
FOI, Swedish Defence Research Agency, is a mainly assignment-funded agency under the Ministry of Defence. The core activities are research, method and technology

development, as well as studies conducted in the interests of Swedish defence and the safety and security of society. The organisation employs approximately 1000 per-

sonnel of whom about 800 are scientists. This makes FOI Sweden’s largest research institute. FOI gives its customers access to leading-edge expertise in a large number

of fi elds such as security policy studies, defence and security related analyses, the assessment of various types of threat, systems for control and management of crises,

protection against and management of hazardous substances, IT security and the potential offered by new sensors.

F-REX 2.0 Software

Architecture Description

PETER LITSEGÅRD

FOI-R--3624--SE

ISSN 1650-1942 December 20122

FOI

Defence Research Agency Phone: +46 8 555 030 00 www.foi.se

SE-164 90 Stockholm Fax: +46 8 555 031 00

Peter Litsegård

F-REX 2.0 Software

Architecture Description

FOI-R--3624--SE

Detta verk är skyddat enligt lagen (1960:729) om upphovsrätt till litterära och konstnärliga verk.
All form av kopiering, översättning eller bearbetning utan medgivande är förbjuden.

This work is protected under the Act on Copyright in Literary and Artistic Works (SFS 1960:729).
Any form of reproduction, translation or modification without permission is prohibited.

 Titel Beskrivning av F-REX 2.0
mjukvaruarkitektur

Title F-REX 2.0 Software Architecture
Description

Rapportnr/Report no FOI-R--3624--SE

Månad/Month December

Utgivningsår/Year 2012

Antal sidor/Pages 36 p

ISSN 1650-1942

Kund/Customer MSB

Projektnr/Project no E32336

Godkänd av/Approved by Christian Jönsson

Ansvarig avdelning Informations- och aerosystem

 FOI-R--3624--SE

 3

Sammanfattning
Förkortningen F-REX står för FOI Reconstruction and Exploration och är en

kombination av processer, metoder och verktyg för återskapandet och utforskandet av

data som härstammar från övningar och insatser. Utforskandet av de data som

genereras under dessa övningar sker med verktyget F-REX Studio, som kan visa data

från många olika källor, och presentera dem i vyer, specialiserade på att visa datasettet

ur ett särskilt perspektiv. F-REX Studio är kärnan i det ramverk, F-REX Framework,

vars arkitektur detta dokument sammanfattar. Utvecklingen av F-REX är ett ständigt

pågående arbete, vilket innebär att detta dokument kontinuerligt förändras, för att hålla

den i fas med den kod-bas som utgör systemet.

Nyckelord: Arkitektur, F-REX, IT-säkerhet, Rekonstruktion, Utforskning

FOI-R--3624--SE

 4

Summary
The abbreviation F-REX stands for FOI Reconstruction and Exploration, which is a

combination of processes, methods and tools for the reconstruction and exploration of

data derived from exercises and operations. Exploration of the data generated during

these exercises, is done with the tool F-REX Studio, which can display data from many

different sources and present them in views, specialized in showing the dataset from a

particular perspective. F-REX Studio is the core of the framework, F-REX Framework,

whose architecture this document summarizes. The development of F-REX is a

constant work in progress, which means that this document is constantly changing, to

keep it in sync with the code-base that represents the system.

Keywords: Architecture, F-REX, Cyber Security, Reconstruction, Exploration

 FOI-R--3624--SE

 5

Table of Contents

1 Introduction 7

1.1 Purpose ... 7

1.2 Scope .. 7

1.3 Definitions, Acronyms and Abbreviations ... 7

2 F-REX Overview 8

2.1 Methods .. 8

2.2 Main areas of use for F-REX .. 9

2.3 Tools ... 10

3 The F-REX Framework 14

3.1 Important Architectural Patterns ... 14

3.2 Bringing the Patterns together: The Microsoft

PRISM Framework .. 18

3.3 The Architectural Design Patterns in F-REX 18

4 Architectural Representation 21

5 Architectural Goals and Constraints 22

6 Use Case View 23

6.1 Architecturally-Significant Use Cases ... 23

7 Logical View 27

7.1 Architecture Overview – The Domain Model 27

7.2 Architecture Overview – The Packages .. 28

7.3 Deployment Diagram .. 32

8 Figures 34

9 References 35

FOI-R--3624--SE

 6

 FOI-R--3624--SE

 7

1 Introduction
F-REX (FOI Reconstruction & Exploration Tool) is a computer-based framework

(Andersson, 2009) for monitoring and analysis of tactical exercises and operations,

developed by FOI, and is a direct successor to the third version of the original framework,

MIND (Jenvald, 1996), (Morin, 2003).

1.1 Purpose

This document provides a comprehensive architectural overview of the system, using a

number of different architectural views to depict different aspects of the system. It is

intended to capture and convey the significant architectural decisions which affect the

system.

1.2 Scope

This Software Architecture Document provides an architectural overview of the F-REX

System. Furthermore, in addition to being an architectural document, it gives a brief

overview of the F-REX Framework and Studio, detailing their possibilities and limitations.

1.3 Definitions, Acronyms and Abbreviations

Please see the F-REX Glossary (Litsegård, 2012f).

FOI-R--3624--SE

 8

2 F-REX Overview
The overall goal for F-REX is to enable collection and visualization of complex chaining

of events, allowing for root cause analysis. A typical unit of analysis is a distributed

tactical operation, such as a crisis management exercise or an IT-security incident. The

visualization of data types includes, but is not limited to:

 Audio

 Image

 Video

 Network flow

 Network traffic

 Network topologies

2.1 Methods

Figure 1 The Reconstruction and Exploration Process

2.1.1 Reconstruction

The method F-REX is named after; Reconstruction & Exploration (Jenvald, 1996)

includes the planning and implementation of data collection, which is a central part of the

framework. It is rare that requirements for data collection are identical from one exercise

to another, which has as a consequence that the framework needs to support the collection

of data from sources variable both in number and type.

