked. Whitelisting vendors, on the other hand, will always

be delayed by a comparatively slow process of verifying the vulnerability,

designing and implementing a solution, and finally more or less extensive

testing. The average time from public disclosure to patch is 28 days, and 63 days

from notification to the vendor only.
27

 These numbers apply for software in

general, but there is no reason to assume a significantly quicker response time

from whitelisting vendors. For example, the times from notification to vendor to

patch release for the two vulnerabilities found in this study were 19 days, 28

days, and 53 days.
28

Whitelisting will also not protect as well against sophisticated customized attacks

against a specific target, since such an attack can be custom-made to circumvent

26

 B. Livingston, eSecurity Planet, How Long Must You Wait for an Anti-Virus Fix?, 2004-02-23,

accessed 2012-04-16, <http://www.esecurityplanet.com/views/article.php/3316511/How-Long-

Must-You-Wait-for-an-AntiVirus-Fix.htm>
27

 A. Arora, R. Krishnan, R. Telang, & Y. Yang. 'An Empirical Analysis of Software Vendors' Patch

Release Behavior: Impact of Vulnerability Disclosure'. Information Systems Research, vol. 21,

March 2010, pp. 115-132.
28

 One of the products needed two patches, for different versions of it.

FOI-R--3434--SE

24

the particular whitelisting product used by the target. In such a case the

vulnerability used will probably be a zero-day.

On the other hand, whitelisting will raise the bar considerably against most local

file-based attacks, including the ones listed above.

Summary

In the future we can expect malware that targets vulnerabilities in the

whitelisting products themselves to circumvent their protection. Most likely

only a small part of all malware will do so, but in such cases ordinary

antivirus software is likely to offer protection against the threat much quicker

than the whitelisting vendors. We can also expect a small number of

sophisticated customized attacks against specific targets where the protection

offered by whitelisting products will be circumvented through zero-day

vulnerabilities. All in all, whitelisting will at least raise the bar against most

file-based attacks.

 FOI-R--3434--SE

25

8 Conclusions

For various reasons SCADA systems can be hard to patch and it can also be

problematic to run and keep antivirus software up-to-date on them. As we have

seen, whitelisting is limited to protecting against certain file-based threats. That

kind of protection is of course not enough to replace software patching. Neither

does it cover all that antivirus software can do. For example, antivirus vendors

can act much more quickly than whitelisting vendors against new malware that

circumvents whitelisting products. Whitelisting is also roughly as vulnerable

against customized attacks as many other security solutions are.

Whitelisting should be regarded as a useful complement to other security

solutions, including antivirus software. It raises the bar against certain kinds of

attacks, and it can sometimes protect against other kinds of attacks as a positive

side-effect. However, it is no silver bullet that replaces any other security

solution.