There are many reasons why requirements vary between exercises in the same area,

including that a new data source has been identified, an exercise approach has changed or

a previous evaluation of a similar exercise demonstrated the need to complete the dataset.

An example of a data collection requirement that have appeared in recent years is the

ability to monitor the data collection and view the recorded data in near real-time. A

concrete example of this would be that during video recording from a network camera, the

video stream is saved to disk, while at the same time; the video images are streamed to and

displayed to the user. This enables the exercise management to confirm that the exercise is

progressing as planned.

 FOI-R--3624--SE

 9

The above mentioned aspiration for a real-time mode is one of the main reasons why a

new version of the framework has been developed. This new version is based, inter alia,

on data adapters that are an intermediate step between data collection and its visualization

tool.

The purpose of these adapters are too abstract away from where the data to be visualized is

stored, thus allowing the visualization parts of the tool to behave the same way regardless

of whether they access previously stored data, or if it is visualized at the same time as it is

being collected. Furthermore, the data adapter’s responsibility is to transform data in order

to be able to import it into the F-REX repository – it could be looked at as a data
normalizer – adapt the incoming data to the data storage rather than the other way around!

2.1.2 Exploration

With regards to presentation, the main focus is the need to be able to visualize the

collected data in an appropriate manner, so that “non-familiar spectators” will be able to

understand, and thereby absorb, what is presented. Recent requests have been raised to

play the dataset, generated during an exercise, at the same time as it is being collected.

This is described in more detail in the section dealing with the data collection area of the

framework (2.3.2).

2.2 Main areas of use for F-REX

2.2.1 Presentation

For presentation the main focus is the need to visualize the collected information in an

appropriate way, making it easier for a spectator not familiar with the data, to understand,

and thereby absorb, what is presented.

2.2.2 After Action Review

The needs for After Action Review (AAR) are similar to those for presentation, with the

main difference that for AAR, there is a greater need to perform a quick analysis of the

data before the results are presented to the participants. This analysis is done to identify

events that may be of interest to discuss with the participants. This investigation is made in

order to discuss and clarify why they acted the way they did in certain given situations.

During After Action Review there are two ”subareas” where the needs differ slightly from

each other. On the one hand, there are tactical evaluations concerning emergency services,

the military, etc. which F-REX, and previously also MIND, were originally developed for.

Furthermore, it has in recent years, also appeared a need to hold similar evaluations during

IT security exercises.

2.2.3 Research

For research the needs is slightly different from the other two, where the focus is more on

analytical support rather than visualization support. For this reason the needs identified in

this area often tend to require more work to take care of, as it is rarely possible to reuse

previously defined solutions. The reason for this is that they are often developed for

specific research purposes. In this area, the need to be able to export the analysis results

and related data sets in an easy and structured way is higher.

FOI-R--3624--SE

 10

2.3 Tools

2.3.1 F-REX Studio

F-REX Studio is a modular software application mainly written in the programming

language C # (. NET Framework 4.5 or later) and uses Microsoft Prism 4, which, among

other things, provides a framework for module management. There are mainly two types

of modules in F-REX Studio: data visualization and data adapter modules.

A data adapter module accounts for the interpretation of a particular data set and delivers

this to the central F-REX engine, which in turn sends the relevant data to the active

visualization modules, intended to display the given type of information.

Figure 2 Screenshot of F-REX Studio

In the screenshot above we see the following:

 Upper left: Visualization of network-flow data. The flow represent the traffic

among the computers within a company. The links shows the number of packages

in the active flows.

 Upper middle: The video view shows video and audio.

 Upper right: Visualization of a corporate network. Tooltips are displayed while

hovering over computers and switches, showing object-properties.

 Lower part: Timeline showing events and the actual time and makes it possible to

jump to a point-in-time.

The visualization of the above is realized by a central concept in F-REX, the View

(3.1.5.2). A view provides a tailored “peephole” into the massive dataset, allowing the user

to focus on a certain aspect of the assembled dataset.

Furthermore, a View is not tightly coupled to the application; it may be loaded

dynamically and register itself in a particular menu in the F-REX Studio tool. There’s no

 FOI-R--3624--SE

 11

need to statically link it to the application. When a new data-rendering module is available,

it may be placed in a particular directory and loaded when F-REX Studio is started.

2.3.2 Data Collection Framework

During exercises and experiments large amounts of data is generated that needs to be

collected and made available for analysis in F-REX Studio. In order to facilitate this, two

data collecting tools have been developed:

 CaptureAV-server

 F-REX Data Collector

The CaptureAV-server monitors and controls the screen and microphone recordings on

participant’s laptops as well as network cameras and the collected data is streamed to

designated areas on a central file-server.

The F-REX Data Collector is a script which is scheduled using the *nix cron-scheduler

(The IEEE and The Open Group, 2008). During startup the data collector goes through the

list of configured sources and collects the data residing in the designated areas, processes

the data where applicable, and transfers the data to an area where F-REX Studio may

access it and import it using DataSourceAdapters (7.2.3).

Data that can be collected using the data collector is:

 NBOT data

 IDS data

 NeXpose data

 Logfile data

 Network topology data

 VCN Config data

 Collect Pcap data

For an explanation of the terms and acronyms please refer to the F-REX Glossary

(Litsegård, F-REX Glossary (unpublished manuscript), 2012f).

The data, or actually the meta-data about the events related to a particular piece of data, are

decoded, during import, from the data read by the DataSourceAdapter and then stored in

the database. This metadata is used by F-REX Studio to coordinate the re-playing of the

dataset in the visible views.

It is important to stress the fact that we’re talking about meta-data only. If we’re importing

video-clips, for example, F-REX will only store information about the start- and stop-time

in the video-clip, the physical video-file is still stored in the file-system but a pointer to the

physical file is stored in the database as part of the meta-data.

Furthermore, as with a View, a DataSourceAdapter is not tightly coupled to the

application; it may be loaded dynamically and register itself in a particular menu in the F-

REX Studio tool. There’s no need to statically link it to the application. When a new

DataSourceAdapter module is available, it may be placed in a particular directory and

loaded when F-REX Studio is started.

In most scenarios users are not interested in all events in a dataset– they want to focus on a

subset of data depending on their needs. To facilitate this, F-REX provides the concept of

filters to get a subset of events to be displayed. By setting various filter conditions users

may fine-tune which event type(s) should be processed by the tool – all other event types

are discarded and not displayed. Again the filter acts on meta-data stored in the repository.

FOI-R--3624--SE

 12

2.3.3 NBOT

Although most data is collected in an automatic or semi-automatic way, some is manually

generated, in various ways, by humans. F-REX needs to be able to collect this data as well,

and to make it available in a consistent manner together with the rest of the dataset. The

aim is to give a data analyst an experience that the tool is data agnostic.

Furthermore, in some situations this kind of data cannot be captured online, because of

technical, geographical, political or security related issues. This calls for a detached

reporting facility which allows for a stationed reporting offline for later integration.

In earlier versions of F-REX, this was realized by using a in-house (FOI) developed,

Windows CE based, application running on a handheld device (Compaq iPaq). In 2012 a

decision was made to move this onto a new platform, Open Data Kit (ODK). ODK is an

OpenSource based data-reporting framework which provides the following (from the ODK

website, http://opendatakit.org):

1. Build a data collection form or survey (the data entry forms are built using

PurcForms);

2. Collect the data on a mobile device and send it to a server; and

3. Aggregate the collected data on a server and extract it in useful formats.

The concept behind using an NBOT-client has been described thoroughly in another

document (Thorstensson, 2012).

The new NBOT-client is based on the ODK-framework and uses an Android tablet for

reporting, and the solution fully supports a detached reporting process. In addition to the

online mode, the app can be used offline in the field, in which the user connect to the F-

REX repository at a later stage to upload the reports.

The user uses the Android-tablet in the field, enters data, goes back home and connects the

tablet to an ODK-Server, and downloads the reported data. From there it is possible to

collect the data and import it to an F-REX repository by using a DataSourceAdapter.

There’s a more thorough description of how the NBOT/ODK-solution works in the “F-

REX Data Collection” scenario document (8). Furthermore, the overall data collection

process is described in the “F-REX Data Collector” scenario document (8).

http://opendatakit.org/

 FOI-R--3624--SE

 13

Figure 3 The ODK-based NBOT-client

FOI-R--3624--SE

 14

3 The F-REX Framework
The purpose of this section is to give the reader an understanding of the functionality

provided by the F-REX Framework. Furthermore, it gives a description of the architectural

patterns used.

3.1 Important Architectural Patterns

The purpose here is to give an overview of some of the more important, re-occurring,

design patterns used in the F-REX framework. Design patterns should be seen as best

practices and, if properly implemented, may result in easier maintenance and description

of the underlying implementations, which, in turn, will give a better understanding of the

system.

3.1.1 The Database Access Layer Pattern

A Database Access Layer (Fowler, 2003) decouples an object-oriented application from

the details of the database. All concrete mappings of objects to tables are encapsulated

within this layer, so that it appears to the application as if it were storing and retrieving ‘its

own’ objects rather than table entries. Database Access Layer thus offers a suitable bridge

to the underlying persistence technology. In addition, modifications to the Database

Access Layer do not affect the application components directly.

3.1.1.1 The Data Mapper Pattern

Using a Data Mapper (Fowler, 2003), in-memory objects need not know that a database is

present. Moreover, they require no SQL interface code and have no knowledge of the

database schema. Data Mapper allows the relational database schema and the object-

oriented domain model to evolve independently. This design also simplifies unit testing,

allowing mappers to real databases to be replaced by mock objects that support in-memory

test fixtures.

Data Mapper simplifies application objects both programmatically and in terms of their

dependencies. It offers a degree of isolation and stability, protecting both application

objects and schemas from changes in either the application objects and schemas from

changes in the other. Data Mapper is not without its own complexity, however, and

changes in either the application object model or the database schema may require changes

to a data mapper.

3.1.1.2 The Table Data Gateway Pattern

A Table Data Gateway (Fowler, 2003) is most useful if database records are accessed,

modified, and stored in sets, rather than individually. Each table data gateway encapsulates

the details of access to the database, as well as transformation of that data into collections

of domain-specific objects and vice versa. Changes to the table representation of domain-

specific objects become largely transparent to clients, as well as changes to database

access code when porting the table data gateway to another database that uses a different

SQL dialect.

The repository in F-REX should be seen as a meta-base storing meta-data about data, that

should be presented in F-REX Studio – actually no data (videos, images, sounds etc.) is

stored in the F-REX database only meta-data about the data is stored, where one of the

meta-data attributes might be a pointer to a physical file.

 FOI-R--3624--SE

 15

3.1.2 The Dependency Injection (Inversion of Control, IoC) Pattern

In “traditional” development there is a close connection between the contract (interface)

and the implementation (class implementation). This leads to a static connection between

the two where a new implementation calls for a “re-bind” between the interface and

implementation which means that the application needs to be re-compiled and re-linked.

By using Dependency Injection (Fowler, 2003) it is possible to create a loose bind between

the two where it is up to a Container to resolve the relationship between the two during

run-time.

By registering an implementation and which interface it implements, the Container may

resolve, during run-time, which implementing class to use. This makes it possible to

replace the implementation “on the fly” given that it implements the interface in question,

thus effectively removing the need to rebuild the application when the implementation

changes.

3.1.3 The Observer Pattern

In an Observer (Fowler, 2003) arrangement, the dynamic registration of observers with the

change notification mechanism avoids hard-coding dependencies between the subject and

its observers: they can join and leave at any time, and new types of observer that

implement the update interface can be integrated without changing the subject. The active

propagation of changes by the subject avoids polling and ensures that observers can update

their own state immediately in response to state changes in the subject.

In a typical Observer implementation, an Explicit Interface defines the update interface to

be supported by observers. Concrete observers implement this interface to define their

specific update policy in response to notifications by the subject. The subject, in turn,

offers an interface for observers to register with and unregister from the change

notification mechanism. Internally, the subject manages its registered observers within a

collection, such as a hashed set or a linked list.

3.1.4 The Mediator Pattern

A Mediator (Fowler, 2003) preserves the self-containment and independence of multiple

cooperating objects, which need not maintain explicit relationships with their peer.

Instead, they delegate the routing of requests, messages, and data that they exchange with

other objects to the mediator. The mediator is the orchestrator that connects the

cooperating objects, maintains oversight of them and controls their collaboration.

3.1.5 The MVVM – Model, View, ViewModel Pattern

In order to make F-REX Studio easier to maintain and enhance, it is based on a design

pattern called Model-View-ViewModel (Smith, 2009). It closely resembles the Model-
View-Controller (MVC) (Buschmann, 1992) pattern, and share most of the approaches

used in MVC. The thought behind MVVM is to de-couple the presentation from the actual

data-representation. In order to mediate the interaction between the presentation and the

underlying data-model, a ViewModel is used. Any domain specific business logic is placed

in this layer and not in the presentation layer (the View).

The ViewModel publishes properties which sometimes correlate to a particular data-item

in the Model, and sometimes it is a calculated property based on underlying data-items.

From the views’ point-of-view it doesn’t matter because that is handled by the ViewModel
transparently. The View is developed towards a specific interface irrelevant to how the

underlying data-model is structured – the View is said to be data-bound to the ViewModel.

The MVVM pattern is a key concept used in F-REX Studio and how it is mapped to

components in F-REX is shown below.

FOI-R--3624--SE

 16

Figure 4 The MVVM Pattern

3.1.5.1 The Model

The model represents the actual data and/or information we are dealing with. The key to

remember with the model is that it holds the information, but not behaviors or services that

manipulate the information. Business logic is typically kept separate from the model, and

encapsulated in other classes that act on the model. This is not always true: for example,

some models may contain validation (unique constraints in table-columns for example).

In F-REX the model is the way to interface to the recorded data.

3.1.5.2 The View

The view is what most of us are familiar with and the only thing the end user really

interacts with. It is the presentation of the data. The view takes certain liberties to make

this data more presentable. For example, a date might be stored on the model as number of

seconds since midnight on January 1, 1970 (Unix Time). To the end user, however, it is

presented with the month name, date, and year in their local time zone. A view can also

have behaviors associated with it, such as accepting user input. The view manages input

(key presses, mouse movements, touch gestures, etc.) which ultimately manipulates

properties of the model.

In MVVM, the view is active. As opposed to a passive view which has no knowledge of

the model and is completely manipulated by a controller/presenter, the view in MVVM

contains behaviors, events, and data-bindings that ultimately require knowledge of the

underlying model and ViewModel. While these events and behaviors might be mapped to

properties, method calls, and commands, the view is still responsible for handling its own

events and does not turn this completely over to the ViewModel.

 FOI-R--3624--SE

 17

One thing to remember about the view is that it is not responsible for maintaining its state.

Instead, it will synchronize this with the ViewModel.

3.1.5.3 The ViewModel

The ViewModel is a key piece of the triad because it introduces the concept of keeping the

nuances of the view separate from the model. Instead of making the model aware of the

user's view of a date, so that it converts the date to the display format, the model simply

holds the data, the view simply holds the formatted date, and the controller acts as the

liaison between the two. The controller might take input from the view and place it on the

model, or it might interact with a service to retrieve the model, then translate properties

and place it on the view.

The ViewModel also exposes methods, commands, and other points that help maintain the

state of the view, manipulate the model as the result of actions on the view, and trigger

events in the view itself.

3.1.5.4 “A Collaboration of Three”

How the Model, View and ViewModel interact may be depicted in a figure like the one

below:

Figure 5 Interaction between Model, View and ViewModel

The Model provides the data which in the F-REX framework is a combination (as of

December 2012) of a Relational DataBase Management System (RDBMS) (Codd, 1970)

and file-based storage. The ViewModel interacts with the Model in order to issue CRUD-

operations (Create, Read, Update and Delete) (Martin, 1983) on the data. Views, in-turn,

binds its visual elements to properties published by the ViewModel and are automatically

updated when the data is updated by responding to INotifyPropertyChanged (Smith, 2009)

events. Views issues Commands (Smith, 2009) (Developer's Guide to Microsoft Prism,

2012) against the ViewModel when interacting with the data.

FOI-R--3624--SE

 18

3.2 Bringing the Patterns together: The Microsoft
PRISM Framework

This is Microsoft’s philosophy behind PRISM and has been taken from Microsoft’s

homepage for PRISM:

“Prism provides guidance designed to help you more easily design and build rich, flexible,

and easily maintained Windows Presentation Foundation (WPF) desktop applications,

Silverlight Rich Internet Applications (RIAs), and Windows Phone 7 applications. Using
design patterns that embody important architectural design principles, such as separation

of concerns and loose coupling, Prism helps you to design and build applications using

loosely coupled components that can evolve independently but which can be easily and
seamlessly integrated into the overall application. These types of applications are known

as composite applications.” (Developer's Guide to Microsoft Prism, 2012)

The F-REX Framework has been designed ground-up to take advantage of the benefits

offered by PRISM.

3.3 The Architectural Design Patterns in F-REX

3.3.1 The Database Access Layer Pattern

The repository pattern is implemented using SQLite. On top of this physical database a

customized ORM (Object Relational Mapper).

3.3.2 The Dependency Injection (Inversion of Control, IoC) Pattern

The F-REX Framework defines a number of interfaces which act as contracts that

implementing classes commit to follow. The actual implementation, however, may differ

extensively between versions. In order to solve the connection between an interface and

implementation, F-REX uses the Dependency Injection pattern which resolves the

connection between the two during run-time. This makes it possible to alter the

implementation dynamically without having to re-compile and re-bind the dependencies.

This also makes it easier to patch the system if needed. There are a number of Dependency

Injector technologies available – currently Unity (Patterns & Practices - Unity) is used in

F-REX.

3.3.3 The Observer Pattern

Views are notified (through an INotifyPropertyChanged event) when properties provided

by its ViewModel are updated, thus given the possibility to redraw its content as a response

to the update.

3.3.4 The Mediator Pattern

F-REX relies on the EventAggregator in PRISM (Developer's Guide to Microsoft Prism,

2012) in order facilitate the Mediator pattern. The EventAggregator provides publish and

subscribe facilities, which enable loosely-coupled dependencies between modules, thereby

allowing a module to publish or consume events, or both. An event may carry a payload of

any kind described. It is up to the consumer to de-code the data provided in the payload,

and process it accordingly.

 FOI-R--3624--SE

 19

3.3.5 The MVVM – Model, View, ViewModel Pattern

3.3.5.1 The Model

The Model in F-REX is implemented by a meta-database which physically has been

implemented in SQLite. In order to access the meta-data stored within the database,

various design patterns, described earlier, are used. Videos, images and sounds are stored,

externally in a file-system, in their native formats, and in order to make it easier to interact

with the meta-data together with the actual binary data, an abstraction layer has been

implemented.

3.3.5.2 The View

Data visualization in F-REX Studio is realized by using Views and each view is developed

in response to a specific data-visualization use case. Each view is a module developed

according to the guidelines specified as part of the Microsoft PRISM Framework (3.2) and

the guidelines provided on the F-REX Project Wiki. By following the F-REX module

development guidelines, the developer is ensured that the newly created modules will be

dynamically loaded by F-REX Studio, allowing for quick and easy module development.

When a view is loaded into F-REX Studio, it hooks into the F-REX Studio menu system

and describes where it wants to render the data being displayed. By default, data

visualization views display their content in the workspace portion of the F-REX Studio

main window, and for each view-instance opened (there might be any number of views

open simultaneously – only limited by available system resources) a new control is docked

into the workspace.

3.3.5.3 The ViewModel

Each View has a corresponding ViewModel. The ViewModel acts as a “bridge” between

the component and the data being visualized - an abstraction layer providing all the

properties and methods needed by the view to visualize the underlying data properly. A

ViewModel may also contain business logic.

A View and ViewModel are connected through data bindings where visual elements are

data-bound to properties of the ViewModel. The ViewModel implements the

INotifyPropertyChanged interface, which means that a View doesn’t have to poll the

ViewModel – instead the ViewModel notifies the View when data is added, updated or

deleted and the View responds accordingly. In F-REX a ViewModel typically exposes a

subset of data from the dataset needed by the View.

FOI-R--3624--SE

 20

3.3.5.4 Publish/Subscribe – The connection between the data and the
visualization

When the user presses the play button, F-REX Studio starts to scan the events-table for

recorded data corresponding to the current state. Available events are published as

messages within F-REX Studio, and will be displayed, by all open views with filter

settings accepting this particular event, in the user interface (in this case a video-view). It

is important here to stress the fact that the views are very loosely-coupled to the data. The

process for displaying an event in a view looks like this:

for each event in chronological order…

1. The event is published within F-REX Studio together with a payload (event meta-

data)

2. ViewModel(s), subscribing to the particular event-type, gets notified depending on

the filter settings, reads the payload, and raises property changed events

depending on that payload

3. The View(s) connected to the ViewModel(s), gets notified that there’s new data

available

4. The View(s) redraw its/their content

 FOI-R--3624--SE

 21

4 Architectural Representation
The purpose of this document is to act as a conduit between a more high-level description

of the architectural aspects of the F-REX Framework, its methods and tools, and the

detailed documentation which is kept outside this document in order to let them evolve

over time, without affecting this document.

The external documents consist of a number of scenario (Use Case), logical view and

physical view documents. The notations used in all documents are based on UML, Unified
Modeling Language (UML Resource Page). For an in-depth description of the various

aspects of the architecture please refer to the References Section (9).

FOI-R--3624--SE

 22

5 Architectural Goals and Constraints
There are some key requirements and system constraints that have a significant bearing on

the architecture. An effort has been made, in the reverse engineering phase, to gather and

classify all requirements that have been identified since mid-2005. The refinement of the

requirements will be an ongoing process until a decision has been made that the

requirements and the system has reached equilibrium.

The state of the requirements and their classification will be depicted in the Requirements
Document referenced to in the References Section (9).

 FOI-R--3624--SE

 23

6 Use Case View
For a thorough description of the Use Cases, please refer to the F-REX Scenarios
documentation in the References Section (9).

6.1 Architecturally-Significant Use Cases

6.1.1 Data Collection

A more thorough description of the Data Collection Use Cases are found in F-REX Data

Collection Use Cases (Litsegård, 2012a)

Figure 6 Data Collection Use Cases

 uc F-REX Data Collector

Central Data Repository ("Pegasus")

«actor»

F-REX Data

Collector

(from

Stakeholders)

Collect IP Camera Data

Collect NBOT Data

Collect IDS Data

Collect NeXpose Data

Collect Logfile Data

Collect Topology Data

Collect VCN Config Data

Collect PCAP Data

Send Notification

«actor»

cron

(from

Stakeholders)

Schedules the F-REX

Data Collector

Orchestrates the data

collection process

Data Capture Technician

(from

Stakeholders)

«invokes»

«invokes»

«invokes»

«invokes»

«invokes»

«invokes»

«invokes»

«invokes»

«flow»

FOI-R--3624--SE

 24

6.1.2 Audio Video

A more thorough description of the Audio Video Data Collection Use Cases are found in

F-REX Data Collection Use Cases (Litsegård, 2012a)

Figure 7 Audio Video Use Cases

 uc Audio Video

Course Laptop

Monitor Data Collection

Monitor Dev ice

Start/Stop Dev ice

Change Dev ice

Settings

Refresh Dev icelist

«actor»

captureav .js

(from Stakeholders)

Add Laptop

WPF-application running

under Windows.

«actor»

Fileserv er

(from Stakeholders)

Data Capture Technician

(from

Stakeholders)

Audio/Video data

captured by

"captureav.js" is

transferred to central

storage (fi leserver).

Copy Data

«actor»

cron

(from Stakeholders)

«flow»

 FOI-R--3624--SE

 25

6.1.3 NBOT

A more thorough description of the NBOT Data Collection Use Cases are found in F-REX

Data Collection Use Cases (Litsegård, 2012a)

Figure 8 NBOT Use Cases

 uc NBOT

Computer with XForms conformant designer

Server with ODK installed

Android NBOT-Client

Reporting

NBOT User

(from

Stakeholders)

Check Item Status

Remov e Item

Change Item Color

Define NBOT-form

Export NBOT-data

Needs to be more

detailed!

«actor»

cron

(from Stakeholders)

Item Selection

An Android based client,

used by an NBOT User.

Data Capture Technician

(from

Stakeholders)

«actor»

Fileserv er

(from Stakeholders)

«flow»

«invokes»

FOI-R--3624--SE

 26

6.1.4 Studio

A more thorough description of the Data Collection Use Cases are found in F-REX Studio

Use Cases (Litsegård, 2012b)

Figure 9 F-REX Studio Use Cases

 uc Studio

View Related

DataAdapter Related

F-REX Studio

Project Related

Create New Project

Open Existing

Project

Import CSV-file(s)

extension points:

Import CSV With

Prev iews

Import CSV-file(s)

(Prev iew)

Sav e Loaded Project

Sav e Project As

Close Project

Import GPS Log file(s)

Import IDS file(s)

Import Media

directory

Import NetFlow file(s)

Import NexPose

file(s)

Import Pcap-file(s)

Import System

configurations file(s)

Import System log

file(s)

F-REX Analyst

(from

Stakeholders)

Playback Audio View

ObjectProperties

View

Configuration View

Ev ent List View
Image View

Message List View
Network Topology

View

Network Traffic

View

extension points:

Zoom In/Out

Pan Map

Object View

Object Property

Statistics View

Video View

Vulnerability Status

View

Start Replay

Stop Replay

Fast Backward

Replay

Fast Forward Replay

Adapter List View

Filter View

extension points:

Filter on Ev ent Extension Types

Filter on Ev ent Types

Filter on Adapter

Filter on Min/Max Duration

Filter on Min/Max Time

Filter on Object Types

Close View

Zoom In/Out on

Network Traffic

Pan the Network

Traffic View

Unable to document.

F-REX Studio crashes

with current project-fi le.

Import Media file(s)

Unable to document.

F-REX Studio locks-up

with current project-

fi le...

Filter on Adapter
The user fi lters on

DataSourceAdapter.

User wants to pan the network

map in order to bring the area

of interest into view.

The user wants to

zoom in/out.

Filter on

Ev entExtensionType(s)

The user fi lters on

EventExtensionType(s).

Filter on Ev entType(s)

The user fi lters on

EventType(s).

Filter on ObjectType(s)

The user fi lters on

ObjectType(s).

Filter on Min/Max

Time
The user fi lters on

min/max time.

Filter on Duration

The user fi lter on

duration.

The user wants to

preview the data

before import.

«extend»

«extend»

«extend»

«extend»

«extend»

«extend»

«extend»

«extend»

«extend»

 FOI-R--3624--SE

 27

7 Logical View
This is an overview of the packages that are described in the Logical View of the

documentation. For a thorough description, please refer to the F-REX Domain Model

(Litsegård, 2012c) and F-REX Class Model (Litsegård, 2012d).

7.1 Architecture Overview – The Domain Model

The Domain Model provides an overview of the domain specific objects that are stored in

the F-REX meta-data repository. An understanding of the domain model will make it

easier to understand the F-REX architecture as it describes how the various objects relate

to each other and the cardinality in the relationships.

Figure 10 The Domain Model

 class Domain Model

Ev ent

Ev entTypeEv entExtensionType

DataSourceAdapterDataSourceAdapterType

Message

Link LinkType

Ev entObjectRelationship Object ObjectType

RelationshipType

ValueUpdate ObjectProperty PropertyType

LinkActiv ation

Ev entLocation

0..*

1

0..*

1

0..*10..*1

0..*

1

0..*

1

0..* 1

0..*

2

0..*

1

0..* 1

0..*

1

0..*
1

0..* 1

0..*

1

0..* 1

0..*

1

0..* 1

0..* 10..*

1

0..*

1

FOI-R--3624--SE

 28

7.2 Architecture Overview – The Packages

Figure 11 A package view of the F-REX Framework

The framework is based on the PRISM Framework, a Codeplex hosted framework

supported by Microsoft. The PRISM framework encourages the use of discrete, loosely

coupled, semi-independent components that can then be easily integrated together into an

application "shell" (in this architecture the "shell" is hosted by the F-REX Studio Tool) to

form a coherent solution. Applications designed and built this way are often known as

composite applications.

7.2.1 Common

The "Common" folder contains projects that are not modules, but rather represents the

common elements that are reused in several modules (shared libraries).

 Frex.Common - defines all the interfaces for the F-REX data model, and filtering

mechanisms

 Frex.Common.DataSourceAdapters - contains shared classes and interfaces that

deals with data integration

 Frex.Common.Linq - contains extended Linq-definitions used elsewhere in F-

REX, eg to calculate the standard deviation of IEnumerable <T>

 Frex.Common.Symbols - contains interfaces for handling symbols in F-REX (eg

to draw the symbols on the map or icons in the object views)

 Frex.Common.Tracks - contains interfaces for handling track and trace service,

and basic classes to manage tracks in F-REX (with a trace / track we mean time-

stamped series of geographical positions)

 Frex.Common.UI - contains shared visualization components, such as file dialogs

7.2.2 Core

The "Core" folder contains the modules that have to do with basic functionality (indirect

use cases).

 Frex.Data.SQLite - implementation of the storage mechanism for data model to

SQLite. F-REX supports several parallel implementations, eg Frex.Data.XML or

Frex.Data.MIND can be implemented if there is a need to read / save models in

formats other than those defined in Frex.Data.SQLite. Reasons to implement

other formats are interoperability and performance optimization

 class Framework

Common Core DataAdapters Dependencies

Serv ices Tools View

 FOI-R--3624--SE

 29

 Frex.ProjectManager - implementation of basic functionality such as Open / Save

project. The implemented interface IProjectManager is defined in Frex.Common.

7.2.3 DataSourceAdapters

"DataSourceAdapters" contains implementations of data integration components, ie,

"imports" of data from files, databases, hardware and other systems. The adapters are

accessible from the shell menu via Data-> Add data provider.

Figure 12 Adding a DataSourceAdapter in F-REX Studio

Some examples:

 Frex.DataSourceAdapter.CsvFiles - loads an arbitrary comma (or tab-delimited,

semicolon, pipe) separated file. Each row that is loaded generates an event

(IEvent) and an IValueUpdate for the IObject defined by the directory structure

that is pointed out, and an IPropertyType for the indicated column

 Frex.DataSourceAdapter.DataImportScriptFiles - is a "meta-adapter" that reads

XML files containing import-definitions, definitions of what should be imported.

This adapter can also be used to script data imports of larger data sets. For an

adapter to support this, it must implement the interface ISciptableAdapterImpl

and the module-file must register with a name, that is then used in the script file to

tell which import module to use

 Frex.DataSourceAdapter.GpsFiles - import GPS logs generated for MIND or F

REX v1 (a format description is available). The idea is that standard formats, such

as NMEA, should also be implemented

 Frex.DataSourceAdapter.MediaFiles - importing all types of files on the principle

1 file = 1 event. Typically this is image, video and audio. For video and audio

files that are not of a standard type, the file MimeTypes.txt need to be expanded

in order to support the new format

 Frex.DataSourceAdapter.PcapFiles - import network logs captured by, say,

WinDump or tcpdump. Note that you MUST have WinPcap installed to use this

module (installed as part of WinDump)

FOI-R--3624--SE

 30

7.2.4 Services

The "Services" folder contains modules that implement reusable services in F-REX. A

service typically implements some data processing that can be used by several modules

either to avoid duplicating expensive calculations, or to ensure consistency throughout the

application.

Some examples:

 Frex.Service.SymbolService.Default - provides a default implementation of

ISymbolService (Frex.Common.Symbols)

 Frex.Service.SymbolService.Mosart - contains an alternate implementation of

ISymbolService (Frex.Common.Symbols). This implementation uses a symbol

library from Mosart, which is converted from Java using IKVM.net

 Frex.Service.TrackService - implements ITrackService

(FOI.Frex.Common.Tracks) and delivers calculated tracks for IObjects having

location updates (IEventLocation) connected to them. This can used to plot

devices and tracks in map views

7.2.5 Tools

The "Tools" folder contains the modules that the user wants to use without using a view.

An example could be to send data to a third party-tool such as Wireshark.

Some examples:

 Frex.Tool.LaunchWiresharkCommand - This tool registers itself in the Tools

menu of the F-REX shell. When one or more pcap events (IEvent) has been

highlighted in a view that uses the EventSelected and EventDeselected

(Frex.Common.Events) respectively, this function is called. The underlying raw

data related to these events are fed to Wireshark provided it is installed on the

system. For more information on how this module receives information from

other views, see Prism's documentation, pp. 132-136

 Frex.Tool.SetFilterCommand - This tool registers in the Filter menu and allows

the user to configure filters for the selected view. Note that a view must have a

ViewModel that implements IEventViewModel (Frex.Common.UI) for this to

work

7.2.6 Views

The "Views" folder contains the modules that implements views or visualizations of data

in different ways. Note also that editors (for the manipulation of data) are classed as views

themselves, if they use visual feedback in order to give the user access to data. Views are

accessed from the shell from the menu View->Add view...

Some examples:

 Frex.View.Chart - implements a general graph-view based on

DynamicDataDisplay. This view does not have a ViewModel, rather they are

implemented as "sub-modules" that tells which data to display, and how

 Frex.View.Chart.ObjectProperty - implements a ViewModel for Frex.View.Chart

showing object (IObject) properties as time series (ie, the properties change over

time). Example, by selecting the item "Computer 1" and property "CPU load", a

graph is displayed showing CPU load on PC1

 Frex.View.DataSourceAdapterList - shows all IDataSourceAdapterImpl that this

project contains

 FOI-R--3624--SE

 31

 Frex.View.EventList - shows all IEvent that this project contains, ie all registered

log points

 Frex.View.Image - shows still images, such as photos

 Frex.View.MessageList - shows all IMessage that this project contains, ie all log

points recorded as a message (sender -> receiver)

 Frex.View.ObjectPropertyStatsticsList - displays statistics on all IObjectProperty

that this project contains, ie, properties of objects

 Frex.View.Video - play videos

7.2.7 Dependencies

The "Dependencies" folder contains third-party binary dependencies (outside. NET

framework 4.5 SDK) necessary for F-REX to build.

FOI-R--3624--SE

 32

7.3 Deployment Diagram

For a more thorough description of the deployment diagram, please refer to the F-REX

Physical View document (Litsegård, 2012e).

Figure 13 Deployment Diagram

A sample installation of F-REX Studio is depicted above. The application is installed on a

Windows computer running Windows 7 or later and relies on the following:

 The F-REX Framework

 The PRISM Framework

 .Net Framework 4.5

 Repository (a combination of SQLite and file-based storage)

 FOI-R--3624--SE

 33

7.3.1 Data Collection and visualization

The F-REX Framework uses the concept of DataSourceAdapter(s) in order to import data

into the F-REX repository. Currently SQLite is used for the storage of meta-data and the

file-system is used for storing data in the form of physical disk-files.

A user adds and configures DataSourceAdapters in order to load data into the F-REX

Studio. The data, residing in the repository, may then later be replayed by using Views,

which in turn relies on ViewModels to act as an intermediate layer between the

presentation and data storage.

FOI-R--3624--SE

 34

8 Figures

Figure 1 The Reconstruction and Exploration Process 8

Figure 2 Screenshot of F-REX Studio .. 10

Figure 3 The ODK-based NBOT-client ... 13

Figure 4 The MVVM Pattern ... 16

Figure 5 Interaction between Model, View and ViewModel 17

Figure 6 Data Collection Use Cases ... 23

Figure 7 Audio Video Use Cases ... 24

Figure 8 NBOT Use Cases ... 25

Figure 9 F-REX Studio Use Cases ... 26

Figure 10 The Domain Model .. 27

Figure 11 A package view of the F-REX Framework 28

Figure 12 Adding a DataSourceAdapter in F-REX Studio 29

Figure 13 Deployment Diagram ... 32

 FOI-R--3624--SE

 35

9 References

Developer's Guide to Microsoft Prism. (February 2012).

http://msdn.microsoft.com/en-us/library/gg406140.aspx

Andersson, D. (2009). F-REX: Event-Driven Synchronized Multimedia Model

Visualization. Proceedings of the 15th International Conference on

Multimedia Systems, (pp. 140-145). Redwood City, CA.

Buschmann, F. (1992). Pattern-Oriented Software Architecture.

Codd, E. (1970). A Relational Model of Data for Large Shared Data Banks.

doi:10.1145/362384.362685.

Fowler, M. (2003). Catalog of Patterns of Enterprise Application Architecture.

martinfowler.com: http://martinfowler.com/eaaCatalog/ 10 2012

Jenvald, J. M. (1996). MIND - Ett instrument för värdering, utveckling och

träning av stridskrafter. Linköping: Försvarets forskningsanstalt.

Litsegård, P. (2012a). F-REX Data Collection Use Cases (unpublished

manuscript). December, Linköping: Totalförsvarets Forskningsinstitut.

Litsegård, P. (2012b). F-REX Studio Use Cases (unpublished manuscript).

December, Linköping: Totalförsvarets Forskningsinstitut.

Litsegård, P. (2012c). F-REX Domain Model (unpublished manuscript).

December, Linköping: Totalförsvarets Forskningsinstitut.

Litsegård, P. (2012d). F-REX Class Model (unpublished manuscript).

December, Linköping: Totalförsvarets Forskningsinstitut.

Litsegård, P. (2012e). F-REX Deployment Diagram (unpublished manuscript).

December, Linköping: Totalförsvarets Forskningsinstitut.

Litsegård, P. (2012f). F-REX Glossary (unpublished manuscript). December,

Linköping: Totalförsvarets Forskningsinstitut.

Martin, J. (1983). Managing the Data-base Environment. Englewood Cliffs:

NJ:Prentice-Hall.

Morin, M. J. (2003). Utvecklingsmetoder för samhällsförsvaret (FOI-R--1064--

SE). Linköping: Totalförsvarets forskningsinstitut.

Patterns & Practices - Unity. (u.d.). codeplex.com: http://unity.codeplex.com/

Smith, J. (2009). WPF Apps With The Model-View-ViewModel Design.

http://msdn.microsoft.com/en-us/magazine/dd419663.aspx den 11 11

2012

The IEEE and The Open Group. (2008). crontab - schedule periodic

background work. http://pubs.opengroup.org:

http://pubs.opengroup.org/onlinepubs/9699919799/utilities/crontab.htm

l 11 2012

Thorstensson, M. (2012). Supporting Observers in the Field to Perform Model

Based Data Collection. Proceedings of the 9th International ISCRAM

Conference. Vancouver, Kanada: Totalförsvarets Forskningsinstitut.

FOI-R--3624--SE

 36

UML Resource Page. (u.d.). uml.org: http://www.uml.org/ November 2012

